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Stress Distribution in a Semi-Infinite Body 
Symmetrically Loaded Over a Circular Area 

H. McGinness 

DSN Engineering Section 

Algorithms are developed for computing stresses in a semi-infinite body when loaded 
by a uniform pressure acting over a circular area. 

I. Introduction 

The stress distribution through a semi-infinite body of 
isotropic material has been obtained in various ways. For the 
particular case where the loading on the plane surface is one of 
uniform pressure acting on a circular area, the stress compo­
nents can be calculated by numerically evaluating the integral 
expressions presented herein. These integrals can be evaluated 
by desk calculator programs, thus making it easy to determine 
any stress component in a semi-infinite body having a known 
constant Poisson's ratio. The solution of this problem has a 
direct application to circular columns resting on large footings 
and can be helpful in estimating stresses in foundations 
supporting certain vehicle rails. 

II. Derivation of the Algorithms 

If a concentrated force P is applied perpendicularly to the 
plane surface of a semi-infinite body, the stress components 
per Ref. 1 are: 

Or ::: :11' {(I - 2v) [....!. -~{r2 + z2f l121 
r2 ,2 J 

-3r'Z (r' + z'f'" l (I) 

o ::: ~(l- 2v) {-....!.+ Z {r2 + z2fl/2 + Z{r2 + Z2)-3/2} 
o 211' 2 2 r r 

(2) 

Oz ::: - ;~ Z3 (r2 + z2fS/2 (3) 

T - 3P 2 rZ - - 211' rZ (r2 + z2fs/2 (4) 

where the coordinates are defined as follows: Assume the 
plane of the semi-infinite body to be horizontal and on the 
upper side of the body. The coordinate r is the horizontal 
distance from the point of concern, point 0, to the point 
directly beneath the force P. The positive coordinate Z is the 
distance that point 0 is below the plane. The coordinate 0 is 
mutually perpendicular to rand Z. The symbols 0 and T 

represent the normal and shear stresses, respectively, and v is 
Poisson's ratio. 

The solution for the case of a uniform pressure acting over 
a circular area of radius a is obtained by replacing the 
concentrated load P by pdA where p is the uniform pressure 
and dA is a differential area, and appropriately summing over 
the circular area. 
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Let the point 0 be on a vertical plane which passes,through 
the center of the circularly loaded area, as shown in Fig. 1. 
The differential area is rdOdr. It is desired to obtain the stress 
components along axes R, T, and Z, namely, aR , aT' az and 
the shear stress T RZ' By symmetry the other shear stresses will 
be zero. 

Thus from these four components, principal stresses can be 
calculated. By the usual method of resolving two·dimensional 
stress components the following obtain: 

aR = ar cos2 0 + ao sin
2 iJ (5) 

aT = ar sin2 0 + ao cos2 0 (6) 

T R Z = T rz cos 0 (7) 

The stress components a R' aT' a Z ' and T RZ caused by the 
pressure loading over a differential area are formed by 
substituting prdrdO for P in Eqs. (1), (2), (3), and (4) and sub­
stituting the results into Eqs. (5), (6), and (7). The following 
double integrals represent the desired stress components in 
terms of the coordinates r, 0, and Z: 

R 1 - 2v 2 2 1 Z a J.¢ LV { [ P = ~ ¢1 L cos 0 -;:- r(r2 + Z2)1/2 

_ 3r3Z ] 
(1 _ v)(r2 + Z2)S/2 + sin

2
0 [-+ + -r(-r2-':""---Z-2 )-1/-2 

+ rz J} (r2 + Z2)3/2 dr dO (8) 

aT 1-2V!.¢2 (V { . 2 [1 _Z 
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_ 3r3Z ] 
(1 - v) (r2 + Z2)S/2 + cos

2
0 [ 
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TRZ=_.2.. 2 (cosO) r drd0(11) 
[

¢ LV 2Z2 

p 2rr ¢ L (r2 + Z2)S/2 
1 

Equations (8), (9), (10), and (11) are readily integrated 
with respect to r to yield: 

aR 1 - 2v {¢2 {[ JV 
P = 21T J tb cos 20 In (Z + V r2 + Z2 L 
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A distinction must be made between Case 1, where point 0 
lies under or on the loaded area, as shown in Fig. 1, and 
Case 2, where point 0 lies outside the loaded area, as shown in 
Fig. 2. 

