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Ltex zones 1in tl wing: boundary
/) v 5\
pr zohe I (Fig. ) and a zone

ed inside the wing, which 1s the
’ 3
r image of zone I relative to the

sontour (zone II in Fig. 3).

With change in circulation around
Fig. 2. the wing, for example, with change in
gl of attack, the vortielty ine-
;1de these layers changes. In thils case, 1t also is possible that,

iy » i
with change in the fl past conditions, for example, with change in
the angle of attack, part of theturbulent alr mass which forms the
boundary layer separates and forms a voriex leaving the wing; then,
the symmetrical vortex 1in I

yer II remains inslde the wing. In this
1

rase, the sign of the clrculat ton departing with the vortex and the
sign of the circulation whlch placea the effect of the wall of the
wing are oppoalte, and thelr absolute values are equal., Such a sltua-
tion develops, for example, 1n the formation of the initial Prandtl
vortex; we can gonsider it the result of separation of part of the

'n Low the
boundary
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A tter of $ale) i 'nt of view, the
% . { behind an ally accelerated moving wing 1s part
iday » stripped fro win Ar « With such an
A boundary J ! id th ' in of the

! v s 1t 18 natursl that id ne boundary
) ey ! ¢ Iran seupied by an ideal f id, th APPANEee
! ! he variablld ‘ he c¢ircu fon ways will be
: it, withir indary yer, tl L] ¢can be pro=-
i . ) N am N My 4 g ] t v b s ‘ W W } . "'. n 1“ oh",
wer, which 1: Jegby i by viseous fluld, [ts replacement
. 4 : ) ‘ - L . <
‘ , s only f a purely kinematlc ire ., n example of
1 f vortl tithin ¢} houndary layer 1is the
X stpre: ind ¢} b iy past which the
i int view, ! rtices of a Karman
f i } ; layer, in whlch
] t b r i 'm t} 8 of a Karman street,

‘1Y 0 g v n ntex system within the boundary layer can show

ing flow 18t , not rily in the rmation of the vortices shed
] - - : h voriic g irman vortices or the 1initial
it :
j1stribution within the boundary laver can affect, for
- n shedding polnt.
I s known from the theory of wings that, for total determinatlion
{f the 1ift r its moment, the exact distribution of the clirculation
n individ lements of the wing surface need not be known. For

xample, he theory of Nih¢& of finite span, to derive the basilc
formulas, it 1s sufficient to replace the system of connected vortices
with one carrier vortex of variable circulatlion along the wingspan,
In entirely the same manner, for further study, the boundary layer can
be replaced by some approximate, quite rough scheme, but which is
sultable for estl mdtion of the total effect due to the boundary layer.
From the point of view reported above, the bocundary layer and 1its
mirror image are, in the first approximation, the system of vortices /404
indicated in Fig. 4, where L 1s the wing contour, I 1s the boundary
layer reglon and II 1s the reglon occupled by tne mirror image of the
boundary layer. Because of the small thickness of the boundary layer,
the distance between the vortices of systems I and II 1s very short
and, therefore, the effect of two such vortex systems can, with some
approximation, replace the effect of a system of dipoles, the axes of
which are located along the wihg walls., Thus, we replace the vortex
system indicated in Fig. 4 by a system of dipoles (Fig. 5). Since the
effect of such a system of dipoles, continuously distributed cver the
wing surface, can be replaced by ‘}n: source and the flow at the ends of
the boundary layer, on cwnllhlnn that the intensity of all continuously
istrituted dipoles 1s constant, in the first approximation, we can
replace the ef'fect of the boundary layer and its mirror image by a
source and flow, !l".ud at *wu y\Yn‘J of the wing surface. Such a
substitution J””wm~u 1 nstant distri hutivn of vortices in the boundary
layer and grbitrary l 'tl n of a "start" and "end" of the boundary
layer. Therefore, such a simplifying uh“ur;ﬂitnx,-)f course, 1s very
rough, but 1t presents no difflicultlies to making thls scheme more flex-
ible, on the one hand, by Introducing a vortex system in the boundary
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where R 1s the cylinder radius,
'ylinder, 8 1z its angle to the effective axis and peH

of vortex J,.

From this,

We assume that the sheddling point of the

then obtain
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We find such a line that,
obtain equation (3) with “unst4nt ol
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he followlng expression:

(1)

V 1s the flow velocity far from the
i1s the affix

(2)

stream 1s point z=R; we

(3)

we
f'rom

(4)
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A 1 g / o , s L N3 (12)
| sin '

any change in the values of p and u,

Kquation (12) shows that, wlth y
{.e,, with any movement of vortex J, K, a and B can be gaelected, 5O
hat equation (10) 1is fulfilled, 1.e., by regulation of the boundary
yyer, 1t always can be ensured that the shedding point of the stream
of a vortex of constant

n the cylinder remains fixed, with movement

intensity J and with onstant
wwlinder.

".I"‘"Jl.'l’ ion I (or I =

.

]) around the

.onclusion shows that, 1n the processes which occur
the role of the boundary layer is not limited
and the conditions which cause
Apparently, allowance

'he resulting
tn translent movement,
to only the development of frictlon
shedding of the stream from the wing surface,
ror the effect of the boundary layer
a theory of flapping wings which

is the only possible way of
does not contradict

wonstructing
the basic conditions of hydromechanics.
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i, - . iy hy Lt 13, 1s that the sharp
' ig ving nedding line of thc flow from the
ving.  § R I ition of the shede
ir ‘1ow fror ! ipper and lower gurfaces of the wing
lepend ! e magnltude of the c¢irculation around the wing, as well
88 on the magnitude and pcsitiona of the external vortices. With change
in j} ition of the exte: ] rtices, tl hedding polint can remain on
the tralling edge of the wing, only on condition of continuou. change
in the clirculation which, 1n turn, according to the Thomson theorem,
auses shedding of vortices from the wing. Based on this, Prandtl
propogsed the followlng hydrodynamle scheme: behind the wing which 1is
in transitional movement, a vortex sheet forms, which is continuously
shed from the tralling edge of the wing. Such a vortex sheet 1s a /410
velocity discontinulty surface, 'hus, a wing in transitional move-
ment 1s accompani~d by a velocity discontinuity surface which is shed
from the tralling edge of the wing.

Such a velocity discontlnuity surface or, which 1s the same thing,
vortex surface, has a certaln effect on the wing, as in any vortex syse
tem which affects, for example, the velocity field in which the wing

( ed., Takling account of thls effect presents trememdous theoretical

Various simplifying assumptlions on the structure of the discontinuity

surface must be 1Introduced into the theory of transitional movement,
For example, 1t usually 1s assumed that such a discontinuity surface 1s

1 plane. However, ich a simplification, which 1is ) nisslble 1ln ex-

remely low amplltude wing flaps, such as, for exar ple, wing vibrations,
proves to be completely ungultable 1n the case of a flapplng wing with
large amplitude flaps.
I e — AL e s

Published in the collection Nauchnaya konferentsiya VVA KA [Be lentiric
Conference of Red Army Military Alr Academy] sy 44 (lst ed).
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' modern alrcraflt r in %o m ived, t i} nl

th ! y used in rlight by 1 I ' flapping wings proves to

, . ) 3 : A v v " . X > ¥

onslderably less than that used 13 modern alr 1f't , wuere the eno:

o) » » . ¥ » " + . 5 y v N 1) . o vy 3
Light peed ire regponsible for th2 colossal power onsumption and
fuel naumption of the engine, 'he question of the comparaltive econe

omy of modern f{lignt vehlicles based on th use of flanping wings 1s
up agalnst the ik of any developed theory of f'lapping wings.

An attempt 1s made 1n thi irticle to report the basis of those
conslderations which, 1ln our cplinion, permit construction of a hydro-
unam?l o ¥ " A t rolel T t A * " Ner 1 v v . "5 ¢
iynamic theory of the operation of a flapping wing at any flap implitude,

¥
We will conglder the problem under plane parallel flow conditions.

As was pointed out above, the bhasic 1ifficulty of the theory 1s
accounting for the formation of the vortexes shed from the wing.
According to the idea of Prandtl, used by all investigators of this

juestion, a continuous vortex sheet 1s shed from a flapping wing. The
basls of the proposed theory 1s the rejection of such a hydrodynamic
scheme., We see a way tows' us agreement with those requirements to
which the Chaplygin-Zhuk.vskly postulate leads, on the one hand, and
the theorem of the preservation of ctrculation (Thomson Lhuf\r-ms, on
the other hand, in accounting for the effect of the boundary layer of
the wing, 1.e., from the physclal point of view, accounting for the

effect of viscosity.

From the kinematle point of view, the boundary

D ——— layer of a wing must be considered as a reglon rilled
— with a turbulent fluid. Let AB be the surface of a
2 ——-.J.‘? Lined body and CD be the outer surface of the
s T — . Flg. 1), | iuse of viscosity, the velocity

28 irface AB equals zero and, on CD, it equals the
veloclity of the {low past the streamlined body.
Fig. 1. ‘herefore, the clreulation veloclty in profile ABCD

i1ffers from zero, which 1s an indicatlon of the
'/«)"'?.1('?".]' of the f'luld inside h boundary Ex_'/".", The foll )'.‘J‘Il;’,
kinematle model of a boundary layer can be imaglned. We take some

iylinders, with a dlameter equal to the thickness of the boundary




'111
i .

'I“.
‘rom
i rol




A s o o o i e

»
]
Al
' 11 i
iy ¥ :.l
yint of the
In theortes of wings, 1°
|
tch 1 {u 1lent. Lo 8
. nd
| r I
| {x.!s 0
Vot ’ 4 ’ v
i y t h v1linder at r.,e "
- ) g rortex J iround the yil 3
ime now that there 18 VOI X ‘ in : y |
£ » p } ’ A 1 L 3 .I“\ ’,l'
'he characteristic functlon of the W 1K !
§ I ' ' n : e +
W V.. ¥ = B s ; - e | J
< e
r
i
! S r ’ "I)
: | {oln S—p—-dxdy
{ . » I"",l
N z =

In fulfillment of the Chaplygin-Zhukovskly postulate, we obtailn,
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. chance /Ull
hi that ron shedding vortex J, i.e., with change / L4
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where 1§ ' vgriaex denaslty qf e iyer when vorie s it Infinity

‘n {45 : N ' ¢ Lt § I J L r.
i i quat (7) and i) that, In fulflllment of the
| ¢ s
| (9)
)
0
3y ingd Lt 'ylinder - ir natant at any posl=
! v X s-din fulfillment of ' - hukovskly postulate,
3 ) ) n be itisfieqd | ! priate gselectlon of density
y» In whilch, by ing iition (5), which 1s normal in the theory of
! " | natd i that

r example, wlt!

