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A COMPUTER PROGRAM TO GENERATE TWO-DIMENSIONAL
GRIDS ABOUT AIRFOILS AND OTHER SHAPES BY THE
USE OF POISSON'S EQUATION
Reese L. Sorenson

Ames Research Center

SUMMARY

A method for generating two-dimensional finite-difference grids about air-

foils and other shapes by the use of the Poisson differential equation is
developed. The inhomogeneous terms are automatically chosen such that two
important effects are imposed on the grid at the inner (airfoil) boundary and
at the outer boundary. The first effect is control of the spacing between
mesh points, along mesh lines intersecting the boundaries. The second effect
is control of the angles with which mesh lines intersect the boundaries. A
FORTRAN computer program has been written to use this method. The program is
available upon request from the Applied Computational Aerodynamics Branch,
Mail Stop 202A-14, NASA Ames Research Center, Moffett Field, Calif. 94035.

A description of the program, a discussion of the control parameters, and a
set of sample cases are included.

INTRODUCTION

One of the most desirable characteristics of a method for generating
grids, including those about airfoils, is that it be able to treat arbitrary
boundary shapes. In a grid used for computing aerodynamic flow over an air-
foil, or over any other body shape, the surface of the body is usually treated
as boundary (hereinafter referred to as the "inner boundary") and it is desir-
able that the method offer complete freedom in choosing that body shape.
Aerodynamic surfaces in the real world are often not represented as analytic
functions and can include a number of 'sharp corners," or points where the
slope would be discontinuous. A method that requires that aerodynamic sur-
faces be several-times~differentiable analytic functions is one with a severe
limitation. The same comments often apply to the outer boundary as well. It
is also desirable that one be able to arbitrarily choose the distribution of
points on boundaries, so that one could cluster points at regions where the

greatest difficulty is encountered in solving the governing equations of flow.

Another critically important characteristic in a grid-generation tech-
nique is the ability to specify the spacing between mesh points at the bound-
ary, in the direction normal to the boundary. The spacing required between
the body and the adjacent mesh line of the same family can vary by orders of
magnitude, depending on, for example, whether the flow model being used is
viscous or inviscid.
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Orthogonality is another desirable feature. If absolute analytic orthogo-
nality at every mesh point can be guaranteed, certain terms can be deleted
from the governing flow equations, thus facilitating their solution. Even if
nonorthogonality is to be accepted, one still desires near-orthogonality. The
opposite situation, extreme cell skewness, brings about slow numerical con-
vergence or inaccuracies or both. This is especially important at the bound-
aries, since it is at the boundaries that most difficulties usually arise.

.

Of the many methods for generating grids, two classes of methods that
have had widespread application are geometric construction and conformal map-
pings. By geometric construction it is meant that simple geometric shapes,
such as lines, conic sections, quadratic curves, etc., are combined to form
grids. Although these methods have good features, such as simplicity and com-
putational ease in the case of geometric construction and orthogonality in the
case of conformal mappings, they generally leave something to be desired in
the area of applicability. The classes of problems they can treat are limited.

The method presented in this paper has no such limitation. It can utilize
any boundary shape, even one specified by tabulated points and including a
limited number of sharp corners. Any distribution of points on boundaries is
acceptable. Spacing normal to the boundaries can be arbitrarily specified,
and mesh spacing varies smoothly between boundaries. Control of angles at
boundaries is imposed.

The computer program to implement this method is modular, and otherwise
logically simple, contains many comments, and should be easily transportable.
It is numerically stable and computationally fast. The following sections of
this paper provide generous documentation. It is the intention of the
Applied Computational Aerodynamics Branch at Ames Research Center to continue
to support the code.

THEORETICAL DEVELOPMENT

Let the Cartesian coordinates x,y denote points in the real, or physi-
cal space, wherein the airfoil and airflow reside. A grid is essentially a
mapping between real space and a computational space £,n for O £ & £ Epax
and 0 £ n < npgx (see fig. 1). The boundary n = 0 is mapped into the
inner boundary (the airfoil) with £ = 0 at the trailing edge and £ increas-
ing clockwise around the airfoil. The boundary n = npsx 1s mapped into the
outer boundary in a similar manner. The boundary £ = 0 1is mapped into the
grid line proceeding rearward from the trailing edge to the outer boundary.
The grid is said to be periodic in that if there was a grid line at
£ = Emax + AE, it would be coincident with the line at £ = 0, The grid is
made of two families of lines: the £ = constant family, which connect the
inner boundary to the outer boundary, and the n = constant family, which form
closed curves around the airfoil. Because one family of lines forms closed
curves, the grid described above is referred to as an "O-type" grid.
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(a) Physical space. (b) Computational space.

Figure l.- Topology for O-type grids.

The program described in the f g
following sections can generate ///'
either the above O-type grids or 7 N\

"C-type" grids, as illustrated in €= Emax
figure 2. In a C-type grid the ¢
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open curves resembling a letter C.

Let & = E(x,y) and (a) Physical space.
n = n(x,y) specify the mapping from
the physical space to the computa- d e f 9
tional space. The basis of this \\
method is that, following Thompson 7= Nenax
et al. (ref. 1), the mapping func-
tions are required to satisfy the
Poisson equations N
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Figure 2.- Topology for C-type grids.



E = yn/J (2a)

X
& = —x /3 (2b)
n, o= -yg/J (2¢)
ny = xg/J (2d)
where
I=xy, -y, (2e)

Applying equations (2) to equations (1) yields the transformed Poisson
equations

ox . - ZBxEn +oyx o= -J2 (ng + an) (3a)
Oy, = 28y, vy o= -3 (B, +Qy) (3b)
where
a = xn2 + yn2 (3¢)
g = xgxn + yEyn (3d)
Y =xt 4yt (3e)

Solving equations (3), for a particular choice of inhomogeneous terms P and Q
(also known as right-hand-side terms or forcing functions), and for a particu-
lar set of boundary conditions, causes a grid to be generated.

However, a great latitude exists in grids so generated due to the ability
to choose the P and Q terms. If P = Q = (0, the Poisson equations degener-
ate to Laplace equations, and a basic grid results. Different choices for
P and Q produce different grids. The challenge is to choose P and Q so
that a desirable grid results with a reasonable amount of effort, both compu-
tational and human. In the present work, which is an extension of an idea of
Steger and Sorenson (ref. 2), P and Q are defined in terms of four new
variables. Four geometrical constraints are set forth which translate into
new equations in the new variables. Including the Poisson equations we have
six equations in six unknowns, which can then be solved in a straightforward
iterative manner.

For computational purposes, considerable simplification results if
€ and n take on integer values. Thus, indices j and k are defined as




j=€g+1 for 1 <3< jmax (4a)
k=n+1 for 1<kz< kmax (4b)
As a result, ordered pairs j,k of integers correspond to grid nodes.
Let P and Q be defined as
P(£,n) = p(E)e ®" + r(g)e ¢ (Mmax™m) (5a)
- -d -
QEE.M) = q()e™®" + s(g)e ¢ (Tmax—) (5b)

where a, b, ¢, and d are positive constants. The first of the geometric
constraints which we wish to impose on the grid is that the spacing along

£ = constant lines between the body at n = 0 and the next grid node at

n =1 is specified by the user. Let this desired spacing, in real space, be
denoted by Aslk=1. Let the differences in x and y over this interval be
denoted by Ax and Ay, respectively. Thus, we have the requirement that x
and y satisfy the equation

85 ey = LOO7 + )22 6)

In the limit as Ax and Ay approach zero, this approaches the differential
relationship

= 2 2q1/2
ds'k=1 [@x)* + (dy)*] 17 (7)
Applying the chain rule for partial differentiation we obtain
- 2 2q1/2
d5|k=1 [(xng + xndn) + (ygdﬁ + yndﬂ) =1 (8)

Since & 1is constant along the interval under consideration, the above reduces
to

@5 ey = [Cxg? + 3, D) 2am), )

or equivalently

Snfges = D% y, 213l (10)
Note that while the user specifies As, the method uses Sy» which could be
thought of as a function having the desired value only in the limit as An
approaches zero. Thus, some small amount of decay in the restriction can
occur between the body (n = 0) and the next node (n = 1). The spacing will be
correct in the limit as An approaches zero.



The second geometric requirement we wish to impose is that the angle of
the intersection between the body and the £ = constant line is specified by
the user. Let e|k=1 denote this angle such that 6[k=1 = 90° means that
the lines are perpendicular. Thus, from the definition of the dot product, we
must have

[VE « Vn]k=1 = [|vg] |vn|cos 6]k=1 (11)
Expanding, we obtain
= 2 2y1/2, 0 2 2y1/2
(g n, + Eyny]k=l (€€~ + & ) T+ ny ) cos 8}, _, (12)
Applying the relations in equations (2) to equation (12) yields

- _ = 2 2y1/2 2 241/2
-y v = xxelpo, = [G7 +x 770" + x.7)70" cos 8], (13)

Combining equations (10) and (13) to find xy, K and yp is a straightfor-

=1 k=1

ward but lengthy algebraic exercise resulting in

s (-x, cos & ~ y,_ sin 8)]
xn|k_1 = |2 E(x = 251/2 (14a)
=L g T Y Jyaa
s (-y, cos 8 + x_ sin )]
y l - | 2 2£1/2 (14b)
Mk=1 - (XE * yE ) “k=1

The third and fourth geometric constraints are equivalent to the first and
second, respectively, with the exception that they apply at the outer boundary.
A similar development results in the relations

s (-x, cos & - y,_ sin 8)]
xn| = N 3 > 251/2 (l4c)
=knax L (xg + 4 ) “k=kpax
) sn(-yE cos 6 + xE sin 8) (140)
yn,k (.2 + y 2)i/2
=kpax L 11 Ve

) k=kmax

The desired end result of the preceding manipulations is that the four
geometric constraints be embedded in the P and Q terms. In pursuit of this
we use equations (14) to compute x, and y,. We then assume that the mapping
functions do satisfy the transformed Poisson equations at the inner and outer
boundaries, then "back-solve" for P and Q. In equations (5) the coefficients
of r and s become vanishingly small at the body (n = 0), and thus at the
body equations (5) reduce to




P(£,0) = p(&)

Q(g,0) = q(&)

Combining equations (3) and (15) and reducing yields

where

R,

Rz

p(&)

q(&)

]
<
=
-
1
b
=
o)
N
| S T |

1
I
<
™
=
w
+
o]
vy
NFU
e
=
il
—

L

_(axEE - ZBXEn + Yxnn)]

JZ

.

The same procedure applied at

where

Ry

(&)

s(&)

the outer boundary (n = npax) leads to

-(ayﬁi - Zeyén + ynn)]
J2
k=1

-

R, - xR
Yn's *n
J

L ]k=kmax

‘—nga + xERf]
k

J

_kmax

SN

[-—(cnxgE - ZBXEH + yxnn)
z
I ity
[’(“yas - 2Byt W)
;)
J Jk=Kpay

k=1

(15a)

(15b)

(16a)

(16b)

(16¢)

(16d)

(16e)

(16f)

(16g)

(16h)

Combining p, q, r, and s, as computed above, with equations (5) yields the
desired P(£,n) and Q(&,n).

The preceding development would have been unchanged if the four input

variables 6|y, e|k=kmax’ Sﬂ|k=1’ and Sn|k=kmax representing the four
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geometric constraints, and the positive constants a, b, ¢, and d 1in equa-

tions (5), had been functions of £. The computer program described in the
following section does include this generality.

