

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

JPL PUBLICATION 8016
r'

	(NASA-CR-163258) AN APPLICATION OF SOFTWA RE	 N80-26057DESION AND DOCUMENTATION LANGUAGE (Jet
Pcopu ,s, jn Lab.) 41 p HC A03/MF A01

	

CSCL 03 3	 Unclasr	
G3/61 23618

h	 An Application of Software
Design and Documentation
Language

E. D. Callender
T. B. Clarkson
C. E. Frasier

S.

w

R

i June1980

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

,̂^ pjc:uc';

Ncj

P

r„

JPL PUBLICATION 80-16

P	

An Application of Software
f

	 Design and Documentatoon
Language
E. D. Callender
T. B. Clarkftn
C. E. Frasier

Y

June 1980

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Y

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100.

V,(

V^(

PREPA'CE

This paper was presented at the AIAA 2nd Computers In Aerospace
Conference, October 23-25, 1.979. This version is expanders from that which was
presented at tKe conference.

ABSTRACT

This paper discusses the application of SDDL to the detailed
software design of the Command Data Suhs,ystem for the Galileo spacecraft. A
set of constructs was developed and applied. The paper contains an evaluation
of these constructs and examples of their application.

iii

CONTENTS

1	 INTRODUCTION -- ---- 1-1

2	 DESCRIPTION OF SDDL-- 2-1

3	 DETAILED DESIGN PROCEDURE------------------------------------ 3_1

4 SDDL SYNTAX TO SUPPORT DETAILED DESIGN PROCEDURE------------- 4-1
4.1 REQUIREMENTS DESCRIPTION------------------------------------- 4-1
4.2 REQUIREMENTS MODULARIZATION---------------------------------- 4-2

4.3 REQUIREMENTS ORGANIZATION------------------------------------ 4_2
4.4 REQUIREMENTS	 INVOCATION -- 4-2

4.5 DATA DESCRIPTION --- 4-4
4.6 DATA MODULARIZATION-- 4-4
4.7 DAl'A ORGANIZATION-- 4-8
4.8 DATA INVOCATION- ------------------- ----r--_----_-----_ ----- 4-12
4.9 PROGRAM DESCRIPTION -------------------- a-.------_----_—_--_--- 4-12
4.10 PROGRAM MODULARIZATION--------------------------------------- 4_1.2

4.11 PROGRAM FLOW CONSTRUCTS-------------------------------------- 4-13
4.12 PROGRAM INVOCATION --- 4-13
4.13 DATA USAGE -- 4-13
4.14 TASK DESCRIPTION--- 4-13
4.15 TASK MODULARIZATION-- 4-14

4.16 TASK CONTROL CONSTRUCTS-------------------------------------- 4-1.5

4.17 TASK INVOCATION-- 4-15
4.18 DOCUMENTATION DESCRIPTION------------------------------------- 4-15

5	 DEFINITION OF CDS -- 5-1

6	 EXPERIENCE USING SDDL ON CDS DETAILED DESIGN----------------- 6-1

Appendixes

A	 SDDL DIRECTIVES-- A-1

Fig_ ures

4-1. Sample Requirement -- 4-3
4-2 Replication --- ------ 4-8

4-3a Sample Data Structure --------------------------------------- 4-9
4-3b Sample Data Structure --------------------------------- ------4-10
4-4 Use of Abstract --------------------------------------- ------4-17
5-1 Detailed Design -- Top Level Executive ---------------- ------ 5-2
5-2 Time to Execute Function ------------------------------ ------ 5-3

5-3 HLM-System-Start-TE Group ----------------------------- ------ 5-5
5-4 Data Specification Group 5-6
5-5 Data Specification Group (added substructive) 	 --------- ------ 5-7
5-6 CDS Software	 (Module Invocation Tree) 	 ----------------- ------ 5-8

Tables

3-1	 Module Outline -- 3-3

v

P1?E(,EDING PAGE BI,ANI<- NOT FILMED

o,

SECTION 1

INTRODUCTION

One of the major problems that face the software designer is how
to record and maintain the detailed design of a piece of software during
development. It is desirable that when the design is completed that the
associated documentation that records the design also be completed. This
report presents a possible solution to this problem. The focus is on the
detailed design of the software for the Command and Data Subsystem (CDS) of
the spacecraft for Project Galileo. The tool used to support the approach is
Software Design and Documentation Languaqe (SDDL). 1 SDDL is a software
program design language and associated processor. There are five basic
concepts described in this report. They are:

(1) Detailed design can be made a manageable task by restricting its
scope. It is neither functional, architectural or general
design, nor is it implementation where the clerical details
necessary to translate the detailed design into code are added.
Detailed design starts once all the major components have been
identified and ends when the cookbook of instructions has been
created that would allow a clerk to emulate the functions of a
computer and execute the program. In more exact terms, a
detailed design is an exact and unambiguous description of: the
interrelationships (interfaces) between independent logical
elements; logical disposition and organization of the data; and
interaction of an abstract machine with its data base
(algorithms).

(2) There are eight dimensions necessary to define a design.
Reference is made to Table 3-1 containing the eight items
necessary and, we hope, sufficient to describe a detailed design.

(3) The best realization of a detailed design is in the document
that describes that design. This of course assumes that code
has not yet been created.

(4) An isomorphism exists between data and control structures.

(5) Five different types of structures (modules) are sufficient to
describe a design. The five types are data, control, task,
requirement structures, and free form text blocks.

This report is divided into five sections. The first section
contains a very brief description of SDDL. The next is a description of the
detailed design procedure followed by a description of the SCDL syntax used to
support that detailed design. Then the Command Data Subsystem (CDS) is
briefly described. The final section relates the experience using SDDL on CDS.

'Henry Kleine, Software Design and Documentation Language, JPL Publication
77-24, Revision 1, Jet Propulsion Laboratory, Pasadena, California,
August 1, 1079.

1-1

SECTION

DESCRIPTION OF SDDL

The Software Design and Documentation Language (SDDL), contrary
to the implication in its title, is a general-purpose processor to support a
language for the description of any system, structure, conce pt, or procedure
that may he presen ted from the vies:aolnt of a collection of hierarchical
entities linked together by means of hinary connections. The language
comprises a set of rules of syntax, primitive construct classes (module,
block, and module invocation), and language control directives. The result is
a Language with a fixed grammar, variable alphabet and punctuation, and an
extendable vocabulary. SDDL represents a rather primitive, but powerful
capability. It assists the software designer by providing structure. It
supports the. naming of pieces of the software design, called modules, the
illustration of substructure within a module by automatic indentation, the
identification of other module invocation with any module and the creation of
a module hierarchy and crass reference list. It operates against a single
input file of textual material that is the current description of a design of
a piece of software and creates a single report that contains the above
i of ormat i on.

2-1

^„;

SECTION 3

DETAILED DESIGN PROCEDURE

The point of departure for this report is at the start of the
detailed 'esign for a piece of software. It is assumed that the reader is
familiar with the software design process. A top-level hierarchical program
structure has already been created during the general design process.

This document does not address the issue of how to ^:reate a
detailed design for a piece of software. However, certain basic slaps in that
process are assumed. It is assumed that for each module, a completed detailed
design will be prepared before that module is coded. The level of detail in
the design is such that one SDDL statement should on the average generate
three to five lines of code, assuming that a higher order language is used or
that macros are used in the case of assembly language. It is also assumed
that the implementation language is procedural.

The creation of the detailed design for software can be viewed
as the creation of a number of structures (MODULEs) and the associated ties
between these structures (in SDDL parlance, MODULE INVOCATIONs). There are
four- very important classes of structures that are created as the detailed
design for the software is prepared. They are the structure or list of
requirements, the top-level task structure, the hierarchical structure for the
programs (control processes), and the associated data structures.

A software package or design is an abstract item. The only
physical manifestation of a piece of software is that of its associated
documentation. This documentation can exist in many different forms. One
form is code. Another form is a detailed design. The outline given in Table
3-1. gives the items that are required for a task, process or data module. It
is the kernel outline for the documentation of any module, whether the module
he a high, intermediate or low level. The order in the program structure in
which these items are generated is dependent upon the design methodology
employed by the individual designer and the individual designer's experience
and insights into the particular problem at hand. The SDDL processor is
insensitive to the order in which these items are generated and processed.
What is described below are the constructs that will assist the designer as
he/she treats the problems of input data, local data structures, output data
and the myriad of other details necessary to complete the detailed design for
a particular software package.

The hierarchical program structure has the program as the top
entry in the structure. A program may be made up of one or more procedures,
subroutines and/or functions. Each suhroutine or func t ion may consist of one
or more procedures. Modules, as described in SDDL, are sized with a view to
facilitate the understanding of the reader. The size of the module when it is
described by the designer may be substantially different than the size of a
module when it is compiled or assembled into executable code. For example, a
suhroutine when compiled may consist of its top level module plus a large
number of submodules. To this end, individual program modules should he
scaled such that only one operation or function is performed by that procoduro

3-l.

f V,

and that the implementation will not require an excessive amount of corm or
structure. Typically this means that the number of design statements
(execution directives, data declarations, etc.) required to describe a
procedure is ten to fifty; the number of associated lines of code is less
than one hundred when the implementation language is either a higher orrier
langauge or a macro assembler language and that the design of a single module
will not require more than six or seven levels of structure. This
hierarchical program structure only partially describes the flow of control
within the program. As the hierarchical structure for the program is being
created the control flow for each module must he established. The control
flow is described using standard structured programming constructs. (Such
structured programming constructs are described in SM. using the BLOCK
construct family.)

3-2

V,(Table 3-1. Module Outline

DATA MODULE PROCESS MODULE TASK MO011LE
(NAME) (NAME) (NAME)

1.0 Module Abstract Module Abstract Modulo. Abstract

2.0 Allocated Requirements Allocated Requiremonts Allocatod Requirements

3.0 Design Description/ Design Description/ Design Description/
Purpose/Functional Purpose/Functional Purpose/Functional
Description Description Description

4.0 Affected Module Affected Modules Affected Modules
Modifying Process Invoking Process Invoking Tasks

Modules Modoles
Accessing Process Invoked Process Invoked Tasks

Modules ModL1le.S
Invoking Data Moliules Accossed Data Modules Invoked Process
Invoked Data Modules Modified Data Modules Owned Data

5.0 Operating Environment Operating Environment Operating Environment

6.0 System Parameters System Parameters System Pararndtprs

7.0 Data Specification Process Specification Task Specification
Access Algorithm/ Mode of Execution

Protocol
Assumptions/ Assumptions/Constraints
Constraints Statistics

8.0 Data Organization Control Flow Task Organization
Normal Data Normal Processing
Error Data Error Processing

3-3

C^	 In a similar manner, a hierarchical (Wo struc turp is organized
into groups, files, queues, stacks and tables. Tier 1ata constructs are
concerned with the abstract design, not the physical implementation. Each
data construct has an associated abstract access method. After the detailed
design is completed and before the associated code is ge^,erated, it is
necessary to determine the physical disposition and representation of the
abstract data structures that have been created.

The detailed design of a piece of software is completer) when the
data structures and control structures have been sufficiontly specified that
the computer functions could be simulated by hand without making any further
design decisions. Usirq this criterion, coding is the conversion of a
detailed design (targeted for execution within a human mind) into the syntax
acceptable for input into an assembler or compiler.

One aspect of the method described in this paper is to make a
clear distinction between the activities associated with the creation of the
detailed abstract software design and the physical implementation of that
design. This distinction is at times very subtle, However, the distinction
is extremel y important and must be kept in mind at all times as the detailed
design is being prepared. Ca ► v most be taken to ensure that the abstract
design is easily mapped into t 1he. physical design. The requirement to achieve
this has influenced the part i cular choice of SDDL constructs,

Between the completion of the detailed design and the generation
of associated code, some implementation decisions must be made. They can
include the selection of th ,a coding language and hardware and the
determination of the physir^al disposition and representation of the
appropriate data structures. Of course, decisions on coding language and
hardware are many times made at the beginning of the project by default,
politics, or other nontechnical reasons. The intent of this design
specification approach is to support tho capability to postpone decisions of
an implementation nature u mail the detailed design is complete.