: mple, th conasideration limited to the simplest kinemati.:
wodel of a boundary layer indicated in Fig. 2, iInstead of the surface
iistribut 1 lces in the boundary layer, a linear distribution
must be used (along the center line of the vortex cylinders rolling
along the surface of the wing). In thlis case, If 1t considered that /415
the distance of the vortex line from the center of a round cylinder -
equals R+ R, where ¢ 1s small, in place of (9), we obtailn

» v’ mt
Of VoIt

| : . / ! {(Fyvo I3} 0
) ; 4 [l .
% : - (! : 'y Ry cos /
or, by disregarding ¢°,
sin ! L .
23 - - / /-lA‘|‘uI‘ v 1) ' A
i :' i '.l rs iy ,I Vs 1 N

where ¢4 and ¢ ire angles which correagpond to the beglinning and end of
\) ] y v

.

the vortex line which gubhsgtltutes for the boundary layer,
Y :

A general summary of a2ll the preceding dilscussions 1s as follows:

[ pointed out this simplest scheme in the article "Theory of Boundary

Layers," anniversary collection Nauchnsaya konferentsiya VVA KA
[Selentiflc Conference of Red Army M'litapy Alr Academyl], 1942 [sece

present publication, pp 1-8 ].
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(22)
All the preceding permits us to derlve the basic equations of
motion * a flapping wing. For this, | lowlng Xarman, we write the
t . v . * 4 + } & ' " o 1 - 2
:_ lon ntum and apply t ‘ included within
4 ‘ el s s ) 2 1
x ntaln control surface, as which w ise a rectangular paralleliplped,
nlotted n-a 1ua with very la sides. { nter of the
prallelipiped be at the coordlnate rigin, and the sides be parallel
):the co linate axes. [n this case, we will sume that the wing
.411lates around the center of the square, | rallel to the y axis
(Fig. O,
We calculate the impulse of the
J ‘orce actin; y1 such an alr mass in
A i) scillating perilod - Let the pressure
of the fluld on the wing glve a force /419
Nith nponents X,Y. hen, the wing
/ / wats on the fluid with a force wilth
1 - + -
| Y \ 3 nLs =X nd =Y
- - u”
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1.e., the mean circulation equals the cl: ulation in the absence of
pping.
©* +) ' + 4 3
g == 1 th 2*
2 !
equation ¥, n be raduced t the form
ot b
P, Fi v ’ 1 ¢
Ym G (Vi t-2u,). (39)

This expression of mean thrust is completely analogous to the
know f 11 or . B! 1 by K n, and it is obtained from the
(arman formula, if t n T Y anag o \re nged,

In articular, 1f e condition . tability of he vortex street
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in which, in the general case, we find the value of h/{f according to
the constructive and klnematic data rom solution of equation (19):

Finally, 1n the event the mode of flight 18 such thut the stability
condition is fulfilled, the following extremely simple expression is
ybtained for the thrust

X n,-n;,M'.,wmsu[l 1,2 “:' ] (42)

extremely likely that the most sultable mode of flight is
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L n king at a modern raft, a different question natu-
n ‘ ly, but how economically
i now ne comparison arises, which is not very

L ’
'n alrecraft, n the one hand, we have remarkable
xamp 1+ ‘11zht 1n nature, the flight of birds. By flappinm the
wings, TS juce l1irt and thrust, ‘hey fly nolselessly, wi«n high
speed and to very great dlstances, by flapping the winga. Alongside

yre our aireraft with thelr wildly howling engines, with propellers
making thousands of revolutions per minute, with immovably strefched
out wings; aireraft burning colossal supplles of the mos valusble
fuel, gasoline, in thelr englnes,. While we have learned to fly very
well, the economy of the modern method yf flying 1s under great doubt,
Of course, a basic problem arises from this: to study various methods
yf developing thrust, the pulling force of an alrcraft, Permit your
attention to be engaged by some theoretical consideration: of the
problem of the development of alrcraft thrust,

Here, I have to deal with conslde rations which are extremely far
from modern aviation technology and, moreover, of considerations which
possibly never will be used by technology. But, in fact, such 1s the
task of sclence: to study new, sometimes doubtful and unrellable path-
ways. [t is comforting here that, in the case of success, these new
pathways open up the wldest possibilities for technology but, in the
case of fallure, at least, rellable indlcatlons are obtained as to the
direction not to go 1in attempts at an englneering solution of a prob-

lem.

the conditions and mechanism of thrust development: the englneering
solution of the problem of thrust development by the use f a pr peller,
in airscrew, differs radically from the s ylution of the problem of
thrust development taken by nature, where the thrust which 1s used 1in

I ight of blrds 1s developed in a completely different way, by
flapping the wings,

PFirst and foremost, the following 1s striking in the problem of

o
110 1

- ’:v' ""':‘."l(“'_‘ly -],-"(' '[]lt, Pfan ‘Q‘,"{”))I‘\,‘:'l’ "}I‘ i“u;.-" 17»:10-(?'1 mn /u29
of nature i optional and atypical. [t 13 sufficient t remember the -
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first and foremost, in the classlical studies of
mechanism ~f thrust development by flapping wilngs
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rounded, as it 1is sumed
wings but, moreover,
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explanation

In a physies course, this explanation is given:
means of beating the wings, birds actively produce
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Instit tea, :
the theory of w ni L : L,
to gilve a general Iid he: i ! . Bnd | pting t
familiarize you wlit! 1 lon: whlcl hie 5 tudies
When the development of Lhrust 1. ' i, f'irat and foremost,
the question arlses, from where can ] : +1op lechanics
teaches us that action equals reactlon, t roe 15 g
in the opposite direction. The force v i jeot a | Jectile Ir
a weapon causes the forces whilch produce the ! 3 1 G !
weapon, Thils force 1s absorbed by the actlion of tl 01l eylinder
and the rosistance of the eurth, In a spring repelled I the earth,

in addition, we have repulsion of the earthy only because of the
coloszal mass of the earth, 1t 1s completely insensitive to the thrust
which we lmpart to the earth with the spring. An aircraft flying a
the ground transmlts pressure to the ground through the air and rej

it in the opposite direction. The force which pushes a rocket forward
i1s produced by the trorce of the exhaust gases elected from the rocket
by the burning mixture, ete. In a propeller, this backward det'lection
of the alr 1s produced by the propeller blades wnich, by rotating, /431
drive the air backwards, as a result of which, because of the law of
action and reaction, the thrusting force of the propeller 1s produced.
Essentially, all theorles of propellers are reduced to that which ex-
plains how, behind a running propeller, the Jet of alr ejected by 1t
1s produced. Yet, while the deflectlion of alr by a running propeller
1{s more or less clear mechanically, the backward deflection of air by
a flapping wing 1is completely uncertaln, since the wing flaps in a
direction perpendicular to the direction of motion and, consequently,
to the direction of deflection of the ailr,

Another problem, in a certaln sense, the reverse of the problem
of the development of thrust, can answer thls question. This 1s the
problem of the development of the drag of bodies past which a stream
flows. In fact, it is completely clear algebralcally that the
drag 1s negative thrust and, conversely, thrust 1is negative grae,
precisely as profit 1s negative loss and loss 1s negative profit.

Thus, we imagine that some obstacle 1s fixed 1in a stream of air or
fluid, which the stream flows around and which experlences more or less
significant pressure from thls stream. The abutments of a bridge in a
priver can be an example. The water flow presses agalnst them, We ask
ourselves what 1s occurring here and from where the pressure of the
flow comes., In Fig. 1 and 2, we have photographs of what occurs in a
stream when it flows around a barrler. We see that the smoothly 7low-
ing stream forms, at first glance, a julte disordered flow beyond the /432
body. We now have to Interpret what is occurring before us, and to
understand the mechanical meaning of this complicated flow.

If we attempted, with complete accuracy, to describe theoretically
the process occurring before us, we would not obtailn any sclentific
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Fig. 3. Phenomenon .
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,,."/’;' /;/:;Zm—: eality. Thls is those gyrating, bulent
— ///4” movements of the fluld which we 5 nd
s // s barrier and which we did not take Into v o Ol
e 't all in the theory of flow. In that, atl .
—\L fipst glance, chaotlc flow whilch we obsi
---—\{\j ol behind the body around which flow occurs, these
S — rotating, turbulent movements emerge completely

T

i{stinctly. Moreover, 1f we go a 1little away
OQ, from the body around which flow occurs, we note
6/414/ completely clearly that these vortices form a
Y very orderly conflguration beyond the body past
4@ which "low vours. As the engineers say, they
4‘ & form a double vortex street, ln which the
vortices of both sides of this street are dis-
nlaced from each other by half the distance be=
' , so that the vortices of the
as they say, in checkerboard
yrder (Filg. 5). Such vortex streets can be

tween vortices

troat T

W
bt
B
s
(&N
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¥
ybserved beyond the abutments of bridges over
rivers, if only the flow is sufficiently rapid.
‘or example, in Leclngrad, such vortex st reets

can be observed very well at the Tuchkov Bridge.

such a vortex street sometimes extends quite
far because of the viscosity of the liquid, the
PAR. 5% vortlces of the street gradually blur and,
finally, they disappear. Such stable vortex
format ions have long been the subject of systematlic, detalled study.
The most significant results were obtained by Benard and Karman. There-
fore, such streets usually are called "Benard-Karman streets."
We now have to Interpret mechanically what iirect observation pro-
vides. Mechanlies teaches us that such vortlces nly can form and dis-
appear in liqulids because of the viscosity of the liquid and that, 1n

low viscosity liquids, 1.e., not s ich as molasses, preserves, oll, etc.,
the effect of viscosity appears only ! tght at the surface of the body
around which flow occurs, within a cert ain, generally speaking, extreme-
ly thin, so called "boundary" layer. utstide it, the viscoslity 1is so
negligible that 1t can be consldered, with sufficlent accuracy, that the
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the corresponding veloclty profile has the form /436
shown in Filg. Ga. [t is completely obvious

—
—— that, by increasing the number of intermedlate
= plates, we can approximate the prof'ile of such
o —-s B a2 mechanism, composed of e¢ylinders, as close as
— ijesired to tl eloeity profiles a liquid
— in the boundary layer (4. 6). We obtaln
| t Y 1 n from this: all
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¢ i 1 tatlonal lon,
e, Ta. & 3 n tiuid 1 . turbulent. !
‘onsequently, the scheme given in Flg. ’ can be consldered the i
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play ich an
We now | er ' sult and, first and ;
present schematically pProces e X v "
simplest scheme, as fol ve {'rom the precedling id ng, 1
following: the boundary layer formed on the I iing side ot '
iround which flow eurs, from the ! inical point f view, 1 L
rles of alr cylinders or rollers, by means of which the medium flow.
past the barrier rol + these rollers, which schematlically represent
the turbulent matter of the boundary layer, roll off the ends of the
barrier at points A and B (Fig. 10), and they are carrled further by
the fluid, forming a double checkerboard vortex street in it, which
satisfiles the stabllity nditions.
The difference of the kinematic scheme
sonstructed from the actual flow of a fluild is
oo

//7/ -t primarily that solid rollers, rolling off the
2 - 2 v
; A o edges of a ! y around which flow occurs, only

") body a wh
= B e rotate themselves, while the vortices running
:<\ : s -Ff’w barrier set the ~n2{r~ mwuf ) V!ulj‘lnYA
"\}\J 5 E motion. hx;ju”l'u!ur, {f the direction of
NG . rotation of the vortices 1s taken into account,
we find that each vortex chaln glves the rtices

| i

f the other chaln a certain additional velocity

10 against the movement of the flow. Calculat
shows that this veloclity, for vortices not very

close to the barrier around which flow occurs, 1: ined by the

formula
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, n ft wing .can ngldered : ltuated in a vortex
Vs iz 3 tated v X ‘ wing, ag N.Ye, Zhukovskly
i3 1%, naity f thi yortex d nas, i the one hand, on
‘ S rties of the wing cor yion 1, on the other
d, on ‘11ght conditions. This ! { mathematically by the /440
.
"erov (%4 0),
is the vortex intensity, b 1s ¢ hord (width) of the wing, V
L 8] i, a 1 juantity which characterizes the camber of
, nd ] he angle of tack. An explanation of all these
juantities is given in ®ip. 11, According to the famous formula of
hukovskiy, this quantity now determines the magnitude of the l1lift
l’ .’.l’l'\'
where p 1s the alr density ard s 1ls the wingspan., These formulas, obe
talned purely theoretically, are in good agreement with test data, at

the small angles of attack which are used exclusively in aviation. An

example of a test and theoretlcal graph of the change in intensity of

the assoclated vortex of the wing as a function of the angle of attack
1

ls given

L1

We now apply all these formulas to the case of
1 flapping wing. In order not to complicate the
matter, we take the simplest case of a wing, a

flat, rectangular, long plate, which 1s performing
sharp osclllations upward and downward at velocity
wW. In this case, there 1s no camber and, therefore,
a=0, and the graph of change of I' has the form
indicated in Fig. 13. We consider two positions

of the flapping wing: one, when the wing 1s lowered
and the other, when the wing 1s ralsed upward /U441
(Flg. 14). When the wing descends, the velocity

f the flow around the wing 1s made up of two
velocities: velocity V, equal to the flight speed,
but In the opposite direction, and velocity w