Although the four geometric effects are imbedded in p, q, r, and s,
their use in equations (5) indicates that their effect decays exponentially as
one moves away from the n =0 and n = np,, boundaries. Thus, some measur-
able decay in the geometric effects can occur between the boundary and the
interior grid lines. The effects are ensured only in the limit as An
approaches zero. The four positive constants a, b, ¢, and d 1in equations (5)
determine the rate of the exponential decay. Small values (e.g., 0.2) cause
slow decay; that is, the geometric effects are propagated far out into the
field, but small values also lead to more difficult numerical convergence.
Large values (e.g., 0.7) have the opposite effects.

In an iterative procedure, instabilities can result if the p, q, r, and
s terms are used exactly as shown in equations (16). Therefore, the changes
in these variables are damped by a combination of under-relaxing and limiting
the changes in these variables to a small coefficient times their present
value. For p‘™ being the value of p used on the last, or nth iteration,
wp satisfying 0 < wy <1, and pyj, being that "small coefficient" (e.g.,
0.5), the value of p to be used in the new, or (n+l)-st iteration is com-

puted from
*Plim max( P 1)] P - p(n), (17)

p(mt) _ () SIGN‘min[wp
where the SIGN function returns the magnitude of the first argument with the
sign of t?e second argument. Similar procedures are used for q(nti) p(nt+l)
and s

b - p(n)

It has also been found that instabilities can result from using the above
procedure on points on inner or outer boundaries that are sharp corners, such
as in an O-type grid at a sharp trailing edge. At such points the computed
values for p, q, r, and s must be over-written by values computed as averages
of the computed values on either side of the point. Thus, the control of
angles and spacing at sharp corners is compromised.

To use the formulations presented above for p, q, r, and s, it is neces-
sary to have values for all of the derivatives appearing in equations (16).
Since at the inner (k = 1) and outer (k = kpyx) boundaries n is fixed, £
varies, and x and y are fixed, the derivatives s Yes Xggo and Ve at
k =1 and k = kj,, can be computed by simply dlféerencing known boundary
points. These values are fixed for all iteration levels. Given these deriva-
tives, along with input values for 6 and S, at k =1 and k = kpay, the
derivatives x, and y, at k =1 and k = kp,;y can be computed from equa-
tions (14). These also are fixed at all iteration levels. Derivatives xg
and y;, at k =1 and k = kpay can be computed by differencing xp and yj
with respect to £. Of all derivatives at k =1 and k = kp,x appearing
in equations (16), only x, and Ynn change with iteration level. They are
computed by differencing the existing x,y field using




3x

x - 7x| e * 8%[yy ~ X[y - n‘k=1 (18a)
m| 2(An)? &n
y A P { ) P (18b)
iy 2(an)? an
3x
-7x _ + 8x _ - X = n =
- Ik—kmax ‘k_kmax-l lk-kmax—z + “nax (18¢)
L. . - 2(an)? An )
ISnax
3y
_7},' ) +8yl _ - y‘ - N k=
, i k=k o k=K ax1 K knax~2 + K Knax (18d)
M i 2(an)? an
max

All derivatives discussed in this paragraph are functions of & and thus must
be computed for all values of j.

The iterative method for solving the Poisson equations to generate grids,
as implemented in the program discussed in the following section, can be sum-
marized as follows:

1. Values for x and y at inner and outer boundaries are computed.
Initial conditions for the interior of the grid are computed by linearly inter-
polating between inner and outer boundary points having the same j values,
using a predetermined exponential stretching. Zeros are used for initial con-
ditions for p, q, r, and s. Input values for 6 and S, at k =1 and
k = kpax are specified. All of the derivatives appearing in equations (16)
which are fixed for all iteration levels are computed.

2. Given the initial conditions or the results of the previous iteration,
Xnp and ypq at k =1 and k = kpax are computed using equations (18).

3. Values for p, q, r, and s are computed using the procedure presented
in the discussions of equations (16) and (17).

4. P(t,n) and Q(&,n) are computed at all grid points from equations (5).

5. One step of a successive line over-relaxation (SLOR) solution proce-
dure is performed to find new values for x and y. The lines run in the &g
direction. Periodic or Dirichlet boundary conditions at £ = 0 and £ = g4
are used depending on whether an O-type or C-type grid, respectively, is
being made. A difference scheme for the transformed Poisson equations (3) is
chosen which seeks to maximize diagonal dominance and thereby numerical
stability.

Solution steps (2) through (5) are iterated to convergence.

9




The program discussed in the following section employs the above method
in addition to a technique known as coarse-fine sequencing (CFS) which greatly
accelerates numerical convergence. In the CFS technique the equations are
iterated to convergence twice, with the first solution effected on a coarse
grid consisting of every third or fourth point in the £ direction and every
third point in the n direction. Thus, the coarse solution uses roughly
one-tenth of all grid points. The computer coding of this method is not dif-
ficult if approached from the standpoint of simply relaxing the restriction
that Af = An = 1. Once the coarse solution is finished, a cubic spline
interpolation routine is used to fill in the rest of the points. The resulting
x,y field is then used as initial conditions for the second, or fine, solu-
tion, which is a standard solution procedure using all of the points. A
fairly tight convergence criterion is used on the coarse solution, for example,
that the maximum correction should be reduced by four orders of magnitude. A
much less restrictive condition is placed on the fine solution, for example,
that the maximum correction should be reduced another one order of magnitude.

CFS imposes restrictions on the values of jpayx and kp,4, for example,
that kp,y must be of the form 3m + 1 where m is an integer. But these
restrictions are usually found to be acceptable in light of the fact that CFS
offers a speedup by a factor of roughly 15 over a standard or '"fine only" SLOR
procedure. The FORTRAN program described in following sections can compute
grids for simple cases in as little as 0.65 sec per thousand grid points (e.g.,
a 100 x 49 grid in 3.2 sec) on a CDC 7600 computer, including 'set-up"
overhead.

THE PROGRAM GRAPE

General Discussion

The computer program described below has been given the name GRAPE, an
acronym derived from GRids about Airfoils using Poisson's Equation. It con-
sists of a main program and 14 subroutines, and is written in FORTRAN IV. The
program generates curvilinear finite-difference grids of the O-type or C-type
about airfoils or about any other user-specified shape. The program has
stored internally three airfoil shapes: (1) an NACA 0OXX, with either the
open trailing edge as defined, or modified to have a closed trailing edge
(ref. 3); (2) an NACA 64A410 (ref. 3); and (3) a Garabedian-Korn 75-06-12
(ref. 4). Other airfoil shapes can be read in. The distribution of points on
the airfoil can be specified in several ways, and the number of points on the
airfoil can be changed by interpolation. The cell size and cell skewness at
inner and outer boundaries is controlled and can be specified in several ways.
Three outer boundary shapes are available for O-type grids: a circle, a rect-
angle with rounded corners, and a cascade shape. Two outer boundary shapes
are available for C-type grids: a rectangle with rounded corners on the left
side, and a cascade shape. 1In addition, for either O-type or C-type grids the
outer boundary shape can be specified by the user. The distribution of points
on the outer boundary can be specified in several ways. The program has some
built-in capabilities for computer-graphic display of the resulting grid. An
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exhaustive treatment of the program's capabilities is found in the detailed
discussion of control parameters given in appendix A.

In the interest of code maintenance and adaptability the program is
written in a modular form, with each module performing a particular task. The
modules are as follows:

1. The Input Module. The input module contains the DATA statements
which define the default case. The default case is the first entry in the set
of sample cases following in appendix B. The input module also reads the
input data cards. No calculations are done in this module. This module con-
sists of subroutine INPUT.

2. The Input-Checking Module. It is recognized that it is not possible
to screen out all invalid, meaningless, or contradictory combinations of input
data, but a serious attempt to do so is made. A check is made to see if given
data are within limits, for those parameters for which limits can be estab-
lished. A check on consistency between data is attempted. A check for
smoothness and monotonicity, as appropriate, is made in those input data that
are arrays. This module also prints the input data. This module consists of
subroutines INCHK and CKSMTH.

3. The Airfoil Boundary Module. This module fixes the x,y points on
the inner (airfoil) boundary. It finds the inner boundary shape and distrib-
utes points thereon. This module consists of subroutines INNER, CSPLIN, and
TRIB.

4. The Outer Boundary Module. This module fixes the x,y points on the
outer boundary. It consists of subroutine OUTER.

5. The Solution Module. This module does the coarse-fine sequencing .
solution of the equations. It consists of subroutines SOLVE, IC, INTERP,
RELAX, TRIP, and shares subroutines CSPLIN and TRIB with module No. 3.

6. The Output Module. This module prints the final solution, writes the
final solution for placing on a mass-storage device, and plots the grid. It
consists of subroutines OUTPUT and PLAWT.

One benefit of this modular construction is adaptability. 1If, for exam-
ple, one has a subroutine that computes part of what would be the input data
(such as the shape of a boundary), it would be tedious to compute that data,
print it out, punch it into data cards, then read it in and run this grid
generation code. Alternatively, one could modify that subroutine to do its
computations and store the results by selectively overwriting the appropriate
arrays in GRAPE's common blocks. One could then modify GRAPE to call that
subroutine between the input and input-checking modules. Thus, one would
start with the default case, which could be modified by reading data cards.
Those data would be further modified by the new subroutine, and all the data
would be checked and printed.

Computer-graphic display of results is always desirable, but especially
when those results are a grid. However, it also seems to be true that

11



computer-graphic display code is among the least transportable of all code.
This is due to different computers at different installations having different
word-lengths, different graphical software, different graphical output devices,
and different implementations. GRAPE includes code to plot the grid using
ISSCO DISSPLA software (a proprietary and copyrighted product of Integrated
Software Systems Corp., P.0. Box 9906, San Diego, Calif. 92109) and a C.0.M.
device for making microfiche. If the user has exactly the same hardware and
software, the display code may work as is. Otherwise the user should modify,
ignore, remove, or replace that code as he sees fit. That code consists of
subroutine PLAWT, and the calls to PLAWT and DONEPL in subroutine OUTPUT.

FORTRAN implicit type specification is used for all input variables and
generally throughout the code. The only exceptions are a few LOGICAL variables
which are used internally and are not part of the input. Thus, the names of
all integer variables begin with the letters I, J, K, L, M, or N, and the names
of all floating-point variables begin with the letters A through H and O
through Z.

One difficult question in

SUBTRACTED OUT OF grid generation about airfoils is

DIFFERENCES WITH what to do about airfoils with

RESPECT TO ¢ open, or blunt trailing edges

1 (e.g., the NACA O0XX); that is,
airfoils for which the upper sur-

face and lower surfaces do not

quite meet at the trailing edge.
This question also arises when the

1 flow analysis code uses a boundary-
layer displacement thickness, which
produces an artificial openness at
the trailing edge. GRAPE handles
this question in the case of an
O-type grid (see fig. 3(a)) by

(a) O-type grids. assuming that the trailing-edge

openness is the beginning of a cut

through real space proceeding

rearward. The code differences

TREATED AS across it as if it did not exist;

A “STING" that is, the thickness is sub-

l tracted out of the appropriate

differences with respect to &.

In the case of an open trailing-

edge airfoil in a C-grid, that

T thickness is treated as a "sting"
(see fig. 3(b)).

