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Abstract

from 1976 to 1978, instruments on ATS-5 and ATS -6 were operated

to study the phenomena of spacecraft charging. The ion engine neutral-

izers were operated in attempts to modify the spacecraft potentials. The

neutralizer or ATS-5 is a hot filament emitting electrons, while the

neutralizer on ATS-6 is a low energy plasma bridge. The diagnostics

used were the UCSD particle detectors, counting electrons and protons

as a function of energy. Operations were conducted in daylight and eclipse.

This report describes the processing of data from these and earlier

operations. In preliminary analysis of these data, we obtained the follow-

ing results; (1) electron emission (E 4 10 electron-volts)does not perturb the

status ox a satellite at low potential ( 101 4 50 volts) by more than 50 volts

(the ATS-5 low energy limit), (2) emission of a low energy plasma

(E 4 10 volts) does not change low potentials () 6 1 4 5 volts) by more

than a few volts (ATS-6 low energy resolution), (3) when ATS-6 enters

eclipse in the presence of a high energy plasma (10 keV) the neutral-

izer suppresses any rise in 161 (within a few volts resolution), (4) when

the electron emitter on ATS-5 is operated, it serves to discharge negative

potentials from thousands to hundreds of volts, and (5) when the neutralizer

on ATS-6 is operated, it serves to discharge kilovolt potentials to below

50 volts.

As part of the charging study, a review of earlier experiments

eras conducted. The study showed that in low altitude (100-300 km) experi-

ments with kilovolt electron beams, emission of unneutralized beams

resulted in large return currents. These currents were sufficient to hold

payload potentials below 100 volts. Operation of the main thruster on ATS-6

clamped the spacecraft at -5 V, and virtually eliminated differential charging.

A study of differential charging effects on the two satellites showed

that insulators - 1 meter from our detectors could, when shaded, Charge

negatively several hundred volts with respect to the spacecraft, and gener-

ate barriers of similar potential to electron fluxes.

e
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I . 0 INTRODUCTION

This report is written to complete contractual, raquirements on

NAS-5-234$1. This contract was issued by Goddard Space Flight Center

for Lewis Research Center,

it in designed to provide a review of experiments involving the modi-
I	

fication of spacecraft potentials, with an emphasis on ATS-5 and ATS-6.

We will present the operations performed under this contract, and a

users' manual, for the study of the data obtained under this contract,

and in earlier experiments on ATS-5 and ATS-6.

A considerable amount of evidence has been accumulating over the

last few years that anomalous behavior of spacecraft instrumentation is

associated with electrostatic charging of spacecraft (Rosen, 1976).

Charging effects appear to be particularly severe at synchronous orbit,

$ec:,use of the i_mportance off; 'ihe synchronous altitude for a wide variety

of spacecraft missions, this phenomenon has become a matter of con-

corn to the acrospac^- community.

For example, McPherson et al. (1976) have shown that the occnr-

rence of anomalies ;,n synchronous spacecraft behavior correlates with

local time and is most likely between local midnight and 0600. Reasoner

et al. (1976) have shown that charging events on ATS-6 where the space-

craft potential goes more negative than --50 volts has the same correla-

tion with local time, "'he failure of an entire Air Force satellite has

been attributed to a spacecraft charging event.

As a result of this concern over anomalous behavior of satellites at

geosynchronous altitude, a joint technology program between NASA and the,

Air Force has been initiated to study environmental charging phenomena.

A satellite to study these phenomena, (Lovell, 1976) (SCATHA) was launched

in 1979. Until this data becomes available, the ATS-5 and ATS-6 satellites
5, 

are the only spacecraft which can provide detailed data on charging effects

of synchronous orbit. Both NASA (Lewis R.esearcli Center) and the Depart-

ment of Defense have expressed great interest in studying the data now



Available from these satellites and also in performing active experiments

on spacecraft charging.

The NASA/Air F'oro,* panel which established the program generated

a schedule to follow in the investigation, shown to Figura 1. A'T'S-5 and

ATS-6 provided opportunities to acquire environmental data, measure the 	 ri

effect on spacecraft potentials, and to conduct active experiments in

altering spacecraft potential.