Fig. 11. perpendlicular to 1t, directed upwards, since the
ving 13 descending. 'hus, the resulting velocity Wy
forms angle of attack 04 with the wing, greater than the angle of

attack which there would be, 1f 1t were not for the velocity of descent

of the wing. in a completely simllar manner, for the case of raising
the wing, we obtaln resulting veloclty w,, composed of veloclty V and
.
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well t ted Chaplygin postulate, or to glive up the basic theorems of
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‘haj in 3 tulate 1ls fulfilled, and change 1n ciz lation occurs,

t f he ntinuou edding of rtice 'rom the tralling edge

f the wing, the result of which Is the lormat ton of a continuously
tralling vortex sheet behind the ! ‘apping wing. However, it apparent-
ly can be consldered experimental ly proved that such a contlnuous

heet 1s not baoerved., ests in the flow channel of the hydraullcs
laboratory f Moscow State Unlversity have shown quite onvineingly
the formation of discrete vortices behind a flappling wing, which form
an inverted double vortex street, '‘hus, for substantiation of all
the preceding theory, 1t had to be shown Uhat there 1s such a mechanism

n the wing, which permits satisfactlion of h ‘haplygin postulate,
wlthout subsequently disrupting the baslc theorem: f vortex theory.
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In the pr nt case, the difference is that u, the veloclty pro-
juced by tl effect of tl vortex street, changes sign, since the
" v ) » - 2 » 1 . .
il tion of rotation Of he vortices and, consequently, the direction
)f the flow produ i by these vortices, 1s the reverse, 'he sign and
" . J } t : v 3 . = | 2 - = APlelc 3ol
rce w e in Just the same way, nce drag 1s superseded
by thrust in the present case. From this, we ybtaln the following
v 1t sion for the thrust
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All the preceding concluaions were obtalned, on the agsumption
that the vortex street developed behind a flapping wing satlafles the
stability conditions, In the general case of any street, we obl iin
more general formula

 SCRESIA U (hd aed) | EPY ToIy il el
it A\ p— 2 7 o} cO81
{ ,)h.‘ hn ’

1 ~ lflll 7-'-l

As the structure of the formula itself shows, the thrust can re-
vert to zero or even change sign, It is of interest to note that the
absence of thrust in a flapping wing occurs, only under conditions
which are far from fulfillment of the stablility conditions.

The possibility of the thrust reverting to zero in the presence of
a vortex street perhaps explalns the fact, which ls difficult to ex-
plain mechanically, that hovering in the alr without forward apeed l1s
possible with flaps of the wings, as can be observed in the flight or
a dragonfly and, for an extremely short time, of birds which, by working
the wings, can hover 1ln one place. The necessity of fulflllment of a
condition which, in any case, 1ls close to fulfillment of the stability
condition, for the development of thrust evidently explalns the fact
of hunting, well known to all, in which game : frightened by firing, in
attempting to escape from the firing, begins convulsively to flap the
wings with extreme force, but 1t does not increase flight speed by this,
from the point of view consldered here, this 1s explained by the fact
that, in this case, it departs from the "light conditions which
produce thrust,

We know present some results, As 1t turned out, the task of
determination of the thrust of a flapping wing led us to two, in a Z447
sertain sense, oppoaslite problems: the determlination of thrust and
the determination of '»tl"l,:- We now c¢an supplement somewhat those
considerations, on whilch the low theory of Raylelgh drag is
based, We saw that, in this theory, it ls assumed that, at the inter-

a moving mass of fluld slides al "

¥
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of acr : .  f ind iu ! . . ying alre
craft, th : [ ar nding alp N, accounting i1y 1
vibrations, beginning wl ' y of ] ] { o1 o
various wing vibratlion pl ' worl r A . Indl-
vidual problems of th 3 ) nsient tion ‘ luid. 'he
pracitical Ilmportance of studl n thi ' ! , he appears
ance of a very large number of works. ! tic r, in the USSR, we
have had a serles of excellent wor 1zlent ion in t} ast
decade. In a meeting of the U3SR Acad ' : ; aw months 0,
we heard an Interesting paper by assoclate " e 3 Aeademy
of Sciences, A.I. Nekrasov, in which there was lven irvey and
analysis ¢f numerous studies on the theory of wings In a nonstatlionary
flow.

This paper, which deals with the game fleld, has a very much more
modest aim, to report here the conslderatlons on which the methods of
solution of one particular problem of the theory of periodic motions
of a wing are based.

In October 1944, I had the honor of reporting to a meeting of the
general assembly ol the USSR Acudemy of Sclences some most general
physlcal consideratvions, on which the proposed theory are based. The
purpose of thils report 1s to substantlate these conslderations and the
particular conclusions to which they lead.

In modern hydromechanics, the theory of wings is a completely /451
structured part ot it, which studies smooth flow past bodles with a
multiple value potential, in which the characteristic cyclic period of
the polyvalence of the poteni ial, the magnitude of the velocity circu-
lation around the wing, has t .e basic role in the entire theory. Deter-
mination of the circulation values 1s based on the experlmental assump-
tion that the sharp tralling edge of a wing 1s the stream sheddling line
in smooth flow past the wing. This assumption, the so called Chaplyglin-
Zhukovskiy postulate, 1s the basls of the entire modern theory of wings.
Huwever, the physlcal essence of thils postulate 1s not now completely
2lear., It can be thought that this postulate 1s an 1lndirect allowance :
for the effect of viscoslity in modern theory of wings, constructed on '
the basis of the theory of an ideal, 1l.e., completely devold of viscosity,
medium.

As cal~ulatlions whisper, the magnitude of the circulation, through
which the forces acting on the wing are expressed, depends partly on
wing shape, partly on the velocity of the flow past the wing and on the
orientatlion of the wing relative to the flow (angle of attack). An
extremely important consequence for the entire theory .Qf wings n
nonstationary flow 1s obtained from this. With change 1n flow veloclty

1
Report ta meeting of Engineering Sclences Section, USSR Academy of
Selences, 11=12 January 1946, Published in Izv., AN SSSR, Otd. tekhn.

nauk 5, (1946) (lst ed.).
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‘ nitude, a vortex

he ‘ virculation egual

{ ; Lgn T : iround the wing.
- i 1 whicl nvelot
{ from 1§ ‘ , 48 the theory of
1 rmation of a vortex
: 1 1ly 3 11 , an ldeal fluid, 1l.e., /452
: v vl 1 ‘ot ; ly, fulfillment of the e
r - ia | sible, only by wance for the viscosity of
: nt, ‘ AR \lent meang of theoretical
! ity 1 ! { theory of boundary layers.
. Int view of 1 ry, departing vortlces are the br K-
f rt 1t | y wyer., Such departing vortices can be
rly in. a t. or example, there are excellent
Llon ! , which show the 1 rmation of departing vortices
. inning of movement of the wing (the so called initial vortex).
A consequence of all the 1« \ing presented above is that, in an
tdeal flutd, in which viscosity develops n whers, present day clrcula-
tion theory of wings does not occur, In it, in smooth flow past a
{ 1y, W { in 1 thing but the D'Alembert ;"::‘_‘\-,l 3 e From the 1‘01“‘. of
lew of el : {cal concepts, | id helium 13 such an ideal fluid.
v t) ! { f view he ol i loned hi re, } i \re no
1 V o T'op in-1liquid helium, » flow 1 noncireulatory and the
'*Aleml t adox ] yE 1y tisfied, A mpletely natural th
1t would I X1 wely 1nt sting t verify the concluslons by test,
'he preceding conslderatlons lead to the concluslon that, with
sontinuous change in flight speed or angle of attack, vortices are
shed continuously from the wing. Thesze vortices are then carrled away
by the flow and form a continuous vortex sheet behind the wing [1].
Since the vortices, continuously {1stributed over the surface, produce
an inerease in velocity of the flow, on the one hand, and a decrease,
n the other, this surface 1s a velocity discontinulty surface. JSuch
veloclty discontinulty surtaces are mentioned in all studlies on motion
f a wing in a nonstatlionary flow with changing clirculation.
The presenc ' turbulent velocity discontinulty surfaces cre 1tes
ntional difficulties for the entire theory of a wing in nonstatlon-
iry flow @ ntlees which form it affect the wing and each other.
rhe effect of these vortices on each her generally results in breake
iown ol Lh ! ’ nee 1t can be shown thai such vorcex formations
r 14F ble. reakdown of a vortex sheet results in the formatica
of some system of discret: rtices. ‘he ef'fect of the vortices ©n the /453
rtices on the wing is reduced to the vortices changing the veloclity ST
iround the wing, whilct plicates ulation f the forces acting on
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flow, noather aasumptlion which slime
1{'] neahlem has Lo he introduced, Usually, t ey implifica=-
£, tl : ieulties polinted it hove drop out i, 1In HHH—
k] , tion, e e 1l » Ins igtant, d y a sultable
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! v ) i with Chen, espite . very great theoretlical
Y ] 1 search, 1t must 1 : red that "--;,' are of a
1te 1y r f course, shange In el 'Alx, is the
istic fact 1ln nol ytionar tion and, by l!'»y; ing
lon AR i A i ly " oW ! by with the bath
" ' hlen
nd, eimplifylng mptiong can ! de, relative to the forn
ting vortex sheet, ‘hus, for example, 1n wing vibration
. the 11 1tuds the vibration, it 1is assumed

hat 1 : X ! t 15 a plane. 3 :uuuwptlwn, not very convincing

] it with not ry flat waves, 1s comple tely im-
] in ti ¥ ff 1 plitude vibrations, which we have 1n

' ‘ pl it
the (lapping wing As a result of all this, 1n the case

f a nor o1 / l1ow around a wing with unchanged circulation, in
i -1 1 ticn we have almost exclusively results which

oncern the case of infinitely small oselllations, which limlts the

problem extre n_'lv.

I would like to emphaslze here that the difficulties mentloned
above are not of a mathematical, but of a puxely physical nature. The
matter conslsts of uncertalngy of the physlcal scheme itsell, which
could ?ﬂpxiline the processes occurring In the flapping of thu wing, and

the derlciency of this physlcal Soheme cannot be replaced by any dif-
ferential or integral nquxtluns or other mathematical means, however
omplex they might be.