In many grid generation codes
it is assumed that the body is
located in the interval 0 to 1 on

(b) C-type grids. the x-axis, and that all dis-
tances are thus '"normalized by
Figure 3.- Open trailing edges. chord." Although this is possible
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with GRAPE, and in fact is the default, the program is not limited to this
approach. The grid can be thought of as being imposed on a Cartesian x,y
field, with the airfoil shifted (in the x-direction) and scaled any amount.
The airfoil coordinates may be specified using arbitrary units provided only
that the leading and trailing edges are on the x-axis; the leading edge need
not be at x = 0 and the trailing edge need not be at x = 1. The outer

boundary and all other input and output would then be in the same arbitrary
units,

There is one artifice used in the input variables which is potentially
confusing but, if mastered, is both handy and versatile. In the preceding
section there are several variables introduced that are functions of £, for
example, 6|k=1. This is specified by either the scalar input variable THETAI
or the input array THETA(J). The default value is set into the array, such
that THETA(J) = 90.0 for all J (thus indicating that we want 90° angles, or
orthogonality, everywhere on the body). If the user wishes to override this
default with a set of angles, varying with J, those angles should be input
to the array THETA(J). The scalar variable THETAI is given the initial value
zero, a physically unreasonable number, which indicates that values for 6|k=1
are to be taken from the array THETA(J). 1If, however, the user wishes to
override the default (90° everywhere) with an angle that does not vary with j
(e.g., 85° everywhere) then that angle should be input to the scalar THETAI.
Thus, the scalar THETAI being equal to zero indicates that the values in the
array THETA(J) (either the 90° default or as over-written by the user) are to
be used for 6]k=1. The scalar THETAI being not equal to zero causes that
value to be used for 8|y, for all j. This method of input is also used
for e|k=kmax (given by THOBI and THETOB(J)); for Sn\k=kmax (given by DSOBI

AND DSOB(J)); and for a, b, ¢, and d, as in equations (5) (given, respec-~
tively, by either AAAI, BBBI, CCCI, and DDDI or AAA(J), BBB(J), CCC(J), and
DDD(J)). This method of input is also used for Sﬂ|k=1 if the input variable

NDS equals 2 (see the discussion of NDS following). In this case, S k=1 is
given by the scalar DSI for the array DS(J).

It should be pointed out that the ability to control the angles and spac-
ing at the inner and outer boundaries need not be used in every case. It is
possible to disengage the mesh control at the inner or outer boundaries. This
produces a grid that locally resembles a Laplacian grid, and speeds numerical
convergence. In fact, it is recommended that the effects not be used at the
outer boundary in cases wherein the outer boundary conditions are those of
free stream. The mesh control is disengaged at the outer boundary by setting
input parameters OMEGR and OMEGS to zero, and at the inner boundary by setting
OMEGP and OMEGQ to zero.

Most input arrays are checked for smoothness. This is done by succes-
sively examining each point by fitting a parabola through the three nearest
surrounding points, evaluating the parabola to predict a value for the given
point, and examining the difference between the given and predicted values for
the point. If that difference is greater than the product of some tolerance
times the predicted value, a warning message is printed. For different arrays
the tolerances vary from 0.05 to 0.5. It is expected that this procedure will
prove helpful, since a common error in punching data cards (e.g., those
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describing airfoil ordinates) is to drop a leading zero for one element of an
array. Thus, that element will be in error by an order of magnitude; this
procedure will find such an error. A drawback to this method is that at the
end points of an array the parabola is used for extrapolation rather than
interpolation, and thus some elements that are correct are sometimes flagged
as erroneous. Such warnings should be ignored.

The control parameters are specified using the FORTRAN feature NAMELIST.
With NAMELIST, default values for all variables are initialized by DATA state-
ments in the code — then only those input variables for which a value is
required other than the default value need appear on input data cards. Thus,
any data case is thought of and presented as an excursion from the default
case. It is recognized that the use of NAMELIST will cause some degradation
in the "transportability' of the code, since although NAMELIST is a fairly
standard FORTRAN feature, it is not supported on some computers. However, this
is believed to be justified because of the ease with which the user can ''get
the code running' when this approach is used. One need simply include three
essentially blank data cards, and the default case will result. The alterna-
tive, with standard formatted READ statements, is to have to estimate reason-
able values for each of the control parameters (74 in number, some of which
are arrays), and correctly punch all of them on data cards before the program
first runms.

Some computers, for example, those made by IBM, do not allow DATA state-
ments for labeled COMMON variables to appear in subroutines. In such cases the
DATA statements defining the default case, all of which are in subroutine
INPUT, should be moved to a BLOCK DATA subroutine.

The 74 control parameters are divided into three NAMELIST groups: $GRIDI,
$GRID2, and $GRID3. $GRID1 includes the scalar variables (as opposed to
arrays) that would be changed most often; $GRID2 includes the scalar variables
that would be changed least often; and $GRID3 consists of input parameters
that are arrays. Two exceptions to the above divisions are control parameters
NORDA and MAXITA, arrays having two elements each, and found in $GRIDI.

NAMELIST is used in the following way. Suppose one wants to run a case
that is identical to the default case except that JMAX is to be set to 120
instead of the default value of 100. The following three data cards would be
used (beginning in column 2):

$GRID1 JMAX=120$

$GRID2 $§

$GRID3 $

For further details on the use of NAMELIST, the FORTRAN manual for the user's
computer installation should be consulted.

Appendix A gives a complete list of input variables for all three NAMELIST
groups and a complete description of their functions. Appendix B gives five
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sample cases, and appendix C provides flow charts for the main program and the
principal subroutines.

Reading the Output and Diagnosing Errors

Regardless of the value chosen for control parameter JPRT, error messages
will appear for amy errors found in the input. These messages should be self-
explanatory.

For JPRT > 0, all of the following printing will be done. The input
variables will be printed, and it is suggested that any arrays read (using
$GRID3) be checked, including a check to determine that the correct number of
elements has been read. Also, if arrays AIRFX, AIRFY, XOB, and YOB, etc.,
are read in, they should be checked to determine that they are ordered cor-
rectly (clockwise from the rear).

For most cases, the inner boundary, that is, x and y for all j, and for
k = 1, will be printed. In addition, if DS(J) is computed (NDS = 1), it is
printed. TEOPEN is then printed.

For most cases, x and y on the outer boundary are printed along with the
values of ARCLENGTH or PHI corresponding to each point. These indicate what
distribution of points was used (by equal arc-length increments or by some
angular distribution). In addition, for NOBSHP > 1 the variable KEY is
printed, indicating to what region (straight line or circular arc) each point
belongs (see fig. 5).

A series of numbers exponentially increasing from O to 1 is then printed
indicating what distribution of points was used along £ = constant lines for
the initial conditions.

Then follow convergence histories for the coarse or fine solutions, along
with brief examinations of the inner and outer boundaries after each solution.
In the convergence histories there is one line of print for each iteration.
Each line consists of several numbers arranged in columns. The numbers are:

1. ITER, the iteration count

2. CSUM, the sum of the absolute values of the corrections on x and y
for all j and k

3. CMAX, the absolute value of the largest correction on x and y, fol-
lowed by the values of j and k at its location

4., PICM, the absolute value of the largest correction on p

5. PIM, the absolute value of the largest value of p, along with the
value of j at its location

6. QlCM, QIM, and j, giving similar information for gq
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7. RICM, RIM, and j, giving similar information for «r
8. SI1CM, SIM, and j, giving similar information for s

The solution is said to be converged when CMAX is reduced by the number
of orders of magnitude indicated by control parameter NORDA. During the solu-
tion process PIM will reach a steady-state value. Thus, PICM, in a sense the
correction on PIM, will become several (e.g., four) orders of magnitude less
than PIM. Similar behavior is seen for QIM and QlCM, RIM and RICM, and SIM
and S1CM.

GRAPE has been extensively tested, including a series of over 50 specific
test cases, and in every case convergence was achieved. However, failure to
converge will remain a possibility. Some suggestions can be offered in the
event that a solution does fail to converge. First, the convergence history
should be examined to determine where within the grid the problem lies. If
PICM fails to be several orders of magnitude less than PIM, or QICM fails to
be several orders of magnitude less than QlM, or both, then control of cell
size and cell skewness at the inner boundary has not been achieved, and it is
at the inner boundary that the problem most likely is to be found. If RICM
is not several orders of magnitude less than RIM or SICM is not several orders
of magnitude less than SIM, or both, then control of cell size and cell skew-
ness at the outer boundary has not been achieved, and the problem is most
likely to be found there. By noting the value of J corresponding to the
suspect forcing function, one can determine at what part of the suspect
boundary to look. All input data referring to the problem area should be
examined, and the location of the probable problem area should be kept in mind
as further suggestions are pursued.

The most likely cause of a failure to converge is that input variables
defining kmax’ S”ikal’ Sn|k=kma , a, b, ¢, d, and the size of the outer bound-
X

ary have combined to form a physically impossible situation. In other words,
(1) Sy at k=1 and k = kpyx define the step size at the ends of

£ = constant lines, (2) that step size is to be increased exponentially toward
the midfield at a rate determined by a, b, ¢, and d, but (3) kpyx points are
not sufficient to connect the given boundary points using those step sizes.

In this case it is suggested that the user do one or more of the following:

1. Increase Kkpay

2. Increase S, at k =1 or at k = kpyy or both
3. Increase a, b, ¢, and d

4. Decrease the size of the outer boundary

For cases with NDS = 1, indicating that S, k=1 is to be determined as

a coefficient (DSI) times the body-surface arc-length, one is advised to check
the values computed for DS and printed along with x and y for the inner
boundary. It is especially advised that the value computed for DS at the
leading edge be checked, since the body-surface arc-length is usually at a
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minimum there, causing DS to be at a minimum there. One can thus be subtly
drawn into the problem described in the preceding paragraph. For this case,
suggestions are to

1. Increase DSI

2. Use NIBDST = 2 and a large value for BINN (e.g., 1.5)
3. Switch to NDS = 2

Difficulties can result from aﬁ outer boundary that is much taller than
it is wide or wider than it is tall. For such cases, suggestions are:

1. Carefully adjust Sy K= s C, and d such that they vary for vary-
ing j kmax

2. Change the shape of the outer boundary

It is rare but possible for numerical instabilities to be introduced by
excessive values for relaxation parameters w, Wps Wgs Wrs Wgs and limitation
factors pyims 914p> T1im> 2"d Sjyp- When this is the case, the solution
process "blows up, meaning that CMAX and several others of the numbers
printed in convergence history become large without bound. In this case the
user need do nothing because GRAPE will automatically reduce the parameters
and factors, reset the x,y field to the initial conditions, and restart the
solution process. If this does not work, then the problem lies elsewhere.

If the initial examination of the convergence history indicates that the
problem lies on the inner boundary at a sharp leading edge, or at a sharp
trailing edge in an O-type grid, then it is suggested that airfoil boundary
points be reclustered to move more points toward that sharp edge.

Following the convergence history, a brief examination of the inner bound-
ary is printed. For every j in the solution, there is first printed the
angle, in degrees, between the boundary and the £ = constant line. This is
measured the same way as, and should be compared to, 8|y=;. The angle between
the £ = constant line and the x-axis is then printed. This is measured in
classical polar coordinate fashion, counterclockwise from the positive x-axis.
Next, the distance between the node at the boundary and the adjacent node in
the field for each j, labeled "DISTANCE TO BOUNDARY," is printed. This
should be compared to S“lk=l as either read or computed. Following this,

the x,y coordinates of the inner boundary points are printed. Next are the
X,y coordinates of the adjacent node in the field, for each j. Following
are the computed values for p and q. Similar data at the outer boundary are
then printed. Printed last is a list of XMIN, XMAX, YMIN, and YMAX for each
plot, if any.
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APPENDIX A

INPUT VARIABLES

Alphabetical List of Input Variables

Following is an alphabetized list of input variables together with the
number of the NAMELIST group in which each appears (e.g., 1 indicates $GRIDI1).

