NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

JPL PUBLICATION 80-16

(NASA-CR-163258) AN APPLICATION OF
A) . SOFTHWA -
DESIL:‘N ?\ND DOCUMENTATION LANGUAGE (Jet RE N80-26057
Propulsion Lab.) 41 p HC AC3/HF A01
C5CL (9B Unclas
G3/61 23618

An Application of Software
Design and Documentation
Language

E. D. Callender
T. B. Clarkson
C. E. Frasier

June 1980

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

ot e sttt e i

4
rg(
¥

i
F
;
|
(
F
|
E
:
L)

.

JPL PUBLICATION 80-16

An Application of Software
Design and Documentation
Language

E. D. Callender
T. B. Clarkszin
C. E. Frasier

June 1980

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

~—— g

Rt st <.

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100.

Raae R NV}

PREFACE

This paper was presented at the AIAA 2nd Computers In Aercspace

Conference, October 23-25, 1979. This version is expanded from that which was
presented at tha conference.

ABSTRACT

This paper discusses the application of SDDL to the detailed
software design of the Command Data Subsystem for the Galileo spacecraft. &
set of constructs was developed and applied. The paper contains an evaluation
of these constructs and examples of their application.

CONTENTS
1 INTRODUCTION = === mmmmm e e s e e e e e e e 1-1
2 DESCRIPTION OF SDDL==mmmmm o n e e e 2-1
3 DETAILED DESIGN PROCEDURE=mmm=mmmmmm e e e i e 3-1
4 SDDL SYNTAX TO SUPPORT DETAILED DESIGN PROCEDURE~=mm~mmemmmm- 4-1
4.1 REQUIREMENTS DESCRIPTION = mmummmssmm o e m e 4-1
4.2 REQUIREMENTS MODULARIZATION=wcccmmmmme e e s 2
4.3 REQUIREMENTS ORGANIZATION=-cremcm e mm e e e e 4-2
4.4 REQUIREMENTS INVOCATION--~=mmmmmmmemm e et e 422
4.5 DATA DESCRIPTION--=cmmmmmmmns e e e e 4-4
4.6 DATA MODULARIZATTON == s e e e A-4
4.7 DATA ORGANIZATION = oo e s e e e s e e 4-8
4.8 DATA INVOCATION«wcmmmemmmmc e e e rmmmmmmmemsneaa e $212
4.9 PROGRAM DESCRIPTION===mevmmmmmmmmmmmmi e e e e 4-12
4.10 PROGRAM MONULARIZATION=mmmmmmm e e e s i e e A-12
4,11 PROGRAM FLOW CONSTRUGTS-mmmece e e e e 4-13
4.12 PROGRAM INVOCATION=-mmmcmemcmccmcam e e e 213
4.13 DATA USAGE ~-~=---- e e 4-13
4.14 TASK DESCRIPTION=m- mmmm s e e e e m 4-13
4.15 TASK MODULARIZATION === === mmmmmm m e e e e e e e 4-14
4.1A TASK CONTROL CONSTRUCTS=m=mmmmm e mmm e e e 4-15
4,17 TASK INVOCATION == m = m o o o e e s e e 4-15
4.18 DOCUMENTATION DESCRIPTION====+ mmcmmm e e e e e A-15
5 DEFINITION OF CDSmmmmmmmmm s e e e e e 5-1
6 EXPERTENCE USING SDDL ON CDS DETAILED DESIGN~=w==-memmmemaun- 6-1
Appendixes
A SDDL DIRECTIVES~mmmmm e e e et e e A-1
Figures
4-1 Sample Requirement =--=--mommmm oo 4-3
4-2 RepTication === e e 4-8
4-3a Sample Data Structure ---=ememcmmom e 4-9
4-3b Sample Data Structure -=---=-mmmem e e 4-10
4-4 Use of AbStract ==mmemmemmmcm e e e 4-17
5-1 Detailed Design -— Top Level Executive ====-mm-mccccemeonnma- 5-2
5-2 Time to Execute FunCtion ==-ememmmmmmo oo 5-3
5-3 HLM-System-Start-TE Group =---==~---emcmm e e e 5-5
5-4 Data Specification Group --=-~==--=memeaeo e L PP 5-6
5-5 Data Specification Group (added substructive) ~----=-==-=-m=u-- 5-7
5-6 CDS Software (Module Invocation Tree) =-emcmecmcccmmcmcccaaan 5-8
Tahles
3-1 ModuTe QULTINe ==mmmmmm e e e e e e e 3-3

v

SECTION 1
INTRODUCTION

One of the major prohlems that face the software designer is how
to record and maintain the detailed design of a piece of software during
development. It is desirable that when the design is completed that the
associated documentation that records the design also be completed. This
report presents a possible solution to this problem, The focus is on the
detailed design of the software for the Command and Data Subsystem (CDS) of
the spacecraft for Project Galileo. The tool used_ to support the approach is
Software Design and Documentation Language (SDDL).1 SDDL is a software
program design language and associated processor. There are five hasic
concepts described in this report., They are:

(1) Detailed design can be made a manageahle task hy restricting its
scope. It is neither functional, architectural or general
design, nor is it implementation where the clerical details
necessary to translate the detailed design into code are added.
Detailed design starts once all the major components have heen
identified and ends when the cookbook of instructions has been
created that would allow a clerk to emulate the functions of a
computer and execute the program. In more exact terms, a
detailed design is an exact and unambiguous description of: the
interrelationships (interfaces) between independent logical
elements; logical disposition and organization of the data; and
interaction of an abstract machine with its data base
(algorithms).

(2) There are eight dimensions necessary to define a design.
Reference is made to Tahle 3-1 containing the eight items

necessary and, we hope, sufficient to describe a detailed design.

(3) The best realization of a detailed design is in the document
that describes that design. This of course assumes that code
has not yet been created.

(4) An isomorphism exists between data and control structures.

(8) Five different types of structures (modules) are sufficient to
describe a design. The five types are data, control, task,
requirement structures, and free form text hlocks.

This report is divided into five sections. The first section
contains a very bhrief description of SDDL. The next is a description of the
detailed design procedure followed by a description of the SDDL syntax used to
support that detailed design. Then the Command Data Subsystem (CDS) is

hriefly described. The final section relates the experience using SDDL on CDS.

LHenry Kleine, Software Design and Documentation Language, JPL Publication
77-24, Revision 1, Jet Propulsion Laboratory, Pasadena, California,
August 1, 1979.

1-1

o Ky g

et

SECTION 2
DESCRIPTION OF SDDL

The Software Design and Documentation Language (SDDL), contrary
to the implication in its title, is a general-purpose processor to support a
language for the description of any system, structure, concept, or procedure
that may he preserted from the viewpoint of a collection of hierarchical
entities linked together by means of hinary connections. The languaqe
comprises a set of rules of syntax, primitive construct classes (module,
hlock, and module invocation), and language control directives. The result is
a language with a fixed grammar, variable alphabet and punctuation, and an
extendabhle vocabulary. SDDL represents a rather primitive, but powerful
capahility. It assists the software designer by providing structure. It
supports the naming of pieces of the software design, called modules, the
illustration of substructure within a module hy automatic indentation, the
identification of other module invocation with any module and the creation of
a module hierarchy and crnss reference list, It operates against a single
input file of textual material that is the current description of a design of
a Eiece of software and creates a single report that contains the above
information.

mam kgt
I

'?‘

SECTION 3
DETAILED DESIGN PROCEDURE

The point of departure for this report is at the start of the
detailed esign for a piece of software. It is assumed that the reader is
familiar with the coftware design process. A top-level hierarchical program
structure has already been created during the general design process.

This document does not address the issue of how to <reate a
detailed design for a piece of software. However, certain basic steps in that
process are assumed. It is assumed that for each module, a completed detailed
design will he prepared before that module is coded. The level of detail in
the design is such that one SDDL statement should on the average generate
three to five lines of code, assuming that a higher order language is used or
that macros are used in the case of assembly language. It is also assumed
that the implementation language is procedural.

The creation of the detailed design for software can be viewed
as the creation of a numher of structures (MODULEs) and the associated ties
hetween these structures (in SDDL parlance, MODULE INVOCATIONs). There are
four very important classes of structures that are created as the detailed
design for the software is prepared. They are the structure or list of
requirements, the top-level task structure, the hierarchical structure for the
programs (control processes), and the associated data structures.

A software package or design is an abstract item. The only
physical manifestation of a piece of software is that of its associated
documentation. This documentation can exist in many different forms, One
form is code. Another form is a detailed design. The outline given in Table
3-1 gives the items that are required for a task, process or data module, It
is the kernel outline for the documentation of any module, whether the module
be a high, intermediate or low level. The order in the program structure in
which these items are generated is dependant upon the design methodology
employed by the individual designer and the individual designer's experience
and 1insights into the particular problem at hand. The SDDL processor is
insensitive to the order in which these items are generated and processed.
What is descrihed below are the constructs that will assist the designer as
he/she treats the problems of input data, local data structures, output data
and the myriad of other details necessary to complete the detailed design for
a particular software package.

The hierarchical program structure has the program as the top
entry in the structure. A program may he made up of one or more procedures,
subroutines and/or functions. Each subroutine or func’ion may consist of one
or more procedures. Modules, as described in SDDL, are sized with a view to
facilitate the understanding of the reader. The size of the module when it is
described hy the designer may be substantially different than the size of a
module when it is compiled or assembled into executable code. For example, a
subroutine when compiled may consist of its top level module plus a large
number of submodules. To this end, individual program modules should he
scaled such that only one operation or function is performed hy that procedure

3-1

b?‘

R oo

and that the implementation will not require an excessive amount of code or
structure. Typica®ly this means that the numher of design statements
(execution directives, data declarations, etc.) required to describe a
procedure is ten to fifty; the number of associated lines of code is less
than one hundred when the implementation language is either a higher order
langauge or a macro assembier language and that the design of a single module
will not require more than six or seven levels of structure. This
hierarchical program structure only partially describas the flow of control
within the program. As the hierarchical structure for the program is being
created the control flow for each module must he estahlished. The control
flow is described using standard structured programming constructs. (Such
structured programming constructs are described in SDDi. using the BLOCK
construct family.)