The use of SDDL as a computer software design medium exploits
the analogous relationship between the hierarchical representation of the data
portion of a software system and the program portion. Indeed, the execution
of a program may be viewed as the construction of a file of data
(instructions) passed to the ALU, where the branches, together with the states
upon which they are based, are understood to be the selection characteristics
of that File. Both are organized hierarchically by means of extended
constructs in the families: MODULE, BLOCK, and MODULE INVOCATION. The SDDL
language provides the construct families as primitives together with the
capability to add or delete members of each construct family. The language
does not provide explicit definitions for the use (semantics) of these
constructs. The selection of the abstract constructs presented in this report
was made based upon the experience of the authors in designing software.
Hence, in many cases the "usual" implementation realization of the abstract
construct may be inferred from the similarity to the English words. However,
it is the responsibility of the designer to ensure that for any particular
design, each of the logical constructs that he uses can be realized in the
physical implementation. For examples of these constructs, the reader is
referred to the material in Section 4 of this report.

3_4

i
i

The constructs in the MODULE family allow the user to set up
generia classes of modules including data modules such as FILE, STACK, QUEUE,
and TABLE, control process modules such as PROGRAM, SUBROUTINE, FUNCTION, and
PROCEDURE, and requirement modules. The constructs in the. BLUCK family allow
the user to create a hierarchical structure within a &a^ticular module. If
the module is a control process structure, the user will recognize the
hierarchical structure as a typical indented set. of Ii, SELECT, LOOP and
PERFORM. The constructs in the MODULE INVOCATION family allow the user to
create the network that relates the various moriules. Here constructs such as
CALL, OO, OPEN, CLOSE, READ, WRITE, and CLEAR are used. MODULE INVOCATION can
be thought of as a one way mapping from the interior of the module under
discussion to some other module, viewed atomically. For example, the
construct GALL can be thought of as a mapping from a subroutine to another
subroutine.

The actual steps used in the detailed design process for the COS
are given below. The interfaces and data structures were first designed and
then the program control flow was added. There was a substantial amount of
iteration within all of the steps,

(t) Define and charactpri,ze interfaces between the software to he
produced and the environment In .,hick the software will
operate. This environment includes interfaces to other software
and any hardware interfaces that are used.

(2) Define data structures to be used by the software.

(3) Decompose software into procedures and identify all procedure;
calls.

(4) Specify control flow.

(5) Identify error conditions and recovery processing.

(h) Verify design, iterate.

3-5

L

SECTION 4

SDOL SYNTAX W SUPPORT DETAILED DESIGN PROCEDURE

There are five fundamental types of constructs used in the
description of a software design. They are: requirements, data, program,
task, and unstructured text. Associated with each of these module types are
various substructures and invocation rules. A requiremonts module is a device
that allows the designer to state in a structured manner the requirements that
the design must satisfy.

Data is described from two points of view; the structure of the
data, and the attributes or values that the data may take. The SDDL
constructs presented in this section are directed toward a description of the
various structures that are used in describing data organizatinn. Because of
the very large number of data types that are possible, there are no SDDL
constructs presented in this manual directed toward describing data
attributes. However, in many of the examples that are given below, attributes
are pre5ented as textual information. Honco, a description of a collection of
data items in SDDL should contain both structure and attribute information.
For example, the scope associated with a data structure or the range of values
that a data item may attain is attribute information and is best captured as
in-line textual comments in thn data structure.

A program (a process/control structure) is described in terms of
its type, the process steps that are performed when the program is invoked and
the other processes that this program invokes. The SDDL constructs are based
upon standard structured programming constructs. As in the case of data
representation, no attempt has been made to catalogue the myriad of operators
and algorithms that the d q siqner may select to describe the operations
performed within a design.

A task is a construct that is introduced to allow a dniiqner to
express real-time or interrupt driven designs in SODL. A task is an
independent abstract machine. A task has associat pd with it rata that it own%
(machine state) and the executable programs (definition of the function of tho
machine) that it uses.

The finai construct class is concerned with the documentation of
the design. Constructs are employed which allow the designer to record all
information about the design in SDDL. The intent is to allow the designer to
record within SDDL data that is usually not treated in pseudo-coda and too
many times left out of a aesiqn document. The constructs discussed in this
section are based upon the module outline givnn previously in TWO 3-1.

4.1	 REQUIREMENTS DESCRIPTION

The requirements for a design aro usually stated with rospPS to
performance while the design is expressed in terms of data structure, task
relationships and processing a l gorithms. In general, the requirements and thr
design will differ topologically and it will not be po q uiblo to omh pd tho
requirements in the program or data modules designed in response to these
requirements.

4-1

6...'

Hence, a separate module construct for requirements is used. In a manner
analogous to the modularization of data, program and task structure, the
requirements for a system may he partitioned into hierarchical classes. Each
crass of requirements is contained in a REQUIREMENT module. The grouping of
requirements into a particular REQUIREMENT module is done at the discretion of
the desi g ner. The governing criterion is the degree of REQUIREMENT module
invocation that the designer wishes to employ. The module invocation keyword
'"REFINEMENT" is ued to indicate a REQUIREMENT module containing a refinement
of the requirements in the parent module.

In any REQUIREMENT module, all of the information is textual.
The BLOCK and ENDBLOCK structure is allowed to aid the designer in automated
indentation. Also, the SOURCE construct and the substructure for that
construct is allowed to aid as a checklist to the designer as he/she describes
the requirements.

A REQUIREMENT module can only point to another REQUIREMENT
module. The construct used here is "REFINEMENT" and the meaning is that the
referenced REQUIREMENT module contains a more detailed description of the
requirements specified in the parent MODULE. REFINEMENT allows a structuring
from a higher level requirement to a lower level requirement. A REQUIREMENT
module can be pointed to by the construct SATISFIES. Figure 4-1. gives a
sample REQUIREMENT and shows a use of the substructure under REQUIREMENTS.

	

4.2	 REQUIREMENTS MODULARIZATION

In the case of p rocess and data structures, there are a number
of different module types. For example, PROGRAM, SUBROUTINE, FILE, and
QUEUE. In the case of requirements, there is ,just one module type, namely,
REQUIREMENT.

	

4.3	 REQUIREMENTS ORG,ANI7ATIQN

In any REQUIREMENT module, all of the information is textual.
The BLOCK and ENDBLOCK structure is allowed to aid the designer in automated
indentation. Also, the SOURCE construct and the substructure for that
construct is allowed to aid as a checklist to the designer as he/she describes
the requirements.

	

4.4	 REQUIREMENTS INVOCATION

A REQUIREMENT module can only point to another REQUIREMENT
module. The construct used here is "REFINEMENT" and the meaning is that the
referenced REQUIREMENT module contains a more detailed description of the
requirements Fnecified in the parent MODULE. REFINEMENT allows a structuring
from a higher level requirement to a lower level requirement.

4-2

•

k

r.
a:

t

3:

n

I

I
1
1
I
I

I
1
I
I
I
I

LL. F-
i
i

O
u

1
Z ^t W F- I

x
W IA H F-

(L A ix 1 Q Q
O rlLW A O I

uJ H W
w A

2 W 1 w
1 F- Z

Q w IQox
^ A ^ W I	 C„) H

A O J Q Z I HF-
I- O !- I A

^ O O N I	 W
W J Q Z F- In 1 H Z
H- Q sn Z w 1	 H
Z = p H W I O J

W
F- 4 H I H W

V I	
A

W In W u~.. I- w

~ ocon X w I zww
A HI	 1O-Iz W rG W- iL W U

W Z W O E IW a

w A - xA U Z 1 ALL-
w W Z F- W Z F- 1
H O Q [^

.=^
LU
W ^ Z Z ^ W I Z O

C> F- Z W O 0. w I	 F-
W 2 Q tl' H W O W 1	 F-
tie w U W 2: h:J W S I cnZ

sin wQ w I	 ..:w
to tY! Z Q S V W A I O
^-+ H o A W o CL w I J w
x H W A J L) 1 --I z
1- w)-- V J W w Q I Q H

F- Q Q Q V x J I	 U-
LL 4 J to Q J F- d I F- W F-
O A 0.0 J<C I zn:Z

O J dm Z Ln I W	 W
., w W In 0 o o H 1= Q ,°
F- o z H Ln J x I w	 w

Z H < HO F-Z O z I F- u1w
W w w Z O H O 1 Q F-4 H
$ W W Oz C4 Lo HH F- H I N

00 M w z I-- H o Q Q F- ci F- I N F- cv
O u Z F- Q F- w Q H ^r I	 2' W
CD O _ VZ <tT F- E: ce X: I HWw
J A z)- HO VV N(r V W I z Z
-j v J A H H. p '.^, O do O 1 W W J
C7 Z W ZF- m OLL_ W LL_ 1 F_W. ui

w O F- H Q Z U .T_ A Z F-WH>
^y L) F-I Q (, H to H H Z =:D W
W w In Z N H uj W F- W H Cr J F-
R' p w OA WO 0-j Z J F_LL-W Wp W F- F-Z CL -j ZQ W Q W WWW W
F-- (n > ly QH Oa, Q= E O =w W V 7:

Z O F- U> E F- . W F- H O 2 w W
W W W O W W0 N W N W>< W X LL H O O W
E H Z ZO Z W W OW vH W WZZH O H
W W F- to F- O F- Q F- 0., Q O u_ f- O F- W F- F- z N
w p w Q O w ce A G7

LUH O W F- CJ W W w
N > to N a. OC

d A

W L
w w

a .

C
v
E
OJ
S-
.a

Q'
v

cu

a
fC!

r
I

ct'
a
s-a
cn

U-

4-3

Cc	4.5	 DATA DESCRIPTION

The SDDL constructs that support data doscription are hased upon
the realization that data ran he structured in a manner completely analogous
to the structure provided for execution control structure. The basic
assumption that has been ►earn, is that all data items will bn explicitly
declared through the use of one or more SDDL data constructs. In addition,
input/output of data can ho thought of as viewing a collection of data
elements through a window, The data elements of a particular data module
currently on view through the winnow (the current ripcord) can be utilized
directly without being invoked by anv special constructs such as READ or WRITE.

The reader is reminded that theSDDL constructs in this paper
are oriented to the description of a detailed abstract design. Upon reading
the material on data descriptions, the reader may first believe that physical
implementation considerations arr! beinq described. That is not the case, even
though the mapping from a construct such as "PILE" into a physical realization
as an ISAM file is trivial. That such mappings may be straightforward is a
deliberate consequence of the desire to provide the reader with a set of
useful and complete SDDL constructs. The data structures described below are
characterized by the abstract access methods that are supported for each
particular data structure. The data organization techniques within any
structure are identical (sequence, selection, replication).

The reader is reminded t
represent an abstract view of the data
collection of data may he presented in
Often the quality of a design depends
choosing the most useful approach to t
rata. Further, the same data set may
abstract representations at different

hat the data description constructs
and that in general, a physical
a variety of valid abstract forms.

upon the insight of the designer in
he organization of the programs and
be described by two or more different
points in the processing of the data.

4 .6	 DATA MODULARIZATION

The data declarations are grouped into modules whose names imply
the access characteristics of the enclosed data. The atomic elements within
each module will be called "data declarations". A data declaration will
consist of: the specification of a variable, a data module invocation
(DETAILS) or a body of "data declarations" contained within a BLOCK
construct. In general, an atomic element of data declaration, or datum, is a
line of text starting with a variable name. Unless the name contains a
special character that has been designated by the #MARK directive to be a
non-delimiter, or it is enclosed in string delimiters (the default is quotes),
the name is not cross referenced by SDDL. The datum may be followed by
attribute information for that datum. For example:

Velocity.Vector	 (A 3-dimensional vector with units KM/SEC)

At the level of abstract design given above, "Velocity. Vector" is an atomic
element. Later, in the design process, this datum could be expanded into a
structure.

4-4

{

	

	 Data modules are composed of collections of homogeneous
components called "records". A data module is specified abstractly by:
naming the module, specifying the module class by means of the key word,
declaring the attributes of the underlyin g ".,ecords" and optionally providing
supplemental parameters, The "record" 	 a "window" through which the
data module may be viewed. The access al(jo ^,i,ms (the method by which the
view is changed to another instance of a o ,t i.rd) is implicit in the MODULE
name and the MODULE INVOCATIONs used.