Variable Group Variable Group Variable Group Variable Group
name number name number name number name number
AAA 3 DSOBI 2 NTETYP 1 THETOB 3
AAAT 2 JAIRF 1 OBANGS 3 THOBI 2
AIRFX 3 JCAMBR 2 OMEGA 2 TR 1
AIRFY 3 JDIST 2 OMEGP 2 XLE 1
ALAMF 1 JMAX 1 OMEGQ 2 XLEFT 1
ALAMR 1 JPRT 1 OMEGR 2 XMAX 3
BBB 3 JTEBOT 1 OMEGS 2 XMIN 3
BBBI 2 JTETOP 1 PLIM 2 X0B 3
BINN 2 KMAX 1 QLIM 2 XOBCNT 2
CAMBRX 3 MAXITA 1 RADOB 1 XRIGHT 1
CAMBRY 3 NAIRF 1 RCORN 1 XTE 1
CcC 3 NDS 1 RLIM 2 XTFRAC 2
CCCL 2 NIBDST 1 ROTANG 2 YBOTOM 1
DDD 3 NLETYP 2 ROTCTR 2 YMAX 3
DDDI 2 NOBDST 1 SLIM 2 YMIN 3
DIST 3 NOBSHP 1 TEOPEN 2 YOB 3
DS 3 NORDA 1 THETA 3 YTOP 1
DSI 1 NOUT 1 THETAI 2 WAKEP 2
DSOB 3 NPLT 1

Variables in NAMELIST S$GRID1

Following is a detailed description of each of the input variables in
NAMELIST $GRID1. This list should serve as both a reference for those who are
using the program, and as an introduction to all of the program's capabilities
for the first-time reader.

Variable
name Description
JMAX The maximum value of the subscript j, that is, the number of §

values, that is, the number of points around the airfoil (in the
case of an O-type grid) or the number of points along the "c" (in

a C-type grid). If coarse-fine sequencing is to be used, there are
restrictions on this value, and those restrictions are dependent on
the value of NTETYP (see below). If NTETYP = 1, JMAX must be a
multiple of 4. If NTETYP = 2, JMAX must be a multiple of 3. If
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Variable

name

NTETYP

NAIRF

JAIRF

NIBDST

Description

NTETYP = 3, JMAX must be of the form 3n + 1 where n 1is some
integer. If these restrictions are not observed, the code will run,
but coarse-fine sequencing will not be used. Range of acceptable
values: 4 to 140. Default value: 100.

The maximum value of the subscript k, that is, the number of n
values, that is, the number of points from the body to outer bound-
ary, inclusive. If coarse-fine sequencing is to be used, KMAX must
be of the form 3m + 1 where m is some integer. Range of accept-
able values: 4 to 70. Default value: 49.

This variable determines the location of the point or points at the
trailing edge, and it determines whether the grid is of the O-type
or C-type. If NTETYP =1 an O-type grid results with the point

j =1 at the trailing edge (see fig. 4(a)). If NTETYP = 2, an
O-type grid is made with the trailing edge of the airfoil located
midway between the two grid points at j =1 and j = JMAX. 1If
NTETYP = 3, a C-type grid results with the lower surface trailing-
edge point at j = JTEBOT and the upper-surface trailing-edge
point at j = JTETOP (see below). Acceptable values for NTETYP:

1, 2, and 3. Default value: 1.

Determines which airfoil shape is to be used. If NAIRF =1 an
NACA 00XX airfoil shape will be calculated. The thickness ratio is
given by TR (see below). Note that this airfoil shape has an open
trailing edge. If NAIRF = 2, the airfoil shape used will be an
NACA 00XX modified to have a closed trailing-edge by extrapolating
the analytic defining function to find a zero and re-normalizing.
The thickness ratio is given by TR (see below). If NAIRF = 3, a
Garabedian-Korn airfoil will be used. If NAIRF = 4, an NACA 64A410
will be used. If NAIRF =5 the airfoil or body shape will be
supplied by the user. See JAIRF below and AIRFX and AIRFY in
SGRID3. NAIRF must equal 5 if NIBDST (see below) equals 3 or 5.
Acceptable values: 1, 2, 3, 4, and 5. Default value: 2.

The number of data points used to specify a user-supplied airfoil
or body-shape. See AIRFX and AIRFY in $GRID3. JAIRF is ignored
unless NAIRF equals 5, in which case JAIRF must be >4. Acceptable
values: 0 or 4 to 241 inclusive. Default value: O.

Specifies how points will be distributed on the airfoil. 1If

NIBDST = 1, points will be distributed using a pre-stored circle-
plane-mapping distribution taken from a conformal mapping grid
about an NACA 0012 airfoil. This distribution is symmetric front
to back about the midchord point, symmetric top to bottom, and pro-
duces a fairly high degree of clustering toward the leading and
trailing edges. If NIBDST = 2, points will be clustered using an
algorithm involving a parameter, BINN (in SGRID2), which can be
adjusted to move points toward the leading and trailing edges or
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(a) O-type grid with point at trailing edge (NTETYP = 1).

2

(b) O-type grid with trailing edge midway between two points (NTETYP = 2).

[ ]

Y
— \ \
(c) C-type grid (NTETYP = 3),

Figure 4.— Trailing-edge treatments.
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Variable
name

DSI

JTEBOT

Description

toward equal spacing with respect to arc-length. If NIBDST = 3,

it is assumed that the user is supplying an airfoil (or other body)
on data cards. In this case the given data points will not be used
exactly as read; rather, they will be interpolated using a cubic
spline method so that the number of points on the airfoil can be
varied. However, in this case the distribution function will be
taken from the given data points. For example, if the given airfoil
data points have a great deal of clustering at the leading edge, the
resulting airfoil will likewise have many points at the leading
edge. In this case NAIRF must equal 5 and JAIRF must be 24 (see
above). See also AIRFX and AIRFY in $GRID3. If NIBDST = 4, it is
assumed that the user will supply a distribution function (a
sequence of numbers normalized to go from O to 1) on data cards

(see array DIST in $GRID3). If NIBDST = 5, it is assumed that the
user is supplying an airfoil (or other body) on data cards and that
that body is to be used exactly as read, with no interpolation. In
this case NAIRF must equal 5 and JAIRF must be 24 (see above). See
also AIRFX and AIRFY in $GRID3. Acceptable values: 1, 2, 3, 4,

and 5. Default value: 1.

This parameter determines how the grid spacing normal to the body
along & = constant lines, over the interval k =1 to k = 2,
denoted as Sy k=1 in the Theoretical Development section, is to

be determined. If NDS =1, the spacing will be taken as a coeffi-
cient times the spacing along the body surface in the §& direction.
Thus, if this option is used and the coefficient is 1, grid cells
that are roughly square or equilateral parallelograms will result
at the body surface. If NDS = 2, the spacing will be either a
scalar constant or any array of constants (see DSI and DS(J)).
Acceptable values: 1 and 2. Default value: 2.

The meaning of this parameter is dependent on the value chosen for
NDS. If NDS = 1, then DSI is the "coefficient" referred to in the
discussion of NDS above. A value of 1.0 is suggested. If NDS = 2,
and it is desired that a constant value be used for Sn|k=1 for

every j in 1 £ J £ Jpaxs then that value should be entered in
DSI. Alternatively, as indicated by NDS = 2 and DSI = 0, any
set of values may be entered into array DS(J) in SGRID3. Distances
are measured in X,y "units." It is recommended that values for
s“|k=1 be less than one fourth of that which would result if the

grid points were equally spaced between inner and outer boundaries.
Acceptable values: all non-negative real numbers. Default

value: 0. Note that in the default case the constant value 0.01
is stored in every element of the array DS(J).

The value of the index j at the lower-surface trailing-edge point.
In the case of an O-type grid the value given for JTEBOT will be
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Variable
name

JTETOP

TR

XLE

XTE

NOBSHP

Descrigtion

ignored and overwritten with 1. For C-type grids this parameter,
along with JTETOP, determines the number of points in the £ direc-
tion in the wake region, the region behind the airfoil. Acceptable
values: positive integers less than JTETOP. Default value: 15.

The value of the index j at the upper-surface trailing-edge point.
In the case of an O-type grid, the value given for JTETOP will be
ignored and overwritten with JMAX. For C-type grids this parameter
is used, and JTETOP and JTEBOT must satisfy the relation

JTEBOT - 1 = JMAX - JTETOP to ensure that there will be the same
number of points in the & direction above and below the wake-line.
Acceptable values: integers greater than JTEBOT and less than 140.
Default value: 86.

The thickness ratio of the NACA 00XX airfoil (e.g., TR = 0.12
yields an NACA 0012). Ignored if NAIRF > 2. Acceptable values:
real numbers between 0.0 and 1.0. Default value: 0.12.

The value of x at the leading edge of the airfoil. If

NIBDST < 5, the body will be shifted to place the leading edge at
x = XLE. If NIBDST = 5, XLE will be overwritten with the value
appropriate to the given body shape. Acceptable values: all real
numbers. Default value: 0.0.

The value of x at the trailing edge of the airfoil. 1If

NIBDST < 5, the body will be scaled to place the trailing edge at
x = XTE. If NIBDST = 5, XLE will be overwritten with the value
appropriate to the given body shape. Acceptable values: all real
numbers greater than XLE. Default value: 1.0.

This parameter determines what shape will be used for the outer
boundary. For O-type grids (NTETYP equals 1 or 2) the following
three shapes are available. If NOBSHP = 1, a circle will be used.
See RADOB (below) and XOBCNT (in $GRID2). If NOBSHP = 2, a rect-
angle with corners rounded by circular arcs will be used (see

fig. 5(a)). If NOBSHP = 3, a cascade shape consisting of straight
lines connected by circular arcs will be used (see fig. 5(b)). For
C-type grids (NTETYP = 3) two shapes are available. If NOBSHP = 4,
a rectangle with corners on the left rounded by circular arcs will
be used (see fig. 5(c)). If NOBSHP = 5, a cascade shape consisting
of straight lines connected by circular arcs except on the right
end where the straight lines intersect will be used (see fig. 5(d)).
For NOBSHP equals 2 through 5, see XLEFT, XRIGHT, YBOTOM, YTOP, and
RCORN below. For NOBSHP equals 3 or 5, see also ALAMF and ALAMR
below. If NOBSHP = 6, the outer boundary will be supplied by the
user on data cards. See XOB and YOB in $GRID3. These points will
be used exactly as read, with no interpolation. Acceptable values:
1, 2, 3, 4, 5, and 6. Default value: 1,
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y = YBOTOM

(a) Rectangular outer boundary for (b) Cascade outer boundary for O-type
O-type grids (NOBSHP = 2). grids (NOBSHP = 3).
y=YTOP
[+ 5
1
3 [ eonmt
‘(\1 y = YBOTOM
1
(c) Rectangular outer boundary for (d) Cascade outer boundary for C-type
C-type grids (NOBSHP = 4). grids (NOBSHP = 5).

NOBDST

RADOB

Figure 5.- Outer boundary shapes.

This parameter is ignored if NOBSHP = 6. If NOBSHP < 6, it
determines how the points are to be distributed on the outer bound-
ary. If NOBDST = 1, the points will be distributed by equal incre-
ments of the arc-length on the outer boundary. If NOBDST = 2, the
points will be distributed by equal angular increments. For

NOBDST = 2 and a circular outer boundary (NOBSHP = 1), the angles
are measured about the point x = XOBCNT on the x-axis. For
NOBDST = 2 and a rectangular outer boundary (NOBSHP equal 2 or 4),
the angles are measured about the origin. If NOBDST = 3, outer
boundary points will be distributed in an angular fashion, as in
the case of NOBDST = 2, but using a set of angles that the user

has read in on data cards (see array OBANGS in $GRID3). In the case
of a cascade outer boundary shape (NOBSHP equals 3 or 5) NOBDST

must equal 1. Acceptable values: 1, 2, and 3. Default value: 1.