Lo Finin,

e e

3-2

-

Table 3-1, Module Outline

A

DATA MODULE
(NAME)

T8 O s WG S T SR e G TSR U W T 0 TN T LS THT) W DI T TR SR W

PROCESS MODULE
(NAME)

1.0
2'0
3.0

4.0

5.0
6.0
7'0

8.0

Module Abstract
Allacated Requirements

Dasign Description/
Purpose/Functional
Description

Affected Module
Modifying Process
Modules
Accessing Process
Modules
Invoking Data Modules
Invoked Data Modules

Operating Environment
System Parameters

Data Specification
Access Algorithm/
Protocol
Assumptions/
Constraints Statistics

Data Organization
Normal Data
Error Data

B M il W o o N 78 RO WIILER LN K w wm

TASK MNDULE
(NAME)

WETE A ko oy SRS K it e EXT TS S0 56 b KU T TNOINC 08 o T RS WO ZEUTL M ab.amovm

Module Abstract
Allocated Requirements

Design Description/
Purpose/Functional
Description

Affected Modules
Invoking Process
Modules
Invoked Process
Modules
Accessad Data Modules
Modified Data Modules

Operating Environment
System Parameters

Process Specificgtion
Mode of Execution

Assumptions/Constraints

Control Flow
Normal Processing
Error Processing

Module Ahstract
Allocated Requirements
Design Nescription/
Purpose/Functional
Description

Affected Modules
Invoking Tasks

Invoked Tasks

Invoked Process
Owned Data

Operating Environment

System Paramcters

Task Specification

Task Organization

3-3

In a similar manner, a hierarchical data struture is organized
into groups, files, queues, stacks and tables. The data constructs are
concerned with the abstract design, not the physical implementation, Each
data construct has an associated ahstract access method, After the detailed
design 1s completed and before the associated code 1s generated, it is
necessary to determine the physical disposition and representatinn of the
ahstract data structures that have been created,

The detailed design of a piece of software is completed when the
data structures and control structuras have heen sufficiently specified that
the computer functions could be simulated by hand without making any further
design decisions, Using this criterion, coding is the conversion of a
detailed design (tarqgeted for execution within a human mind) into the syntax
acceptahle for input into an assembler or compiler,

One aspect of the method described in this paper is to make a
clear distinction between the activities associated with the creation of the
detailed abstract software design and the physical implementation of that
design., This distinction is at times very subtle, However, the distinction
is extremely important and must he kept in mind at all times as the detailed
design is heing prepared. Ca+ must be taken to ensure that the abstract
design is easily mapped into the physical design. The requirement to achieve
this has influenced the partisular choice of SDDL constructs,

Between the completion of the detailed design and the generation
of associated code, some implementation decisions must be nade. They can
include the selection of the coding language and hardware and the
determination of the physical disposition and representation of the
appropriate data structures. Of course, decisions on coding language and
hardware are many times made at the beginning of the project by default,
politics, or other nontechnical reasons. The intent of this design
specification approach is to support thu capability to postpone decisions of
an implementation nature unvil the detailed design is complete.

The use of SDDL as a computer software design medium exploits
the analogous relationship between the hierarchical representation of the data
portion of a software system and the program portion. Indeed, the execution
of a program may be viewed as the construction of a file of data
(instructions) passed to the ALU, where the branches, together with the states
upon which they are hased, are understood to be the selection characteristics
of that file., Both are organized hierarchically by means of extended
constructs in the families: MODULE, BLOCK, and MODULE INVOCATION. The SDDL
Tanguage provides the construct families as primitives together with the
capahility to add or delete members of each construct family. The language
does not provide explicit definitions for the use (semantics) of these
constructs. The selection of the abstract constructs presented in this report
was made based upon the experience of the authors in designing software.
Hence, in many cases the "usual" implementation realization of the abstract
construct may be inferred from the similarity to the English words. However,
it is the responsibility of the designer to ensure that for any particular
design, each of the logical constructs that he uses can be realized in the
physical implementation, For examples of these constructs, the reader is
referred to the material in Section 4 of this report.

3-4

——— i,

e

. VR

‘x‘i

The constructs in the MODULE family allow the user to set up
generic classes of modules including data modules such as FILE, STACK, QUEUE,
and TABLE, control process modules such as PROGRAM, SUBRQOUTINE, FUNCTION, and

PROCEDURE, and requirement modules.

subroutine,

are given helow.

The constructs in the BLOCK family allow
the user to create a hierarchical structure within a pa~ticular module, If
the mordule is a control process structure, the user will recognize the
hierarchical structure as a typical indentad set of I, SELECT, LOOP and
PERFORM, The constructs in the MODULE INVOCATION family allow the user to
create the network that relates the various modules. Here constructs such as
CALL, DO, OPEN, CLOSE, READ, WRITE, and CLEAR are used. MODULE INVOCATION can
he thought of as a one way mapping from the jnterior of the module under
discussion to some cther module, viewed atomically. For example, the
construct CALL can be thought of as a mapping from a subroutine to another

The actual steps used in the detailed design process for the CDS

then the program control flow was added.
iteration within all of the steps,

(4)
(5)
(6)

The interfaces and data structures were first designed and

There was a substantial amount of

Define and characterize interfaces hetween the soffware to he
produced and the environment in which the software will

operate. This environment includes interfaces to other software
and any hardware interfaces that are used.

Define data structures to be used hy the software.

Decompose software into procedures and identify all procedurs

calls.

Specify control flow.

Identify error conditions and recovery processing.

Verify design, iterate.

3-5

P i et T

‘ﬂ

SECTION 4
SDDL SYNTAX 1O SUPPORT DETAILED DESIGN PROGEDURE

There are five fundamental types of constructs used in the
description of a software design. They are: requirements, data, program,
task, and unstructured text. Associated with each of these module types are
various substructures and invocation rules., A requirements module is a device
that allows the designer to state in a structured manner the requirements that
the design must satisfy.

Data s described from two points of view: the structure of the
data, and the attributes or values that the data may take. The SDDL
constructs presented in this section are directed toward a description of the
various structures that are used in describing data organization, Because of
the very large number of data types that are possible, there are no SNDL
zonstructs presented in this manual diracted toward describing data
attribhutes, However, in many of the examples that are given helow, attributes
are presented as textual information. Hence, a description of a callection of
data items in SDDL should contain both structure and attribute information,
For example, the scope associated with a data structure or the range of values
that a data item may attain is attribute information and 1is hest captured as
in-Tine textual comments in the data structure,

A program {a process/control structure) is described in terms of
its type, the process steps that are performed when the program is invoked and
the other processes that this program invokes. The SDDL constructs are based
upon standard structured programming constructs. As in the case of data
representation, no attempt has been made to catalngue the myriad of operators
and algorithms that the designer may select to describe the operations
performed within a design.

A task is a construct that is introduced to allow a designer to
express real-time or interrupt driven designs in SDOL. A task is an
independent ahstract machine. A task has assnciated with it sata that it owns
(machine state) and the executable programs (definition of the function of thn
machine) that it uses,

The finat construct class is concerned with the documentation of
the design. Constructs are employerd which allaw the designer to record all
information ahout the design in SDDL. The intent is Lo allow the designer ta
record within SNDL data that is usually not treated in pseudo-code and too
many times left out of a design document., The constructs discussed in this
section are based upon the module outline given previously in Tahle 3-1,

4.1 REQUIREMENTS DESCRIPTION

The requirements for a design are usually stated with respect tn
performance while the design is exprassed in termg of data structure, task
relationships and processing algorithms., In general, the requirements and the
dasign will differ topnlogically and it will not be pnssible to emhed the
requirements in the program or data modules desiqgned in response to these
requirements.

4-1

Hence, a separate module construct for requirements is used, In a manner
analogous to the modularization of data, program and task structure, the
requirements for a system may be partitioned into hierarchical classes. Each
class of requirements is contained in a REQUIREMENT module. The grouping of
requirements into a particular REQUIREMENT module is done at the discretion of
the designer. The governing criterion is the degree of REQUIREMENT module
invocation that the designer wishes to employ. The module invocation keyword
"REFINEMENT" is used to indicate a REQUIREMENT module containing a refinement
of the requirements in the parent module.

In any REQUIREMENT module, all of the information is textual.
The BLOCK and ENDBLOCK structure is allowed to aid the designer in automated
indentation. Also, the SOURCE construct and the substructure for that
construct is allowed to aid as a checklist to the designer as he/she describes
the requirements.

A REQUIREMENT module can only point to another REQUIREMENT
module. The construct used here is "REFINEMENT" and the meaning is that the
referenced REQUIREMENT module contains a more detailed description of the
requirements specified in the parent MOUULE., REFINEMENT allows a structuring
from a higher level requirement to a lower level requirement. A REQUIREMENT
module can be pointed to by the construct SATISFIES. Figure 4-1 gives a
sample REQUIREMENT and shows a use of the substructure under REQUIREMENTS.

4.2 REQUIREMENTS MODULARIZATION

In the case of process and data structures, there are a number
of different module types. Fnr example, PROGRAM, SUBROUTINE, FILE, and
QUEUE. TIn the case of requirements, there is just one module type, namely,
REQUIREMENT.

4.3 REQUIREMENTS ORGANIZATION

Tn any REQUIREMENT module, all of the information is textual.
The BLOCK and ENDBLOCK structure is allowed to aid the designer in automated
indentation. Also, the SOURCE construct and the substructure for that
construct is allowed to aid as a checklist to the designer as he/she describes
the requirements.

4.4 REQUIREMENTS INVOCATION

A REQUIREMENT module can only point to another REQUIREMENT
module. The construct used here is "REFINEMENT" and the meaning is that the
referenced REQUIREMENT module contains a more detailed description of the
requirements snecified in the parent MODULE. REFINEMENT allows a structuring
from a higher ievel requirement to a lower level requirement.