Large spacecraft potentials have been observed on both ATS-5 and

ATS- gib. The largest potentials have occurred during eclipse conditions

when photoelectrons are no longer emitted by the spacecraft, and during

magnetic storms when the cool ambient plasma has disappeared, The

largest potential observed so fair was »19,000 volts on A'TS-6 during an

eclipse, but potentials as large as -2, 200 volts have been observed in

sunlight.

The recent analysis of low energy particle data on ATS-G has shown

that the local potential distribution about the satellite is dominated by the

presence of differential charging of the spacecraft (Whipple, 1976a, b).

Different portions of the spacecraft surface which are insulated from the

main body can charge to very different potentials because of shadowing

effects, anisotropic particle distributions, and non-homogeneous surface

properties. As a result, large electrostatic fields can exist in the

spacecraft vicinity. Possible consequences could be discharges across

surfaces with associated :material damage and electromagnetic interfer-

ence. The UGSD exp- riment on ATS-6 has observed large spikes of

accelerated electrons whose origin has been definitely traced to differ-

entially charged portions of the spacecraft.

The packages of experiments on A.TS-5 and ATS-6 have the caps--

bility not only of studying these effects, but also of performing active

experiments by operating the ion engine instruments. 'T'hese instruments

had been operated a few times but not in a, coordinated program with the

2



other experiments or during special conditions, Ilowever, preliminary

analysis indicates that during at least some of these npRarations the electro-

static, configuration of the spacecraft was changed (Goldstein and

AeForest, 1976).

*	 UCSD has been under a ► contract to study the modification of space-

craft potentials, This report is a description of the objectives and

accomplishments under this contract. Part 2 describes Cie overall

char wing program, and part 3 consists of a review of previous work in

this area, In part 4 the specific objectives and accomplishments under

this contract area described. Part 5 givas recommendations for further

experiments and data analysis. Appendices are provided with descriptions

of the thruster commands, command loge, eclipse times and a guide

for they commands for the ,A,TS-6 detector,

,
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2.0 SPACECRAFT CHARGING INVESTIGATION

2.1 OBJECTIVES

The objectives of the ATS-5 and ATS-6 data reduction and experiments

were defined by the NASA/Air Force panel which began the program;

"Conduct additional ATS-5 and ATS-6 environmental studies. Addi-

tional space environment data will be obtained from the ATS-5 and ATS-6

particle and fields experiments to determine the present environmental

conditions for quiet times and for substorms. The main device that will

be utilized will be the University of California at San Diego (UCSD)

Auroral Particles Experiment. The data obtained in this task will be

incorporated into the Climatological Atlas ('Task I). As part of this task,

a study of active control devices in space will be undertaken. This study

will use the neutralizers of the cesium electric thrusters on the ATS-5

and ATS -6 satellites. The objectives of this study are to determine the
ability of the electron sources to control the spacecraft: ground potential

and to investigate the voltage sheath surrounding the spacecraft, This

work will be directed by the NASA Lewis Research Center." (Lovell, 1976).

The objective, as shown in Figure 2, is to study the feasibility of

actively controlling spacecraft potentials by charged particle emission.

The devices to be used are the ATS-5 electron emitter, the ATS-6

plasma emitter, and the UCSD particle detectors on both satellites.

The ATS-5 and ATS-6 spacecraft and complement of instruments

are compared in Table 1 and the differences in the operation of the particle-

emitting devices on the two spacecraft are shown in Table 2 (Purvis, 1976).

Diagrams of both spacecraft showing the relative locations of the detectors

and engines are included. ATS-5 is shown. in Figure 3, ATS-6 in Figure 4.

Descriptions of the detectors and engines follow.

4
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2. 2 ATS-5 DETECTORS

The ATS -5 satellite was launched into synchronous orbit (6.6 Re)
in August 1969 and has been kept near 105 degrees west longitude since

early September 1969. The orbital inclination is 2. 30 degrees. Since the

satellite continues to spin with a period of 0.79 seconds, the booms in-

tended to provide gravity gradient orientation cannot be safely extended.