The following is a brief description of the types of data
modules used. A "GROUP" is a hierarchical collection of data declarations,
having the characteristics that there is only one copy of the record (it is
not a multirecord structure) and access is accomplished without special
program consideration. The implication with a set of data items that have
been declared a GROUP is that these items are always "in view". Physical
realizations are: local variables, FORTRAN Common and HAL/S Compool,

The following is an example of a GROUP named Velocity.Data.

GROUP Velocity.Vector	 Units are KM/SEC
Velocity.Vector.X

Velocity.Vector.Y

Velocity.Vector.Z
ENDGROUP

Note that "Velocity.Vector" is known to the SDDL processor and will be cross
referenced. "Units are KM/SEC" is attribute information that will appear in
the SDDL listing but is riot processed. The three components cf
"Velocity.Vector" may be known to the SDDL processor (by virtue of the
embedded period).

A "RECORD" is an instance of a CROUP. GROUP provides the data
declaration and the use of the term "RECORD" allows one to discuss multiple
examples. The constructs TABLE, FILE, STACK and QUEUE are collections of
RECORDS structured in particular ways.

A "TABLE" is a randomly accessible collection of records
(entries), indexed by an ordinal. (An n-tuple of ordinals is considered an
ordinal.) The primitives with respect to table manipulation are "OPEN",
"CLOSE", "READ", "W'RITE", "GET", "PUT" and "CLEAR". Note that the number of
records in a table is either fixed or defined at the point at which it is
OPENed, and the CLEAR directive differs from that used with respect to FILES
in that it causes each record to be restored to a well-defined initialization
state. Typically, this will involve zeroing numeric fields, blank i ng out
character fields, etc.

The physical realization of the construct "TABLE" is often a
FORTRAN direct access file. However, the construct described above may apply
to a structure that may ultimately reside in memory, on a disk, as well as on
a magnetic tape. An example is an array in Fortran.

4-5

I

; F(The following is an example of a TABLE.

Units are KM/SECTABLE Velocity.V'ector
Velocity.Vector.X
Velocit,y.Vector.Y
Velocity.Vector.Z

TABLEPARAMETERS
Velocit,y.Vector.Counter
There are 100 entries in

ENDTABLE

Index for Table
this table

In this particular example, the data structure used as an
example for a GROUP has been extended to allow for many instances of the
underlying group, where the indexing parameter is I'Velocity.Vector.Counter"

A "FILE" is an orderers sequence of entities (usually called
records), each analogous to a GROUP. The records of a file are indexed by a
well ordered variable (usually called the access key). When the index is an
integer, this corresponds to the concept of an array or an indexed direct
access file and is more properly described as a TABLE. In the more general
case where the index variable does not correspond to the concept of an
ordinal, then a FILE corresponds to the concept of a keyed direct access data
set. Only one element (record) of the file is presented to the program at a
time. The primitive operators with respect to a FILE are: "OPEN", which
makes the FILE available to the invoking program and unconditionally restores
the file to the beginning; "CLOSE" which removes the file from
accessibility; "READ", which obtains the next sequential record if one is
available; "WRITE", which merges a new record into the sequence of file
records; "GET", which obtains the record, if one is available that
corresponds to the value of the access key; "PUT", which merges a record
corresponding to the key into the FILE; "DELETE", which purges the record
corresponding to the key from the FILE and "CLEAR" which removes all of the
records from the FILE. Note that WRITE differs from PUT, in that the
generation of the appropriate key is assumed to be done by the underlying
access method.

The physical realization of the construct "FILE" is usually a
keyed index-sequential file, where the access method is vendor supplied. In
those cases where no such vendor supplied access method exists, the
implication is that a subsequent refinement of the design will contain the
algorithm and the underlying physical data structure (e.g., a linked list
contained within a table). The example given for TABLE immediately above is
also suitable for FILE. A FILE differs from a TABLE in that the number of
records is not fixed, the access algorithms are more complex and versatile,
and records may b y added or deleted.

The followin g is an example of an on-line payroll data base,
where the records may be r,trieved by employee name, social security number or
employee number.

)NONr1,A., p

4-6	
^^^ QU.^^ IS

'Y

^ -A.4

FILE PAYROLL
PAYROLL.EMPLOYEE.NO 1 (*Employee number, 0 to 10,000)
PAYROLL.NAME C40 (*Name of employee, up to 40 characters)
PAYROLL,SOCIAL.SECURITY.NO 1 (*9-digit social security number)
PAYROLL.JOB.CLASS C (*Job classification, 1 character
DETAILS PAYROLL.GOVT.REQUIRED.DATA
DETAILS PAYROLL.YEAR.TO.DATE.TOTALS

FILEPARAMS
This file is indexed in PAYROLL.EMPLOYEE.NO , PAYROLL.NAME and
PAYROLL.SOCIAL.SECURITY.NO , therefore records may be accessed by
any of the three "keys".
The file contains a maximum of 5,000 entries

ENDFILE

A "STACK" is a collection of records that are created in order
and destructively read back in reverse order. The primitives for stack
manipulation are "PUSH", "POP" and "CLEAR". Note that no index is used in the
description of a "STACK". In the case of a "STACK", it is first in, last
out. The construct OPEN "creates" the STACK while the construct CLOSE removes
the STACK from access by the program.

The following is an example of a STACK named "Daily.Menu".

STACK Daily.Menu
Menu.Indicator (1.=Breakfast, 2=Brunch, 3 = Lunch, 4=Dinner,

Meal . P 1 an	
5=Supper, 6=Snack)

ENDSTACK

A "QUEUE" is a collection of records, ordered by priority
(usually the chronology of creation) and retrieved (typically in a destructive
manner) in order of priority. The actual priority mechanism is established
during the physical realization of the particular QUEUE. This implies that
the priority mechanism for one QUEUE may be different than the priority
mechanism for a second QUEUE. When defining such abstract QUEUEs, the
designer must be careful to define only those abstractions that are
supportable in the target implementation. The primitives with respect to
queue manipulation are "CLEAR", "OPEN", "CLOSE", "ENQUEUE" AND '"DEQUEUE". A
chronological "QUEUE" has the property of first in, first out, and is assumed
in those cases where no priority mechanism is explicitly specified. The
physical realization of a "QUEUE" is many times an input card file or a
printed listing.

A "TEMPLATE" is a collection of data passed across the interface
between two program modules, where the data items must have been declared
elsewhere. In this particular case, an interface is a major boundary such as
the line between two independently created programs or between two different
programs operating on two physically different computers. The construct
TEMPLATE allows the designer to highlight what is being passed across the
interface. The data items of the TEMPLATE may be complete data structures
such as a GROUP or a FILE or they may be portions of data structures.

V,(

4-7

The following is an example of a TEMPLATE named Interface.]..

TEMPLATE Interface.l.
Time	 (the system time of the transfer of data, units - GMT)
Details Velocity.Data

ENDTEMPLATE

4.7	 DATA ORGANIZATION

Within each module of data declaration, the hierarchy of
organization and the details are presented through a combination of data
items, module reference and block constructs.

A data item (atomic element) is a unit of data rpnresentation
thatrequires (relative to the level of design under consideration) no further
decomposition. Examples are: an integer variable, the two real numbers
corresponding to a single complex number in an environment supporting complex
arithmetic, a coordinate transformation matrix or a character string. There
is no keyword associated with data items in any data structure.

Hierarchical data constructs of sequence, selection and
iteration are used. At a particular level in a data structure, all data items
must be of the same type. Further, the ordering of the data is top-to-bottom,
left to right. In SDDL the default option is SEOUENCE. The implication here
is that all data items mentioned appear and they appear in the order in which
they are listed. The "REPLICATION" construct defines a set of data
declarations that may be replicated zero or more times. Note that the
constructs of TABLE, STACK, and QUEUE have an implied REPLICATION as a part of
the construct. Figure 4-2 gives an example of the use of REPLICATION in a
GROUP structure.

LINE

51 GROUP DATA.RECORDS 000
52 NO,OF.DATA.RECORDS 000
53 REPLICATION ON NO.OF,DATA.RECORDS 000
54 DATA.RECORD.ID 00C
55 SPACE.CRAFT.POSITION 000
56 SPACE.CRAFT.VELOCITY 000
57 NO,OF.SCIENCE.EXPERIMENTS 000
58 REPLICATION ON NO.OF.SCIENCE.EXPERIMENTS 00C
59 SCIENCE,EXPERIMENT.DATA 000
61 ENDGROUP 000

Figure 4-2. Replication

The "SELECTION construct defines a set of candidate data
declarations, one and only one of which must be present. The substructure
within SELECTION is ALTERNATE. The convention is that this substructure must
be used. Figures 4-3a and 4-3b show uses of the constructs for structuring
data.

4-8

ORIGINAL PAGE IS
DUALITY_

,

.,

OILIP®^ QUAL
ITY

Or

V v V	 v v d v v v
h n	 n	 ^ n
r	 i	 I
	

1	 !

1	 I	 1
	

1
1	 I	 !
	

[1

1	 1

1	 I

^	 I	 !
	

1	 I

1	 1

I	 1	 1
	

1	 I

l	 i	 I
	

1	 t

I	 I	 1
	

1	 1

1	 I	 1

	
!	 I

1	 1

1	 !	 !

	

I	 I
t	 1

1	 I

1	 1	 I
	

1	 1

I	 t

1	 1

1	 1	 I
	

I	 I
	

t

t	 1	 1
	

1	 I
I

t	 I	 I

	
I

1	 t
r	 1	 1
	

!	 I
I	 I
	

1

i
	

1

I

1	 I
	

I

1	 1

1	 I

I
I	 I	 I	 I	 I	 1	 I	 I	 i
1	 1	 1	 I	 I	 I	 I	 1	 1
I	 I	 I	 I	 i	 F	 1	 1	 1
I	 I	 I	 1	 !	 r	 I	 I	 1
I	 I	 I	 I	 I	 r	 1	 I	 1

I	 I	 r	 I	 I	 I	 t	 I	 1
I	 I	 I	 1	 1	 1	 i	 I	 I
i	 t	 I	 1	 I	 I	 I	 I	 I
11	 I	 1	 I	 I	 1	 I	 1
I	 I	 I	 1	 1	 I	 I	 J	 f
1 1^	 I	 -)	 r w t	 I	 1)
I	 I	 I	 I	 149 i	 t	 1	 1
11-	 I	 1) •l.uJ	 I	 1	 I
I	 I	 I	 I	 1 tJJ U	 I	 t	 1
1	 1 1 1	 I	 IJ	 I t7 I w. ;t':	 1	 I	 I
1 1	 n< I	 I •z t (a tiJ	 r	 1	 r
r it w n r	 1w a. I I	 -t

	

c,1 Lo i	 !:	 t	 I
1 r a x n^	 Ct. < Ice .- I Q	 1 U 1	 1

I I r w{ J	 ^s r,_ LU i-I	 uY to 1 ^1..t	 1
t 11-::1 a:	 M I »titJt.'- c 1 :•; I rtict	 I
1	 f	 • US 4.	 ,.',: L' J r.' ...J t-i t.'t I)

I ,c; I ;:'. ^t	 4t rd » t• F-I iL uI •:. U ;^, }- Ct1 ..I	 I

1 h'»r.(J 1 ;)	 4P tit :,9u:k- , Ltlui	 CrJ? _)	 h°
fa Ca Sf? (1'	 GI LJ <.; UJ ('J •Y'J	 I-I » ° 1i •.L :4LL	 Lr

U) V1 tU	 :T. uJ C:J LL1 .Ll to C'J LIJ i.i UJ LL.
J

 11J :" t
Ct, cl, 0 h	 w' C'3 (: 1 F--	 f-	 w	 I--	 1°	 w- C_1 C1'
Ca C .	 *: try c, w.	 ».; Jf7 +Y, L/1 1 tf) r* (f1 »:; tf1 »1 wi (:I
t 47 7 ^' - J : h^ 7 .J -]:: J '." ! S. rJ Im to

C.•7 G' F-i 11' L^ (.J ric wJ r1, t (t ` M !.' F^I Lw' 1°I r.' !.5
Lf) . tf) k-I U)	 tj lit I-11.0 4; ill t, UJ •; W t% ILJ -,, .iJ Ill t^

(k' ..J ..1 F- t- I-- I-. .-1 !^- F- I- I • • Y t-- 1- I-- t-- I-- 1- F1 .-.i
LJ 1 / t -1 I s «J :Jr .-J UJ C1 ..1 JU ...1 ttJ --I L11 -J 11I -1 11J . J IJ ; t-, (L
U1 sJ: »." UJ 	 1-4 .1. it) LU 11. r_1 •'L f I cr C.1 ,.: C. •.: C-1 - If) - :m1

F^ ,.,J I	 I r-4-1 1	 1	 t	 1	 1	 I C.' I- C1
CL. Lit III V I I 	 I ?: w I	 I	 I	 1	 I	 I a tJ1 C:

	

3n C'1 it) V V U1tf1 V N V V	 ! Y UlC1C
C)	 L1
LL,

(7	 W

`Y-9

.^	 r,

!