—— i gl

ﬁ(

(nx=%)<

juswaJaLnbay apdwes * [~y s4nbLq

LH3W3IE4INdIEANI
JO4N0SANI

- INZNIYINDIY 13431 d3HOIH

v 20 NOILV3INITIA WIHI¥N4 ¥O INFUINTH3Y ¥ SI INIWIEINOIY SIHL
L¥H1 31VOIGHI 01 ¥3NOISIA IHL SHOTIV LNIWALVIS LNIWINIJIY 3IHL
- - e IN3WINIZTY

“INAWIZIN03Y IHL SIAI¥O63A LVHL I¥IH Q30V1d SI NOILVWHOLANI 1vNLIX3L
NOIL1dTI¥IS3A " LNIWIEINOIN

“3Y3H G3aay¥ 3¥Y SINIVILISHNOO FONVWE0d4¥3d IHL NO NOILIVWNOL4NI TvNlX3L
INIVILSHOD "IONVWEOLdE3d

“140S d0 Q¥VH “1v¥d201 “1vd019 SY HONS S3INTVA d0
136 ¥ INIMY313d GIN0HS 123r0¥d 3HL “3J¥3IH GIOVId SI ¥OLVIIANI 3d03S V

3d403S

4-3

NOIHSYd TVE019 ¥V NI NOILVOITIGNI 3HL
40 ONILVAdN JILVWOLINY OM ST 3¥3HL ~3¥3H (GIIVId SI AOLVOIIGHI SALVIS ¥

SNivis
T¥NIX3L 39 ATNO N¥O NOILVWAO0INI 3IHL ANILVNNLAOINN

J¥3IH G3¥ILINT ST IAVA ¥0 ¥IEUNN NOISHIA IHL
NOIS¥3A X
3HIH G3IEIINI ST IN3WILINO3Y SIHL 40 (1NIWN20A) 3J¥N0S IHL
323N0S
80071197038 INIWININDIY

RN e i e e e g,

“.(

4.5 DATA DESCRIPTION

The SNDL constructs that support data description are hased upon
the realization that data can he structured in a manner completely analogous
to the structure provided for execution control structure. The hasic
assumption that has been made, is that all data items will he explicitly
declared through the use of one or more SDDL data constructs. In addition,
input/output of data can be thought of as viewing a collection of data
elements through a window., The data elements of a particular data module
currently on view through the window (the current record) can be utilized

directly without being invoked hy anv special constructs such as READ or WRITE.

The reader is veminded that the SDDL constructs in this paper
are oriented to the description of a detailed abstract design. Upon reading
the material on data descriptions, the reader may first helieve that physical
implementation considerations are being described. That is not the case, even
though the mapping from a construct such as "FILE" into a physical realization
as an ISAM file is trivial. That such mappings may be straightforward is a
deliberate consequence of the desire to provide the reader with a set of
useful and complete SDDL constructs. The data structures descrihed bhelow are
characterized by the ahstract access methods that are supported for each
particular data structure. The data organization technioues within any
structure are identical (sequence, selection, replication).

The reader is reminded that the data description constructs
represent an abstract view of the data and that in general, a physical
collaction of data may he presented in a variety of valid ahstract forms.
Often the quality of a design depends upon the insight of the designer in
choosing the most useful approach to the organization of the programs and
data. Further, the same data set may be described by two or more different
abstract representations at different points in the processing of the data.

4.6 DATA MODULARIZATION

The data declarations are grouped into modules whose names imply
the access characteristics of the enclosed data. The atomic elements within
each module will he called "data declarations". A data declaration will
consist of: the specification of a variable, a data module invocation
(DETAILS) or a hody of "data declarations" contained within a BLOCK
construct. In general, an atomic element of data declaration, or datum, is a
line of text starting with a variable name. Unless the name contains a
special character that has been designated by the #MARK directive to be a
non-delimiter, or it is enclosed in string delimiters (the default is quotes),
the name is not cross referenced by SDDL. The datum may be followed by
attribute information for that datum. For example:

Velocity.Vector (A 3-dimensional vector with units KM/SEC)

At the level of abstract design given above, "Velocity.Vector" is an atomic
element. Later, in the design process, this datum could be expanded into a
structure.

4-4

Tk

Data modules are composed of collections of homogeneous
components called "records". A data module is specified abstractly hy:
naming the module, specifying the module class by means of the key word,
declaring the attributes of the underlyine "ecords" and optionally providing
supplemental parameters, The "record" p.ovidus a "window" through which the
data module may be viewed. The access a'yor “hing (the method by which the
view is changed to another instance of a ~~iird) is implicit in the MODULE
name and the MODULE INVOCATIONs used.

The following is a brief description of the types of data
modules used. A "GROUP" is a hierarchical collection of data declarations,
having the characteristics that there is only one copy of the record (it is
not a multirecord structure) and access is accomplished without special
Erogram consideration. The implication with a set of data items that have

een declared a GROUP is that these items are always "in view". Physical
realizations are: 1local variables, FORTRAN Common and HAL/S Compool.

The following is an example of a GROUP named Velocity.Data.

GROUP Velocity.Vector Units are KM/SEC
Velocity.Vector.X
Velocity.Vector.Y
Velocity.Vector.Z

ENDGROUP

Note that "Velocity.Vector" is known to the SDDL processor and will be cross
referenced. "Units are KM/SEC" is attribute information that will appear in
the SDDL 1isting but is not processed. The three components cf
"Welocity.Vector" may be known to the SDDL processor (hy virtue of the
emhedded period).

A "RECORD" is an instance of a GROUP. GROUP provides the data
declaration and the use of the term "RECORD" allows one to discuss multiple
examples. The constructs TABLE, FILE, STACK and QUEUE are collections of
RECORDs structured in particular ways.

A "TABLE" 4is a randomly accessible collection of records
(entries), indexed by an ordinal. (An n-tuple of ordinals is considered an
ordinal.) The primitives with respect to table manipulation are "OPEN",
"CLOSE", "READ", "WRITE", "GET", "PUT" and "CLEAR". Note that the numher of
records in a tahle is either fixed or defined at the point at which it is
OPENed, and the CLEAR directive differs from that used with respect to FILEs
in that it causes each record to he restored to a well-defined initialization
state. Typically, this will involve zeroing numeric fields, blanking out
character fields, etc.

The physical realization of the construct "TABLE" is often a
FORTRAN direct access file. However, the construct described above may apply
to a structure that may ultimately reside in memory, on a disk, as well as on
a magnetic tape. An example is an array in Fortran.

4-5

LTk

rg(

The folluwing is an example of a TABLE,

TABLE Velocity.Vector Units are KM/SEC
Velocity.Vector.X
Velocity.Vector.Y
Velocity.Vector.Z
TABLEPARAMETERS
Velocity.Vector.Counter Index for Table
There are 100 entries in this table
ENDTABLE

In this particular example, the data struciure used as an
example for a GROUP has been extended to allow for many instances of the
underlying group, where the indexing parameter is "Velocity.Vector.Counter",

A "FILE" s an ordered sequence of entities (usually called
records), each analogous to a GROUP. The records of a file are indexed by a
well ordered variable (usually called the access key). When the index is an
integer, this corresponds to the concept of an array or an indexed direct
access file and is more properly descrihed as a TABLE. In the more general
case where the index variahle does not correspond to the concept of an
ordinal, then a FILE corresponds to the concept of a keyed direct access data
set. Only one element (record) of the file is presented to the program at a
time. The primitive operators with respect to a FILE are: "OQPEN", which
makes the FILE available to the invoking program and unconditionally restores
the file to the beginning; "CLOSE" which removes the file from
accessability; "READ", which ohtains the next sequential record if one is
available; "WRITE", which merges a new record into the sequence of file
records; "GET", which ohtains the record, if one is available that
corresponds to the value of the access key; "PUT", which merges a record
corresponding to the key into the FILE; "DELETE", which purges the record
corresponding to the key from the FILE and "CLEAR" which removes all of the
records from the FILE. Note that WRITE differs from PUT, in that the

generation of the appropriate key is assumed to he done hy the underlying
access method.

The physical realization of the construct "FILE" is usually a
keyed index-sequential file, where the access method is vendor supplied. In
those cases vihere no such vendor supplied access method exists, the
implication is that a suhsequent refinement of the design will contain the
algorithm and the underlying physical data structure (e.g., a linked 1ist
contained within a table). The example given for TABLE immediately above is
also suitahle for FILE, A FILE differs from a TABLE in that the number of
records js not fixed, the access algorithms are more complex and versatile,
and records may be added or deleted.

The followine is an example of an on-line payroll data hase,
where the records may be r trieved by employee name, social security number or
employee number.

4-6 Arpy,

——,

e

FILE PAYROLL
PAYROLL .EMPLOYEE.NO 1 (*Employee number, 0 to 10,000)
PAYROLL.NAME C40 (*Name of employee, up to 40 characters)
PAYROLL,SOCIAL.SECURITY.NO 1 (*9-digit social security number)
PAYROLL.JOB,CLASS C (*Joh classification, 1 character
DETAILS PAYROLL.GOVT.REQUIRED.DATA
DETAILS PAYROLL.YEAR.TO.DATE,TOTALS

FILEPARAMS
This file is indexed in PAYROLL.EMPLOYEE.NO, PAYROLL.NAME and
PAYROLL,SOCIAL.SECURITY.NO, therefore records may be accessed by
any of the three "keys".

The file contains a maximum of 5,000 entries
ENDFILE

A "STACK" is a collection of records that are created in order
and destructively read back in reverse order. The primitives for stack
manipulation are "PUSH", "POP" and "CLEAR". Note that no index is used in the
description of a "STACK". In the case of a "STACK", it is first in, last
out. The construct OPEN "creates" the STACK while the construct CLOSE removes
the STACK from access by the program.

The following is an example of a STACK named "Daily.Menu".