Radius of the circular outer boundary. It is ignored if

NOBSHP > 1. Acceptable values: all positive real numbers.
Default value: 6.0.
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Variable
name

XLEFT
XRIGHT

YBOTOM
YTOP

RCORN

ALAMF

NORDA

MAXITA

Descrigtion

XLEFT and XRIGHT are the x-coordinates of the left and right ends,
respectively, of the outer boundary. They are used for rectangular
and cascade outer boundary shapes (NOBSHP equals 2, 3, 4, or 5) and
are ignored if NOBSHP equals 1 or 6. Note that they are coordi-
nates, not displacements. Therefore, in most cases XLEFT will have
a negative value. XLEFT must be less than XRIGHT. Acceptable
values: all real numbers. Default values: XLEFT = -6.0,

XRIGHT = 6.0.

For rectangular outer boundary shapes (NOBSHP equals 2 or 4),
YBOTOM and YTOP are the y-coordinates of the bottom and top of the
rectangle, respectively. For cascade outer boundaries (NOBSHP
equals 3 or 5), YBOTOM is the y-coordinate of the uppermost point
on the arc below the airfoil, and YTOP is the y-coordinate of the
uppermost point on the arc above the airfoil. Since these are
coordinates, not displacements, YBOTOM will in most cases be nega-
tive. YBOTOM and YTOP are ignored if NOBSHP equals 1 or 6. YBOTOM
must be less than YTOP. Acceptable values: all real numbers.
Default values: YBOTOM = -4.0, YTOP = 4.0.

The radius of the circular arcs used to round the corners of the
rectangular and cascade shapes. RCORN is ignored if NOBSHP equals

1 or 6. To prevent a physically impossible situation, the inequali-
ties RCORN < 1/2 (YTOP-YBOTOM) and RCORN < 1/2 (XRIGHT-XLEFT) must
be satisfied. Acceptable values: all positive real numbers.
Default value: 1.

ALAMF and ALAMR are the declination angles, in degrees, of the front
and rear of the cascade outer boundaries, respectively (see fig. 5).
Either but not both may be zero. Although values up to 90.0 are
acceptable, values above approximately 45.0 are not recommended,
since the grids can become meaningless and convergence difficul-
ties can result. Acceptable values: real numbers in the range
-90.0 to +90.0. Default values: 0.0, and 0.0.

NORDA is an array having two elements, being the convergence cri-
teria for the coarse-fine solutions. NORDA(l) and NORDA(2) are the
numbers of orders of magnitude by which the maximum correction is
to be reduced for the coarse and fine iterative procedures,
respectively. Note that these criteria are subject to the limits
imposed by MAXITA, below. Acceptable values: all non-negative
integers. Default values: 4 and 1.

MAXITA is an array having two elements. MAXITA(l) and MAXITA(2)
are the limits on the numbers of iterations allowed in the coarse
and fine solutions, respectively. If it is desired that the coarse
or fine solutions be entirely skipped, then zero may be entered for
the appropriate element in MAXITA. Acceptable values: all non-
negative integers. Default values: 200 and 100.
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Variable
name

JPRT

NPLT

NOUT

Description

A control parameter specifying how much printing is to be done. 1If
JPRT < 0, no printing will be done, with the exception of error
messages. If JPRT =0 the input parameters, the inner and outer
boundaries, a convergence history, a brief examination of the solu-
tion at the boundaries, and any error messages will be printed.

For the default case this is 19 pages of print. If JPRT > 0, then
all information listed for JPRT = 0 will be printed, in addition
to the solution. The solution will be printed for all k in

1 £k < kpaxy and j as given by the FORTRAN DO loop "DO 26 J=1,
JMAX,JPRT." For example, if JPRT = 10 and JMAX = 100 then the
solution will be printed for J equals 1, 11, 21, 31, 41, 51, 61,
71, 81, and 91. Thus, JPRT = 1 yields the printing of the solu-
tion at all j and k. What is meant by "the solution," that is,
which variables will be printed for each of the indicated j and k,
is dependent on the value chosen for NOUT (see below). If

NOUT < 2, the arrays X and Y will be printed. If NOUT = 2, X,

Y and the Jacobians (see eq. (lle)) will be printed. If

NOUT = 3, X, Y, the Jacobians and the metric quantities Xgs Xp»
Yeos and y, will be printed. The roles of JPRT and NOUT are sum-
marized in the table following. Acceptable values: all integers.
Default value: O.

The number of plots to be made of the finished grid, assuming that
the user retains the ISSCO DISSPLA software, as called in subrou-
tine PLAWT. See arrays XMIN, XMAX, YMIN, and YMAX in $GRID3.
Acceptable values: integers in the range 0 to 100 inclusive.
Default value: O.

A parameter controlling the output of the grid by unformatted
writes on unit 7 for placing on a mass storage device. If

NOUT = 0 there will be no such writing. If NOUT =1, then X and
Y arrays will be written. If NOUT = 2, the X and Y arrays and
the Jacobians (see eq. (lle)) will be written. If NOUT = 3, the
X and Y arrays, the Jacobians, and the metric quantities Xgs Xp»
Yes and y. will be written. The unformatted writes on unit 7 are
for all j in 1 £ j < jpax and all k in 1 < k < kp,y . The
record structure of these data, which one must know before coding
the corresponding read statements, is easily ascertained by examin-
ing subroutine OUTPUT. Acceptable values: 0, 1, 2, and 3.

Default value: 1.
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Table for JPRT and NOUT

This table shows what is written on the printer (logical unit no. 6) and
as an unformatted write (logical unit no. 7) for all acceptable combinations

of input values for JPRT and NOUT.
the metric quantities

Xgs Xns YE» and ¥n

Note that arrays X, Y, the Jacobian, and
are printed for only selected
values of j (see JPRT in $GRID1), but unformatted writes are for all j.

Not

shown on this chart are error messages, which are printed unconditionally.

Written on

printer
(unit 6) JPRT
Written as
unformatted
(unit 7) <0 =0 > 0
Nothing Input, boundaries, Input, boundaries,
conv. history conv. history
X, Y
=0
Nothing Nothing Nothing
Nothing Input, boundaries, Input, boundaries,
conv. history conv. history
X, Y
N =1 (default)
o X, Y X, Y X, Y
Nothing Input, boundaries, Input, boundaries,
conv. history conv. history
U
X, Y
-2 Jacobians
T
X, Y X, Y X, Y
Jacobians Jacobians Jacobians
Nothing Input, boundaries, Input, boundaries,
conv. history conv. history
X, Y,
Jacobians
=3 X, Y X, Y X, Y Metric
Jacobians, Jacobians, Jacobians, uanti-
Metric Metric Metric ties
quantities quantities quantities

26




Variable
name

NLETYP

BINN

JDIST

JCAMBR

XTFRAC

ROTANG

Variables in NAMELIST $GRID2

Description

Control variable specifying what type of leading edge is used. If
NLETYP = 1, it is assumed that the leading edge is blunt (rounded).
NLETYP should be set to 2 if the user is supplying his own airfoil
(NIBDST = 5) and that airfoil has a sharp leading edge and there is
a grid point at the leading edge. NLETYP should be set to 3 if the
user is supplying his own airfoil and that airfoil has a sharp . )
leading edge and the leading edge is midway between two grid points.
Acceptable values: 1, 2, and 3. Default value: 1.

The parameter used in clustering points on the airfoil for

NIBDST = 2. Reducing BINN causes points to be moved toward the
leading and trailing edges. Increasing BINN causes the inner
boundary point distribution to approach equal spacing as a function
of surface arc-length. BINN is ignored if NIBDST is not equal to 2,
Acceptable values: all real numbers greater than 1. Default
value: 1.1.

The number of points supplied by the user in defining his own dis-
tribution function for the points on the body (airfoil). See
array DIST in $GRID3. JDIST need not equal JMAX. Ignored if
NIBDST is not equal to 4. Acceptable values: O or integers in the
range 4 to 241, inclusive. Default value: O.

If JCAMBR = 0 the airfoil will not be cambered. If JCAMBR > O
then the airfoil, regardless of the shape or how it was specified,
will be cambered by GRAPE, using a camber line defined by JCAMBR
points stored in arrays CAMBRX and CAMBRY in $GRID3. Acceptable
values: O or integers in the range 4 to 140, inclusive. Default
value: O.

Ignored for O-type grids (NTETYP < 3). For C-type grids

(NTETYP = 3) the x-coordinates of points on the inner boundary
rearward of the trailing edge will be distributed by an exponential
stretching giving increasing step-size with increasing x. The
stretching is calculated so that the x-spacing of the first inter-
val rearward of the trailing edge is equal to some constant multi-
plier times the x-spacing of the last interval on the body.

XTFRAC is that constant multiplier. Acceptable values: all posi-
tive real numbers. Default value: 1.0.

If ROTANG = 0.0, the airfoil will not be rotated, that is, placed
at an angle of attack, by the program. If ROTANG is not equal to
zero, then it is taken as the angle, in degrees, that the airfoil
is to be rotated. Acceptable values: real numbers between -90.0
and +90.0. Default value: 0.0.
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Variable
name

ROTCTR

XOBCNT

OMEGA

OMEGP
OMEGQ

OMEGR
OMEGS

PLIM
QLIM
RLIM
SLIM

DSOBI

Descrigtion

Ignored if ROTANG = 0.0. If ROTANG is not equal to zero, then the
airfoil will be rotated about a point on the x-axis at x = ROTCTR.
Acceptable values: all real numbers. Default value: 0.0.

Used only in cases having a circular outer boundary (NOBSHP = 1).
The circle will be centered on the x-axis at x = XOBCNT. Must
be consistent with values given for XLE, XTE, and RADOB, that is,
the outer boundary must not pass inside of the body. Acceptable
values: all real numbers. Default value: 0.0.

Relaxation parameter used in SLOR solution processes for x and y.
Increasing OMEGA may lead to more rapid convergence, but numerical
instability may also result. Decreasing OMEGA has the opposite
effects. Acceptable values: real numbers in the range 0.0 to 2.0.
Default value: 1.3.

OMEGP and OMEGQ are the relaxation parameters used in solving for
p and q as in equation (17). Changes in these parameters produce
results similar to those in OMEGA. The effects of controlling
angles and spacing at the inner boundary are disengaged by setting
OMEGP and OMEGQ to zero. Acceptable values: real numbers in the
range 0.0 to 2.0. Default values: 0.3.

OMEGR and OMEGS are the relaxation parameters used in solving for
r and s as in equation (17). Changes in these parameters produce
results similar to those in OMEGA. The effects of controlling
angles and spacing at the outer boundary are disengaged by setting
OMEGR and OMEGS to zero. Acceptable values: real numbers in the
range 0.0 to 2.0. Default values: 0.3.

PLIM, QLIM, RLIM, and SLIM are limitation factors used in solving
for p, q, r, and s as in equation (17). Changes in these param-
eters produce results similar to those in OMEGA. Acceptable
values: real numbers between 0.0 and 100.0. Default values: 1.0.