I

t	 I

1	 !

I	 t

1	 1

I	 I

t	 1

!	 1

1

1	 !

I	 1

t	 I

I	 1

t	 1

!	 1

t	 I

'i-

U

S.

i-1
(/l

rt3

-N

rt7

Q1

li

JR

rL3
C^

i

+y
s-

t^
•r

—4.4 S

00

V V V V	 ^+!

i	 1
1	 i

I	 I

^	 I
1	 1

I	 I
1	 1
1	 I

i	 I1	 II	 1
I	 1

I	 1I	 1

I
I

1

I1

!
1
I

II
I
I

1J

I	 I
f

I	 I

1	 I
I	 I

^	 I
I	 1
I	 I

1	 I
I	 I
I	 I
I	 I

I	 I
I	 1

11	 I	 I	 I	 I	 I	 I
I!	 I	 I	 I	 I	 I	 I
I	 t	 I	 t	 I	 I	 I	 I
11	 I	 f	 I	 I	 I	 I
11	 I	 I W I	 I	 I	 I

I	 I	 I	 I :^lU	 I	 I	 I
F I	 I	 I WCI	 I	 I	 I
I	 I	 I	 I wa y:	 I	 I	 I
I I	 Cu I	 I UIli	 I	 I	 I
1 I lt.t C.". I 	 UJ LL 0 3J 1-I	 I .L! I	 I
i t ?- rJJ t. ^	 ^» ^., !-+ ^ yr c^ I ter, a.	 I
1 I	 ^C	 UJI.- Hot, I +>	 i
1 I I -» !! U•-I	 F-4'S:	 C.' ,. rlrr 1 -1	 <1
I ("	 i- 	 1.111!_:ItIlIJ:'tJ-J'r-:, 	 r
i CI raf11'14';" 0Mt!J0r: r I K^i1.-C% C

GJ ".,-	 C.J	 :!	 IJJ.-I	 is
^-+ 1 7. LLI th LU	 7.' W W 1110 411 U l I.L. LJ `4. I
II'- C: 0 t- F- Co G f- F- 1^- F- • f- C? n'
IM (:.r	 +,' U7 ^".' H	 N < Vl < In •,1:.LC7 •'C H 0

(r:1+1C 0S1I,'F.Iq< H W,rIpf HCr: C
(n(,I-!k).,y; It, WhtW y4 Ili s7.w-r1LU • LLU

Ili
ili

Ci:..! .^J H M H 1- -1 F- FA I- MI- I•- 1- F- i- F- - -J
al 1-I ^ I t,.) -4 LL),. 11lJ U ..J U J ..J Ll i ..I UJ -J L. -4 us i • I a.
t!J 1t:., i1J. •.t, G,i • : m 11J r C.^ -;4 C1.+1, t:.1 <t. al r:y tl, It ;i

I- F- -1 1	 I C.1 -1 I	 I	 I	 I	 I C." J .I- d
CLU.1I UL1 I	 (=UI I	 I	 1	 1	 I T 117Q:
:D0C:] IlJ V VwInV V V V VWC)
cJ	 n
cI^	 z

a a

rt r.	 01
p+ M	 Orj

V V	 4!
A A	 !^
1	 1	 I

1

I	 1	 1

1	 I	 I

N
ll-
Q
r

a
S.

U
D
S.

N
t0

b
Q

ar
E
b

.La
M

I
^t

a
S..

O)

Lt,

w

4-10

LU
X

T

0 W

In X

21 :4..

X

:4.

U.

F- 49 W.

ul
IV

LU a 10,

0
a

w
:4 U

a
w w

LLJ W. c) w

X

ty LU w
uj W. W.
Cl

x UJ
W.

LU
= 31 V.
I- L)

0

O

-j

<D

W W	 ' It,	 'IV	 "A	 It 	 :#	 ;*	 ;4- T J	 11, N 5k	 1,	 A v	 3	 ►

J
3

IV
N I,^

Ll
X

If! C)
31

it
W	 at
	

11)
:J: W 0	 It It In
110, :0*	 n	 Q 0

J IL W If	 U.	 tr.	 ..I.j
:4)-1 ^#f It 0 a ^4	 W 3.
J f- U It" .1	 t-	 C11 :41r. = w :41 ;+	 lit

t4 j CA!

T

T Q

in 3 '7 Ill	 r	 Ul IL, 'r

1-4 in N,U.) 0 In ri	 1-4 N 1 W

*If
	
ol W It

W ILI	
-I

>-	 V. Nt C
In IC Ir W. It) -r w	 -r 31 (Ij o

w UJ If, X (J. " Uj I-	 uj 3 X t-
;4	 ILI 13.1 In Al!

lu In	 w 3'
(14 31 :L -j ?: 1.1 V) .4

w (L m :4 3 1- ILI LU
-I N! 1,4 f,

LL) ;I
3, uj T in IJ. 3 F- tu
:4 ,	r-)-I I.-	 (;i LL 11	 11

t- In Ul 11) -,t w — 'X
1-i (:4 -r I.-

in C) A: W Q =	 f- .71 CZ) ^f
3.	 CD X 1#	 t 	 f-- "I	 r-i -It :4

W -t .0, W 2, C; 3
;t t- It IA r10 .1 W)-I	 I-1 C:4 rx, A, 4' (*.J .-1 G! I
W ^r I- Cl w 3:	 0 1- (n -I (i It C) 3
141, C <14 :^ ^tl A., 1 W -- 7 -,, M
W U r-4 X	 rl)

It)
A, 11	 11 J,

3	 11 W. ^< u a, ;fl.
3	 1- LU W).- It	 if 3- 4, IL C) .2*

<r C4 IL

3. UJ IL 7f. IV 1:i X a 0 .41 A	 Ijj

0 x N -j x in w cI.
re ts, W ^-1 Ir G.

--c 31 u w ul
iL	 ;C W (n All W 0

3; W t- 3.1 Xl	 +	 +	 :+::#::M 3	 1-- 1,
Ca

LLJ

1--^
IN

4-
0

4J
U

Si.
-W
Ln

to

ro
4-3

QI

O
cn

Gt

Ill

f^

ORIGIN.,A

OF POOR wu-m"L"

4-11

f Tho module invocation construct "DETAILS" is provic,'ed sol lv For
the sake of convenience. It permits a hodv of data ri nc;laration r to he n,amorl,
enclosed in a module construct, pliced elsowhore in the document and
rc,ferenced by the keyword "DETAILS" followed by the name of the modu l e. In
addition, it allows one to show, in a convenient mannnr, part of a mnrlu1n; teat
has di ;ferent access characteristics, e.g., a table embodded in a filo
record. Note that this construct admits to a convenient, de iqn reprosontation
of a conce pt that may he extremely difficult to implement; if access
character istics are mixed.

In some of the examples given above, the construct DETAILS has
been users. Note that SDOL produces a page number on the right hfind side that
indicates where the "detailed" module may be found,

	

4.8	 DATA INVOCATION

The only data module invocation permitted within a data module
declaration is "DETAILS". It may be used with any of the six data
constructs. Note that invocation such as OPEN and CLOSE are used by
procedural modules and provide: a mapping from such a procedural module to the
data structure that is to he opened or closed. The constructs OPEN or CLOSED
may he used with any DATA module other than GROUP and TEMPLATE. Th y; physical
realization of the construct depends upon the type of the DATA module and the
particular implementation.

	

4.9	 PROGRAM DESCRIPTION

The procedural aspects (control processes) of a software system
are described in terms of program modules and a set of constructs to define
the flow of execution within a program module. For the purpose of this
document, the atomic elements of the "executable" portion of a software design
will be called "execution directives". An "execution directive" will consist
of an algorithmic operator (free form text), a module invocation or a body of
execution directives contained within an SDDL block construct.

	

4.10	 PROGRAM MODULARIZATION

The executable portion of a software design is partitioned into
modules, typed by the method of invocation and the method by which the
interface between control process modules is effected. A "PROGRAM" is a
hierarchical collection of execution directives. Programs are invoked only
through the operating system. A "PROCEDURE" is a hierarchical collection of
execution directives that are local to a parent execution module (a program
subroutine or function). A "SUBROUTINE" is a hierarchical collection of
execution directives that may be invoked from any other execution module. A
"FUNCTION" is a special kind of subroutine that returns a scalar to the
calling module. A function also differs from a subroutine in that it is
typically invoked without the use of an explicit module invocation.

4-12

	

4.11	 PROGRAM FLOW CONSTRUCTS

The flow of execution within an execution module is specified by
means of hierarchical constructs and execution directives. An "Operation" is
a particular type of an execution directive. It is a free form t;e:;t
statement. "Operations" ma y he thought of as algorithms that require no
further decomposition relative to the level of design under consideration,
There is no keyword associated with these directives. The "IF" construct
describes one or more bodies of execution directives, where the execution of
at most one is contingent upon the evaluation at execution time of a predicate
test, The "SELECT" construct provides for the execution of at most one of a
set of code bodies, dependent upon the value at execution time of a scalar
variable. The "LOOP" construct provides for the execution iteration of a cone
body. The "PERFORM" construct provides for the conditional execution of a set
of bodies of execution directives where the the blockwise order of execution
is not a factor in the abstract design.

	

4.12	 PROGRAM INVOCATION

Progra.n invocation constructs allow a pointer to he established
between a program module and a program module, requirements module or a task
module. The construct "CALL" is to be used b y a PROGRAM, SUBROUTiNE or
FUNCTION module to point to another SUBROUTINE or FUNCTION. The construct
"DO" is to be used to point to a PROCEDURE. The assumed entry point of the
program module that is being referenced by a"CALL" or "DO" is always the
first executable statement of that program module. The construct "EXECUTE" is
to be used by a program to point to another program. In this way, control can
be transfered between two different programs.

The construct "SATISFIES" is used by any module to invoke a
requirements module. Its use is only for the purpose of providing requirments
traceability.

	

4.13	 DATA USAGE

Data invocation constructs allow a pointer to be established
between a process module and a data module. The constructs that are used
are. OPEN, CLOSE, READ, WRITE, GET, PUT, DELETE, CLEAR, ENQUEUE, DEOUEUE,
PUSH, POP, ACCESSES, CREATES, and MODIFIES.

The construct MODIFIES provides the facility for a designer to
indicate that the contents of the object data structure are modified. The
object data structure may be used as well. It may apply to any data structure.

	

4.14	 TASK DESCRIPTION

Programming is the means by which a general purpose machine
(computer) is converted i nto a special purpose machine. Jn some designs, it
may be useful or even necessary to partition the functions to be performed
into a set of independent abstract machines. The most straightforward
instance is the case in which two rar more computers are involved and the

4-13

separation of the functions is physical as well as abstract. In other cases*
this separation is effected through the facilities of a modern operating
system. In either case, such an "abstract"" machine will be called a TASK. A
TASK has the characteristics that it "uses" executable softwareelements
(programs) which define its function, and it "owns" data, which defines the
scope of its machine state. Consequently, the description of the operation of
a task will contain no executable directives but it will be described
functionally by reference to the program that is owned by the task. This
concept of TASK is most suitable for designs in which the functioning of
independent elements is loosely coupled. tinder execution flow we have already
introduced constructs that may be used for the description of closely coupled
independent activities, In some environments, a tasks fate may be contingent
upon the fate of some other task. In this case the task is said to be
dependent. The specification of a task consists of the description of the
characteristics of the abstract "machine" comprising the declaration of the
programs, data and dependent task relationships. It should be noted that riot
all operating systems support an Pnvironment in which the abstract design
using task relationships can be physically realized. If the operating system
supports dynamic tasking, then there will be constructs in the operating
s stem that will he the physical realization of the SODL constructs ATTACH and
EXECUTE:.

x.1.5	 TASK MODULARIZATION

Because of the importance of a task, all of its components
(subtasks) must be known to the SDDL processor, The specification of the TASK
will include all those characteristics of the abstract machine that are
independent of the program that is executed.