The spinning motion improves the plasma data in that it provides the

possibility of measuring important portions of the angular distribution.

The spin axis is oriented parallel to the earth's rotational axis.

The four cylindrical plate spectrometers consist of two pails of

electron and proton. analyzers directed parallel and perpendicular to the

spin axis. The parallel analyzers point north and thus detect particles

coming from the northern hemisphere. The particles are detected with

Bendix type 4010-3 channel electron multiplier s. which have narrow angle

cones that give a 3 min diameter sensitive area. Biases of -2700 volts

are applied to the front of the multipliers for post-analysis acceleration,

of protons and 4.500 volts for electrons. These biases result in a constant

high efficiency for the protons at all energies analyzed and for electrons

below one IwV. The efficiency of channel multipliers decreases at higher

electron energies, This decrease has been accurately measured. The

potential of a grid immediately in front of the sensors is held at zero in

the proton analyzers and at -30 volts in the electron analyzers to suppress

secondary electrons. All pulses greater than about 10 -3 of the typical

pulse size are counted so there is little change in efficiency with large

changes in the channel multiplication factor.

Three simultaneous accumulations 0. 26 seconds long are taken every

0.32 seconds.. Two analyzer outputs are selected by ground command to

third accumulator. Accumulation is stopped for 4 microseconds after
k	

each pulse counted so that the small afterpulses which can occur during

the first one or two microseconds after a particle is detected are not

counted. Deadtime corrections are applied so that rates up to 10 6 /sec are

believed to be measured accurately.

5



The analyzers have an energy resolution of about 13 11"0 and a geometric

factor such that dividing the eounting rate by 4. 3 x 10' 
5 

cm 
2 
ar yields the

differential energy flux in units of eV/cm 
2 
sec sr eV. The angular response

to a uniform energy distribution extends over a rectangular s olid angle of

about 5 by 8 degrees.

The inner and outer plates of the analyzers are connected in parallel

to two high voltage supplies which can be stepped through 62 exponentially

spaced voltages 12 11,16 apart (with less than 0. 1% accumulative orror % thus

varying the, energy analyzed from 50 eV to 50, 000 eV. Two zero voltage

steps are also included to provide background measurements (in practice

the background is usually low and is not subtracted).

The normal operational mode during the cbarging experiments was to

cycle through the 64 steps every 20. 48 seconds,

2, 3 ATS-6 DETECTORS

The five electrostatic charged particle detectors of the UCSD instru-

ment were designed to obtain the temporal, spectral, and angular prop-

erties of low to moderate energy magnetospheric particles. One eloctTon-

ion pair of detectors was designed to rotate in a north-south (NS) plane,

while another pair were designed to rotate in an east-west (1-',W) plane.

A third ion detector points east. a, uniqtw, double focusing foature of the

detectors allows for high count rates while maintaining good angular

resolution. A balance between spectral and temporal information is

obtained through various progranu-ned sequences consisting of SCANS

(full spectra) and DWELLS (fixed energy). The voltage bias on the Bendix

channeltron particle detectors can be manipulated (high and low bias) to

preserve channeltron health. Table 3 gives numerical specifics concern-

ing the experiment.
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2. 4 ATS-5 ION ENGINE

The cesium contact ion thruster used on .ATS-4 and ATS-5 is dis-

played in Figure 5. Cesium vapor is fed to a single aperture. Upon

reaching the surface of the porous tungsten button, the cesium is ionized.

"The accelerating geometry consi.tits .,)f contoured ionizer, beam-forming

electrode, accelerating and dece,e-rat i ng electrodes, and neutralizers,

The copper accelerator electrode is cut into four segments to permit

beard deflection for thrust vectoring. Deflection is produced by sym-

metric biasing of opposing pairs of quadrants; one quadrant is positive
i

and the other negative with respect to the nominal accelerating potential.

"The decelerator electrode is mounted to thruster common and pro-

vides support for the two hot-wire neutralizers. These neutralizers,

0.007 in. diam, are Ta doped with 50 ppm yttrium to retard grain growth.