The theory which I am attempting to set forth here is based on a /454

certain physical scheme of the flapping wing phenomenon, which is

sompletely different from that indicated above. In thils case, we
&&uLPlCt surselves to the case of a flapping wilng somewhat artificlally,
but we transmit the basle physical scheme of the phenomenon more dls-
tinctly. We assume that the velocity of rise of the wing w and the
velocity of 1lts descent -w remain constant 1x.lnb raising and lowering.
Subsequently, 1t 1s easy to determine LUJT the same scheme, wilthout any
change, can be the basls of a theory of .4pw1nb wings, in the general
case, when w changes by any rule,

The physical hypothesls which 1ls the basls of the present theory
1 ’ 1

1s as "ollows: n flaps of a wing, a continuous vortex mi'~L _does nut

' e e TR P “""_'—‘.“ o == e
separate from 1t but, at [ower points of the osc [1lation 18,
vortices are shed from Ul double vortex ‘,H._x.w ot
the Benard-Rarman street g T

First and foremost, we must Chaplygin-Zhukovskly
postulate and the Thomson theorem can be satisfied in such a physical
scheme. The fact 13 that the rortices of the street shed {rom the wing
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i i s which 5 juire v=0, 1.e., the absence
i Ty ',

: q. (1) wa, the vortlc yf the boundary layer do not them-
| ] iu irculation, nee they are included by pairs with
’ { y + nd -c¢, but ! y af 1 ¢irculation indirectly, be-

? ent ff the Chaplygin-Zhukovskliy postulate, since
afi'ect the pogition f the shedding point.
1. (2) shows that, with change of V and 6, circulation I' can
maln natant, 1f the change of V and 6 are compensated by the cor-

niing change of o, l.e.,, the vorticlity of the boundary layer,

An equation analogous to (2) can be written, for the case when we
have one or more departing vortlces around the wing. Analogous reason-
Ing leads us to the conclusion that the effect of the departing vortex
on the clrculation can be compensated by corresponding change of the
vorticity of the boundary layer, so that, on the one hand, the '
haplygin-Zhukovskly postulate will be fulfllled (by virtue of the
fulfillment of Eq. (2)) and, on the other hand, the Thomson theorem
will be fulfilled (by virtue of the constancy of I')., It 1s evident
that such compensation of the change in flow by a change in the boundary
layer 1s possible, only until these changes cause breakdown of the
boundary layer.

Thus, the hypothesls on which the theory under consideration 1s
based conslists of the followlng. In the transition of the wing from
the upper point of the osclllatlon to the lower and back, the effect
of the departing vortices on Lhe position of the shedding point is
compensated, with constant I'y; by the corresponding change in structure
of the boundary layer, so that the Chaplygin-Zhukovskiy postulate 1is
fulfilled. In this case, the correspondling change of the boundary |
layer 1s quite small, so that 1t does not cause 1ts breakdown. At the
extreme points of the osclllation, because of the abrupt change of
flow past condltlons (angle of attack), such compensation becomes im-
and the boundary layer breaks down, shedding the departing

N
¥ —
=

posslble,

vortices.

From this polnt of view, in oscillations of the wing, the boundary
layer does not break down contlinuously, shedding more and more new
vortices and formlng a vortex sheet, Boundary layer breakdown occurs

upper and lower points. 1ln the

by Individual drops, quanta, at the
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'bus, a double vortex street is generated benind the flapping wing,
with the iirection t rotation of the vortlces shown in Fig. 4. The
wiath of the street can be consldered to equal the amplitude of the

oscillations of the wing, because of the hypothesls made above,

t the period of osclllation of /459
A the wing be T, Let be the veloclit
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{" 1dded by the vortices of the street

o e - far from the wing by all the other

yrtices of the street. Then, far from
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= (V4+u)T, &3,
h wl (6)

Since it 1s known from vortex theory that
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in the present case, by substituting the value of y, we have

"
\ { \
o Vs i h9:) nd b)), we ¥ Ve
W , N
h i !
4 : / A | w ( ))
-t i I 5 sk Con %
Y i
v‘,
" e e = e -



Oy o | . + A ’ L]

.- L 4 "9

d ronodling 4 s '

| . ne =] ! ' ! ! -
1 ¥ Y ¢ on § ‘ - ' ] " N ! . '
! n ! irag Lved by sl S =
. i . : 4 5 » " ¢ B AR vt i * ’ ¥ B 1 .
. L LR * (W S . B .
leterml th rireulation - the deg ting vortlices.

} phystical } ’ ! by esh y \ imed here |} 1 the 1 1OW =
inpg advantapge: ver the me of tl ntinuous vortex sheet (velocity
iiscontinulity irf

"irst, ti sufficiently d loped rtex streets permits

q : Lo 4 ' P ' . o $ . L A H
study of n juestion Ll b1 Yy retical studles
! 1 to the nelusion that he stabllity nditions glven by Karman corre-
spond t vortex formations which, in any case, are more stable than all
ther v tex conflguratlion: f a similar type. Numerous experimental
i $ o | } | - y v t y ’ oo * 1 v | t vyor ¥
1 1 CO! ! ] 1ard ¢ o e Ol ictually existing v
ystems, hese data gave gul xacHt Iy ent with the theory of Karman.
'ne exlstenc ) f rtex streets behind a flapping wing was confirmed
rnorty ntally in the ihoratori e yf* Moscow Stat Universlity.

) nd, the scheme obtained here obviously 1s applicable to dif-

{' £t :l' J PDEeS L ’ rnge ! ‘ ‘: ‘l‘ ‘t’ v‘;, ) 1 g 11 the V € :',v’ ‘- 1w "‘1. LW "! ! ] 11 t ns
ran take diverse forms.

hird, this thod permits complet investigation of the dynamic
aspect of the problem: ietermination of the forces whlch act on the
flapping wing. We now proceed to this problem,
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As is known, in the theory of turbulent drag, a similar problem
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where X, Y are-the components of the force acting on the wing and S 1s
the area enclosed between outline L and the wing proflile, In this case,
the derivative with respect to t in the second part is the substantial
derivative, since 1t does not concern the geometric outline, but the

mass of fluld enclosed in it. With thls taken into account and by notling
that an amount of fluld p(udy-vdx)dt flows through an element of outline
L in time dt, we reduce the equations to the form

Xt — [pdyar
L

Y dt 4 f/'t/.\' dt

. 4/ff;.u dxdy -t fl udy —vdx) .
8 2

cd [ [owdxdy + dt [y
‘,{;J“\ t,:fl:\

v dx) s,

ronvent.ional transformations and integration with
period, the followlng basic equation is obtalned
s -
o (dw\t . P o
{Yo-+- LX) T 3 j dt ‘ (/) il ‘ [2)o(dx —idy)
i

and, from this, after

[ :
respect to t within the

T
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::l‘l l .| "“ dx 0!'\'\ N
8 pe (11)
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Prom the point of view of the formula derlv | above, in the present

case, we obtaln the following.

of the vortex

If we take mobile outline L, wing with the loclity
street, and the dimenslions of the out line are sufficlently large, with
respect to these axes, the middle term of formula (11) 1s not 1ncluded,

state

quation must be used in the form for steady

e 1
vhne

$.08;

since
flow,

Lagrange

b ]
a2 -
P 9 C
instead of
07 , p\V?
Y ' T - Pos

from which the ntaining ¢ 1 iropped.
Thus, the formula takes the form
v
d "/ ’ w1
(Yot t X T 5 |t ) (32) & [‘ Vs ]
I.‘ 5 0
“_—A—l'.‘;._..-__ o -



econd term 1 / x axl ' 1ed
by the pair of vortices, { I e ' ng !

tions, we obtain the Karman o

i y ’ h
] PR ~u,h) bV —uy) 5,
or
-~
N =51 (V — 2u,) T4 Sar
'he Karman formula is derived in 2 pr .y"i'_v“«‘.-l.-,l the same way l)y
Karman himself, in the Fuchs-liopf monograph (7] and in Golubey [8).

The danger of this kind of reasoning, not reinforced by detailed
inalysls of Eq. (11), 1s clear from the following erroneous reasoning
of N.Ye. Zhukovskly [2]. Since 1t appears at first glance that the
change in momentum in the period within the control space of fluid 1is

securely connected with the flow past the body, it is reduced to the
leparture of two vortices from it, which carry away momentum equal to
PYh, which corresponds to a change in momentum equal to

Zhukovskly assumes the drag equal to the resulting expression. i.e.
[+ > 4 » b

N= oy (V —uy) ;

instead of formula (13). The error of such reasoning ls that the effect

of additlonal velocity lo In the band of the street, directed against

the flow, which produces an additional escape of fluid at the sides of
the control rectangle parallel to the direction of the flow, with the
corresponding crange in momentum, is not taken into account.

An extremely thorough analysis of the phencmena which occur here
was glven in the course of N.Ye. Kochin and N.V. Roze [3) where, by
palnstaking study of the change 1in momentum, expression of the drag (

glven above, was obtailned., Here, the authors did not use any general
formulas similar to Eq. (11).
The erroneous conclusion of N.Ye. shukovskly presented above shows

the danger of reasonlng simlilar to the reasoning of Karman presented

above, The unrellabllity of the resulting conclusions ls elear, 1f only
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L
We decide on calculation ff Lhe ond intepral., By an extri
romplicated and qonfusing calculatlion, Synge obtalns th 1lue of
for-it., wever, wlthout ny leculations, 1t 1 easy to show that
integral equals 2zero,
Actually, let
g3 : . ¢ !
)] syt = T) =3 (00 0l fix, v 1) (14)
R rorm a
From this, O¥lx. vl LTy iz, v, ) of
oy oy ox'
but, be 1se of tl periodicity of the flow at point (x, y), with
roordinates,
uix, v, t I8 ui(x, v, 1) 0
or bolx, v. 1 I dLx. ¥ 1) 0
oy o 2
pr

moving




't « from the resgoning of Synge that

nLiy, ! i
(Yot E X} 5 |t 1gz) 12
f.e,, In periodie motlion, on Ui iwwerage, the Chaplyglia-Blaslus thcorem
ing valid during Ut erlod of caclllation and, therefore, in a
per calculation whleh repeats the calculation of Synge, instead
opmula (13), we obtain 1ts first term, =0 that the erroneous rea-
ning of  Synge reverses the error of Zhukovskiy, in a certaln sense. }

It 1s highly likely that the error of Synge, besides 1lncorrect

calceculation of the integral [hLﬁdx idy), further, 1s the incorrect /467
. 'JH‘ : r : " 7 :

agsumpt ion that ‘ d:dxdy 0, ags a consequence of which, the
i "

momentum removed by the palr of vortlzes leaving the control rectangle
is not taken into account.

However, with a very small change 1n the method used by Synge,
it 15 easy to obtain the formula for turbulent drag and the force in the
case of a flapping wing.