The following is an example of the abstract machinethat
supports communication with devices attached to a CPU b y means of the
DMA channels:

TASK DMA Interrupt Processor
This TASK services all DMA interrupts.
This TASK operates with all interrupts except machine check
inhibited.
ATTACHMENT REENTRANT-DMA-INTERRUPT-HANDLER
OWNERSHIP DMA.TASK.CONTROL.BLOCK
OWNERSHIP DMA.CHANNEL.DEFINITION.TABLE
OWNERSHIP DEVICE.CONTROL.BLOCK

ENDTASK

Task Control Constructs

A task contains no executable directives. Hence, no control
constructs are required.

0I?IG^A

4-1^	 ^^ `^UQ^ R^^L ISy

Task Invocation

A task can point to other subtasks by tho construct
"SUBORDINATION". A task can point to tiny data module by tho construct
"OWNERSHIP". A task can paint to any program module by the construct
"ATTACHMENT".

	

4.16	 TASK CONTROL CONSTRUCTS

A task contains no oxectitahle directives. Honco, no control
constructs are required.

	4.17	 TASK INVOCATION

A task can point to other subtasks by the construct
"SUBORDINATION". A task can point to any data module by the construct
"OWNERSHIP". A task can point to any program module by the construct
"ATTACHMENT",

	

4.18	 DOCUMENTATION DESCRIPTION

SDDL constructs have been introduced to aid in the creation of
documentation. These constructs match the module outline given in Table 3-1.
These constructs are at the BLOCK level and hence, may he used within a data
module, a process module, or a task module, They can be users within a
requirements module but they are not suitable for such use.

The invoking construct is ABSTRACT, The constructs which give
substructure within the abstract block match the outline descriptors from
Table 3-1. The substructure constructs are:

ALLOCATED.REQUIREMENTS
DESIGN.DESCRIPTION
AFFECTED.MODULES
OPERATINC.ENV'IRONMENT
SYSTEM.PARAMETERS
DATA.SPECIFICATION
PROCESS.SPECIFICATION
DATA. ORGANIZATION
CONTROL. FLOW

The construct SATISFIES under ALLOCATED.REQUIREMENTS allows the
designer when describing a PROCESS module, DATA module, or TASK module to
point to the REQUIREMENTS module that this module satisfies.

4-1.5

x

fir ft

The construct AFFECTED.MODULES provides a place for the designer
to record all of the invocations that this module participates in. Such
information is automatically obtained from the SDDL cross reference listing
and the module tree listing.

A set of SDDL constructs have been introduced to aid in the
description of a REQUIREMENT module. The invoking construct is SOURCE. The
substructure constructs are;

VERS"jN
STATUS
SCOPE
PERFORMANCE.CONSTRAINT
REQUIREMENT.DESCRIPTION

These constructs provide prompts to the designer as the
requirements are documented. An example of their use is given in Figure 4-4.

t

4-16

{

O
OP

0
V

rT^.	
V

1

1

1

I

I

I

1

V	 V	 ^.I
A

I	 1

!	 1

I	 I
1	 f

1	 L

I	 I

t	 I

i	 I
I	 1

1	 I
I	 I

I	 I

I	 I

I	 1

I	 i

t	 I

i	 I

1

rt
F

I
I

WI

HI

1-• I
1

QI

I
F- I

W I

f

NI

J I

I
u1 1

z l

01

IA
^" I

W 1

re l

0 I

f- I

I

LLJ 1

- I

cc
41

I
U.1 1

04 I
1

JIJ I
4 1
x I
cn 0

.1Wo
oreW
o O 1-

aWZll1
NU III T-
20,Wwcxwa
r-(L ZH
w H=)
cY, w LL. o,
HxWUU
^F- OGn'
v A

W z

w W

z

i^ Q i w
:S ^C 1 I 1	 I

• T..V) I I I	 !
A

C:,
1 1 I	 I

a M^ 1 n l I	 I
4 4- i7 I w l i	 I
U 4 CG I .J	 I I	 I
W UM (N I I	 I
n: o z I LL	 I !	 IJO I 1 I	 IU1 U I W I I	 I
U In I U f Ia ti :'_ I a l 1	 1
O HO I O I I	 I
Lo v) 0 I v) I I	 I

Q^
1Z ! J- } I	 !H ...) U I n: 1 ^::	 I	 I^U1 I .^! rIt7 W a: W I	 I

at 3 J 1	 1
O W i a l	 O H I	 I
U V)x 1 0. f	 U W I	 Iw aH I I	 W I	 I
a t n: I	 a x l	 I

^ LL I 0 1 O W	 !
w A O 1 IL I LL. W H	 t	 1
U W I I O U U3 N	 M) I
a z -^ I F- I W W a LL	 c4 1
O HO I F-0Aa 0F- O a s (w n: Z O L)	 C)

T in P.-F- I w/-ON(n wo	 •CD ow m I ^X Uw n:H	 [^
r- W 00 (to . W00 i-	 0V) Uw f U ! F-	 w n: 1-- ?- H	 n: N w
1- o (n I a- I a m :=	 u; w lYQ Hw 1 F- g UJOA H W}
F- to x I V)	 U to w A LL	 I 2
u^ z A h- I 11 n: — 0 w w	 I I n: O

I n: W 1 w O U ZA	 •• 0 MW O o V) ! UX0LLW H	 I	 n: N
U F- 2 U W 1-	 I b: W V1 F- p: W O	 w li; rea W p w A Z I O A I rk G:UL W LL =)=D aH w w 1 0= -- wz ri0am I UO ►-- O X 1 V) F-I X W. H •ct W ^_ H W
V) WCL W W,-1 •WOW (n=)a a

F- ^L, NH Ho T_0 f WOr n: U1	 • I- F-X A 4: LUJ -f=0O LULUMrk!O 7_
W UJL6 x c/ (v000) -jouOO w
L u 0 W-M w11'1-n, 0 "=)<w

I OAw aLu0 =OW 1L U.	 2: a, FF- a •Jxr-1 •H.J UULL.I .^LU AvWA/-10:	 U
W 4. Z F-1 `: LL A LL. U. W	 F-1 ^ W ¢f A U < W
0 h 0 L W(n	 + aU:0X0 xWW ZZ LL. wO

U tf)t-1 Z: ►- 1-H-J :C-MLU::WhaH WMHF- =)
W tt H (n UJ 0 • r. 4 1— O wI	 (n to V) A
w (4' xwxa:x U<w emu.	 I	 ^ zmw

F- F- A 1- LL F- 0 U) U H	 1	 LU W C' U
A u) I J	 ^^ 1 A O
W m I -1	 O I z wU a v a U I wn_
rd I A
tY 1 2

a V w

U
1C)
i
in

Q
4-0
v
V)

CI'
I

d'
Q)

m

4-17

SECTION 5

DEFINITION OF CDS

The Galileo spacecraft is a Jupiter orbiter scheduled for launch
in 1984. The Command and Data Subsystem (CDS) provides the control function
for the Galileo spacecraft. The software design for the first delivery of CDS
software was done using SDDL. The design is for the software that makes the
CDS hardware perform as an interpretive machine. Programs for that machine
ire stored sequences of commands.

The CDS is a bus-oriented distrihuted data network which forms
the core of the spacecraft distributed system. The extension of the CDS bus
to external subsystems provides the primary communication path betweet, the CDS
and other subsystems.

The SDDL description of the detailed design for CDS is given in
over eighty pages of SDDL listings. To describe the detailed software design,
there are 39 modules of control flow and D modules of data description.
Figure 5-1 is the detailed design for the top level executive. Note that not
all of the eight dimensions (see Table 3-1) were used to describe the example.

Figure 5-2 is an example of a function description in SDDL. It
is the TIME-TO-EXECUTE function.

Because of the specialized nature of the CDS software, the only
data construct that was used was that for GROUP. This was because of the
special I/O characteristics of the CDS hardware. Figure 5-3 is a description
of the GROUP entitled HLM-SYSTEM-START-TE. Note that the DATA.SPECIFICATIbN
entry was used to indicate the initial values of this data structure when the
CDS software is cold started. Another example of a GROUP data structure is
given in Figure 5-4. Note that under DATA.SPECIFICATION, declare statements
for the individual bits and bytes are given. These declare statements are
passed as text by the SDDL processor.

Another example of a GROUP data structure is given in Figure
5-5. In this case, a substructure is added under the DATA.SPECIFICATION entry.

One of the major outputs of the SDDL processor is the module
reference tree. It gives the full network structure for all of the module
invocations. Figure 5-6 is the first part of the full module invocation tree
for the CDS software.

5-1

•,.JL

H2
w • ww r••w•• i nnn► n n n	 ^+^'+• w • O P. In M) N	 'D O
i 0 in a In a
• w
r r
w r V V V V V V	 V V

iw r i i 1	 i i i	 iz
A 0 /	 /	 •	 • / •	 • I W

w A •	 •	 /	 • • /	 •	 • l

• w 1•	 I	 I / •	 11 x
• A 1	 1	 1: / •	 • I a

ii	 ioci r i	 iii i
r w •//• • •	 //o

r w //	 I/ • e	 I	 I ..

r r •• I r • w •	 r	 I
r r 1•/	 I • I	 / I W

i r •	 1	 r	 • • o •	 • • »M M 1	 I•• 1 O 1	 I	 I H-
A r I	 •	 /	 I / .J /	 • • a
M A /	 I// • V) /	 11 W

M M 1	 1•/ • i / W	 11• A /	 I.	 Y	 / / H / 3r	 •	 • tkM M 1•// / 1 ti	 1. O
M M /	 •	 •	 / / x • w	 / •
r M //	 I/ 1 O 1 93	 / 1 W
f M /	 1•• • Q •	 -/	 I ir	 H 0 /	 •	 •	 • • W • 1+?	 • 1 a
•	 93L M •	 1	 •	 • 1 • ►- W	 ! I tY
*	 ► z0-W	 R r ••	 I	 / I G 10x2	 • I w
0	 r- »aW	 93s * 1.	 1	 1 • F I X	 I	 Ior0	 21-7 0r 6J93 h r /	 /	 •	 1 1 O. I u	 O
0	 Wu	 ui W1- r 1	 /	 /	 I • m IOW	 / 12
rtt	 Z	 2 r. UIV M 1.	 1	 1 W 1 of 1JA	 • /"raz^W.+roa r 1.	 1• r I a /u.+	 • •s0hG W i	 U•: w ••	 I• »	 \ I W 1	 F	 ••0 93 CL	 a CL 40 • •	 1•• 1-	 0 I 1- 2 1 IL U	 I I w
r W a W h»	 1 2 M •••/ u	 0 / ? W 10 a	 1•>r u	 r)	 I.- 93 M M * I	 I	 1	 1 41	 a I 0-. x. I	 •	 1	 1 1a*0a W.1)Q93 ♦-93 0 /	 I	 /	 1 •	 O • 1- /Oh-	 / IrOCLOI J	 WGe 93 * i• I	 I i'•'	 J 1 N 12 G	 I• Me
0&6-48- W ar u	 W r /	 I	 I/ O I ►+ n 1 00) 2	 \\ J0	 1-	 -0 W O S U * 11// 2	 x I Q I	 0 M W
*X41 • JOA wo 0 I	 I•	 1 W J 1 U W 1 O-1	 OOIt 0OUNW9	 O	 Q * I	 I	 I• 93J x 1 W •2 1r-a	 at
*410+2 aw	 OIL 0 •	 1	 1	 0 b- co I x z 1	 O	 con M
MWJG>iOW 0 •	 1	 1	 1 Ga	 7 1 W 01- \1-C3	 JJ*	 aM do0-2Fz 0 I	 I	 I/ JH M I 07 *2w	 ^+^+
*a.»r-	 0- .9 r I	 I	 I	 1 m 1 r M U au)	 xYx2
*Or UG M 11	 1	 I J H I \ 1 0 41 x.1-	 J J1-1-OtL.».Z wW — w W • I	 •	 1	 I WO M / Wu 0 t O JS ILO.M	 T. :DOJ O:a 6- r 1•	 I	 1 J2 O I n J1 JWZ	 6-- 0.-