One neutralizer operates and one remains as backup" (Worlock, 1969).

2. 5 ATS-6 ION ENGINE

ATS-6 carries two ion thrusters of the type diagrammed in Figure 6,

They utilize the magnetoele ctro static containment (MESC) concept, where

the magnetic and electric fields provide boundaries to contain a uniform

plasma. These are 8 cm in diameter, producing one millipound (. 004 N)

thrust. Two parallel grids are used to extract the plasma, with the outer

accelerator grid at -560 volts, and the inner screen grid at +560 volts,

The grids accelerate about . 1 amp of cesium ions to a kinetic energy

corresponding to the 1. 1 kV potential drop. Inside the hemispherical

section is a cesium hollow cathode with a . 010 in. orifice, Approxi-

mately ten percent of the cesium is fed through the cathode, and is con-

trolled by the discharge current. The remaining ninety percent is pro-

vided by a main feed ring biased at the potential of the boundary anodes.

A plasma anode is placed in front of the cathode to provide control

(Worlock, 1973).
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A neutralizer is provided, operating at spacecraft ground, located

5.0 cm from the accelerator electrode and pointing 60 degrees down-
stream (,Tames, 1975).

"A plasma bridge neutralizer is incorporated into the system, ,A.
tantalum, emitter is installed inside the hollow cathode behind a 0. 006-in.
diameter orifice. Both cathode and vaporizer have external sheathed
heaters. An auxiliary electrode is mounted slightly downstream from
the cathode, This electrode, referred to as the probe, is initially
biased 150 V positive with respect to the neutralizer and acts like an
anode, drawing enough emission current to start the neutralizer when
the thruster is off. " (James, 1970)

"After the neutralizer discharge starts, the probe is operated from
a high impedance plus fifteen volt power supply. In this mode, about
50 milliamperes of emission current is extracted from the cathode. The
probe serves as a plasma bridge potential sensing element for control.
purposes. " (Bartlett, 1975).

"The emission characteristics of this neutralizer vary with the
cesium flow through it and with the cathode temperature. At very low
cathode temperatures, operation becomes emission limited, but over a
wide range the cathode temperature affects the beam coupling only
slightly. Neutralizer control is accomplished by presetting the cathode
power and regulating the vaporizer power to maintain a given ion beam
potential as approximated by the potential of the probe immersed in the
plasma bridge.'" (James, 1970).

"To operate the neutralizer, the master converter is first com-
manded on. Power is then applied to the cathode heater and the plasma
probe striker supply. The tantalum emitter comes to its operating tem-
peratuer of 700 degrees centigrade in approximately ten minutes. The
cesium vaporizer heater operates at about 300 degrees centigrade and
is controlled by the "Neutralizer On" command. About fifteen minutes

8
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after this command is executed, the cesium vapor pressure in the
hollow cathode is sufficient to strike a discharge. The initial discharge
is referred to as the plume mode of operation and is characterized by
low electron emission current and high extraction potentials. As the
cesium feed increases, the neutralizer operation shifts to what is known
as the spot mode which is characterized by high emission current at low
extraction potentials. Both of these names are derived from the physical
appearance of the neutralizer discharge. In the spot mode, the neutral-
izer is emission limited at about three amperes. 11 (Bartlett, 1975)

2.6 SPECTROGRAMS

The main method of data presentation used by UCSD in this report
is the spectrogram. This provides a visual display of particle count-
rate as a function of time and energy, permitting rapid qualitative
analysis of the data, and indicating directions for the analysis of the
raw data. In the following two sections the formats for these spectro-
grams are discussed,

2.6.1 Description of ATS-5 Spectrograms

Format (Reference Spectrogram 2, 10-11)

The spectrograms are produced in pairs; one showing the spectra
from the perpendicular proton and the perpendicular electron analyzers
and one showing the spectra from the parallel proton and electron
analyzers. They are labeled by a large J, or 11 on the middle left

side. The proton part is always below the electron part. The day of

the year (January 1 equals day 1) and year is given at the bottom. The

month, day in month, and year are also given at the left just above the

J. or 11 label. The times at the beginnings and ends of the spectrograms

9
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can be arbitrarily set, and can cover any desired time span. Time
scales covering as little as 10 minutes and as great as 4 days have been
used, Times are given in Universal Time (UT).