If it is desired that a constant value be used for , that

S“lk-
'kmax
is, the distance to be imposed along & = constant lines between

the outer boundary (at k = kpgx) and the adjacent grid node (at

k = kpax - 1), for every j in 1 £ j < jpax» then that value
should be entered in DSOBI. Alternatively, as indicated by

DSOBI = 0.0, any set of values may be entered into array DSOB(J) in
$GRID3. Distances are measured in x,y "units." It is recommended

that values for Sn|k'kma be less than 4 times that which would
X

result if the grid points were equally spaced between inner and
outer boundaries. Acceptable values: all nonnegative real numbers.
Default value: 0.0 (in the default case the constant value 0.2 is
stored in every element of the array DSOB(J)).
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Variable
name

THETAI

THOBI

AAAT
BBBI

CCCI
DDDI

Description

If it is desired that a constant value be used for 6|y=,, that is,
the angles with which £ = constant lines intersect the inner
boundary, for every j in 1 < j £ jpax, then that value should be
entered in THETAI. Alternatively, as indicated by THETAI = O, any
set of values may be entered into array THETA(J) in S$GRID3. These
angles are measured in degrees, and are measured about the inner
boundary points from the inner boundary clockwise to the £ = con-
stant lines in the interior, with THETAI = 90.0 indicating
orthogonality. Acceptable values: real numbers between 0.0 and
180.0. Default value: 0.0 (in the default case the constant value
90.0 is stored in every element of the array THETA(J)).

For cascade cases (NOBSHP equals 3 or 5) the 8 K=kpax’ that is,

the angles with which £ = constant lines intersect the outer
boundary, are determined internally by GRAPE such that periodicity
between cascade elements is required. That is, in these cases, for
those parts of the outer boundary which touch on adjacent cascade
elements, the e|k=kmax are chosen to require that the & = con-

stant lines are vertical (parallel to the y-axis) at the outer
boundary regardless of values chosen for ALAMF and ALAMR. Thus,
for NOBSHP equal to 3 or 5, THOBI is ignored. For NOBSHP not equal
to 3 or 5, if it is desired that a constant value be used for
e|k=kmax for every j in 1 £ j £ jpaxs then that value should

be entered in THOBI. Alternatively, as indicated by THETAI = 0.0,
any set of values may be entered into the array THETOB(J) in

$GRID3. These angles are measured in degrees, and are measured
about the outer boundary points from the outer boundary clockwise
to the £ = constant lines in the interior, with THOBI = 90.0
indicating orthogonality. Acceptable values: real numbers between
0.0 and 180.0. Default value: 0.0 (in the default case the con-
stant value 90.0 is stored in every element of the array THETOB(J)).

If it is desired that constant values be used for a and b, posi-
tive constants appearing in equations (5), for every j in

1 £ j € jpaxs then those values should be entered in AAAT and BBBI.
Alternatively, as indicated by AAAI and BBBI equal to zero, any set
of values may be entered into the arrays AAA(J) and BBB(J) in
$GRID3. Smaller values (e.g., 0.2) for a and b cause the effects
of angle control and control of S; at the inner boundary to be
propagated far into the interior of the grid, but convergence dif-
ficulties can result. Larger values (e.g., 0.7) have the opposite
effect. Acceptable values: all real numbers greater than 0.0.
Default value: 0.0 (in the default case the constant value 0.45 is
stored in every element of the arrays AAA(J) and BBB(J)).

If it is desired that constant values be used for ¢ and d, posi-
tive constants appearing in equation (3), for every j in
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Variable
name

TEOPEN

WAKEP

Variable
name

DS (J)

DSOB(J)

Description

1 £ j £ jpaxs then those values should be entered in CCCI and DDDI.
Alternatively, as indicated by CCCI and DDDI equal to zero, any set
of values may be entered into the arrays CCC(J) and DDD(J) in
$GRID3. Smaller values (e.g., 0.2) for c and d cause the effects
of angle control and control of S, at the outer boundary to be
propagated far into the interior of the grid, but convergence diffi-
culties can result. Larger values (e.g., 0.7) have the opposite
effect. Acceptable values: all real numbers greater than 0.0.
Default value: 0.0 (in the default case the constant value 0.45 is
stored in every element of the arrays CCC(J) and DDD(J).

The distance across the open tralling edge of the airfoil. For
NIBDST < 5, input values for this parameter are ignored and TEOPEN
is computed internally. For NIBDST = 5, the user supplies the
body shape, not necessarily an airfoil, and that shape is to be used
exactly as read, with no interpolation. 1In this case, for O-type
grids, TEOPEN must be supplied by the user. TEOPEN = 0.0 indicates
that the body shape has a closed trailing edge. Acceptable values:
all nonnegative real numbers. Default value: 0.0.

Ignored for O-type grids (NTETYP < 3). For C-type grids

(NTETYP = 3) this parameter effects the exponential stretching in
the x-direction of inner boundary points in the wake region.
Decreasing WAKEP causes wake points to be shifted closer to the
airfoil, away from the rear boundary, that is, decreasing WAKEP
causes the exponential stretching to increase more slowly with
increasing x near the airfoil and more rapidly near the rear
boundary. Increasing WAKEP has the opposite effect. Extreme values
of WAKEP can cause a fatal error in subroutine INNER. Recommended
values are in the range 0.5 to 1.5. Acceptable values: all posi-
tive real numbers. Default value: 1.0.

Variables in NAMELIST $GRID3

Description

Ignored if NDS (in $GRID1) equals 1. For NDS = 2, DS is the array
into which a set of values for S8y k=1 which vary for different j

may be entered. See DSI in $GRID1. Acceptable values: all posi-
tive real numbers. Default values: 0.0l for every j. Number of
elements that must be specified (if any): JMAX.

The array into which a set of values for S“|k-kma which vary for
X

different j may be entered. See DSOBI in $GRID2. Acceptable
values: all positive real numbers. Default values: 0.2 for every
j. Number of elements that must be specified (if any): JMAX.
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Variable
name

THETA(J)

THETOB (J)

DIST(J)

AIRFX(J)
AIRFY(J)

CAMBRX(J)
CAMBRY (J)

Description

The array into which a set of values for 6| =7 Which vary for
different j may be entered. See THETAI in $GRID2. Acceptable
values: real numbers between 0.0 and 180.0. Default values:
90.0 for every j. Number of elements that must be specified (if
any): JMAX.

The array into which a set of values for e|k=kmax which vary for

different j may be entered. See THOBI in $GRID2. THETOB is
ignored for cascade outer boundaries (NOBSHP equals 3 or 5).
Acceptable values: real numbers between 0.0 and 180.0. Default
values: 90.0 for every j. Number of elements that must be
specified (if any): JMAX.

Ignored if NIBDST is not equal to 4. For NIBDST = 4, DIST is an
array of values defining the distribution function for inner (air-
foil) boundary points. The inner boundary point distribution could
be thought of as a function having as a range the inner boundary
arc-length normalized to go from 0 to 1, and as domain ¢ for

0 < £ 2 Epgx- Successive values of DIST changing by a small .amount
indicates dense airfoil points for thq corresponding values of &.
The converse is also true. Acceptable values: a monotonically
increasing array of numbers with DIST(1l) = 0.0 and

DIST(JDIST) = 1.0. See JDIST in $GRID2. Default values: 0.0 for
every j (in the default case DIST is ignored). Number of elements
that must be specified (if any): JDIST.

AIRFX and AIRFY are ignored if NAIRF is not equal to 5. For

NAIRF = 5, the abscissas of points defining the user-supplied air-
foil should be entered in AIRFX, and the ordinates should be
entered in AIRFY. Points should be ordered clockwise from the
trailing edge. If the given airfoil is to be interpolated

(NIBDST = 3), the first and last values of AIRFX that are specified
must be equal (thus the entire airfoil is described). Acceptable
values: all real numbers. Default values: 0.0 for all j (in
the default case AIRFX and AIRFY are ignored and an NACA 0012 air-
foil is computed). Number of elements that must be specified (if
any): JAIRF.

Ignored if JCAMBER (in $GRID2) is equal to zero. If JCAMBR is not
equal to zero, then coordinates describing a camber line should be
stored in CAMBRX and CAMBRY. Abscissas are stored in CAMBRX and
ordinates are stored in CAMBRY. Acceptable values for CAMBRX: a
monotonically increasing array with CAMBRX(1) = 0.0 and

CAMBRX (JCAMBR) = 1.0, Acceptable values for CAMBRY: all real
numbers. Default values: 0.0 for every j (in the default case
CAMBRX and CAMBRY are ignored). Number of elements that must be
specified (if any): JCAMBR.
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Variable
name

OBANGS (J)

X0B(J)
YOB (J)

XMIN(N)
XMAX (N)
YMIN(N)
YMAX (N)

Description

Ignored if NOBDST < 3 (see $GRID1). For NOBDST = 3, OBANGS is an
array of angles, measured in degrees, defining the distribution of
points on the outer boundary. Caution is recommended in the use

of this parameter, since the range of values required is never
exactly 0.0 to 360.0, and varies depending on NTETYP. If

NTETYP = 1, OBANGS must go from 0.0 to one angular increment less
than 360.0. If NTETYP = 2, OBANGS must go from one half of an
angular increment to one half of an angular increment less than
360.0. Further complicating the above is the trailing-edge open-
ness, if any. If NTETYP = 3, OBANGS must go from arctangent
(YBOTOM/XRIGHT) to 360.0-arctangent (YTOP/XRIGHT). Acceptable
values: a monotonically increasing array of numbers, with range as
indicated above. Default values: 0.0 for every j (in the default
case OBANGS is ignored). Number of elements that must be specified
(if any): JMAX.

Ignored if NOBSHP < 6 (see $GRID1). For NOBSHP = 6, the user
supplies an outer boundary by entering the x and y coordinates of
points defining that shape in XOB and YOB, respectively. These
points will be used exactly as read with no interpolation. The
points should be ordered clockwise from the rear. Acceptable
values: all real numbers. Default values: 0.0 for all j (in the
default case XOB and YOB are ignored). Number of elements that must
be specified (if any): JMAX.

These four arrays are ignored if the user does not retain the code
that calls the ISSCO DISSPLA plotting software, of if NPLT =0
(see SGRID1). Otherwise plots of the finished grid will be made,
and these arrays define the square region of the grid which will
fill the picture. If a small square region of the grid is specified
it will be enlarged to fill the picture. Thus, a series of pic-
tures of the whole grid or "snapshot enlargements" of any part(s)
of the grid or both can be made. For the Nth picture, XMIN(N) is
the x-coordinate of the left side of the square, XMAX(N) is the
x-coordinate of the right side of the square, YMIN(N) is the
y-coordinate of the bottom of the square, and YMAX(N) is the
y-coordinate of the top of the square. If a non-square rectangle
is indicated, the shorter sides of the rectangle will be lengthened
to make a square and avoid a "stretched" plot. Thus, there is a
trick that can facilitate use of these four arrays. For example,
if XMIN and XMAX are set, as specified above, their values can be
used to not only define the size of the square (their difference

is the length of a side), but to also indicate the x-coordinate of
its center (their average). The y-coordinate of the center can
then be entered in both YMIN and YMAX. For example, entering 0.9,
1.1, 0.0, and 0.0 in XMIN, XMAX, YMIN, and YMAX, respectively,
produces a plot of a square region 0.2 units on a side, centered on
the x-axis at x = 1.0. The roles of x and y can be interchanged
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Variable
name

AAA(J)
BBB(J)
ccc(J)
DDD(J)

Description

in this trick. Acceptable values: all real numbers such that
XMIN(N) < XMAX(N) and YMIN(N) < YMAX(N), and in at least one of
those relationships the inequality obtains, for all N in

1 €< N < NPLT. Default values: 0.0 for all N (in the default case
no plots are made). Number of elements that must be specified

(if any): NPLT.