STACK Daily.Menu
Menu.Indicator (1=Breakfast, 2=Brunch, 3=Lunch, 4=Dinner,
5=Supper, 6=Snack)
Meal.Plan

ENDSTACK

A "QUEUE" is a collection of records, ordered by priority
(usually the chronology of creation) and retrieved (typically in a destructive
manner) in order of priority. The actual priority mechanism is estahlished
during the physical realization of the particular QUEUE., This implies that
the priority mechanism for one QUEUE may be different than the priority
mechanism for a second QUEUE. When defining such abstract QUEUEs, the
designer must be careful to define only those ahstractions that are
supportable in the target implementation. The primitives with respect to
queue manipulation are "CLEAR", "OPEN", "CLOSE", "ENQUEUE" AND "DEQUEUE". A
chronological "QUEUE" has the property of first in, first out, and is assumed
in those cases where no priority mechanism is explicitly specified. The

physical realization of a "QUEUE" is many times an input card file or a
printed listing.

A "TEMPLATE" is a collection of data passed across the interface
hetween two program modules, where the data items must have been declared
elsewhere. In this particular case, an interface is a major boundary such as
the 1ine hetween two independently created programs or between two different
programs operating on two physically different computers. The construct
TEMPLATE allows the designer to highlight what is being passed across the
interface. The data items of the TEMPLATE may be complete data structures
such as a GROUP or a FILE or they may be portions of data structures.

4-7

M%—emu i
'E

The following is an example of a TEMPLATE named Interface.l.
TEMPLATE Interface.l

Time (the system time of the transfer of data, units - GMT)
Details Velocity.Data
ENDTEMPLATE

4.7 DATA ORGANTZATION

Within each module of data declaration, the hierarchy of
organization and the details are presented through a combination of data
items, module reference and hlock constructs.

A data item (atomic element) is a unit of data representation
that requires (relative to the level of design under consideration) no further
decomposition. Examples are: an finteger variahle, the twn real numbers
corresponding to a single complex number in an environment supporting complex
arithmetic, a coordinate transformation matrix or a character string. There
is no keyword associated with data items in any data structure.

Hierarchical data constructs of seauence, selection and
iteration are used. At a particular level in a data structure, all data items
must be of the same type. Further, the ordering of the data is top-to-bottom,
left to right. 1In SDDL the default option is SEQUENCE, The implication here
is that all data items mentioned appear and they appear in the order in which
they are listed., The "REPLICATION" construct defines a set of data
declarations that may be replicated zero or more times. Note that the
constructs of TABLE, STACK, and QUEUE have an implied REPLICATION as a part of
the construct. Figure 4-2 gives an example of the use of REPLICATION in a
GROUP structure.

51 GROUP DATA,RECORDS

52 NO,OF.DATA.RECORDS

53 REPLICATION ON NO.OF,DATA.RECORDS
54 DATA.RECORD.ID

55 SPACE.CRAFT.POSITION

56 SPACE.CRAFT.VELOCITY

57 NO.OF.SCIENCE.EXPERIMENTS

58 REPLICATION ON NO.OF.SCIENCE.EXPERIMENTS

OLOOOODOOO
OO0 ODODOOD
OO0 ODHO

59 SCIENCE.EXPERIMENT.DATA
61 ENDGROUP

(~4
(=]
(=4

Figure 4-2, Replication

The "SELECTION" construct defines a set of candidate data
declarations, one and only one of which must be present. The substructure
within SELECTION is ALTERNATE. The convention is that this substructure must
getused. Figures 4-3a and 4-3b show uses of the constructs for structuring

ata.

ORIGINAL PAGE IS
... 0O®RPANR QUALITY

L T o B A s

ORIGINAL PAGE I8
OF POOR QUALITY

r?‘

R

a4n3on43G ejeq sdueS -eg-y aanbiy

Ve dy g,

ERRONDE
D e e mm e e eV T -EES STIVISC
LCILGET280NS
TIAY F2eARILIY -2
) e e e e e MOVE-AY1d STIdlad
NOVE-AVTd SEVHLILTY-->
Y - —— e e = ONIRVGE STIVLEG
ONIONHT BLIVHEIL IV -->
o e e e e e = O ONB I 06 - TYETNED STIVLIST
IONII0S-TvuINID SLVHEILIV-->
) o e e ~—--SHIXZINIONT STIVIEG
ONIYIENIGHT JIVHEZLTY-->
Y € e e -— ————— - U033 STIVIEG o
YW-RO03T FIVHEZLIV--> - ;
¢ 1 o= FJALTVLIWE NG KOILS3TES ,
HO1I153713SaN3 i
TI0H FIVNLEILIV--> H
Y} € e e e ————- B i — SIHENS-335 STIviEd H
BCHEAS-3CS FLVHBILTIE--> ;
¢ 1 = 3dALTVIVG NO KOILS312¢ :
thx:-;n-nuuunx;lu-xx;n nnnnnn m——————— ——————— ————— ——————— e B3H-¥SS STIVi3C
o e e ——— ——————————e e @isdy STIVISC
=35 dNo¥o

A et

———

(2 40 () @4n1on43S ejeq s(dweS *gg-p S4nbL4

2I0LOGNT
g8 I<— - -— - -— — ~-¥1¥G-:3S SIIYI3G i
N9T133138683
1M F1ENE1TE-> |

e 3¢ - ——- - ———= NOVE-AVTd SIVIIG
HOVE-AYd mwm.rwhirllv
< 3¢ - - - —_———- ———m e m— e m SHIDYVWI S1IVLIEd
SHISLVLD BIVNESLTY-->
¢ 3 (e e lLLwHOUlqﬁvuxuu STIVI=G o
FOHIITS-TVEINSD JLVRESLIIY - —
< 3 C=— - - - - - SNIZISHNISKT STIVIST -

JdVd-1G538 MHQXVUMJdIIV i
SdALTVENG ?m H3I10313S
QHP)N’: aGN3

TI0 U.H.«-ruuh —rl'V

(8 3g-— o e e e e e LoHEAL-Yas S1iF

mmzm;muurm SiTRiIi-s

S4ALTYINE NO NOILJ3TSS :
(§ I Cmmmmm—m S —————————— ————————————— tlh-uas $1iviad w

ﬁ 6)e—- - - e - GI¥QL S1Iv¥124
| 4GS dNCud

Dt pm e S o g S S

e
Bd o ey 5o, s

rs(

|
i
0 !
i
or POOR QU i
ALl ;
|
4
|
]
- }
i
i
i
1
= K
sk K} £
w *
ha W
o P b I N T S S} AU T S I T AN R AR Y ECH A I A
HR Ed K} i R R} 4 ¥
3 E] k3 E ES * o+ 4
§. He K3 o o " K (] i
™ ® * i * : a4 o]
¥ ¥ K hi ¥ ¥] ¥
* b3 b w b W * K Py ot
W w E " u [+ F RN +
W w, s S 4 Ll KS (] [4
A o 3 i . x* % 'S A #
A P " o N K 24 N] z ¥ —~
¥ W »] Wored K] K} = + o~
A U1 K WG W 3 <5 2 1 K
- " W w WAL e a4 " A Y
W 3 I & W= xf #y o E] 4 1 r Q
» 3 v Y 4 bR] Ll in] k] N} a4
e E 3 W W 3 Al o il 4 w o
*o b E RS W w 0 (LR H * W St
O * ¥l G W Wt ot) * p] }
* [&] b A X] o ¥ QO [». A E
* F B R K fi 83 " 4 ks]
*» Q ! El L A T i 1 = 4. S
4 - @ * Ll w LY L) e e E 4 b h i -
W< w W (e I PR TR A (1 N W [-8 [4+
w 4 X al2] § K] WA WVIENLS e H K] R4 (8]
Fd w K K - < # 4 S o it 19 & fon
b~ | w & - 3 Wl > W S ES S
3 214 ” Ho LD hee [T B A Rl R B A, o b 4 o [72] 4 4
¥ O A @ [l (b1 L) b J IS | [X %]
r 2 k3 E e B oW 4 0 Bl - ¥ o
4 W ES o Ot "W FIE (-] (I 1}
| S o | "~k Y * PR SN ET R ¢ & A ES A
: 1 % w2 W A b LT UL ot bl = oY * ¥ etot 4 s
' ¥ b o ¥ F Rt W A UL D 2 #* I x| R 2 =]
- ’ w W W o WM I b I e * E W
b A S~ T o B F iy 4] i ol e fai Ll K] K3 [N 1] ES L]
¥ OO - oW ke ag i e U R L) 2 A s w » b3 -
F'e - 3 b #* WORE bt (2 D H * rein @ o
T, B S < S W © WL jemer < % % [t =]
* b= <1 o h =0 b o b M ek & X hi T
B N b3 0oL w N LY e b R 4 b %]
S W ® <t oo P S P [I % oI
€+ Y, Ed Wkt L PR CYIES S B L ¥ o4 [V I 3 o B 4 ¥
W= W Rl e TR = N4 A D e [I U = X T RS B o BN ’
W= - g HoOwE 2w N ¢ gl o oW # hC I LY
& Qul ! w @ QL H My [FRIN R s E=0 Ny @ Mo w [a0]
@ W o & * 1 - WL (D 0F ke b A = : |
F A =T] * oW ¥ B ol Wb 1 * 4.t e * <
- * (29 o T U B4 K] Lo o o <7 0f My b o+ o K
W QoW E el w A D ¥ R K @
b3 oL o W QO o " N K] K] S
! w Wo! © ¥ o L L Hd OO o A A o]
! O XX o0 b L &] K W] A (=]
" R |9] " -] W o W o< : o
@ ol W - W Womd o o e R W b
“* uia w o 0. W W S awn A O
woo@ S . A o %k Ty W
* <t w oW e ow E o 4 Howd
¥ W * P HE S S B O B R A S T B S N Y T T L 2
] b = * (]
4 * B =
%4 W W 2 38}
] F pt o4 - [«
| [b A o X =
b a P ol] [
o, o W e o7
- KA R R D (%]
(o} (2]
4 =
(4] 53]
+

o b i A B et
%‘Wﬁmm» o .