 WOWW 7 * 1	 I	 I	 I ry 1- 1 C•W V1	 2 200093	 W"CDFU * 1	 /	 1	 1 -1z	 r- I W HJ x.	 .`	 ►^ ►+JJLOW -j 	 az W 0 1	 I	 1	 • 1-00 A; I 0 0 -1	 VJ93
* U tr 41 0I W 2 M. x * I.	 1/ 1 u	 ♦- 1 A 1-a J 1- F	 ►- 1- v v
*=a 2 WO) C	 w * 1	 •	 •	 1 J	 1&..2 Z I 1- 2d	 tJ .D WW
*Or LO	 41x93I M /	 /	 1	 1 0M. 0 W W I G r.M 2 •1-	 CO OxK O. 1•-1^HU	 MO * /	 1	 /	 I' rr0	 I x 1 2 M ►+YO	 OM
0	 W 1- O	 O)	 6- * 1	 1	 1	 1 H	 W r ►- 1 1- .-. U J	 0 O L)1-
 J 0 Ii 2 H :) W• * 1	 1	 1/ Z FF T O / h tr. N H V 'A	 W W I I

M O 93 c	 V) ar # t►: * 1	 I	 1• O 2 H u n 1 • 1- 7 J —	 1- 1- W<
* Q	 O V) tr	 0+ T * 11	 I	 I u W 1- • 1-	 1 Y 2 0 u W y z 2 T. ►-0F 93 A a m 14) 0- r /	 I/	 I S	 \ W I u• Oh- W W-4f2x	 x0xnH K 11-II Jl.7W WI cY OLL0 ZIx2vyfOtl C:	 u * I	 I	 I	 I -1W1-.+ 1 4 Ju w17 uuT r onA u= 2 t9 0	 W Z. 0 /	 I	 1	 1	 V) < V1 7 O) / O u C 1-	 1 W O O W•f	 W H27_J x0 * 1	 1	 1	 1 -30 M— irT J 7 CDW x 	 u1W
f'Ltr i "HJWO+ ! 1	 1	 1	 1	 £ C,,UCH X tr W 1- ♦ u W 2 x W* * T,J00rW T 40 a F * 1	 1 I 1	 J H	 d1 —O W i- R	 ♦ x H" 1\ %a •>1* as G Vi UUWU • 1	 1	 1	 1	 x .-.	 "trZ N 1r 1- 7 ?W L 2 F M	 1- a
fr	 LL WW	 T L M /	 I	 I	 I FW1- of a M ►- 2 7 RJW C•" •1-W W/ 1-
M	 1- Or u J• H O M 1	 1. 1	 G a J 7	 LLt V a ►a O or G -1 u to W• C 0 J I01x1 ►-LL CJIt	 4 0 LL I 1 I	 C OQ	 ZY a CL -L 64 * ^L'J LLCL CJx	 as q u • • * $	 I	 I	 a tr<i< 7= n 7 1 /- I Nza,e uuao

C to	 .« ►-	 11$	 ^ Qn• cr	 I	 I	 I cr t •+	 r_ W 1- W w W 7 0 I a -1 4 LL 1- tv
*	 O) tY	 J Z-1 2 * a 1 1 W	 40 W 1	 07 F a ►- 1- J •-• 6^ G r N w- t- Cl 07 1-
0Y)C Wh-WU0W O0 f.-	 1171-- I.-J w& 2O) 7V)0 — I-H tC U.	 I	 x J^ L* H u ;p 41-1	 H J 01 0 I	 I tr. W Z x 20 H N— 7 H" m a H u 0 it ..J W	 u C7 LL
K	 W L "1-000 * -) I W O WJ 0.1 x 	 I	 it —tr C'u W—T :?a'1-f7 JJ-I — U H

7. M W w rr 1- S W W C. W M 7^ 11- Q L' -1 ►- 1- i-a. 4 It C. u W i- F cr •1 J 7 IL I r J _I	 C7 *?x C	 3 a 2 wtY *OO' wO) 12 Q'2 MC.0 wOr 1 2 7 to WtX 91<M-1- La aLL	 74M M ►+ 1- LL W	 •v * •r. ►- u" u O '.1', W O a J lr 1- tY W — W H 1-).) T. t_ 2' w u U.	 W OH* 1-	 2 6+ u 1- a 1- * i- 2 O 0 G m H 1- u 1- U LL V) W J	 S 0 lA 1- t- I J O	 O
y 0 0 2 V) -_^F-W 2 2 0 41 G J W uHG 93	 93 H O LW LL1 H93 z w h L)0	 7;L
"0U"Q 0 M uW wW * UUUZ V^-I T "W I W WI*O-b "AIT OP O" W=)	 — C,	 w1^
2 0 W	 O 2	 <> W O• r M Z I U. •V O) N N . W W J M u W' LO x (n rr	 C1u M A W G "7 d W O) W* LL V) 0 W) m W 2 0 WO lo-	 141 S m a LL or T 7 G H Q: W W W	 f W	 2 0 ►-
W 0 W J J	 a V) \ :) * M tJ W W W a 6-i .^_ W — fr H ar J W ►+	 W O u

u W M	 O	 W W *u. M M. 0 LL	 a ft OW CO) au-4	 O aW 1-a 0WC)C Wtrw£" C C *WLL WLLiL 2 x o 1-"0'-1-• wmLL 7 J-- 2 u) LL Z Z .1 0 0'Y
x u • rx 02 t3f '92 M2 M * EL M NOy H M 41 J W H R 1- I-LL M 41u0 WQ N uj — u0	 Wdt-x
Wa g 0 1-x a aW1- 0.-a H * hG O to O 1- ¢O 0) 00).r

:r C9 * M • 0000 412 rr W 2 1- 2.2 O 2'L or
i F ►+ ** K* K *** * M M a T r r I x .a /- 7 N Vi — H a w a t5
-4 41) 1- W 7 Oa
)r m W O. O 7 ur
v<O 0 o is waO C
a z
CL w

IG`1VApo L A^q

5-2 QtT94. Pk

W
aH

U
W
?G
W

r•
cu

a1
J

CL
O

Ccn
•r
N
0
"C7
t]1
r
•r

t11
p

r
I

ty
S..
C
v^'r-
LL

4L

P

i

i •	 •	 ae o
•	 w	 nr

C{ s	 i
F r	 r

M	 •	 A A
r	 i	 • t

^^ •	 r	 / • Z
^ r	 r	 • 1 Y)

•	 r	 • • s

•	 M	 / •
w	 M	 • • nr	 r	 • / ^
r	 •	 • t ITY	 M	 t • ^..
•	 f	 • • n•	 •	 1 / ac ►6- ^ y•	 r	 • • !- o s tY	 M	 •• 0. J a ►- o-

0-
r	 r	 t 1 Cr	 •	 / • r Ir ._ N fhr	 M	 • • V) yr	 M	 •	 •
•	 r	 • • as Z W	 Or It
r	 f	 • • ► IL•	 •	 • t Z vl 0. O: r- a-

1- 0 0 •	 •	 t 1 G h W .^D A
M	 M	 t 1 0. J O: ►- V) V/r	 M	 / • • T HC ••u•	 r	 // Al us t 0. J O atr	 r	 • t J L ►- 6-VYWWr	 A	 / • 4 • 0-0-9-r	 r	 • / 4 tr J J •f zat`-•	 r	 • • • • rJt ^ ► 00r	 f.	 •	 t J OI. F 4t. 2 0. 11Y	 •	 t• Ci 0 Y W M ••r	 Y	 t / or ? 0 6.0wWA	 r	 • t •- u 2 6 J JM	 •	 t • 2. = ra	 . !p Ipr	 Y	 •• 0 s Ow	 49

' r	 r	 3• u x tr D J ► r-•	 r	 t / u •• • ••Inz	 w	 t • r o o W. rJ
r w	 W	 •	 t• U m•Ot OI
r ►+ W	 l dl•	 •• I--- r W W ► C Z cr	 a	 w h-	 r	 •• r 2 • m O a ►rl&	 Waz	 r	 • • C z o J 1. uuc• r. 0- J 0. W	 •	 •• W W Ir ►+ yl O ZY	 z x	 x	 M	 • 1 1- z 1- c 2. s x .a M. s-•W w 4W W r	 t/ 2 77 6. D r co ►- urk0.Q•7_>FJa	 M	 / • ►dW ► W z	 Zf ►•W	 mu	 r	 • t Oz ► O z Ws - p ► pO6rt: `Ja 2• r	 • L 0.0 m JG D R or UG 0-H1 .-M.x'W0b-64W •	 / • h J H O
r ►- 04 ► J r) O: M	 • • G :D O: 0: S > a' ►- it ► W W V)
r C	 a at	 •	 • l t o D ►^ i+ N D, J 0 G 2 2 OCM	 W. u h- O Z r	 J• > OI ► 2 x A F W !- W	 WrO > 	2 zx •	 • • r 0 w ►- O u ►- OO ►M ►- •-1 WG ^• a•	 1	 1 n D J 0 IL .. ,1 W 0 7 IL 6. 7
•	 r- s u	 r r	 •/ A b.- In 6 P.- at al Z W"	 .+r u U 0.-	 W u. M	 •• 0 u • G .- - 1-- O W W OYW<	 WV)a M	 1 • .+J W WJ IL X ►- zIL	 6.Mx	 V)x-1	 r	 • / of :0 Z J07 ►- W • "	 JJ •r W Z I- 1- . 2 r	 • 1 Z. Hu - L u co- -4 G W -0. W
r2	 W•	 IL•	 • 1 0. 1- W I H W V) ►+ J J	 mr. 7 i W Z_ M	 I• Ir C P- . I H- -0 W W. N M.r ►r P. WCQ	 •	 1 1 3 J z 1- JZ 7 W6 G .^.>	 0-r ;•.	 Ott,z0 M	 •	 • J w M J O ra Wi • • J	 ^+ a+ t• ► u U h- N M• 1 rl v q W R C I r+ W W . N M L ./rOR z	 W	 Y	 • 1	 u ^+ W4 O N O ► r- J J >	 `^^ 1.9M W W •-1 W 1• .- r	 1•	 W Y: i	 • • 2 • 1	 IZ m W rY XYV)>	 T	 7 r	 //	 x O r W W 0 4" 4 M fu if.•mW 2 H2 W r	 ••	 W G F• J J UJ OFF H -. • 2r	 G ►- O D r	 1 •. u • W w 9 J 1 / nW 7 rY O WY (A Q w	 O, W r	 1 1	 2 / W. ♦ W ► W w W J J x W OW W)hMN O ►- "'	 M	 1 1	 H 115.1 7. ►- h H ; tH L	 C Cl 0 -. I z	 O J•	 GuC1Y q r 	1 •	 w L •J• • 1 . W •a y wfr a• 0- Ir tM7_ W 7	 cc, M	 • • rr x WJ J fr DJ x i .0 4- ►- ! V f" r• 2F 4YGr7= C yL 7^ r	 1.1 • $- {► CC C 1iF C V.	 i Z e 1 ^. •Wr ra..0. T.O: W r	 J•	 t • Y a tr x mID C W a.r .Y L .'MF	 9-1a r) r	 or t	 . L t!Wt- F a Ch or 	 tL:W uP. V C! Li 	 Or ar U 	 o D m Y	 orf	 x J 1Jt CAW 7 I • F	 -' J W • '?	 •	 t ar 7W •l	 N2F	 M	 ► Irp T 2AG GW 2HO W	 '7 x• r0! r-4 W L2 . YJ,{T• f