Arrays into which sets of values for the positive constants a, b,
¢, and d 1in equation (3) may be entered. See AAAI, BBBI, CCCI,
and DDDI in $GRID2. Acceptable values: all real numbers greater
than 0.0. Default values: 0.45 for every j. Number of elements
that must be specified (if any): JMAX.
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APPENDIX B
SAMPLE CASES

Sample Case No. 1
Required data cards

£5RID1I NCELTs=s 43
S5EIN2 %
$RPINY XMINEwh =g Sy=glypely AMAX=He910596151ell

Number of iterations required for convergence
89 coarse
6 fine

7600 C.P.U. time for run
3.206 sec without plots
7.805 sec with plots

Number of points in mesh: 4900

With the exception that plots are made, this is the default case. It is
a 100 x 49 point, O-type grid about an NACA 0012 airfoil, modified to have a
sharp trailing edge. There is a grid point at the trailing edge. Spacing
normal to the airfoil, Sy k=1’ is requested to be 0.0l units.

The airfoil spans the interval 0 to 1 on the x-axis, therefore the chord
length equals 1 unit. Distribution of points on the airfoil is taken from a
circle plane mapping. The outer boundary is a circle of radius 6 units, cen-
tered at the origin. Points are distributed on the outer boundary by equal
angular increments. The convergence criteria are that CMAX be reduced by
four orders of magnitude on the coarse solution and by one on the fine. The
resulting grid is illustrated by the plots made by this run, which appear in
figure 6.

X3
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Figure 6.- Sample case no. 1 (default case). (a) Entire grid, showing outer
boundary. (b) Region near airfoil. (c) Close-up of leading edge.
(d) Close-up of trailing edge.
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Sample Case No. 2
Required data cards

tGRIN] NNS=], NST=1le» APLT=4S%
tGRYIN?2 §
CGRING XMINzwhgp=gSymglisePs XMAX2HeslaSrelrlels

Number of iterations required for convergence
100 coarse
6 fine

7600 C.P.U. time for run
3.397 sec without plots
7.908 sec with plots

Number of points in mesh: 4900
This case is identical to case no. 1 except that it illustrates the
NDS = 1 feature. Grid spacing normal to the airfoil is requested to be equal

to the spacing along the airfoil surface. This grid is illustrated in
figure 7.
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> (a)

Figure 7.- Sample case no. 2 (identical to default case except NDS = 1).
(a) Region near airfoil. (b) Close-up of leading edge. (c) Close-up of
trailing edge.
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Sample Case No. 3

Required data cards

470TN]1 KMAX=7Q, NT:ETYP?=3, NA[RS=], O[ST=,0005, NNASHP=4e NTRDST=2,
NPLT=%, NORDA=A,2%

SAFIN? 2INN=],?y 0OM{GRe0ey (McGSelesy LAAIng3, BBATs¢3%

LARTNT YMINz@h g =g 5y mg 055 ,19969Gs XMAX=H5g4910e59e05s1lelr1le01¢

Number of iterations required for convergence
102 coarse
42 fine

7600 C.P.U. time for rum
14.507 sec without plots
21.896 sec with plots

Number of points in mesh: 7000

This case is a C-type grid, brought about by setting NTETYP = 3. For
C-type grids it is necessary to choose a proper outer boundary shape, in this
case a rectangle (NOBSHP = 4). This case illustrates the distribution of air-
foil boundary points by formula (NIBDST = 2, BINN = 1.2). Also seen in this
case is a Laplacian outer boundary treatment (OMEGR = 0., OMEGS = 0.).

This case also has a small spacing normal to the airfoil surface
(DSI = 0.005). This is not exactly a viscous spacing, but it is the smallest
that is legible in the accompanying figures. Some of the additional measures
that are usually required to produce a viscous grid are seen. It was found
(in a previous run) that the angles with which the £ = constant lines inter-
sected the x-axis, in the wake region, were scattered, that is, not smoothly
varying. This is corrected by requiring more convergence (NORDA = 6,3). It
was then found that those angles were not close enough to 90°. This was cor-
rected by reducing a and b from their default values of 0.45 (AAAT = 0.3,
BBBI = 0.3). The resulting grid is shown in figure 8.
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Figure 8.~ Sample case no. 3 (C-type
grid). (a) Entire grid, showing
outer boundary. (b) Region near
airfoil. (c) Close-up of leading
edge. (d) Close-up of trailing
edge. (&) Very close view of
trailing edge showing normal
approach of & = constant line to
inner boundary.
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Required data cards

Sample Case No. 4

$GEINY JMAX=133, KMAX=T0, NTETYPs2, NORSYP=3, VYROTOMs=24, YTQOPs=2,y
ALAME=304» ALAYR=2204s NPLT=0S%
$ARIN2 JCAMRRs25, DSORI=, 05, CCClme¢3y DDDIsgy3s
£ARINY CAMRRX=20,4
004166667, ¢ (83333233, 012500000, 015656667 «2G833333
025000000, 02915664667, 03333133133, +37%00000» 041666667 «558323133,
«50000000, e 54166667, 0563333133, ¢62500000» 056666667, «70€331333,
¢ 750000G0, e 79164667, «€3333333, «87%500000, 091666667 095833333,
1,C0000C00, CAMBRYs04»
003194444, «06111111» «08750000» 11111111, 013194444,
«15000000, 016527778, «17777778, 018750000, 01946446444, 019861111,
020000000 019861111, 019444444, ¢18750000,» e17777776,» 016527778,
215000000, 0131946444, 011111111, e 08750000y 006111111, 003194444,
«(LC000C00,

YMINS=fes=601"102100-¢50=0170990999¢999» XMAX®6es0er2095es1e55419101r1601,
16C0ls YMIN204s=5¢s=2e75s=0esr YMAXS0gs20r20r2e8

Number of iterations required for convergence
163 coarse
6 fine

7600 C.P.U, time for run
10.411 sec without plots
29.553 sec with plots

Number of points in mesh: 9660
This case is an O-type grid for a cascade (NOBSHP = 3). The airfoil is

an NACA 0012, cambered according to a circular arc (given by CAMBRX and

CAMBRY). Although the airfoil is modified to have a closed trailing edge, the

spacing on the airfoil is chosen such that the trailing edge is midway between

two points (NTETYP = 2)., The front (upstream) end of the grid is declined at

30° from the x-axis and the rear (downstream) at 20° (specified by ALAMF and
ALAMR) .

A previous run showed the £ = constant lines intersecting the upper and
lower boundaries in a manner significantly deviant from vertical. To improve
this ¢ and d were decreased (CCCI = 0,3, DDDI = 0.3). The results are shown
in figure 9.
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(a) Several cycles of entire grid, showing periodicity in vertical direction.

DONNNR

Figure 9.- Sample case no. 4 (cascade).
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(c) Region near airfoil.

Figure 9.- Continued.
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Figure 9.- Continued.
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Required data cards

$Gk1D1 NTETYP=3, NIBDST=S5, JTEBOTsl, JTETOP=sl, JMAXsbHl, JAIRFebl,
NOBSHP=6, NAIRFe5, NPLT® 65 ODSl1=45E=4) NORDA®6,3$
$GRIU2 DSOBI= .05 AAAL®«b, B3BI®eby CCCLmeby ODLUDIm,b»
OMEGAs]l,1s UMEGP=.l, OUMEGQ®=sls OMEGR®s,1, OMEGS=.l,
PLIN®,5, QLIM®eE, RLIMN®4E, SLIM=.5S
$GKID3 ALRFX=24,
1.915043365 1.83008672, 1.74513008, 1.66017344, 1.57521680,
16490260165 1640530352, 14320346838, 1423539024» 1415043360s 1406547696,
«98052032, + 89556368, «81062990,» « 72673285, 064486819, 056564480,
«489¢5190, e41745466, 34959007, 28656284, 22884175, 17685609,
13099249, 09159207, «05894786, «03330266» 201484719, «00371871,»
CeLLGLOLOL, «C0371c71, 001454719, 003330266, «05894786» 09159207,
013099249, e17685609, 022884175, 028656284, ¢34959007, 041745466»
«4896519V, «56564480, 64486819, « 72673285, «81062990, + 89556368,
096052032, 1.06547696» 115043360, 1,23539024» 14320346E8, 1.40530352,
1e49C26016s 16575216000 1666017344» 1474513008» 1483008672, 1.91504336,
240000000,
AlKFY=s~1,19175359,
~1el7677344) -1.16179330y =-1.14661315, ~1.,13183300y ~14116852685,
=1e1C187271s =1e0b66692560 =1607191241» =1405693226» =1e404195211» -1,02697197»
=1.011991825, =4997G1167s =4908190578, =496193818» ~eF3481624» =¢90074167,»
-.85996791, -,B81279821, =-.75958338, -.70071922, -.636064350, -.56783281,
~049479890) =.41808496s =433826155» <=e25592234s <=el7167973,» =,08616027,»
CeCCGULOO0GC, e Ceb16027, e17167973, 025592234, «33826155» «41808496,
«49479890, «56783261, 063664350, e 72071322, ¢75956338, «81279821,
«85996791, «90076167, «934810624» «96193818, «98190578, «99701167,
1.C1199182, 1,C2697197s 1e064195211s 1405693226» 1407191241» 1408689256,
110157271, 1411685265, 1413183300, 1,14681315s 1416179330y 1.17677344,
1419175359,
XJB=2., 1,90275660, 1.80551319, 1.70826979, 1.61102638, 1.51378298,
1441653957, 1e31929617» 10222052760 1412450936, 1.02756595, 093032255,
«833G7914, ¢73583574, «63859233, ¢54134893, v44410552, « 34686212,
024961871, ¢15237531, 05513190, -.04211150, -.13935491, -.23659831,
-+33384172, =-.43108512, =.52508413y =-,60085368, =-.05569366, =-.68888709,
=e7G0C0000, <=e66863709s =065563366s <=460085368s =452508413, =oe43106512,
-033364172, -.23659831» =.13935491, =.04211150, «05513190, «15237531,
024961871, 34086212, «44410552, «54134893, «63859233, « 73583574,
«83307914, 093032255» 1402756595, 1.12480936s 1422205276 1.31929617,
14416539575 14513782935 1461102633, 1470826979, 1480551319, 1490275660,
2+GCG00000,
YOBe=~5,4132050¢1, .
~4.96362029) =4479518977) -4.62675926, ~4.45832874, ~4,28989822,
~4e12166770s =3e95303713y =3,78460667s =34616175615, =3444774563» ~3,27931511,
=3.11U68459) =-2.94245408, =-2.77402356, =2.60559304), =2,43716252, -2426373200s
~2.1G030149, =1.93187097, =-1.,76344045, -1.59500993, =-1.,42657941» ~-1.25814890,
~1.0E971438, =.921287865 ~¢75107813» =457207297, =-.38558850, =419406284»
0400060000, 015406204, ¢33558850, 57207297, +75107315» 092128766,
1.08971838, 1.25514890, 1.42657941» 1459500993, 1,76344045, 1.93187097,
2.1003CL49, 2.26873200, 2.437i6252, 2.60559304, 2,77402356, 2.94245408,
34110864595 3427931511y 34447745635 3461617615y 3,73460667» 3495303718,
4el2146770s 4e28Y39022s 40453328745 4.62675326, 4.79518977, 4.96362029,
5e132C5Q081L,

Sample Case No. 5

THETAS8Ces82¢984¢9660p884951%904992¢909%:596:998451004p
THETOB®3Ce2%40005Ce160e27062800249%9062100021106212005130021%90e215009

APINSO¢sO0ar=e755-425»
YMan®=5,259Q00e90es=1e255lelbs3.l4,y

AMAX®0esQ0r 0295020920320
YMAX25425054250068142553.1%25.148
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Number of iterations required for convergence
120 coarse
67 fine

7600 C.P.U. time for run
9.288 sec without plots
13.658 sec with plots

Number of points in mesh: 2999

This case illustrates the capability to generate a grid about a body
other than an airfoil. A grid with viscous spacing (DSI = 0.00005) was
desired about a sphere-cone reentry body. A shock-fitting technique was to be
used, hence the outer boundary likewise was to be a sphere-cone, but with a
larger cone-angle. The grid was, of course, a two-dimensional cut through the
above described three-dimensional shape (see fig. 10(a)).