The module invocation construct "DETAILS" is provided solely for
the sake of convenience, It permits a hody nf data declarations to bhe named,
enclnsed in a module construct, pldced elsewhere in the document and
referenced by the keyword "DETAILS" followed hy the name of the module, In
addition, it allows one to show, in a convenient manner, part of a module that
has different access characteristics, e.q., a table embeddnd in a file
record, Note that this construct admits to a convenient design representation
of a concept that may he extremely difficult to implement if access
characteristics are mixed,

In some of the examples given above, the construct DETAILS has
heen userd, Note that SDDL produces a page number on the right hand side that
indicates where the "detailed" module may he found,

4.8 DATA INVOCATION

The only data module invocation permitted within a data module
declaration is "DETAILS", It may be used with any of the six data
constructs, Note that invocation such as OPEN and CLOSE are used hy
procedural modules and provide a mapping from such a procedural module to the
data structure that is to be npened or closed. The constructs OPEN or CLOSED
may be used with any DATA module other than GROUP and TEMPLATE, The physical
realization of the construct depends upon the type of the DATA module and the
particular implementation,

4.9 PROGRAM DESCRIPTION

The procedural aspects (control processes) of a software system
are described in terms of program modules and a set of constructs to define
the flow of execution within a program module. For the purpose of this
document, the atomic elements of the "executable" portion of a software design
will be called "execution directives". An "execution directive” will consist
of an algorithmic operator (free form text), a module invocation or a body of
execution directives contained within an SDDL block construct.

4.10 PROGRAM MODULARIZATION

The executable portion of a software design is partitioned into
modules, typed hy the method of invocation and the method hy which the
interfare hetween control process modules is effected. A "PROGRAM" is a
hierarchical collection of execution directives. Programs are invoked only
through the operating system. A "PROCEDURE" is a hierarchical collection of
execution directives that are local to a parent execution module (a program
subroutine or function). A "SUBROUTINE" is a hierarchical collection of
execution directives that may be invoked from any other execution module. A
"FUNCTION" is a special kind of subroutine that returns a scalar to the
calling module. A function also differs from a subroutine in that it is
typically invoked without the use of an explicit module invocation.

4-12

s fo, ff,

SEIEXTY TG ML TR ITIO T F NL R et 2 e g L

By

B‘m ;--«\/)) s - 3 ‘ B R A i 4 et
4

4.11 PROGRAM FLOW CONSTRUCTS

The flow of execution within an execution module is specified by
means of hierarchical constructs and execution directives. An "Operation" is
a particular type of an execution directive. It 1s a free form text
statement, "Operations” may be thought of as algorithms that require no
further decomposition relative to the level of design under consideration,
There 1s no keyword associated with these directives, The "IF" construct
describes one or more hodies of execution directives, where the execution of
at most one is contingent upon the evaluation at execution time of a predicate
test, The "SELECT" construct provides for the execution of at most one of a
set of code bordies, dependent upon the value at execution time of a scalar
variable, The "LOOP" construct provides for the execution iteration of a corde
body. The "PERFORM" construct provides for the conditional execution of a set
of bodies of execution directives where the the hlockwise order of execution
is not a factor in the ahstract design.

4.12 PROGRAM INVOCATION

Progran invocation constructs allow a poninter to he estahlished
between a program module and a program module, requirements module or a task
module, The construct "CALL" is to he used by a PROGRAM, SUBROUTINE or
FUNCTINN module to point to another SUBROUTINE or FUNCTION. The construct
"DO" is to be used to point to a PROCEDURE. The assumed entry point of the
program mordule that is heing referenced hy a "CALL" or "DO" is always the
first executahle statement of that program module. The construct "EXECUTE" is
to be used by a program to point to another program. In this way, control can
be transfered between two different programs.

The construct "SATISFIES" s used by any module to invoke a

requirements moduls. Its use is only for the purpose of providing requirments
traceability.

4.13 DATA USAGE

Data invocation constructs allow a pointer to be established
between a process module and a data module. The constructs that are used
are: OPEN, CLOSE, READ, WRITE, GET, PUT, DELETE, CLEAR, ENQUEUE, DENUEUE,
PUSH, POP, ACCESSES, CREATES, and MODIFIES.

The construct MODIFIES provides the facility for a designer to
indicate that the contents of the object data structure are modified. The
object data structure may be used as well. Tt may apply to any data structure.

4,14 TASK DESCRIPTION

Programming is the means hy which a general purpose machine
(computer) is converted into a special purpose machine. In some designs, it
may be useful or even necessary to partition the functions to he performed
into a set of indepenrdent abstract machines. The most straightforward
instance is the case in which two rr more computers are invalved and the

4-13

. separation of the functions 1s physical as well as abstract. In other cases,
A this separation 1s effectad thvough the facilities of a modern operating
system, In either case, such an "ahstract" machine will be called a TASK, A
TASK has the characteristics that it "uses" executahle software elements
(programs) which define 1ts function, and it "owns" data, which defines the
scope of its machine state, Consequently, the description of the operation of
a task will contain no executable directives but it will be described

1 furctionally by reference to the program that is owned hy the task. This
concept of TASK is most suitable for designs in which the functioning of
independent elements is loosely coupled, Under execution flow we have already
introduced constructs that may be used for the description of closely coupled
independent activities. In some environments, a tasks fate may be contingent
upon the fate of some other task. In this case the task is said to be
dependent. The specification of a task consists of the description of the
characteristics of the abstract "machine" comprising the declaration of the
programs, data and dependent task relationships, It should be noted that not
all operating systems support an environment in which the abstract design
using task relationships can be physically rralized. If the operating system
supports dynamic tasking, then there will be constructs in the operating

g gg§¥Ethat will be the physical realization of the SODL constructs ATTACH and

4.15 TASK MODULARIZATION

Because of the importance of a task, all of its components
(subtasks) must be known to the SDDL processor., The specification of the TASK
will include all those characteristics of the abstract machine that are
independent of the program that is executed.

The following is an example of the ahstract machine that
supports communication with devices attached to a CPU hy means of the
DMA channels:

TASK DMA Interrupt Processor
This TASK services all DMA interrupts.
Thg:bTﬁS§ operates with all interrupts except machine check
inhibited,
ATTACHMENT REENTRANT-DMA-INTERRUPT-HANDLER
OWNERSHIP DMA.TASK.CONTROL .BLOCK
OWNERSHIP DMA,CHANNEL .DEFINITION. TABLE
OWNERSHIP DEVICE.CONTROL.BLOCK
ENDTASK

Task Control Constructs

| A task contains no executable directives. Hence, no control
constructs are required.

4-14

i X, g

Task Invocation

A task can point to other subtasks by the construct
"SUBORD INATION", A task can point to any data module hy the construct
"OWNERSHIP", A task can point to any program module by the construct
"ATTACHMENT",

4,16 TASK CONTROL CONSTRUCTS

A tasg contains no execvtahle directives. Hence, no control
constructs are required,

4.17 TASK INVOCATION

A task can point to other subtasks by the construct
"SUBORD INATION". A task can point to any data module by the construct
YOWNERSHIP", A task can point to any program module hy the construct
"ATTACHMENT",

4.18 DOCUMENTATION DESCRIPTION

SDNL constructs have been introduced to aid in the creation of
documentation. These constructs match the module outline given in Tahle 3-1.
These constructs are at the BLOCK Tevel and hence, may bhe used within a data
module, a process module, or a task module, They can be used within a
requirements module hut they are not suitable for such use.

The invoking construct is ABSTRACT. The constructs which give
substructure within the abstract block match the outline descriptors from
Tahle 3-1. The substructure constructs are:

ALLOCATED .REQUIREMENTS
DESIGN.DESCRIPTION
AFFECTED,MODULES
OPERAT ING,ENVIRONMENT
SYSTEM.PARAMETERS
DATA.SPECIFICATION
PROCESS . SPECIFICATION
DATA.ORGANIZATION
CONTROL.FLOW

The construct SATISFIES under ALLOCATED.REQUIREMENTS allows the

designer when describing a PROCESS module, DATA module, or TASK module to
point to the REQUIREMENTS module that this module satisfies.

4-15

MMM:_ e v e i _ TeeR L

-

The construct AFFECTED.MONDULES prevides a place for the designer
to record all of the invocations that this module participates in. Such
information is automatically obtained from the SDDL crozs reference listing
and the module tree listing.

A set of SDDL constructs have been introduced to aid in the
description of a REQUIREMENT module, The invoking construct is SOURCE. The
substructure constructs are:

VERS" N
STATUS
SCOPE

PERFORMANCE . CONSTRAINT
REQUIREMENT.DESCRIPTION

These constructs provide prompts to the designer as the
requirements are documented. An example of their use is given in Figure 4-4.

4-16

m——— g

s e

S

T

e

0

z
o
i
!

10843SqQyY 40 3S[] “p-t 94nbL4

ek &

2YNAII044ANT
1JVyLISEvans
4I0N3
ORJO3¥ NOISENIOIY LHINIYONI
4I0N3
llllllllllllll 39VSSIN-A0EE3I~11NdLiN0 04

TO80 ¥0EET =: ¥IENON X0d¥3 -
(203 "d433ovH) JI

C D ¥ G,
{ DI .