For Case 1 the point is located distance (3a from the 
boundary of the circle and a distance ra below the surface. 
The distance from point 0 to point U is OU, where 

OU = a ~1 - (3) + (1 + ~)2 + ~(2 - (3)] cos 8 (16) 
cos28 

The distance from point 0 to point L is OL, where 

OL = -a [(1 - ~) - (1 + (3)2 + ~(2-=~)J cos 8 (17) 
cos28 

and the positive roots of the radicals are to be used. 

In order for the integration to cover the entire circular area 
for Case 1, the bracketed terms of Eqs. (12), (13), (14), and 
(15) must be evaluated for two sets of limits and summed, 
namely between OU and zero and between OL and zero. The 
limits of 8 are rr/2 and zero proVided the integrals are 
multiplied by 2. 

For Case 2 the point 0 is located a distance cxa from the 
boundary of the circle and a distance ra below the surface. 
The upper and lower limits of the bracketed terms of Eqs. 
(12), (13), (14), and (15) are respectively: 

u=a~l+a)+ (1 + a)2 - a(a + 2)}os 8 
cos28 

(18) 

1 = a [(1 + a) - (1 + a) - cos 8 2 a(a + 2) ] . 

cos28 
(19) 

The limits of 8 are arc tan VTla(a + 2) and zero provided the 
integrals are multiplied by 2. 

The results are as follows: 

For Case 1 
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where 
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tI - ~)2 + ~(2 - (3)] 
cos2 8 cos IJ 

For Case 2 
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(25) 

(26) 
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where 

~ j 0:(0: + 2)] u= (1 +0:)+ (1 +0:)2 - 2 cosO 
cos 8 

(30) 

~ 1< 0:(0: + 2)J / = (1 + 0: ) - (1 + 0:)2 - 2 cos 8 
cos 8 

(31) 

I/J = arc tan ).(0:
1
+ 2) (32) 

The integrals of Eqs. (20), (21), (22), (23), (26), (27), (28), 
and (29) can easily be integrated numerically on programma­
ble desk calculators. Angular increments of 1/9 the angular 
range will produce results sufficiently accurate for most engi­
neering applications. These programs are available on four 
cards for HP97 calculators. 

Principal stresses can be calculated per Ref. 2 as follows: 

apt = ~ tR + Oz + I j (oR - OZ)2 + 4 T~Z I] (33) 
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an =2" tR+oz-lj(OR-OZ) +4T~z·l] (34) 

OPJ = aT (35) 

III. Discussion of Results 

On the plane surface of the semi-infinite body the stresses 
oR' aT' and a z are discontinuous at the boundary of the 
loaded circular area. Even at finite values of 'Y, that is, for 
points beneath the plane surface, the algorithms fail when the 
points are directly beneath the boundary. However, in Ref. 2 
it is demonstrated that there are no infinite stress values 
obtained at the boundary and that all stresses are continuous 
at the boundary except those at the surface. Therefore, the 
values at the boundary may be approximated by considering 
very small values of the parameters 0: or {3. For these reasons it 
is convenient to plot the calculated stresses on a semi­
logarithmic chart with the abscissas a and {3 extending in 
opposite directions from a common small value. In Fig. 3 this 
has been done for a Poisson's ratio of 0.15, starting with a and 
{3 values of 0.001. Figure 3 gives the stresses at various dis­
tances below the plane surface, that is, at 'Y values of 0,0.001, 
0.01, 0.10, and 1.00. The ranges are sufficient to show the 
value and location of the maximum tensile stresses. 

The curves of Fig. 3 pertain to a Poisson's ratio of 0.15 
because this is a typical value for a Portland cement grout. 
Such grout has a tensile strength far less than its compressive 
strength. The curves can be useful in determining what tensile 
strength is necessary to ensure that surface cracks are not 
likely to form, and how far below the surface the high tensile 
stress region extends. 

The curves of Fig. 4 pertain to a Poisson's ratio of 0.30, 
representative of many metals. Only the stress components OR 
and aT are shown, since Oz and TRZ are independent of 
Poisson's ratio and may be taken from Fig. 3. By comparing 
corresponding curves of Figs. 3 and 4 it is seen that the effect 
of Poisson's ratio on OR and aT is large. 

Results obtained with the above algorithms, by dividing the 
angular range into 9 parts, agree with the tabulated values of 
Ref. 2. 

By superposition the stresses can be calculated for any 
circularly symmetric loading. For example, the real loading 
could be approximated by a number of uniforms loads of 
different radii, and the effects of each appropriately summed 
by the above algorithms. 
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