Since the n = constant lines are not closed curves with periodicity, but
rather, resemble the letter "C," the grid was selected to be of the C-type
(NTETYP = 3). The inner and outer boundaries, each having 61 points, were
read from cards using AIRFX, AIRFY, XOB, and YOB. Likewise it was necessary
to specify, on cards, THETA and THETOB.

To achieve good angle control at boundaries in a viscous grid, more con-
vergence was required (NORDA = 6,3). To facilitate numerical stability during
convergence, AAAT, BBBI, CCCI, and DDDI were each set to 0.6; OMEGA was set
to 1.1; OMEGP, OMEGQ, OMEGR, and OMEGS were set to 0.1; and PLIM, QLIM, RLIM,
and SLIM were set to 0.5.
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Figure 10.- Sample case no. 5 (sphere-cone reentry body). (a) Entire grid,
showing outer boundary. (b) Entire body. (c) Upper half of rear boundary.
(d) Lower half of rear boundary.




APPENDIX C

SUBROUTINES AND FLOWCHARTS

The following is an alphabetical 1list of the subroutines, a short descrip-
tion of the function of each, and a list of subroutines which call and are

called by each subroutine.

Name Function

CKSMTH Checks arrays for smoothness

CSPLIN Cubic spline fit

IC Initial conditions for X, Y, p, q, I, s

INCHK Checks input data

INNER Locates points on inner (airfoil) boundary

INPUT Reads initial data

INTERP Interpolates from coarse solution to
obtain initial conditions for fine
solution

OUTER Locates points on outer boundary

OUTPUT Writes finished grid

PLAWT Plots finished grid

RELAX Applies SLOR solution procedure to
Poisson equation

SOLVE Effects coarse and fine solutions of
Poisson equation

TRIB Solves tridiagonal system of linear
equations

TRIP Solves tridiagonal system of linear

equations with periodic boundary
conditions
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Calls

TRIB

CKSMTH

CSPLIN

CSPLIN

PLAWT
plotting
software

Plotting
software

TRIB, TRIP
IC

RELAX,
IC, INTERP

Called by
INCHK

INNER, INTERP
RELAX, SOLVE
MAIN
MAIN
MAIN

SOLVE

MAIN
MAIN
OUTPUT
SOLVE
MAIN
RELAX,

CSPLIN

RELAX



Subroutine Flowcharts

Figures 11 through 18 are flowcharts of the main program; subroutines
INCHK, INNER, OUTER, SOLVE, and OUTPUT, which are called by the main program;
and subroutines RELAX and INTERP, called by SOLVE. The starting points of the
main program and of each of the subroutines, RETURN statements, and STOP
statements are enclosed by circles. Blocks of code, each performing a partic-
ular function are indicated by rectangles composed of solid lines. Words
inside the rectangles describe the functions of the blocks of code. Functions
performed by subroutines, invoked by calling those subroutines, are indicated
similarly by rectangles composed of dashed lines. The names of the called
subroutines are indicated above the upper right-hand corners of the dashed
line rectangles. Branch points having two or three exit paths are indicated
by diamond shapes. Branches having more than three exit paths are indicated
by circles. DO statements are indicated in a manner easily understood by
users of FORTRAN. The numbers immediately above some of the symbols are
statement label numbers.

These flowcharts are not exhaustive in detail; if they were their length
would be unmanageable.’ Simplifications have been effected for brevity and
clarity. Nevertheless, the flowcharts should provide a good orientation and
introduction for someone determined to understand and modify the code.

START OF
SUBROUTINE
INCHK
INPUT
L READ INPUT DATA—' PRINT INPUT VARIABLES IN $GRID1 AND $GRID2
INCHK
[CHECK INPUT DATAJ CHECK INPUT VARIABLES IN $GRID1
| INNER
CALCULATE INNER BOUNDARY} CHECK INPUT VARIABLES IN SGRID2
OUTER
CALCULATE OUTER BOUNDARY-' PRINT INPUT ARRAYS IN $GRID3
e 1
SOLVE
L_SOLVE POISSON Eouxnous_: CHECK INPUT ARRAYS IN $GRID3

| OUTPUT

M s
LWRITE THE RESULTS |

Figure 11.- Main program. Figure 12.- Subroutine INCHK.
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dyild LNOTO3

START OF
SUBROUTINE
INNER

USE PRESTORED
CIRCLE-PLANE

MAPPING
DISTRIBUTION

USE DISTRIBUTION
READ FROM DATA
CARDS

[ 7

CALCULATE DISTRIBUTION] I TAKE DISTRIBUTION FROM

FAOM FORMULA AIRFOIL DATA CARDS

!
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I PREPARE FOR INYERPOLATIONI .

CSPLIN
P a3 Y
1 ADJUST DISTRIBUTION B8Y INTERPOLATION |
t FOR CORRECT NUMBER OF POINTS 1

e e e e - ————-—

USE NACA 2 USE AIRFOLL SHAPE
0OXX AIRFOIL AS READ FROM
SHAPE DATA CARDS

- @ "t
2“ =2 4 nl

22 26

USE MODIFIED NACA USE NACA 644410
OOXX AIRFOIL SHAPE AIRFOIL SHAPE

19

USE GARABEDIAN-KORN
AIRFOIL SHAPE
CSPLIN

-—— e — e — - - ————
| GIVEN DISTRIBUTION AND AIRFOIL SHAPE, 1
} FILL X AND Y ARRAYS AT K =1 ]

e e e e — = - —

I CAMBER AIRFOIL {F NECESSARY J

3zl
I SHIFT AND SCALE AIRFOIL IF NECESSARY ]

s

[ ROTATE AIRFOIL IF NECESSARY I

USE USER-SUPPLIED
AIRFOIL AS READ

START

37

YES

LOCATE POINTS ON INNER
BOUNDARY IN WAKE REGION

THIS DONE

IiRITE INNER BOUNDARY tF NECESSARVJ

2

Figure 13.- Subroutine INNER.

OF

.5—~I

USE OUTER BOUNDARY AS READ
<6 FROM DATA CARDS
NOBSHP -1
.
COMPUTE CHRCULAR GUTER
>t BOUNDARY
2
=20R4 NOBSHP =30R5
60
DO PRELIMINARY DO PRELIMINARY
CALCULATIONS FOR CALCULATIONS FOR
RECTANGULAR CASCADE OUTER
OUTER BOUNDARY BOUNDARY
-4 NOBSHP =2
=1 NOBDST »1

12

COMPUTE RECTANGULAR
OUTER BOUNDARY FOR
O-TYPE GRID AND
EQUAL ARC-LENGTH

COMPUTE RECTANGULAR
OUTER BOUNDARY FOR
O-TYPE GRIO AND

DISTRIBUTION

ANGULAR DISTRIBUTION

1 -

==

COMPUTE CASCADE
OUTER BOUNDARY
FOR O-TYPE GRID

COMPUTE CASCADE
OUTER BOUNDARY
FOR C-TYPE GRID

1

|

4
=1 NOBDST > —’
1

COMPUTE RECTANGULAR
OUTER BOUNDARY FOR
C-TYPE GRID AND
EQUAL ARC-LENGTH
DISTRIBUTION

COMPUTE RECTANGULAR
OQUTER BOUNDARY FOR
C-TYPE GRID AND
ANGULAR DISTRIBUTION

I

)|

Figure 14.- Subroutine OUTER.
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PREPARE FOR COARSE SOLUTION FOR O-TYPE
GRID WITH TRAILING EDGE BETWEEN TWO POINTS

Ic

- ]

PFILL X, Y, ETC., WITH INITIAL CONDITIONS |
[

——— . . e e e e e . e o

AELAX
———-l A
| COARSE SOLUTION |

INTERP

FINTERPOLATE T0 FILL ALL GRID POINTS
i FROM COARSE SOLUTION |

[ PREPARE FOR FINE SOLUTION ]

#FILL X, Y, ETC., WITHE

-0 PNITIAL CONDITIONS|
Cmm e
-0
Preiax

: FINE SOLUTION :

—=op---

‘1‘&”;2:::L--£

@ —_

1
PREPARE FOR COARSE SOLUTION
FOR C-TYPE GRID

PR U
: FILL X. Y, ETC., WITH iNITIAL CONDITIONS :
o - ——p - s > o -]
pom . BELAX
(COARSE SOLUTION|

b on - ——

INTERP

———————n - ———

| INTERPOLATE TO FILL ALL GRID POINTS |
| FROM COARSE SOLUTION ]

e s -t ey o o e
10|

I PREPARE FOR FINE SOLUTION ]

'1&%”3:::1-m£

FILL X, Y, ETC., WITH
=0 PNITIAL CONDITIONS!
<

- o

>0
= b BELAX
! FINE SOLUTION |

Figure 15.- Subroutine SOLVE.
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| 70 FAGILITATE CONVERGENCE ~ |

“DO" LOOP ON K

[COMPUTE TRIDIAGONAL BANDSl

[PRELII‘NARV WRITING ON UNITS 8 AND 7J
eI - -
18 _l

INSERT BOUNDARY INSERT BOUNDARY
»2 CONDITIONS FOR CONDITIONS FOR
| O-TYPE GRIDS C-TYPE GRIDS

<2 1COMPUTE METRIC QUANTITIES | \ _L TRIP _l_ TRIB

FOR ALL K AND THIS J — — _—
I SoLVE PERIGDIC ) F'SOLVE NONPERIODIC |
| TRiolAGONAL | } TRIDIAGONAL
SYSTEM OF ] |  SYSTEMOF 1
L Eauariows | L fauations _ |

-1 I
— .
il 12| 3 | UPDATE X AND Y AT THIS K AND FOR ALL J l

WRITE ON UNIT 7

WRITEON UNIT? R O o X, ¥, JACOBIAN,

X, ¥ FOR ALL XY JACOBIAN | | METRIC QUANTITIES

X AND THIS § ALLX FORALL K AND

H @ -3
1 1 | l
p INSERT REAR BOUNDARY
3 CONDITIONS FOR C-TYPE GRID

"/ WeRD INOGOY

| COMPUTE SUM OF CORRECTIONSAl

WRITE ON UNIT 6
WRITE ON UNIT 8 WRITE Oh NI X. ¥, JACOBIAN,
X, Y FOR ALL Xo¥. sncoman METRIC QUANTITIES
K AND THIS ALK FOR ALL K AND
THIS J
o »
FoOT
OF "DO"
LOOP ON. REDUCE
3 RELAXATION
PARAMETERS
i
. s RESTORE
NITIAL |
-0 |_CONDITIONS |

~ L
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0 WAKE 0TS OF

FINISHED GRID 2
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Figure 17.- Subroutine RELAX.
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START OF
SUBROUTINE
INTERP

INTERPOLATE X AND Y IN n DIRECTION

INTERPOLATE X AND Y IN § DIRECTION

=2
30 20
INTERPOLATE p,
p.q r, AND q,r, AND s FOR INTERPOLATE
s FOR O-TYPE O-TYPE GRID WITH p. g, r, AND
GRID WITH TRAILING EDGE s FOR C-TYPE
POINT AT BETWEEN TWO GRID
TRAILING EDGE POINTS
21
RETURN

Figure 18.- Subroutine INTERP,
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