{ I< —_—

(0T D)<--

LA,

55

lllllllllllllllllllllllll 37147 NOILINIL3Q 0%¥OVW ¥35n av3y
IUVNITIH "HOISENI3d A9 A3INI43d ST 37Id4 3H.
3813
Q4€0033°30¥NGS 01 Q¥003Y"NIAJANOGS IAoH
(403 NIZVIN0S) 4T IENAIA0EdIXI-~—~mmmm >
lllllllllllllllllllllllllll @¥033E-308N0S-1X3aH-HI134 0a :
(3714 3ENGS AIVUIYEL ¥0d4 1S31x) (0 = XIGNI'NOISIN0O3IE) 41
HIMILIVIS 304N0S ™ LHN3¥4N0 ¥¥3 1D

MO073 " 1041N02

llllllllllllllllll T00a SIIJSILVS ~

; SIN3IWIEINTIY A3 LVI0TTIV iy

<3
TAJVIST TOYINGITHOISENZ3E IHL 40 10¥LINOD IHL ¥3IANN ST ‘IT1Id4 LVHL
NTHLIM KOI1¥2071 SLII SV 113M SY “‘Q3INIVIG0 SI Qu003¥ 3IHL HOTHM WOdd
3114 3HL

NOIL1dIY053A°N9IS3Iq-->
“QE003E 303N0S NI G¥903d 30YN0S INO SNANL3Y 3¥Nd300¥d SIHL

ovdisgy
IN3WNILIVIS-3IEN0S-1XIN-139 IENCAIV0Ad

INILIEINDINANT

- - - ~-¥00d iNSW3INIZ3Y
INIL ¥V 1V 3INIT 3INO av3y 6L 319V 3€ 1IVHS 33N03J0dd 3HiL

T00Y INIWISINOIY

o B 25 S e g e e e e . et W 8

SECTION 5
DEFINITION OF CDS

The Galileo spacecraft is a Jupiter orbiter scheduled for launch
in 1984. The Command and Data Subsystem (CDS) provides the control function
for the Galileo spacecraft. The software design for the first delivery of CDS
sof tware was done using SDDL. The design is for the software that makes the
CDS hardware perform as an interpretive machine. Programs for that machine
‘are stored sequences of commands.

The CDS s a bus-oriented distributed data network which forms
the core of the spacecraft distributed system. The extension of the CDS bhus
to external subsystems provides the primary communication path betweew the CDS
and other subsystems.

E The SDDL description of the detailed design for CDS is given in
N over eighty pages of SDDL listings. To describe the detailed software design,
| there are 39 modules of control flow and 8 mudules of data description.
Figure 5-1 is the detailed design for the top level executive. Note that not
all of the eight dimensions (see Tahle 3-1) were used to describe the example.

Figure 5-2 is an example of a function description in SDDL. It
is the TIME-TN-EXECUTE function.

Because of the specialized nature of the CDS software, the only
data construct that was used was that for GROUP. This was hecause of the
special 1/0 characteristics of the CDS hardware. Figure 5-3 is a description
of the GROUP entitled HLM-SYSTEM-START-TE. Note that the DATA.SPECIFICATION
entry was used to indicate the initial values of this data structure when the
CDS software is cold started. Another example of a GROUP data structure is
given in Figure 5-4. Note that under DATA,SPECIFICATION, declare statements
for the individual bits and hytes are given. These declare statements are
passed as text by the SDDL processor.

Another example of a GROUP data structure is given in Figure
5-5. In this case, a substructure is added under the DATA.SPECIFICATION entry.

One of the major outputs of the SDDL processor is the module
reference tree. It gives the full network structure for all of the module
invocations. Figure 5-6 is the first part of the full module invocation tree
for the CDS software.

5-1

St o . - e N}

e e S T e A atas eSS AR 5 & S hex A - - - T ST T T T - |

JAILND3XT i9A97 dop - ubisag psLteiaq "L-§ S4nbLy

HYNIO(ugUNT
LIVHLIEHY(ONS
0aan3

aaans3
4I0N3 @%(

H
i

~—ak y

010Gk 3 X

J1un3 OJ
0 = (¥id10TS)IuILiev1930°IVIRVI=T0ELNDD huﬂm%%
NIHL (IWVu4 NOPYW FALLIVIIN N0 INVNS NONIAW IALLVIIN & (Nidi0S)300Je3InILi*FMAVLeWEINED) 4]
(01)<= - eee sscas sssccsceacss/g0¥0Y 4 NI 1IN0 OIINIWW0Ix/ 30uIICT VTIVI hmw
nﬂ uA'l.l...-.....lll.ll.ﬁ..lll'lllllllllllll.llllll-.l\lQdDJ tJn_ ZH h.uuc DUbZNIfGUQ\ mcauuex o_.._<U W
:nJ3xFeNleduniy 371w QU <)
NINL (3ATLOVveliN 1YNB3 LGN (¥1d407€)300Je3WIL* 3TV ieinningd) J1 I~
IN IN23IC 1UiN°MI07J 40 ONS OL IN3W93s ILN°NIUTNJ S0 ONINISHW = MLldLUS M4 00 mw
(2t)<= - - a= sscacesssssccnan eccccee/gUV0T w1V NI 00 GIUININuGIR/ »I9VnNVReSRE TIVD
¥ICRTI AnIrININ]
: dIon3
4) 83iNN03=3101 = (IL8°%30710¢ Tul=0ILH) 5318193
NIHL (M3INNDIeIN0T « (T18°*N307I + 3N0le0liM)y¥ILSI94) 41
(1aNu83INE)N3LSTOSIN L3633y
BIdUYE |
MNIINOQISING] ANTWININT
/8 4007 SIML WONS U3ldnuuIfin] SI J3x3 o/ (4138 (0N SI (lanye3iNI)e3isI9dx) IMIes 00
a3 an(iJ=3901 ¥v3IID
41003
Hnﬂ u.' - l...l.l.l...l-.i.l.l.-l'.l-.'Illl-ll-lll--mlDthKDdeuNCQUW 11v3
. NIXL (135 B1 (Ldnda3dinl)a3lLfsTIoan) 41
4 . &3IAIN0d 00
. 780¥07 wIn 1 IN0 UINIwW0IE/Z T 0L mV3IM Uny IRON3 3ZIVWILIND
0 40 3nli 31006V Nv 00 wJIUD I2IIVILIING
: V8V LeT0MINGD 40 UINIWSIES O I4N NI Fie NV SeBAS LNVIS
FALLIVeiON SLUIS 3NEVLIeTONINGD TV Gl F18VIeTONLANDT 371vILINI
{(lal¥d3ANIIBILISI9IY 1363
) »(74°084n03
SewIn UNY €3W T HAUH NI wvddr
. AINTEUNONIANT®ON] (VR340
ﬂﬂ‘ ull ~ee - - sesesssccsascasasssascassccssscas NI Ne]yI) §3131G0w i
ﬂhn U‘.ﬂ see l..l..l.l'-l".'lllI-.IlllllllmWFmwQW! ”MH&HQDY “
ﬁo. U‘ Sescsccassessssnaereveacsasnstecacuens))(") £314100K
(P)« - see Ssssscscccsavenssssnnnscesss by [IONINDD SATAIAOW
=N1LVI1410348°vivd
5888885835855 838488830880 5888088323834 RSESSEREEERREEESANEELFESIEILBESLAEEREEELEABRSBEEISRSREEREREBARRE BN RRLE
. *SnOT93M indad/z3ull
L 3ATLIY ONISS3I0Nd NI 34NT3IxIe0ledill NUILINAY NVIIGUE v SIEN (Onv
s HOSS3I0NdeIln A8 QILdNuNIAINE ST IAILAIIxI 3wy *SNOT93M LnFA3/3wll
s 3ALLIV §8320n0 ONY 13IAVNVKR SN AWl TIVI %3073 L3¥xI3IVLE AML
; dv3WIBINT S1Ly B3d Full INAI 36VI LSxU- ON1ILIFVINI 300xm [l nv NOJ
L
]
|
s

5-2

LIvm £3wIs F8VIVAY Q30333x3 OV SYK INISS3ITUad L¥ML Sangn] g3mv
SNOILINNY 383N *SNOTLINAS TWNOILINAY ONIwNO343d ¥IAZXUS BdCUT UNV
AMING n0dN NDTAVZITNILINT Fuvwid0§ Swhildndd 1L S0 3wl N1 300N
206683304d WIV3I 604 S830Md OMINDD NIVR FHL 81 3AILNIIXI 3IWd
88886888 SSSSLBEB8SEEBEESSNRRES SR EEARERASLESBORRLLSESSLE0S0SBSEEELESREERRER 4SRN SR ILBEELEIBEXELEESL LB AXRETXEEN
NTLdINISI0°NOIBIC
12vniSey
23x3 wYN90Ne