In order to avold the difficulties lnvolved with allowing for the
effect on the value of the integral of the singular points which pass
through the control surface in perlod T, it is sufficient to use, not a
rixed control rectangle, but one moving together with the vortex street,

. = ._'7
Here, as 1t turns out, calculation of the Integral Jfrk(mc—l¢w , which
does not equal zero in this case, 1s extremely simplified. Thus, we
the use of a caleulation whiech, In a certaln sense, connects
Synge and the method used by N.Ve. Koechin and N,.V. Roze,

<
If a rectangle is taken, with sides PHg/‘ in the directlion of
rlow and 2H perpendiecular to 1t, calculation glves the followlng values

for the integrals

obtain
the method of



L |
ind, from this, by substltution in baslc £q. :
' (A h=
Yo+ 1 Xa tal Erik th j |
h :
I () ti) y ; ‘( .)
Il
by proceeding to ine l1imit as He=», we oObtailn
= 8 LA | \ > 'I‘
Va +iXo Vi '[.‘Ju‘ I Tty
from which R : \
v : r ),
X . I”‘l I‘ I" r.)}
Y, vi.
v 1y | + 101
We note that, in the ai nce of imary N
body past which flow urs
Ry T 1
f[ ¢lo (dx — tdy)- 0
L
because of the juat lon
e (x ;,', !{ ~-n' dix v N
dy : oy '
atisfled with fixed 1, con wently,
e (X, Yoo ! T dylxy vy )
¥ ox : ix
M oy FLE A’ 14),
with moving axes. his is ¢onsis 1t W N !
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5 & 5 1, ! r vortex scl me,
| , W : lution of th
. ' truction of an
» |
, .
v 1 1 ! n is, f ¥, 4 highly pare /478
t ' . i 1 current past a body,
B, whi ) i e attention of
i ' : mbert, the founders O
N . 1t ndous number of attempts to
v ! iestion »es with which a flow past a body acts
1t, 1 ' v 3t a body ls in a completely rudimentary
ite. ne ¢ ! atudles of Stokes on the flow of a viscous
id : il juently supplemented by zeyen, and the
i - '.;'.'~ »‘1‘ A}‘ T '::Li | 'Al mbert n '\f.‘(" \?.h :'1-‘w \I. an 1"!‘,'11
fluld past a body, which resulted in the famous Euler<D'Alembert
paradox, we know practlical , eneral case of flow
past a body. 'here 1s no d e reasc or this 1s that we
have no clear concept of t.ru » zone, in which the
effect of features A.H' th lop because of the

presence in 1t f a bod « Any construction

nastruction of some

of a theory of flow past

physical scheme, which approximately represents the structure of the
wake zone., In essence, we now have only two attempts to represent the

structure of the wake zone,

in general, accounting for the wake zone can be rejected,

»
and it can be consldered that it does not exist and that there is smooth

flow past. This assumption leads to a clearly expressed contradiction
to test data, to the Euler-D'Alembert paradox. Second, 1t can be con-

l
o]
sidered that the wake zone 1s a reglon filled with a medium, which is
:
1

ffixed with respect to the body past which flow occurs, to whlch it 1is
adjacent, 'his hypothesls leads to a theory of flow, which has been
julte well developed for th rase of plane parallel flow and is complete-
ly undeveloped for the case of three dimensional flow. It permits
calculation of the drag, but the resulting valu ff the drag proves to

! pproximately half that actually observed. esldes, such a scheme
vidently 1s compl ly inapplicab to the case of flow past wing

haped g"»:', ) t 1 11 ! { i3 1ICK, 1 1 the theory 1
s s S SR e = -

Paper at novskly tures, )47, dedicated t 100th birthday of
N.Ye. Zhukovskly. \blished in ch, zap. MGU, i 152, 1y 351952
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I We show : ! I I =1
; the formulas we | P - fliphts
The rolliowing rformulas o ' = ) f° ng wing

were derlived in my work:

‘ Lift f-nyq;

X v = 0,95,V cos :(sln". : -'::m;r‘.)(l + 1.2 ;,)

where b 1s the chord of the wing, w is the rate of rilgse and descent,

049,

“w .
- J + 2 » Ge

in which 8, and 6, are the angle of attack In lowering and ralsing the
[

wing, respectively, and ¥ 1s the angle which characterlzes the camber

of the wing.

We see from these formulas that, in the absence of forward veloc- /481
ity, 1.e., with V=0, the 1lift reveris to zero (¥Y=0), and the thrust
retalns a value difterent from zero,

X L E3shiod cos s cos 3,

(1)

Congsequently, it is natural to locok for an explanation of the de-
velopment of lift in the absence of forward velcoecity in flying birds
or insects converting thrust into 1lift, by means of change of the posi-
tion ot the body in space or by means of change iln the nature of move-
ment of the wings.

From the theory of flapping wings, we have the following expression
for circulation in lowcring and ralsing a wing

I’ sh ) V* o wsin ( 3 0, + arcty " )
and
l'_, ::"‘ V2= _v‘sm( ', f-'l: arcty ;').

whence, t'rom the assumption that V=0 and that the wing 1ls symmetrical
(i.e., u=0), we obtain the followlng expressions for circulation
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"l .x x,
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and, therefore,

"
I

1% mhrsin a.

(4)
(5)

mhe st 1,

a result, for the clrculation of the vortices of the departing
we obtalin the following expressions:
for the vortices of the upper band
T = =—(l' V') ia 2=b sin 2 (6)
and for the vortices of the lower band
" N 2uhosin g, (6*)
now can calculate t} thrust and all the elements which char-
e tne performance of a flapping wing in the condition V=0
nsideration here
nce we find from the formulas presented that,
f e "
3 : o 0
5 :
" ! : y ( . 7)
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(12)

el e mCl 3 (13) :

By using the expressions found, an expresslon for 1ift through

the number of oscillations N can be found, Actually, fron (13), we have

sz

R

th’

Nb:«-0,7Nbsin 2 (14)

and, by substituting the expression found in relationship (7), we obtain

(15)

both sldes of Egq. (15) are multiplled by wing span L and 1t 1is
' ’ ] it area, w¢ obtaln

and, from thais
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generation o ; ) 11
the unsteady mol b ' ' A
ping wing, in pw-‘f r,
of thrust remalns far f

If all kinds of mect -':""11| J ] , whi
lead to noething, of the scraping " . L !
the y'l,'“;;w!' » of a wing are disregard d, : . ! inf
view can be speclfled,

In a number of works, the generatlion of thrust : i
is 'H,.t.I'waN‘i to the effect of suction forces, which f 1 &t 1 lead-

] ing edge of thin wlngs. As 1s known, attention was drawn toc ti lev -
n&wf of such forces Iin the work of N,Ye. Zhukovskiy [1]. In part! ' .
N.Ye, Zhukovskly attempted to explain the levelopment of frontal
irag in thls way. Thils kind of consideratlion is extremely dubious

as appllied to wings, the profiies of which have a more or less rounded
hape at the leadlng edge, and all the profiles normally used in avia-
tion and bird wing profiles are such. Subsequent] ¥s :' shall see that,
] 'rom the point of view of general mechanical consl¢ lcr' lons, the genera-
lon of suction 1s essent 1'111;.’ a manifestation of the 1«:\/«:10{‘”10“1, of
:irculation around the profile, and it follows from tnls that the effect
of such suction on the gwu‘r4tion of thrust only can be attributed to
the change of circulation during the flapping of a wing and the shed-
ding of vortices bvhlnd the wing which is connected with 1it.

’ Another point of view of the generation of thrust 1s connected /492
with the concept of the formation of a veloclty discontinuity line ’
behind a flapping wing, with current lines around it distributed in a
wave like manner [13]. The reasons for introduction of velocity dis-
ontlnulty lines behind a wing are associated with the difficulties,
in the case of a flapping wing with circulation changing during flap-
ping, of tying in the Thomson ?h~u"~“ on the preservation of circula-
tion, on the one hand, and the .Chaplygin-Zhukovskly postulate on the
shedding of flow from a sharp Lrailln& edge, on the other hand. How=-
ever, the introductlon of such discontinuity surfaces into the theory
of a flapping wing complicates matters extremely. To a certaln extent ,
the explanation of this 1s that small oscillations of a wing are
considered almos <'L:‘1 ’'ely in the theorles. Moreover, the adoption
f small wnclllwhtvu; f a wing, which is fully adequate in vibration
theory, is completely unsuit e for the general theory of a flapping
wing. Besldes, the physicul scheme itself 1is extremely questionable,
slnce such veloclty discontinuity surfaces are unstable ana y evidently,
they never actually are observed. A sysiem of vortices, which is sim-
liar to the Karman streets, 1s observed behind a flapping wing in a test.
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| \ 0] 4 ‘ valnelde ilt) l-"\‘v‘1!v‘ !1.y
tion of the [(ront irag, 1f igna of y and u
9D
) 1 Lo b ted since, {rom the point of
1t work wa 111t up, il fference of thrust
' y the vorticesg of 1 't 1s only a change /539
rt i ieh form treet, and the change of
] f U { with this.
x atreet tabl Ly 1ition:
h :
7 = 0,281 nd v« 1} Sa,,
i n e 2 s WE ybhtain the thrust in the form

i (9)

to the known Karman formula for drag.

of the problem under consideratlon, the magnitude of

ssed through the data which defines the shape

Since, according to formula (6), Section 4,

(10)

2=hcos 3 |sin AV 4 cosiw)

and, according to formula (9), Sectlon b,

. A he 2 f
Uy :ms 3[sin 2V ¢ cossw]| II th hl~. (11)

by substituting these values 1ln formula (4), we obtain

o 2uubcos 3 (Vsind - cos dw) W

b - .
* \n\?(\lll':\ - L8 L&)

L

or
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{11ty conditions of street, from /540

-[\ :”.3‘,‘: ’ ( \)] (14)

ondition, from Eq. (12),

tion of the stal Lty
’
4
’
»
- 0).562
1, \’ "
e .
h . . s W
0, 50008 3 | sin % O |

finally, from (14), we have

X u,wl;,m.g\.n“(\.‘,.a L cosd ‘;)[1 1,2 ‘;”] (15)

note that, from Eq. (10),

m

o return to the general case, we

Section 4 5

w o R
b e e V '- 7/ fete S
. 2 '; Ihl th hl'.]nn:{wn h4cosh t:',] ( l())

“"L‘vi‘!‘k‘ll (1»‘)’ we obtain

ind, by substituting this value 1n expz:
\' =obV2cos 3 {sind -4 cosd :"',) X
L \ i \
a1 AT
X“ ! ! ) w al I 'l___ﬂ___ :
Ar . Az \\' "Iv,hzlh-‘. Z (1}
- 277 th 5 )

We note that, in Eq. (15),
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In all these expressions, the necesslty of sat '.;:1‘:1~l't; lon of re-
lationship (16) should be reme mbered. The latter »lationship, by

setting

van be rewritten in the form
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We conglder the expression
: M=o 5% M-~
(M i [\""liu' ll (19)
(o » a8
N TR I B leml JI
M i
Since
w h w B\ ; a B
b L el D ) Lo
@m—1n5—2tm—n—eu-n(§-27)+27m
from condition (18), 1t follows that, with 2M=1>0, f(M)>0 and, con-
h= o "
sequently, X <0, l.e., with M= lthz >+ , we have the thrust. This
O -
condition 1s satlisfled at %>0.2N5. Thus, with %>0.?h6, we have the

thrust with any w/V ratio
se see that Xo=0 with

Since condition (18)
satisfies condition (18),

Since

with

which satisfles condition (18). From Eq. (19),
w o h M1 k1M
Vv 21 “1i-=-2M" K

thlis equatlion has a solutlon whilch
In thls case,

oceurs,

only when 2M<1.