0.- r z W SWO W M	 • / 2.if t r1. u y uU) ^•+7 uW V)	 . 1 J 2 1- 2 1L V) ►+Z T uUz W WO M IL ^- 0.-. S. r	 J• W 1- W 1 1- J L w	 -1 J	 7 2 O W W J M- i• C `te r- tY W^U 2 Y	 a	 LLD ►- r 7 	1'[2 /> W • 1-.7 P-. CIt- a .	 ra Z 2 f. Z ^ aKJ v)W C r ^ U - r- Z	 MCJ ICY Z^•+ JFI0W J2 H 7 I<. W6 2 H W	 W 	 I- Al a: Wn W ILrU U1L. Jx M r t W z	 G r M "I- u 0 0. J> C W w F-	 W s	 • 2 t r= a^ H	 • •a u ► I WI&I x OW	 ►- Y1-7 no; O x ut NQL a z .: 2 m W r 2 Z	 NYCUH u ►- z =Y J• 6. Y-AW P" r V)	 Y.O . JM ul I-	 WHH w Wiz J.O W Q m	 ►-UU Z W x W W T JuUUq ^r M0	 0- b" 	 •uuu> V) 2 t 4 7 x C T C C7 JIt =^ =	 . 0 v ►+IV WH x ►+ .7 C 0u ►+t` O• M [^ C• •+ ► M a r ►^ 	 2 3 0 F- 2 J CU- u 1- v) .4 U $- 1-	 J J	 0 C r^ n J• U YS Ir- C	 3r+ MI► W)V1W 0UGLr Wu2 W 2 Wu. W> 2W WW WUIL	 J 2 W}Ld UILW V) M	 O.. JC1 rMW W •W; J	 Z x	 Mx W w'2 .r.^.. ►.a W"r •r M uM	 W WW Ir ^.. ^+ ►+
x W Y 0) ul 'a I- 'a n +. 0" V)	

M
IL W	 r- a c	 9) a m

-4 r 0 * H 2:	 J	 Y W IL V) Y • V)	 W !►.	 J 2 	 LL	 J 2	 W J Z	 4LE f•-u • ri " ZW V)O r6.6-1W H I.- J. WIY W WW M 	 W Law" W 411tarI.
F f. Z• 1-.F M C ra 1•- M O) In u N V) Q u m W h V) V)Z(Y G9 M	 M • Q Uf HOC O. .4 . ..

- O^- N MM Y Mil M* r.Y. +VI b. - nU u u u u" an V)	 I-	 W 7►-Ttu .	 6 qL) .4 0	 G uz0&L

c0
U

li

Q1

G
U
N

UJ

O

^r

fLS
NI
LO

N
S

0)

LL

5-3

a

M

u
A
••
/••i•

•
/
•
/•••/
/
1
•
•
/I
••/••
•
/1i
/1•••f
•iI1
f

•
1

•
•

/•
•
•
/
•
•
•

W
4
O

YA 1.:+

1 LL
^ W S
V o'J rt^ rt W /

LL	 ^[It. to T
h	 r Y W	 tq ZT_	 W4. 3e 4 W fl' ^+WW![M wyJ	 C• F Z H ^ ! G

J	 t W fL Oe p ►- r• R
ui	 W W SL t+ W O R

•7	 G r Z Z	 W
J	 2 W IL t fY J	 r
W	 .►1W(^ MM^ JJWt!

N Q	 F• f ^I fA i
J Z	 W	 t Y 7
W LiWO! WUU^J

h h O ^ N
f	 f	 2 mrV	 U W < U^z^aW W

O• 2
w

'L7
O
C

C
O
U
I—

.QN
1

aJ

Q1

lL

5-4

ORIGINAL PAGE IS
nF_.PnOR _QUALITY

i••i

n P X144 A

°w RU j' 1
r	 .	 DIY•	 r
•	 r

r	 i
•	 •
•	 i

•

M	 w

^	 w
•	 w
•	 i
r	 r
r	 r
N	 N
w	 r
r	 w
r	 •
r	 r
•	 r
r	 r
r	 r
w	 s
N	 r
•	 i
r	 r
r	 r
w	 r
w	 r

r	 w
i	 r
r	 s
^	 w
•	 r
w	 r
r	 r
r N	 i
• Z	 wr J	 •
it	 w
r	 r
r W 	 r
N1	 w
r ►-	 r
r	 w
r la.	 r
wa	 r
r	 i

i J	 i
Nm	 •
Kf	 r
wr	 w
r •	 K
w J	 r
K D	 rN OC	 N
i 2	 •

ru	 w
r	 r
• W	 i WrS sr L
r ►- r r f
K	 W r a
rNIA r W4
Y W W K f
rNOC r i x
r r/	 r a c
K -1 K M X Z,
K ^ w K u .+Kr ►- K 2 1r h W Mwt► f K 4W

W	 •0-	 r GaF	 i r W r 1- H
•	 K	 ^ r Y N ►-iRH	 w2 f r^ N(^+

O:	 ^. rG7 H K^ O 7.	 WJf	 q K H N NZ .7O	 ^ W 11 G
N	 HiWZ r x h ►-Na 	 W N•	 a K Y • K

04
M 	 f f N N

i	 ►+ K • O r y UWF	 m
W	 Y r ui 2 r r? rt i IA N W	 LH	 U• t-- w K W f /-t 4. M•	 O."	 1-
Ol	 N M	 R • K Ht -W tr MMF -1Us	 W K71 f rLlaNU • t-N U	 • W f
Nt- O rw	 K 2 Z H W. f	 W	 N f	 fY
•. V	 • r t. O r ►+ Or a /- N or W	 I.-r f 2 K 1- 1- K F- I f NJ J	 L7 r N J	 N
-iEr t	 r	 K4.J ►- •W r a` 1-W O RIO.
I ►-w. K K K Mx Ztlf f0Hf ►- O'CH a^
N N	 W cc

IL m W	 a a	 7 Q
= a o	 c a	 u: Loc& 2
L9 W

k

I	 }

'a

a.

O

C7

W

1

ce
Q
h
Ln

I

W

h
c^

Ln
I

J
S

M
I

Lo

cu
L

+r
LL

5-5

*- AL

Nrrrw^•srr•••rrrw•rrrrrrrr•wwwr•r•rr••
r	 •
•	 r
r	 •
r	 r
w	 rw	 •r	 r
N	 rr	 •
r	 •r	 w•	 •
•	 r•	 r
r	 ••	 w
•	 rN	 r
•	 r
•	 r•	 rr	 wr	 •r	 •
r	 ••	 rr	 ww	 rw	 Ar	 rr	 r•	 w•	 As	 •i	 •r	 ww	 ww	 •N	 •r	 M•	 i•	 w

•	 \	 rr	 •	 w•	 wr	 M	 w
•	 V.	 YA	 W	 •i	 •	 •r	 ►
• cr	 UL	 4t m

 u	 a	 moo	 r•	 a	 a	 aaa	 aIncV- •
Y	 3 a a 	 WWW	 or nine	 r
r J	 ry 1-C	 O R Ct	 1 1 71	 rYW	 \>	 WJ U)	 moo D. 	 o- 1- F 1-	 ris	 A0-< 1	 arit2.	 0.- 0-	 ! as a	 iY W	 M	 u r (9 t--	 W or 	 H M H	 ^-- N 0- ►-	 •Y-A	 M(kC 7 \tan	 W W wIxa	 nn 0) in	 Y
Y	 Iw < at > J M d H	 f a a. ..	 Awx	 WARw	 6-00- L) 1- 	 IL CL IL	 JJJJ	 •r l:	 W C]	 . W U u	 n	 WWW W	 Mr..	 0.-	 CL^ WJC4 1-WW OOOG1	 nN)Mn	 rw x	 W G >, a G a" n C7 1- 1- < a a 1-	 Y
•	 U) f-Wn C,M 4 	 aao WW Wnw m m z t 22	 rr W	 W " n<JU..2 IL LL aU)mw T=h-	 H"N"	 iwx	 aua>W -Ja 1 ana	 C-nU)n «< a 	 r•!-	 - fa H ULL C-R W	 0->>> a 11x Yi x	 CL rY	 nd H G IL n a ^W W a. Ct y x N Q, ►-1-U L)U U-	 W rCFO	 k 2 a mm WWW H$,-.H ►-.00000 t y	 J•• F-	 CO CO -4m G W F- > y 1-C ►-r n x r T. n. 1- r t9 lD t7 U	 ^+ CU M J Ar M 	aaa 0 Cx d Y ft YWWWft (nU)22 L2	 C rYp	 V) I.- 	 a	 U-	 A? C= x T, 0	 NNM I.-. wCN C - F F- CK •

L Y	 a.	 our L J y C	 J	 a 'Y or r Y£ U. W nn n a - YJ Mn	 ►a ff Urr.J-.)W = U2 10 CL a m	 ? O MtiM" W "Cl uj Law 7 •
X	 Y	 J a+ p x L x A co CD x x. m T. tr 0 x	 CL CL F- F- H C-	 "^ C- 1- a •Ya	 n	 W 1-N t	 u YZ	 Y.	 K	 CZ W WU.LL CI. LL	 Y►- M	 \.-^^ ^^.^^^^	 ^i+:^^^.+w.n n. .-^^.^r. ^ a to n ..1 JJ Jn IFM 4 •	 .rt N K .y VI +O w n .. tU h a !n 2 w F N !^` O 1f1 +L r SC. d W WWW W W 1 MC	 r O CIi	 v ►• y ^• ^••	 ^+ ^. 1- ^.r v ^.. ^.. ^...^ v n Ct m U; m n U3 w Y	 orG Y Cr' F-	 r P., 1- Cr- C- ►- ►- H ►• ►- ►- J- (- h F- R h h F f- .- 1- H	 Y	 WLL •CY u	 HHHH ►-	 H $.1 0.4 1.	 H H ►-.H H 1-	 Y rnn	 c
LL »" toW	 mWWCtTM rz ?m ,rom2R m xm mzxm	 ax • :nc.m	 WP-	 Y J	 W	 W W W W W W W 1--T H	 • M W	 CC)	 Ca Y F- ►- ►- H ►- F- f• .- 1-- 1- xof •Yn aD	 to	 W Y ^+Hry » >» >s..r

S: L Y"r	 •+	 H	 WWWWW"L LL t- AG Ir CC2 rL CGTCC xa22 4 0 • Y C 1--	 1-	 •+	 H H 1- F C- F 1 • l r C	 O
f.t CH Y JH rL	 S	 m xZxx tZ r ►- J-)J JJJJJ. J-j0. -4 YJ	 N	 O r an nntAnnnnnnna C ►^ YC W	 H	 J	 MdCII ^[lrnP^ •V rJ'.CC CC: OOCOH 2 JZY YLL. J -i 	 J	 US	 JJJ_ JJ J J •MM MH MF1NM ►+N ►yM

U W. U Y O T	 n	 G	 n n nn n w o n r {► 	 rW •Wn YWC C	 O	 M	 GOOD Qdu d Y H WWW WW W W.W WU)WUJ 0 v LLI YZ. C. 0	 MMM AU Q'. m Q. R IrT R mw:r x AW 1-- l n Y i- t	 M W a ^" ^` a f a a f f f f xnuMH • Y	 Y6. JJJ JJJJ JJJ J1-p a ►^ n c Y	 :w uuuuuuuu uuu nrrx a=0 t5 A	 M -WWWWWWWWWWWrDIr x xNA.i rY 1.YY rMY AY • rKr Y Y rY YY Y Y YM s Y Y 1FY •Y Y Y Y K rfOOCOOCGQO 7^ f
n W n	 ►^	 C

n rr a w	 .	 z^. c o	 c	 W0a

5-6

dO
C)

Z
O
H
F-

VH
Li-
H
V
W
0.
N

Q
Q
CD

C}'I

cu

1
^r
Li..