L2 2B 2R 2R 2K % R IR

S TTeRRReERasEETT T T e ~ - - ST . TN - B

uoL3oun4 9INI9X3 03 BML] "©Z-G S4NDL

ICIVE BN IN
3873
INNL mEnL3N
; ® AQ (81al0VS)FUINI0C® IVEVI=T2MINGD AnINININ]
¥ NIHL (T (HIdIDNSINIINIOS®INBV I NLNDT AE 0L CILNIGE INIVA = Invds=man]W"%3I0TI) 41
3l (2e(Nidi0VIC) HIINICA " IVIEVLeTGaiNGD A 04 U3LINIOD 3NIVA B (£) InVrdenll¥u®wlyld) a1
NIl (Te(¥iadlUTISIW2UINIOE*INdvieTLNINDD AY (L Q3ANI0E 3NTva 2 (2) InvEgenUlve®»¥307]) 41
NIWL ((Hidi0VS)IHIANIOA SN8YV e 10MINGT AY 0L GIANIUE INTIVA = (1) 3mVadenGreu®23013) 41
IWI4 3107dsEY ISV
4140N3
i 3SIvy NENIAN
: 3873
410n3
3IBIvg NMLIN
AND AB (2ldi0IS)3INILeviI306° 314V e 0NINUT InIwInIN]
. 3873
Ikl nNanide
3INU At (MLdI0IE)IMILMICH I TnvieT0aLw0d [vgeandwl
NIHL ((21dl078)M4INTICd*IVIEV L WuiNDI AE 0 CG3INJUg INTIVA 2e (H1di0IS)IW1LeviVIU*I BV e WDaINDI) II
NIHL (0 8 uvudeniNIN®¥I0TND) 41
3W¥ad dOCve 3ATIVIIN 3ISVD
2I0n3
3CTIvd NunLIN
3873
el nuniIs
ANG A8 (81di098)8IINIUE®ITBVL=TUNINDGD LaIwININT
NIHL (FuvudeNONIN®YI0T & (NidiDISIHIANIOG® 3NV LeT0NLNGD A 0L GIinIind 3ATIVA) 4T
3nVad HONIW IANI0SHY FEWD
4Tan3
36Tvd nNNL3N
NG AH (MLdi0ISIIWILev 130°INAV e undnld INTaININ]
3873
: AaL NaniIy
INO AR (HidiCI8)2IINIOQE®INAVLIeTUEENGT ININININT
(HldiGTS) MAINTITd IIBVL«TTUANGD AW UL UFINIO 3NIVA BC (MidilUTS)InILev V13U 35eyieuaingd) 41
Jw¥ud BONIWA IAILYIIN 38v3
364 N3N d
IALidveiONn 38V ;
(M1d1018)3003eaWIL* 2NV L=1004NE3 ISV30G
MOV4"0NINGD
333 Wil% w¥¥nam ~1 038N 38 L1SNw
INIRNONTANI®ONT Ly 23dD
eecnecas)y]N] §3I86333V
- cccncccsaeI Iy« 0NIN0T §ITIIGON
LNILvIISI03dE iVl
II..CD.I.D..I’I..!D.QQIl'lII!Ill.llDl.i.llb.Dli.l.!l..ll...!..I.DII..IGQwinlhﬂhb.QG.I'DDD!D.DD'DI&.'.’GQ’QQOI.!
®3nui ~unlds nOdn O 1343 0003849 3ML 0L UNIDe O4
UAANIWININT 81 OGNV 3SIv4 NanlIs ~nOeil UILENLSIONN Savmiy ST
¥3UINTIOd 378vL N0NINDTD 3WL *300T 3Inil mO InIghNId4a IWIL wiTI30
378vL 0NANDD 3HL SAINIWININT NOTLINANY STWL *nvOILlu0y NI
*NUT93Y UINIAI/3IWIL 3ATLIVY NY NI Lw3A3 QUN3SE ¥ ILNIINI UL IWIL
S1 AT 41 INIwMILIU G4 I3XF MiIm 038N ST NOILINN4 nvIINCH SIWd
N .l...l..QIQ!IQQ....IQ'I.!Q'I...Q..IO-O.lb....l.dd.n'lbihhuﬂl.OIQQllluuuuibi!..D.i“ﬂl#.lbnniobhﬁl.nul.lﬂlhnnuﬂnﬁ
O SEY R E TALT I $ |
lavuisey
3iNJ3xI=(1=3WIL NOILINNAY

¢
4
{

~.—l

N

*

5-3

(o9 ul' ccn LI IS YT T P YT YT LYY P YT T Y T Y vy
ﬂﬂm u‘.l.l.'.....-ll...ll'l.l|I.I Sae -

S
LA N X N N J
L 2R I BN N J

13235 W et e et o e e e

%
I Sy

T T T e e T e g g, s e o
T
S » .
e

P v v
L]

%

(PenuL3u0)) *qz-G sunbiry

5-4

NOTLINAAONS
Lavpisdvani
ISvIAONS

R D
INNL N¥IL3
ISVIATWNT 3SYD :
41083
381v 4 NANL3IM
3613 o

SHIHLD TV 3EVD

41082

364 NanL3N |
313 m

4Iu~N3 M

3671vs NpNi3u
3813

3ICn3

m
¥
§

dNOY9 IL-1YVIS-WILSAS-WIH ~€-G @4anbL4

OR. PNOR. QUALITY

ORIGINAL PAGE IS

| A
& DA
: IS
d I
i &S
! 5 <
b <
&S
w S 2
d aNON9aN] 0
© Oﬁ# 1Jvuisevang
W03 = QI

0 = IWllevli 3
Sl = 380 ‘€ = 1L
1 INVad NUNIW FALIVI3N = 300D Iwll
Jie(uwdn 40 SS3nAUVY = SEINQAV W
L¥viSe3i = Q]
0 = 3Wlleviiag
NOTAvIX41234S°ViVQ
¢ 1id n1 Simvis
KeNd» WM
INFuntnIan3I®9nllen3d0
S00SSSSSESSSLES0S080SSESSENSSESRSSESSRERSSNENSAEEREESESELS2EESSSSHSSSESENESERESLREEEE SRS EBARREBEBIBEEER AR AES i
s) *L363y 4314V 3LVLE wNe(NN V DL |
s EWIH 3ul 40 FGvieTNNINUT IHL SIZITIviiinN] nNGID3INeIL BIWL #
~ S880888800485838888800 88280 RSELLESESAS8S0 2SS0 RESEBERSSLSESESLEERLELBLALLEIVRERESISEBLBSSRESPRASSEREB SRR XIS

RO1ldIMISAGONGISI0
] LIVHISAY
3lelHviSenILiSAS=HIN dNONT

IOV SO

dOY9 NOILYII4IJ3dS ViV -G d4nbi4
1JvaisavYONT

#393INI 011501 INYI33Q
314AR 871801 3IevII30
3lA8 #IS0UT 3I¥VII30
31AH 47891 3¥vI33a
31A¥ 97601 34vI330
31lAE SISOI INvIIIC

. 3448 nISUT INVIIIC

3LAY £7801 3mvII3C
(83119 21801 JmvId3C
(¢)1Iv Tis0l 3I¥vII30
(&)1l oglsnI IuviI3U
NOIIVIISIO348° ViV

..DDDQ..I..I..QI!I..Q.I.DQO.....IQ!.QC.D.Q..D..I..Olﬂ&.lﬂbl..ﬁl..ib.!.nh.IQQD...O!NQGnu&huu.un..&nlﬂl.liunnlbQn

] H31T0MINGD SAH 2393INI OI17ISOI

s § 131 4138 31149 88111

s 2 183% 47138 3ia9 €751

[] T 1831 4738 3i4v L7807

] Gle 4138 34A¥ ¢80l

s 243 1363y 3148 §7801

s 143 1303¥ 3143 97801

s FELE-T 3148 £I801

s 4 SALVLS 138 NIVHD 9NIwIL (H)1i8

] 9 $NJviS 3% NIvw3d 9NIWIi (L)LA1H

] S SALYIS 36 NIVHD ONIWILl (viilw

] ® SNIvie 138 NIvHI ONInIL (S)1ilg

s §£ sNivic n0d (r)iig

s 2 Snivis #0g ($)4ilW

[] 1 snivig ¥0d (2)11g

s 0 SNLVvLie uM04 (l)daw (BIL1v 278UT

] 0883 ALlI¥Vd Ov3w AnulWdw aw (L)LliW

] MOMN3 ALlTINvd Ov3n ANOWIN ¥8 (9)LIx

- qoncwyhumqmoqwa>mczmtu¢nmuwﬁm

.

.

-

.

n

-

-

-

o

p

.

-

-

-

-

.

.

.

e 'Y

redmk &

5-6

SNIVLS Dldw (wlale
MOR®3 1J3L0Ng 34Inr v3 (§FlLilw
MO¥N3 1J3[08g JLINm dw (2)11&
u08N¥3 13310Md Fi1¥8» GIn (L)Ll

e

(€414 1801
SNLVES NNME3A0 Sug (H)ilg
SNLivie TIvyd Is31 4738 (4iilw
9v4 ATV ¢33% wis (904l
/7¢,£43, 40 6vlivs/s ¥4 u0d WIN (S11dw
nOmd3 INAS NUSSIIUNLDNIIN (M)Lle
BONNI AfIwvd Q34 (2)1IE
¥0un3 AlTuvd SN ve (2)ilu
Hub3 ALTNvd NOLILAJVSNYNL ¥R (1)1i8
/%,843 13838y 40 SVIlvey (8)41x usOl

LR 2R S B SR S 3R 2 BN BE R AN IR KK K BN SN SN S BN BN NN 3N N I NN BN SR N N 2R BN 2

8133138 /1 IMUGe
NIAIT nYIn IHL OLIND Sdvi JdN0EG SNIMUTVWU4 ML »
......lQ....l.......D..Q.D.QD...!....IQ!QI.i.!.l.!.QQ.QD.IOQI..nhI'QIIDQDCQD.l.hﬁbh!l.lﬂ!i SIS AERPLEXREEEIRREEE
NO1Lldln383CG*NY1630
W% NI U034 LY (3UV0T I8 ISDwW
L%AGNTIYIANI®ONT ivaIdU
1Jdvaigey
12373680G1IK 4NON9

5
i
i
i

b Y
et

- "l

»

e RO

e
L m————

(34n3onua3sqnS pappy) dNOY¥9 NOILVII4INIdS VIVA "G~G sunbiq

»
L
]
L 3
]
]
]
L
®
|
|]

ot B

S3ian

B s TR

R P IR

dNOaBUNG

ddvmuisavony
wyd Wl 0N K17
ININNUNIANI®SNTIVYEIE0
ANNLINNIGANT
3148 Il¥ 1
3448 InvNdeNONIW 1
FLAE (E)AVMNY IuvaiedGiVe ©
X3k 93 WILIMT INwiSNDD T
Wil 3dan1INNISE
38M43N8LIS«In]Il ¥IGTI3 J¥vII3C
NOTLIvIT413348°ViVO
.I.O..O.I.OIID'.I!IQDD...l..“’h.bl'.i..i.l..l.l.'!b.ﬂ...l.!il...l!hl!.'!ﬂlﬂl'.l'd.!Oin..uDn.lﬂ.bb!ﬂhﬂinihlnbbﬁl

! 118%%3073 1t

? INVagd=uUNIN®NIGI1I 1t

! (£)3InvyndeNOfva®NINN] ¢

! (2)3wvxasnlrve® %307 ¢

? () 3wvadexulyn®%3013

G314 vivg

BRERNR RN

S4882850085404005852508S08SEERESRASEEISRESSAECELRINLESRICRELSESEEBICRREERBLSLELEZEIPRRESABSLLEELESSERSB2 TSR ES

~nOILdI¥ISINNTISIC

”
Y

1Jvpisay
%2073 dN0Ns

5-7

—

-

PREUWAR OO ESTP PR INNT~ T

o e e P e B

AR R > o pe
WN - DD -

~ N
re

WhNNNR
=2 -5 B X g

Ao Lol Wl Ad L o8 Aot A
OTAPRAEWN

40

[-F -
i e

&
[3

seeE e
&~ N

Figure 5-6.