(20)
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\r., r ir from
i ction of
, W ‘ with any
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i “ 1 0
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A y W Y : = )
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' \ b § 2M -1
‘ iction Effect
The theorem of pulsed force precisely
. . T C ' speclfles the mechanlism of development of
\ the forces which act on a body submerged
‘ o — - in a4 fluid. From this point of vliew, the
/’ e I at 1 nn " Y*he thimicet et " #
eneration of e thrust of a flapping

L
wing, as was stated above, has the follow-
e o Ing simple mechanical meaning. The in-
verted double vortex street formed behind
Fig. 18. a flapping wing (Fig. 138) produces addie-
onal veloclity in the directlion of the

windstream. Thils velocity and the momentum along the flow connected

with It are the result of the applicatlion of iLhe force applied to the

flulid In the direction of the flow veloclty and, consequently, equal

/544

> It in magnitude, but directe to the wlndstream veloecity,
) the force -applied to the flapp This 1s the thrust. In
whatever manner we attempt to development of thrust, in any
ase, according to the theorem imj this force should induce
the backward deflectlion of the mass of fluld, From this point of view,
we attempt t explaln the essence of the effect of the 80 called "suc-
tion" forces on the wing.

e all the considerations on the method of accounting for
iet.ion ces of N.Ye. Zhukovskly, in whlch we restrict ocurselves to
the case of a f'lat plate [7]. We imagine a flow past a plate (Fig. 19),
ich tha e Lrallin e B the point the flow leaves the plate.
In thls case, a physlically impogsible inflnite velocity ls produced
around the leadlng edge. [he 1dea of Zhukovskiy 1s that a vortex of




such Inte: £y 13 I ] i very close the leading cdpe, that at

point A 1 I, veloclity 18 f'Inlte, and tre air (] puot the wing
flows | L the plate and a certaln turbulent rceglon around the leading
1L i g lowa ron +5 ul vhe presasurce of the llow 18t the /545
! igts of ti pressure on the air rfilled turbulent region,
which aug nts the wing, and of the pressure on the wing itself.
" l : L g { ¢! i ISur e
)
| v ) We represent, by means of the function
. o
J /-//‘/ TREN D (1)
- -9 e /'/,- ;
- » -~
<f‘d< - ";"“.E
e o N - . .
N )/ 7 [ g the surface portion of circle |z|=R on
7ol AN the gurface of the plate, In this case,
7 i A
ﬁ;if ‘ radlus R of the elrcle will equal b/4,
' where b 12 the width (chord) of the plate.
.-
'he flow past a round cylinder 1is
lven by tt plex potential
u ‘-‘. i (: ‘. l\-:-v-a) " ‘li'n:. (2)
From Eq. (1) and (2), for the complex velocity of the flow past
the plate, we find the espression
' W b —= 03
“/. =3 (\OS’) "'/- - -\m’)), (3)
In which, for the top surface of the plate, the square root 1s in-
cluded with a plus sign and, for the lower surface, wlth a minus sign.
The pressure on the plate from below (p“) and from the top (pB)ls
fXpressaed by the formulas
Pe=C—L Vi,
B st
e C - '.;,' Vun
and, from thls, the pressure directed upward normal to the surface of
the plate,
Ape o p ) Ve~V = L oot sing pf £=22
I "l Iu 0 " " 2 &y LORYS sinf) '4 g 1’-:'
and, therefore, the entire pressure of the flow on the plate Pl is
directed normal and upward, and it is
115
- -t




It is easy to ify that for ' i 1 i =b/4 .

We now calculate force P. pplied Pl ey , whleh

point close to the leading edge of th
lstle functlon of flow past a round eylinder,

W = Ve h(_- 4 f";"'.") .," In 2 4
+ ;.{,[fn(: FRO A4 —In (24 ’n',‘: 7)) o

where r 1s the primary clrculation around the wing and J is the c¢irculae
tion of the vortex at poilnt -R(1l+e) around the leading edge, so that

e 18 a small quantity,

From (5), we have

aw ., . Re¥i r i
dz ot & M(l- -:’”-)*_‘.?nl”;—f.

o b | |
+ 55 [t — —
e+ R+ RrRo1
X (6)

For the velocity around the leading and trailling edges of the
wing to be finite at the plate, 1t 1s necessary that, with z-+Rgﬁ
- ag

revert to zero. From thls, we have the equation

Mj —
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N—
i

=

Ve=di¢y — ooty __ T
( o ik

s 1| — o2

: (l )* "l/\' o < f
)
iR\ vt

| —
-5
-
S
.
=
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from which

J= — 4=VR sin Y ;f_','c

L { B

or, approxlmately, according to the smallness of e

J == — 47V Rz sin 0,

\4

We now calculate the velocity of the flow along the axis of
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lealgnated by o, W ave

o o 72) /(@) (s )7 (@)

) /
and

which, accordlng to the
fform

In(i—n):-In(z—a) tInz" (@) 1
2~ay”a) ,
T Y@

From this, with the

ortex deslgnated u and v, we have

d Ty | . R I
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de z Qad
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-p___l’ ] ":"‘)—"' 2ni (- - ) ( v o) -
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Otherwise,

smallness of

I
Ve 'u(] . ,._u) -

2R’
and, on the strength of Eq. (7),
Ve bi(| — o 3 ey | ‘_1: ‘
IR )97 S

romponents of the veloclty
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g, can further be written in the
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aniie 2 budlis® f-Rd
) 1lculate force P., we now apply ti hukovskly theorem to the
f fluld enveloped by the flow around the leading edge. Then,
for forc , we obtain the xpression
) ?
2 ot
P,=pv!J| R {zuRV? sin? 0, (10)
L4 0
We obtain the directlion of this force from the Zhukovskly theorem,
18 shown 1in Fig. 20,
v In summarizing everything stated above, force
i‘ ts on the plate, Its value 1s determlned
by ne ‘ormula
p: '\'J :
= | y [ | > i & .y " R re &t
- i PV P} P == AzaRV? sin 0 == zpbV?sin ¥,
|
Flg. 20, ind thi rce is directed perpendlcular to
. ,‘1T'\‘ )
)
lI. o
o a teh and gs=l LI R. 2L ). !
jam B ‘ (Pig. 21) ‘,
L3 lows f1 hat the force determined from the Zhukovskly ‘549 ‘
y "I ONTY oY, W 1o} i t \ me ¥ N , ym the Char 4.'.‘.'1!‘_':.;‘,_.1‘-“., OV 3 |
11a) in ies the rtlon and, therefore, to take account of the suc- i
tion for a lapping wing, 1 is sufficient only to take account of the ;




L A

laged on t 1 and . |
| - P B account of the effect i1 lcen, the
followling very rough ! " 1 Loud f the
thrust can be given. We conslder a plate, tad , without
flapping, the angle of attack equals 4., Then, ! wering the pl R
the angle of attack 1s U*urctg&. From this, the forc ieting on
plate, accordlng to the Zhukovskly theorem, equals
"',"(V" 1 L'-")f’bi'l("l + arciy };‘:).
Since this is force P perpendicular to the resulting veloclity 1t

has component R1 directed forward. This !s the thrust (Flg. 22). It

is determined by the formula

Ry v ma(V? :.','.',l;:.m('l + arcly ‘::)smam;.: -'g,.,

In exactly the same way, in ralsing
the wing, we obtain the force directed
backward

w0

R, - mp(V? - w?) bsin (': arcty ';/.)qn arcig ';

Since forces Rl and R, act during the /550

Fig. 22. same time T/2, thelr effect in the genera-
tion of impulse and the momentum connected
with 1t is determined by the formula

Ry ! 1, a » '
R ! g 4 (V4w )"(wnl arcte w):c();f}.

, [P e 4

R: w.bwcosh.

(11)

By comparing R, calculated by formula (11), with the mean thrust
found above

2N =
X . ,—:,Iv;;'\'(u"j:"‘” ! (~- o :I ," 1 ).
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ince %20 this difference 1s positive with M>1, which, as we have
S ours witd »0,.38, 1.e., extremely far fr satisfaction of the
1ty conditlion, when f“' i1, s, formula (11) gives an over=
ited thrust, which 13 understandable, since the departing vortices, /551
it 13 easy to see, decrease the change in the wash,
) lon the momentum of the fluld passing through the
rontro urface | mits avoldance of thogse difficulties which arise
in accounting for the direct effect of the departing vortices on the
| 4 . w4
velocity around the wing.

12, Flight Conditions

We consider the center of gravity of an alrcraft with a flapping
wing, and we clarify the question, as to the conditlons under which
this center of gravity returns to the same altitude above the earth
at the end of the oscillation perlod T.

The weight of the aircraft mg acts on the center of gravity, where
m is the mass of the ailrcraft directed downward and, besldes, the 1lift
caused by the flapping of the wing directed upward, which changes 1ts
magnitude from Pl=mJL, corresponding to lowering the wing, to P2-mJ2,

which corresponds to ralsing the wing. For flight 1n the case we are
considering, it 1s necessary that mJl>mg>mJ2.

fnitially, we consideyr those flight conditions, when the center of
gravity 1s ralsed upward from the lowest point. First, thils corresponds
to lowering the wing and, second, to a certain interval of time, when
the wing is rising upward, but the center of gravity, because of lnertila,
still continues to move upward.

With the x axis directed vertlcally upward for the first interval
of time, we obtaln the equatlon of motlion in the form

d*
;l": jl_—g’ (l)

from which, on consideration that x =0 and velocity vO-O a2t the lowest

point, for this first interval of time, we obtain
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[,et L }
gravit) urs under £-3 B L
interval T,, the rise of the n
1
,ll ‘/'| o)
ind the vel ""J' is
" ‘/I k,'/_
. ey nloe 1 y [
iring that interval of time in which the wing riszes, by lnertla,
€ e ncer { ivity so gtill ntinues to . ipward, the equa-
tion of motion of the center of gravity 1s
¥ (1)
(2— /1,
e il e
)
rea
} ' N e . ) Y =2 =5 1. vwom 1B ) p "
with initial values v = _fl-,‘,‘tl ind h. J1=8)—=. ¥ m Eq. (3) and the
o J

initial data, we obtain

s —(@—JM+U— 0T,

] i r
A (A' .ll.'\", + ‘,/‘ g) rt’ T (/1 o L') ." .

—

At the highest polnt of the rise of the center of gravity, we obtaln

@I+ (fy = ) Ty e 0

.

and, by designating the duratlon of thls second condition of rising of
the center ol gravity by obtain

(l.’ we

" ’
o=t (4)

and, for the corresponding rire H, during the entire raising condition,




we coni
rravity.,

B £ 43 .‘~‘u. wnaen .': !. ; QCccurs
From Eq. (3) and initial conditions vsH /=0, f - : 1
ll

of this second condition 7. we have

(g Jj)t

2
Xs (‘: j.,) ‘J *"Il'

Consequently, at time T,, we have

V) o e (=~ T,
: o T
g =—(8—)) 7+ H,

Subsequently, motion occurs by the equation

d*x
det h—g

with initlal given Xy and vy Consequently,

=0~ — )Ty

2 = 7,
X =)y £) l., B —J) Tt — (& - J3) ”_.‘4 H,.

'

If the duration of this condition 1s 1, and, at the end of 1it, t}

L 4

center of gravity returns to the initial state, we have

i

O (fy =12, — (g — /) Ty,

1 : r
0~ (j, ~m ; R JITyy —(g—1) == My,
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introduced, we obte'n
1
gyoen Ty 1, s i1}
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_ (=1 h—g) "t
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to that obtained above.

Ll Bl quality 1s completely analogous
From Eq. (5) and (9), we have

01302

{,e., the rise time and descent time of the center of gravity are equal.
If the period of oscillation of the wing is T, according to the

preceding,
. i
Ht-7 m— i 2yt T =3 =
1 2 .,l_ll‘l 7

from which, by substituting the values of T, and T, from (4) and (7),

we have

or
fi - fa—28 .
or, otherwlse,

and, consequently
: : Wtk s g O e my
: (10)

The result obtalned expregses the following conclusion:

in the case of a flapplng

p» flight at constant altltude, . the €

wing, t averapge L1fT has to equal the welght of the \ircratt,




| We © wlate how the poaslition f the center of pravity of the air-
| spaft chanpes during lowering of the wing. t 1s evident that it
{ equals Ut Iifference in paths covered durlng intervals Ty and o,
jeglignating this path n, from formula (2), we obtain s
l rn . . !
p = (f, )3 ‘l,', §) 3 {R-13) 1 j o

r y
‘1 l [2 e 1
! [ . ] h i -
. .y
| ,
i P (y =8P T~ (¢ fa)? i
24, ) .
:
i i 1ih " ) 1. (H) and (9),
|

i.e,, at he beginning and end of the wing lowering interval, its center
t* pravity 1s at the same altitude.