^.. t

srNiNrrrrNNrsNr	 r
•	 N•	 rr	 r•	 r•	 wN	 i
•	 wr	 r
•	 r
r	 wr	 rN	 r•	 wA	 A
r	 A•	 Nr	 rr	 r•	 rr	 rr	 r•	 rN	 rN	 r
r	 wN	 ••	 N
r	 rN	 rA	 rr	 N
w	 •
•	 r
r	 i
r	 rw	 r•	 i
r	 •w	 •N	 wr	 •A	 wr	 N•	 w
•'	 N
r	 N•	 N
r	 •
r	 NN	 r
r	 w
w	 w•	 N
•	 NA	 ww	 •
M	 ^♦ 	 w
M	 rra	 •
•W	 r

ws	 w
rS	 r•	 w
•	 wN	 rN	 N

N	 1	 !	 •	 •	 •	 • rw • ^+ • r. • ^ •	 !	 1 Y	 WA	 1../n11M1	 /	 • r	 ^..
N ! W• W/ W ! W• •• K W mw • Z • t • ! • ! • 1 r ,^ Zr 1 4 1+ / t

	

14 4 	 1 i	 1-	 ..r	 1 R six ! a I* 1	 / •	 L7 i1 m
r J• 1 1 1 1 1/ 1 1	 1 w	 •
w W 1 LY 1(1 1r !ft 1	 1 r	 ►- J+Wr r 1 C I C 1 6 ! V 1 1 Y Y) + R ►•

• 4 1 r• L • X 1 r! tr 1 w t .,	 zi1- 1 •/ • 1 • 1 • 1 • 1 Y	 w '+ W w	 WT r4 / Y •>t ! Y / 21 /x. 1 •! ♦- rrE S	 X T
o0C.l ul u 1 u • u!u 1 rC	 ^L. + .•	 +

	

0 6.4	 Lai

4 N / Y/u !u /LP u • wwp ♦ + 1 1 2- aK •tit
H N • 1 / 1 • 1 wt?J F- CtKSi» Jh • 1 / / • 1 1 r 04 uW0oo ►-Z Y
u r 1 • ! • 1 / r Y. M 2 Z M u W o-04 w 'Z 0 -9 1-z •Ou

Y 1-'^ M	 r W 	 to	 1-2 AT
u u • A	 1-0 .9 2 r	 r	 0) u Q	 of- r al
JQ CJ •	 r •WF	 Z+JOG(LuN 14 AN •rNNwM rN w rw *Wow	 or J4 zr)	 ►-	 W 7 C
CL o w 	< 	 a zatwo	 a	 O WsaQ	 oa	 _
co	 w

iJ
u

4J

V)
.0

V7

`D
41

'T7
d

0.
O
O
tx
L'7

Z
OH
d
M
LL
►-a
V
LL)
CL
1)

d

da
Ll')

1

v
S-

cn. F-
LL

5-7

•r$AAb*^«6AA^^ MUnULE R6PF R f NCK tkEF r.P6PP
LN PAGE

	

t	 1 RTI•PROCE33VR
53 . HIUSELECT

	

3	 55	 L103ELECT

	

4	 57 . REGISTER

	

5	 3 . RESET

	

6	 53 . . HIOSELECT

	

T	 S5 . • LIUSELECT

	

N	 3 . • RESET

	

9	 s• E.XPANOFO ON LINE	 '3

	to 	 5 . . EXEC

	

11	 54 • . • CONTRUL-TARLE

	

12	 60 • • • CLOCK

	

13	 57.	 REGISTER

	

I4	 b5 .	 .	 • CCfIC.omiEUE

	

t5	 13 .	 .	 . ERROR

	

16	 57 . . , . REGISTER

	

17	 50 . . • • CONTRUL•TASLE

	

16	 3 •	 •	 •	 . RESET

	

19	 rM FXPA0•DE0 ON LINE	 5

	

20	 1i . • . 9USOMANAWLO

	

21	 60	 . CLACK

	

2?	 61 . . . • SU3"CONTRnL

	

23	 53 . . • . MIOSELECT

	

24	 A . . . HUECOOF

	

25	 56 , . .	 CONIRUL-TAM

	

26	 22 . • . . Nap

	

2T	 SA . • • . • CONTROLOTAOLL

	

in	 42 • . • . HLMCGDG

	

29	 60 • . • • . CLUCX

	

30	 64 . . . • . PUSTAHLE

	

31	 56 . • • • r CONTPOL-IAHLE

	

32	 13 . • .	 . E4RUR

	

33	 *R CYPANUO ON LINE 1S
	34 	 40 HU3-TRANSACTION

	

3S	 60 .	 •	 .	 . CLOCK

	

36	 64	 9USTAPLE

	

37	 61 . . • . . 014mrONTROL
	36 	 SA • CO4TRnLWTAHLE

	

39	 36 . • . • HLH•GET=CMh

	

40	 58 CONTROL-TAHLE

	

at	 63 HLMmCOMMANO.6lUFFER

	

42	 57 REGISTER

	

43	 53	 r . HTUSFLFCT
	44 	 13 •	 • •	 • • ERROR

	

45	 *$ EYPANDEO ON LI NE 15

	

46	 3A UIX
	47 	 33 . • . . TE-3TART

	

48	 58 , CONTROL•TAALE

	

49	 13 ERROR

	

5o	 st EXPANDED ON LI NE 15

	

51	 35 • • • • FOR
	5? 	 56 . . • . . CONTROL.TAOLE

	

53	 23 , . . . JUMP
	54 	 56 CONTROL•TABLF.

	

SS	 24 .	 •	 JTEG

Figure 5-6. US Software (Module Invoc p	ee)

P V4

5-8

=-,L

a	 ,_	 s

ORIGINAL PAGE 18

OF POOR QUAI,ITy

SECTION 6

EXPERIENCE USING SDDL ON CDS DETAILED DESIGN

In general, the experience gained with SDDL while designing the
CDS software was very favorable. Many constructs that were available in the
SDDL processor were not used. The requirements statements and traceability
were not exercised because at the time that the design was initiated, the
Software Requirements Document for the CDS had not been finished. Many of the
data constructs were not used because of the specialized nature of the CDS I/O
interfaces.

The implied eight dimensions given in Table 3-1 for the
description of any module were never completely exercised. The one for
requirements was missing because of the above stated reason. The one for
system parameters was not used. This was probably because of the incomplete
nature of the detailed design. The one for data specification was used in a
variety of different modes. This fact leads the authors to suspect that
further work needs to be done in creating a sufficient set of dimensions to
describe any module.

Software design is a highly iterative process. Using SDDL as a
design tool allowed the designers to easily extend, modify and update the
design by making the current state of the design as embodied in SDDL very
visible and easily available to all members of the design team. The ability
to add new constructs (keywords) in SDDL allowed the designers to tailor the
design language to the specific application.

The use of SDDL forced the designers into an organized and
explicit mode of designing an associated presentation. Since the design is
represented solely by the SDDL documentation of the design, it was impossible
to handwave. Using SDDL, the overall aspects of the design were first
captured and then refinements were added iteratively. The detailed design was
captured in a document that was produced concurrently as the design evolved.

One major plus of using SDDL as a design tool as opposed to
other similar tools, was the support in the design of data structures. The
designers found that by first defining the interfaces and data structures, the
design process was materially strengthened. Another major plus was the
minimal training required before constructive work could be done by the
designers on SDDL.

The single largest problem using SDDL was to produce a design
document that was readable by upper level managers. However, although the
document differed from that normally produced, they could read and easily
comprehend the information contained in the document. Since the order of
presentation in the SDDL output is completely controlled by the order of the
input material, careful consideration was given to order the input in a manner
that supported readability. It was also found that the casual reader needed a
substantial amount of overview material. This could he none by the inclusion
of TEXT blocks of information. Again, such blocks must he carefully placed
within the input file. Another aspect of the stilted nature of the SDDL

6-1

.^«I
^^ ^q alt.. r	.rTt^'r

r r

output was the calling hierarchy provided by the SDDL processor. This modulo
reference tree is complete in terms of information content. However, the
casual readers found that a separate conventional hierarchy tree was required
to provide this information.

6-2

I !

41

APPENDIX A

SDDL DIRECTIVES

A-1

f

if

SnDL DIRECTIVES

sW ',SEQUENCE H	 ;
: #WInTH 1.30
: #MARK DATA STRICTURE ITEMS
: #MARK SINGULAR DATA ITEMS
: MARK EXTERNAL FILES @
: #MARK - * ►
: #STRING

#DEFINE MODULE REQUIREMENT ENDREQUIREMENT
: #DEFINE MODULE TASK ENOTASK

#DEFINE MODULE CROUP ENDGROUP
: #DEFINE MODULE TABLE ENOTABLE TABLEPARAMS
: #DEFINE MODULE STACK ENDSTACK STACKPARAMS
: #DEFINF MODULE OUEUE ENDQUEUE QUEUEPARAMS

#DEFINL MODULE FILE ENDFILE FILEPARAMS
#DEFINE MODULE SUBROUTINE ENDSUBROUTINE EXITSUBROUTINE
#DEFINE MODULE FUNCTION ENDFUNCTION EXITFUNCTION
#DEFINE MODULE TEMPLATE ENDTEMPLATE
#DEFINE MODULE PROCESSOR ENDPROCESSOR
#DEFINE BLOCK SUBGROUP ENDSUBGROUP
#iDEFINE BLOCK REPLICATION ENDREPLICATION
#DEFINE BLOCK SELECTION ENOSELECTION ALTERNATE
#DEFINE BLOCK SUBFILE ENDSUBFILE ,	 SUBFILEPARAMS
#DEF INE BLOCK BLOCK ENDBLOCK
#DEFINE BLOCK PERFORM ENDPERFORM ,	 ALSO
#DEFINE BLOCK ABSTRACT ENDABSTRACT 	 DESIGN-DESCRIPTION
#DEFINE BLOCKABSTRACT	 ,	 , ALLOCATED,REQUIREMENTS
#DEFINE BLOCK ABSTRACT	 AFFECTED MODULES	 c
#DEFINE BLOCK ABSTRACT ,	 ,	 , OPERATING.ENVIRONMENT
#DEFINE BLOCK ABSTRACT , ,	 , SYSTEM.PARAMETERS

: #DEFINE BLOCK ABSTRACT ,	 ,	 , DATA.SPECIFTCATTON
: #DEFINE BLOCK ABSTRACT ,	 ,	 , PROCESS.SPECIFICATION
: #DEFINE [BLOCK ABSTRACT ,	 ,	 , DATA.ORGANIZATION
: #DEFINE BLOCK ABSTRACT ,	 ,	 , CONTROL.FLOW
: #DEFINE BLOCK SOURCE ENDSOURCE ,	 , VERSION
: #DEFINE BLOCK SOURCE ,	 ,	 , STATUS
: #DEFINE BLOCK SOURCE	 ,	 ,	 , ;SCOPE

: #DEFINE BLOCK SOURCE ,	 ,	 , PERFORMANCE.CONSTRAINT
: #DEFINE BLOCK SOURCE	 ,	 ,	 , REQUIREMENT.DESCRIPTION	 s

: #DEFINE CALL ATTACH
: #DEFINE CALL DETACH
: #DEFINE CALL OPEN
: #DEFINE CALL CLOSE
: #DEFINE CALL CLEAR	 OI^IGA
: #DEFINE CALL REAP	 Or pp^RL

"Go,

IS: #DEFINE CALL WRITE	 RI
: #DEFINE CALL GET

: #DEFINE CALL PUT	 «
« #DEFINE CALL PUSH
: #DEFINE CALL POP
: #DEFINE CALL ENQUEUE
: #DEFINE CALL 'DEQUEUE
: #DEFINE CALL DELETE

NASA —M-Camf. LA, Calif	 A^	 _' '	 ^	 [d	 y4

	1980017559.pdf
	0001A01.tif
	0001A02.tif
	0001A03.jpg
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001A15.tif
	0001A16.tif
	0001A17.tif
	0001A18.tif
	0001A19.tif
	0001A20.tif
	0001A21.tif
	0001A22.tif
	0001A23.tif
	0001A24.tif
	0001A25.tif
	0001A26.tif
	0001A27.tif
	0001B01.tif
	0001B02.tif
	0001B04.tif
	0001B06.tif
	0001B08.tif
	0001B10.tif
	0001B12.tif
	0001B14.tif
	0001B16.tif
	0001B18.tif
	0001B20.tif
	0001B22.tif
	0001B24.tif
	0001B26.tif