N AT e T A B NG S sy

ssnsensonnsnss MUNULE NEFSRENCE TREE sssoee

PAGE
f RYI«PROCESSOR
53 o HIDSELECY
58 , LJOSELECY
%7 , HEGISTER
Y , RESEY
5% o o HIOSELECTY
5% , o LIUSELECT
} . o« RESE!
s EXPANDED UN L INE 8
S o o EXEC
S8 o o o« CONTRULe=TAARLE
60 o o o CLOCK
57 o+ o o REGISTER
65 4 o o+ CCDCeRURUVE
18 o o o FERROR
87 4 o o o REGISYER
S8 4 o o o CUNTROLeTABLE
3 o 2 s o RESET
=8 FXPAMNDED (M LINE S
12 4 o o BUSeMANMGER
60 o o » o CLOCH
61 & ¢ o o HBUSeCONTRNL
53 o s o o HIDSELECY
8 o ¢ o HOECDDE
S8 , o+ o o CONTROLeTASLE
22 4+ o e s MNDP
58 , & o s o+ CONTROLeTABLE
42 o o o & HLMeCRDE
60 4 ¢« o s o CLOCHK
6, o o » o BUSTABLE
58 .+ ¢ o o o« CONTROL@TABLE
13 , 4+ o« & o ERKFUR
#9 EXPANDED ON LINE 1S
40 o o o o BUSSTRANSACTION
60 . e o o CLOCK
ha . . . o BUSTABLE
61 o o ¢ o o BUSeCONTROL
SA . . 4 o o CONTROL®TAWLE
36 4 ¢ s s HLHSGETeCMD
S8 . s ¢ s o CONTROL®TAMLE
63 , 4 4+ o HMLMECOMMANDSHUFFER
ST o o o & o REGISTER
53 o o o o o HIOSFLECT
’, L] L[] L[] L[] (] Enno"
*s EYPANDED ON LINE 1S
34 . [. »] uIx
3% ., o o o TYE=sSTARTY
SA o o+ o o o CUNTROL®TABLE
15 e o o o ERRDR
s EXPANDED ON LINE 1%
3 , o+ o+ o+ EOR
58 s o o o o CONTROLeTABLE
23 o o o o JUNP
S5 o o o o o CONTROL®TABLE
a4 e o o JVEG
CDS Software (Module Invoca ee)
5-8

ORIGINAL, pyq
OF POOR QUALry

SECTION 6
EXPERIENCE USING SDDL ON CDS DETAILED DESIGN

In general, the experience gained with SDDL while designing the
CDS sof tware was very favorable., Many constructs that were available in the
SDDL processor were not used, The requirements statements and traceahility
were not exercised because at the time that the design was initiated, the
Software Requirements Document for the CDS had not heen finished. Many of the
?a:a gonstructs were not used because of the specialized nature of the CDS I1/0
nterfaces.

The implied eight dimensions given in Table 3-1 for the
description of any module were never completely exercised. The one for
requirements was missing because of the above stated reason. The one for
system parameters was not used. This was probably because of the incomplete
nature of the detailed design. The one for data specification was used in a
variety of different modes. This fact leads the authors to suspect that
further work needs to be done in creating a sufficient set of dimensions to
descrihe any module,

Software design is a highly iterative process. Using SDDL as a
design tool allowed the designers to easily extend, modify and update the
design by making the current state of the design as embodied in SDDL very
visible and easily available to all memhers of the design team. The ability
to add new constructs (keywords) in SPDL allowed the designers to tailor the
design language to the specific application.

The use of SDDL forced the designers into an organized and
explicit mode of designing an associated presentation. Since the design is
represented solely by the SDDL documentation of the design, it was impossihle
to handwave. Using SDDL, the overall aspects of the design were first
captured and then refinements were added iteratively. The detailed design was
captured in a document that was produced concurrently as the design evolved.

One major plus of using SDDL as a design tool as opposed to
other similar tools, was the support in the design of data structures. The
designers found that by first defining the interfaces and data structures, the
design process was materially strengthened. Another major plus was the
minimal training required before constructive work could be done by the
designers on SDDL.

The single largest problem using SDDL. was to produce a design
document that was readable by upper level managers. However, although the
document differed from that normally produced, they could read and easily
comprehend the information contained in the document. Since the order of
presentation in the SDDL output is completely controlled hy the order of the
input material, careful consideration was given to order the input in a manner
that supported readability. It was also found that the casual reader needed a
substantial amount of overview material. This could he done by the inclusion
of TEXT blocks of information. Again, such blocks must be carefully placed
within the input file. Another aspect of the stilted nature of the SDDL

6-1

T, AL M

T o) -

SR

output was the calling hierarchy provided hy the 5DDL processor.
reference tree is complete in terms of information content,

P e

This module

However, the

casual readers found that a separate conventional hisrarchy tree was required

to provide this information.

i, &y

I -

e

T

I SR

Dk S At |

-

La?‘

APPENDIX A
SDDL DIRECTIVES

U Y

-k g

H
#

¥
SNDL DIRECTIVES

WSEQUENCE B I T = TS A s
#WINTH 130
#MARK DATA STRUCTURE [TEMS .
#MARK SINGULAR DATA ITEMS _
#MARK EXTERNAL FILES @
FMARK - & % & ¢
#STRING #
#DEFINE MODULE REQUIREMENT ENDREQUIREMENT
#DEFINE MADULE TASK ENDTASK
#DEFINE MODULE GROUP ENDGROUP
: #DEFINE MODULE TABLL ENDTABLE TABLEPARAMS
#DEFINE MODULE STACK ENDSTACK STACKPARAMS
#DEFINF MODULE OUEUE ENDQUEUE QUEUEPARAMS
#DEFINE MODULE FILE ENDFILE FILEPARAMS
#DEFINE MODULE SUBROUTINE ENDSUBROUTINE EXITSUBROUTINE
#DEFINE MODULE FUNCTION ENDFUNCTION EXITFUNCTION
: #DEFINE MODULE TEMPLATE ENDTEMPLATE
: #DEFINE MODULE PROCESSOR ENDPROCESSOR
#DEFINE BLOCK SUBGROUP ENDSUBGROUP
#DEFINE BLOCK REPLICATION ENDREPLICATION
#DEFINE BLOCK SELECTION ENDSELECTION ALTERNATE :
#DEFINE BLOCK SUBFILE ENDSUBFILE , , SUBFILEPARAMS ;
s #DEFJNE BLOCK BLOCK ENDBLOCK
s #DEFINE BLOCK PERFORM ENDPERFORM , , ALSO
s #DEFINE BLOCK ABSTRACT ENDABSTRACT , , DESIGN.DESCRIPTION
: : #DEFINE BLOCK ABSTRACT , , , ALLOCATED, REQUIREMENT?
: #DEFINE BLOCK ABSTRACT AFFECTED MODULES
#DEFINE BLOCK ABSTRACT OPERATING.ENVIRONMENT ;
#DEFINE BLOCK ABSTRACT SYSTEM.PARAMETERS ‘ ;
#DEFINE BLOGK ABSTRACT NATA.SPECIFICATION V :
#DEFINE BLOCK ABSTRACT PROCESS.SPECIFICATION :
#DEFINE BLOCK ABSTRACT DATA.ORGANIZAT ION
#DEFINE BLOCK ABSTRACT , , , CONTROL.FLOW
#DEFINE BLOCK SOURCE ENDSOURCE , , VERSION
. #DEFINE BLOCK SOURCE , , , STATUS
. : #DEFINE BLOCK SOURCE , , , SCOPE :
: #DEFINE BLOCK SOURCE , , , PERFORMANCE.CONSTRAINT :
: #DEFINE BLOCK SOURCE , , , REQUIREMENT.DESCRIPTION :
: : #DEFINE CALL ATTACH :
: #DEFINE CALL DETACH
#DEFINE CALL OPEN
#DEFINE CALL CLOSE :
#DEFINE CALL CLEAR ORJq ;

. e me ww

. s® BB aE B ew GB AE SE e

e ww w9 = e se se e e
* ew e e we ww T Am e EE NE Be N ae an SR R B R ke R e

TR R IR T ™
R I A Y]
v W e W e e

[: INA
: : #DEFINE CALL READ OF pg 4L Pagp
: #DEFINE CALL WRITE OR opars Is
#DEFINE CALL GET ALIpy

#DEFINE CALL PUT ;
#DEFINE CALL PUSH $

: #DEFINE CALL POP

: #DEFINE CALL ENQUEUE

: #DEFINE CALL DEQUEUE '
#DEFINE CALL DELETE , ; , :

.
.

4 o= ‘} o R
NASA=JPL~Coml, LA, Cal A-3 wmw. Bt

wiki g

e bt SR

	1980017559.pdf
	0001A01.tif
	0001A02.tif
	0001A03.jpg
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001A15.tif
	0001A16.tif
	0001A17.tif
	0001A18.tif
	0001A19.tif
	0001A20.tif
	0001A21.tif
	0001A22.tif
	0001A23.tif
	0001A24.tif
	0001A25.tif
	0001A26.tif
	0001A27.tif
	0001B01.tif
	0001B02.tif
	0001B04.tif
	0001B06.tif
	0001B08.tif
	0001B10.tif
	0001B12.tif
	0001B14.tif
	0001B16.tif
	0001B18.tif
	0001B20.tif
	0001B22.tif
	0001B24.tif
	0001B26.tif