It 1s evident that the same 1s valid for the wing raising interval.
| 'hus, on the average, 1t 1s as 1f the center of gravity 1s at the same
| altitude and that the wing shifts downward and upward from this average
| position,

13. Maximum Thrust of Wing

The 11ft of a wing is determined, as 1s known, from the formula
P oW,
where £ 1s the wingspan or, by substituting the value of p,

P = pgV3zb sin ( : i ’l) .

Let the wing profile permit flow past without detachment of the
stream to angle 81, 80 that the maximum possible 1ift of the wing 1s

mn

P = «ulb\? sm(’, +4- n,).

On the other hand, to obtain the 1lift of the wing equal to the
welght of the alrcraft, let 1t be suffliclent to have angle of attack
Oo’ 80 that

mg = mulbV? sin (*', + r,“) .
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: { e preceding gectlion if the 11t fluctuates
LH t ! inimum P, during flappling  the wing, for

i 1d satl: {, from which, with the angl f attack which corre=-
i tmum lift P., in t} 1se under conglderation designated
4 Yy 1 ' 1 v
» . L { Al : .

\m(; ’ ‘l|~) \m(; : .-,:) ) 5l (' : 'A,‘). (1)

' the smallaess of the ansles, in place of (1),
0, | 0y =20, (2)
s We find 0,.

' . . . . 'K lative to the flight direction in
'ing and ralslng the wing have the values 0, ang 9,, respectively,

From these equations, we have

' ) . w p ow 0, — 0,
H H 2 arcty v (0‘ 0-,) 2| arcty '+ S .

As we have seen, from the conditlions of stabllity of a street, it~ /55%

turns out that 3’->(\.“(».‘, S0 that arctges30°. On the cther hand, the

i
order of magnltude of 0, and 0, of modern wings atv adequate flight speeds
are 15° and 5°, respectively. Consequently, 0,>0, and, in this case, 0y

ls negative and 0, 1s positive. Thus, we obtaln thls result:

In lowering a '.'Jlll.al) the angle of attack is less than in rais-

Ing the wing, In which, In lowering the wing, the angle of attack 1s
negative and, 1n ralsing, it is positive.

[t is possible that this explains the phenomenon observed in the
flight of birds, when it appears that a blrd, in lowering the wing,
seems to serape, drive the alr backwards.

From U} i

e equalities found, it is extremely easy to find the maxi-
a wing yr this, we find the maximum circulation y of

\
)

1 ] . . o0
mum thrust of a wing. '

I‘)L

)
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i.e., with
tion ¥,

We consider

noting that

and

s0 that
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Consequently,

the other hand

a given h/f, the av.rage thrust 18 proportional to circula-
Finally,

=YV ‘,‘:'-.'h sin (9, — 0,)cos 0.

hr hr he hw
) — e 41 y
: \ A "w,.’!_‘“’ 1'
o - bV -,/':‘:” /l.': vV | D/‘“'”I“[t' \ lo
2oty S I

from this, we obtain the maxlmum thrust 1n the form
X V2= VF-'—; b sin(9, ——0,)cos 0, X
g ~1" Sar=) l
% e ARG B BT e Sl SN
i g AR . A= ' JEEE gh® A% __ .’
=l l =1 !
the equation
R
3 Dy '
Y Yone® 5 ¢ TR T ENRN ASTEIRE ) L
2" w— o A EY - Pt
l[lllllJun [m%[cos)V]
T B PTGy ! e g RN £
sinf - cos? = YV Vit w .sm(o {—chz;%)
S L i s
o 3 g Aty o,
o @ iy — 0, B, + 8 0, 4 0.
T Arc ‘V:: : 5 = "l “,,. 3 ‘2— 2 e L o 'I”,



From thls, we d ine w/V.

@t l : h [ o L4
0 2 ) ) ] P
\“[' |37 McasTyBRih : b o
| L& (9 H.)
g Fian : '
and, since the value of J=120¢ 0, in(8 =0 )
X

unity, from this. we have approximately

his,
b e P i
Ve 2 2 ! ' 4 7 ‘14 B 1‘4 W2 cost O, sin® (0, —-0,) .

Since %20 finally,

w y B b (2% i1 %Y cos . sin (0, — 0 ,
v 2 7{14 w (o th 7 )cos Oy sin (B, —90) | .

(4

By substituting this value 1n formula (17'"), Section 10, we

obtain the final expression of the maximum thrust of the wing

ok B IAE; AR\ . e :
X, = — =5l | p ( “th ,)WS".,- sin (0, -".,)} <

| {
i | e f ol A, NE— ,-)h,, B
K { T cos ”vl)\‘“(jl ]“)\- “Ih ! ]) % - { 0 I(':'“ ,—‘—:-: ’
2 i
1:iei; Xo = — -) pV2bcos 0, sin (1, — 0y X
- eh
_)fl' th = 1
X p <08 h,- o —sin (9 -—g) 42 |,
|

which, further, can be wrltten approximately 1n the fform

Agr=s Th ok

wla

d - bl ’F’.
= oV (0, — 0..‘)[2 - (2 P2 — 1), Ho.,)].

If the values which correspond to the stability condition
serted here, we obtain
- w . g 5
Xe s pVRb (9, ’Dui{_ v 0, i 0, — “.,)].
» re [ ] ] b [} 0
Xo oV (0, 'JU)‘,‘J‘ {143 i (", — 0g) |,

ar

{
Lt

)

s}

)




(8)

re 4¢ f int 8t 1 vompare the resulting formula with the

| . » v -
’ T 1 p A\l A
| P nal "\u‘. ‘) (P\,: ‘)...'A, : (())
¥ oay — Yo} 0,562
yith theories of ahlps, expresslion Y -Y can be
' max o
lled the 11fH serve of the wing and, consequently, Eq. (9) glves
} 1 ¥ier 14 o
! 4 H

The maximum thrust of a flapping wing equals its 1if't re-

serve multiplied by »%‘

From this, in particular, it follows that flight at constant
titudeé 1s possible, only if, at a given flight speed, the wing has a
ft reserve. Since, 1n constant speed flight, the thrust of a flap=-
is used to overcome drag, from this, we also find that flight

-

ng wing
at constant altitude is possible, only in the event the drag of the alr-
raft 1s less than the 1ift reserve of the wing.,

Let the coefflcient of drag of the alrcraft be cq* Then, the
drag per unit of wilngspan equals chV"b and, consequently, by comparison
with (9), for the possibility of flight at constant altitude, we have
the inequality
o < 0,562= (", — 'lu) l,?u(';. = q‘)_

14, Optimum Flight Condltions; Examples

If flight conditions are consl lered, in which the Karman stability
condition is satisflied, the preceding results permit it to be shown
that the number of flaps at glven V and w 1s connected with the chord
{imensions and with the flight speed V, by an extremely simple relation-

ship.

.

Actually, as formulas (12) and (13), Sectlion 4, show, in flight
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are found, determination

from which we find 2, by using the ratio

/ 0.38]. (3)
From ratios (2) and (3), we {ind
! )| [ o ?l"l'
<0038 3 [sind 4 cos 3 =
b e ) lh' (4)
ll" ‘, 'ﬁ.."
v

Since

h=

w]
J l L]

. Rz
4 »‘~-t?|

h V|

by substltuting the value of b/h from Eq. (2), and notling that, at

he - : ~a
2—;‘)” 51, we have 7ty 0,616, further, we obtain

u, 1,\‘(‘;, . w),.-‘,:;g) V. -
If the number of flaps per second is designated N,

¢

from which, by substituting the values of £ and u from Eq. (4) and

(5), we obtain
l"l"\»,:(»,..:". b Cos b l') ((,)
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:
can be called the flight con iltions coerficient . y-substitution of
K in Eq. (6), we obtalin
y -V
N=K< (8)
Formula (8) shows that, in the same flight conditlions (with equal
K), the number of osclllatlons 1o iirectly proportion: to the 1lght

r:pewd and 1nv(:1'3(1_|y pru;\‘,)r‘t.;{«)nul to the slze of I,l’le‘.kf;-.‘:"'.\’-

By comparing formulas (7) and (2), for coefficient K, we obtaln
the expression

e 0.931[1 ;-l.s(»’i‘:—o,suz)] 3 (9)

andlhere, s 4 o (3-0.562) 1s small, as usually 1s the case, approximately,
we have

b
ahmiicaat % (10)

It 1s evident that formula (10) 1s obtained from the expression

if the term uo/v in 1t 1s disregarded. Thus, further, we obtailn an

expression for N in the form

o<
-

b
N =0,281 5 0,2317‘-. (11)

We conslider the followlng example.

The critical angle of a flapping profile Omax=10°. The flight /563
condition 1s determined from the following data
arcty Umm, T =0,577, a=0;
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} ' ) ! "
) ined r { 111
f, el o 9
i “ e
' w
; i, WL 0,
1 4 ‘I'I‘u 1y i ntly,
3 'ﬂ" s 22
L v 4 i \ /} :
b 04677 0,562 ) ,.l"
vl
U5 0991 04710 |
. 1 1t an cin lon I':
=¥ s ol 2083 Loy W
i =OV SIN 3| CO8% —~SiNG v
]
€4,

e 26V 0,1392(0,9772 40,3716 - 0,577 == — =bV 0,165,

f'rom which we obtain the mean 1ift:

Yy co s gV = 0,5 5V

3, for determination of the number of flaps N, we use formula

(8), from which

K == 0,0777,
and, therefore 2
N == 0,0777 ;

4, finally, for determinatlion of the thrust, we use formula

(15'), Section 9,

. Ky v (),‘_H;,Mv.-ms:(siu".—} cost t;f')([ 41,2 ""V)'
by .substituting the values found, we obtaln
X 0,258 V%,
s0 that the thrust 1s almost half the 1ift.
As particular examples, we conslder the followlng.

} e The load of a flight

vehicle per unit area p=20 kg/m°

» the wing

/564




) a

pigeon,

plng
the
the

the

| { and from to ) m/sec for V.
g ’
- tion- with p=0.66 kg/m , b=0,0002 m:
V=3.2 m/sec, N=123

'he data approximately correspond to the f1 lght of a fly.
servations glve N from 180 to 350.

As a second example, we conslder the performance of a flag
wing with the following data. 'he critical angle of attack of
roflle 1s 15°, a=0. The flight conditlions are determined f'rom
"|'||-I . 4 . o t W £ b “) Y t [ rles P tack of
! lowlng data; irctpg==0,.6 (31 ind the angles of attack of
wing are determined from the equations

19

31°
31%= 3"

N

’

oL 167,

J6°,

“

"“
- .
n

.~

Ob=

Ob-

/565

¥

De

3

'he data are similar to those for the ornithopter of A, Soltau (from

M.K, Tikhomirov Polet ptits i1 m: 3 _mashushchiml kryl'yami [Flight
>f Blrds and Machines with Flap; s ONTI, 1937, p. 108). The

vehicle dild not fly (see furthe

4 =

Data from M.K. Tikhomirov, p. 19, 28, 80,

b

Data from M.K. Tikhomlrov, p. 5%, 68, 70. In evaluating the flgures o
1ined, it must be remen beraed that e mechanism of flapping differs in
this work and In the data of M.K. Tikhomlrov,




. )
4. 0,35,
.1 =0),16pV b,
A & ted he particular cases, with the data used above and
i i lon y W t in:
2 ]
L, with p=20 kg/m~, b=3 m, veloelity V and the number of
t 11 ! .l= I.!‘ N Al'C S
=31 m/sec, N=3,3:
)
» wWith p=5 kg/m , b=0,1 m,
V=2.8 m/sec, N=533;

. - - -
« With p=0.66 kg/m“, b=0,002 m,
V=16 m/sec, N=2640,

Comparison of the results obtalned with the observations presented
above shows that the flight conditions of the Soltau ornithopter are
nore like the second set of data since, in the firs case, we have the
absurdly large

h=5737‘]1 m. .

We note that, with N=1.5, the vehicle did not fly (in the second
case, h-TET-2.7 m). The flight of a pigeon and the flight of a fly are

closer to the first scheme since, in the first cage, for the plgeon, we

have h=——%7=0.u m (in the second scheme, h=0.1 m). In just the same way,

r 0.2 |

in the case of the flight of a fly, it 1s more like the first scheme, /566 |

0.002_ 2 . :
where h=;-?%—=ﬁ_17 mm=7.% mm (by the second scheme, h=2 mm). However,

it must be remembered that all data on the flight of blrds and insects

are ex*.emely uncertain., The resulting conclusions, concerning data of
extremely varled dimensions (ornithopter, bird, Insect), which are

sufficlently conslstent with reality, evidently confirm the applicabllity
of the resulting concluslions to actual observations of cases of flight
with flapping wings.
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of a ing wing s hlg , ' %) J in_ay
.;“51(, O 10K . g s r i ¢ e lent Ll AP
responds Lo f : ' » | nd, 1 ‘ ! LN
the 1lift coefftliclent co ' ' ’ ngle of attack, while o=10",

15, Some Further Conclusion:

- ———

The theory of flapping winge preose | in ¢t} o 7
developed further., Jtudy of the gquest! -5l tlon and mechanl ]
properties of "blas" streets 13 undoubted itereat ve schown that
the formation of streets the direction of whi i e from the dl-
rection of forward movement of the flapplng wing las ¢ retically )i -
sible. Such "blas" streets can form in the event the rate of | 1
and raising the wing is nonuniform., Thls case was studled th fcally

and experimentally in detail In the work of Ya.Ye, Polonskly [10}.
The experimental results he obtalned are reduced to the following.

"With nonuniform flapping of a wing (the lowering and ralsing
rates are different), the vortices shed form a street, the axis of which
{s inclined to the direction of forward motion, The street dilverges /567
in the direction of the higher flapping speed, and it does not have a
checkerboard arrangement of the vortices. In an upward deviation of
the street, the vortices of the upper row are shifted to the right of
the checkerboard arrangement., In downward deviation of the street from
the direction of forward motion, the vortices of the upper row are
shifted to the left of the checkerboard arrangement,

"Phe experiment gave one unexpected result, This 1s the nonchecker-
board arrangement of the vortices of the "blas" street, in which, as
it turned out, 1t 1s of basle importance in examination of such
streets.”

The latter remark indicates the following. For the formation of
a "blas" street, besldes velocity 1ln the directlon of forward mot ion
of the wing, the street must also have a velocity directed perpendicular
to the direction of forward motion of the wing. This "drift" of the
street is possible, only with a street structure which 1s intermediate
between the checkerboard and parallel arrangement of the vortices. The
question arises here as to the stabllity of such streets since, in all
theories reported, the Karman stabillity conditlon plays a slgnificant
part. V.A. Ivanova showed that, In the case of such dreifting 5tree$s,
there 1s the following stability condition, in the sense of Karman:

[
See conclusion in article of V.V. Golubev, "Thrust of a Flapping Wing,"
Izv. AN 83SR OTN 5, (1946) [see thls publicatlion, pp. 1=

/V.A. Ivanova, "Stability of 'bias' vortex streets," diploma work de-

fended at Mechanlical-Mathematl<al Department, Moscow State University,
1949,
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o ,oh
N = 4 co8 = = 2, (1)
teplacement of the vortices of one glde of the street
intly to the other, n the e of tUh tkerboard arrangement,
/2, { condition (1) changes tu the Karman condition
ch? ’: . 2
in £} t b=, 1.e., with parallel arrangement of the vortlices, from
1), w LV
“h
L
(91 ] !
' W h=0, 1.e,, both sldes of the gtreet should fuse and, cone /56
juently, beca of the opponlte directions of rotation of the vor-
8 in the ) ws of the eet, stable street disappears. This
! n | et greement with the known fact that streets with a parallel
npement are unstable in the sense of Karman,
ta work, Ya.,Ye. Polonskly studied the kinematlcs and dynamics
"1 . rtex streets in detail., The formulas he obtalined are a
rrel n of the formulas derlved above, to which they are convert-
ed, in the event the rates of lowering the raising the wing are equal,
Another case whlch received detalled examination is the case of
flight "in place," which can be observed in the flight of small birds
and insects, In the work of V.V, lolubev [9], it was shown that this
case of flight can be explalned, based on formulas (4), (6) and (15),
Section 10, Actually, from the equations which determine 1ift Yo and
thrust Xo

. ) —
Yy == — pubV? sin :{ws’. sin 'V]'

> ”.
Xy r= -40.‘.'49M”cns:(sln’- bocosd ‘T,)[l 1,2 vi=

o = 0,94:b cos 3 (V sin 4 weosd) [V -4 1,2w),

we see that, in the absence of forward velocity, 1.e,, with V=0, 11ift
Y, reverts to zero, but thrust X, differs from zero, gince, with V=0,

Thus, by changlng th

2
Xot-l.l%cosocQSSW e

11ft to thrust, for which the body of the

L)
bird must be turned from the horizontal position to the vertical, which

18 observed in

the flight of birds "in place,"” the thrust of the entire

bird can be cancelled. In the work mentlioned above, a detalled study

of this

Evidently,

phenomenon 1s glven.

the vortex scheme examined here permits determination

of the force which acts, not on a flapping wing, but on a rotating

135







A

" § : - iz K 1. sobr.
» ’ . - - —— o — o —
» . ’ ! »
.
L] ) A ’ .
' rallel'nom potoke
) . J L. ’ oed o
. ¥ ing 1n low], 1938.
' ; IR A
" 3 v yY Ol rnik VVA KA
4 . d » - _— — —
: . ’ . PR = T
' » " 1 ] ’ » Ly A " 'rtdf.‘f'l:y' ’ ’
5 . .
v » t ’
. A B i i v flappin iing,
11 s of Selentifle
,
| v | | )|
- s g J 3 . .
.
; ' f win ynd ti 0b]
’ . :
i | v "' LTl yab
B el USSR LA
y 5 v X oy
. 3 J . } i
) 3 . J e
" 1, sinp M AT \ R T I
’ " Y L Nru v ' 1 1 'I} VATl y & « AN > LN »
{
dig! )

N
S
{
i
|
-
U4
=
e
—
b
v
-
=

nakiy, Ya.Ye "Vortex <treets and thelr applicatlion to thec
pping wing," dis:; ertation Red Army Military Alr Acader

yechin, N.Ye., I.A. Kibel' and N.V. erﬂ;.fhvuvwblvh~uﬁwzg
sidromekhanika [Theoretical Hydromechanics], voi, 1, 1939.

»dov, L.I., Teoriya plosklikh ivizhenly ldeal'noy zhldkostl
'heory of Plane tion of an ldeal Fluid], 1939.

tjens, 0. and L, Prandtl, Gidro- 1 aeromekhanlka [Hydro- and

Aeromechanics], ONTI, vol, II, 1935.

' ) Wit e R e i " M al bl , QUAR wa XXX A

iirnov, .P., Insett d motion, .1_‘1“_:‘.‘!17*:..-‘1”“._ SSSR za XXX let
) Years Of Mechanics 1in the oul], 1Y50, p. DO .

ORIGINA
> NAL p

OF POn A'GE ‘s

VT Dex

NVALTY




	0010A02.jpg
	0010A02.tif
	0010A03.jpg
	0010A03.tif
	0010A04.jpg
	0010A04.tif
	0010A05.jpg
	0010A05.tif
	0010A06.jpg
	0010A06.tif
	0010A07.jpg
	0010A07.tif
	0010A08.jpg
	0010A08.tif
	0010A09.jpg
	0010A09.tif
	0010A10.jpg
	0010A11.jpg
	0010A12.jpg
	0010A13.jpg
	0010A14.jpg
	0010B01.jpg
	0010B02.jpg
	0010B03.jpg
	0010B04.jpg
	0010B05.jpg
	0010B06.jpg
	0010B07.jpg
	0010B08.jpg
	0010B09.jpg
	0010B10.jpg
	0010B11.jpg
	0010B12.jpg
	0010B13.jpg
	0010B14.jpg
	0010C01.jpg
	0010C02.jpg
	0010C03.jpg
	0010C04.jpg
	0010C05.jpg
	0010C06.jpg
	0010C07.jpg
	0010C08.jpg
	0010C09.jpg
	0010C10.jpg
	0010C11.jpg
	0010C12.jpg
	0010C13.jpg
	0010C14.jpg
	0010D01.jpg
	0010D02.jpg
	0010D03.jpg
	0010D04.jpg
	0010D05.jpg
	0010D06.jpg
	0010D07.jpg
	0010D08.jpg
	0010D09.jpg
	0010D10.jpg
	0010D11.jpg
	0010D12.jpg
	0010D13.jpg
	0010D14.jpg
	0010E01.jpg
	0010E02.jpg
	0010E03.jpg
	0010E04.jpg
	0010E05.jpg
	0010E06.jpg
	0010E07.jpg
	0010E08.jpg
	0010E09.jpg
	0010E10.jpg
	0010E11.jpg
	0010E12.jpg
	0010E13.jpg
	0010E14.jpg
	0010F01.jpg
	0010F02.jpg
	0010F03.jpg
	0010F04.jpg
	0010F05.jpg
	0010F06.jpg
	0010F07.jpg
	0010F08.jpg
	0010F09.jpg
	0010F10.jpg
	0010F11.jpg
	0010F12.jpg
	0010F13.jpg
	0010F14.jpg
	0010G01.jpg
	0010G02.jpg
	0010G03.jpg
	0010G04.jpg
	0010G05.jpg
	0010G06.jpg
	0010G07.jpg
	0010G08.jpg
	0010G09.jpg
	0010G10.jpg
	0010G11.jpg
	0010G12.jpg
	0010G13.jpg
	0010G14.jpg
	0011A02.jpg
	0011A03.jpg
	0011A04.jpg
	0011A05.jpg
	0011A06.jpg
	0011A07.jpg
	0011A08.jpg
	0011A09.jpg
	0011A10.jpg
	0011A11.jpg
	0011A12.jpg
	0011A13.jpg
	0011A14.jpg
	0011B01.jpg
	0011B02.jpg
	0011B03.jpg
	0011B04.jpg
	0011B05.jpg
	0011B06.jpg
	0011B07.jpg
	0011B08.jpg
	0011B09.jpg
	0011B10.jpg
	0011B11.jpg
	0011B12.jpg
	0011B13.jpg
	0011B14.jpg
	0011C01.jpg
	0011C02.jpg
	0011C03.jpg
	0011C04.jpg
	0011C05.jpg
	0011C06.jpg
	0011C07.jpg
	0011C08.jpg
	0011C09.jpg
	0011C10.jpg
	0011C11.jpg
	0011C12.jpg
	0011C13.jpg
	0011C14.jpg
	0011D01.jpg