Grey Scale Interpreta tion

The primary value of spectrograms is their ability to reveal pat-

terns in the energy -time plane. The determination of actual flux levels

from them is of secondary importance.

Should one desire to estimate the flux at a given point on a spectro-

gram, first locate the corresponding level on the grey scale at the

lower right and determine the value of ' IG'' on the scale marked 0 to 3.

The differential energy flux in eV/cm 
3

sec sr eV is then given by

(10G - 1) 10
b+4. 367

where b is given by "El., I 'l for the electron fluxes or "PR" for the proton

fluxes. The value of "ST" gives the change in G between each of the 33

discrete grey levels ay. xilable.

Energy Scales
The computer program which generates the spectrograms can

utilize any arbitrary function of energy for the energy scales for exhibit-
ing all or any part of the measured spectra. The entire range from

50 eV to 50 keV is usually plotted with a logarithmic scale with 50 eV

at the center for both protons and electrons. This gives an inverted

energy scale for the protons.

Subsidiary Data
A number of useful quantities are given along the top of the spectro-

gram., or in the lower left hand corner in older spectrograms. The

analyzers in the "master" and "mate" channels are identified by numbers

following "MASTIC" and "MATE" according to the scheme;

10
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1, perpendicular electron analyzer

Z. perpendicular proton analyzer

3. parallel eiectron analyzer

4. parallel proton analyzer

TA = averaging time for the spectra 
in minutes

TS = time between spectral averages in mintes

TM = averaging time for the magnetic data in minutes

The seven bit command word is given immediately below

"COMMAND". The first three bits give the channel assignments and

are therefore redundant to the master and mate identifications given

above. Bits 4 and 5 specify the operating mode according to the

s cheme:

Bit	 4	 5	 mode

0	 0	 track-scan

0	 1	 single step scan only

1	 0	 track only

1	 1	 double step scan only

Bits 6 and 7 not set to zero correspond to other modes which are

rarely used. "TRACK" refers to a mode where the energy is varied

to track a peak in the counting rate.

I1 ST If # "EL'', and "PR" are described above.

II PSNG II specifies the quantity being plotted in the spectrogram

according to the scheme:

1. differential energy flux

2. differential number

3. ratios of the flux averaged over ' I TS" minutes to the flux

averaged over the previous "TA" - ' I TS" minutes.

4. ratios of adjacent energy steps

Options other than the first are rarely used.

17



Magnetic Field (See Spectrograms 10a and 10b)

Data from the .ATS-5 magnetometer have been kindly supplied by

T. Skillman of the C;oddard Space Flight center and are plotted above

the spectral data along with lines at 0, 50, 100 and 150 gammas, The

data are not corrected for the effects of time changes in the spacecraft

current systems. These perturbations can be as large as 15 gammas.

The absolute value of the magnetic field component parallel and per-

pendicular to the spin axis is given by the darker and lighter points

respectively (and usually the upper and lower respectively) with the

spectrograms of the perpendicular analyzers. The perpendicular com-

ponent is obtained using only the coarse (33 gamma step size) data and

is thus uncertain by at least :k 10 gammas. Most of the scatter in this

component is due to using only the coarse data.

The magnitude of the field and the angle of the field to the span

axis are given by the lighter and darker points respectively (and usu-

ally the upper and lower respectively) with the spectrograms of the

parallel analyzers, The angle to the spin axis is given in degrees.

Both the magnitude and angle are subject to the additional uncertain-

ties in the perpendicular component,

2.6. 2 Description of ,ATS-6 Spectrograms

Format (See Spectrogram 1)

These spectrograms are produced in a format similar to that of

.ATS-5. One spectrogram is produced for each detector pair, and

they are labeled N/S or E/W on the left hand side, where the electron

and ion labels are printed. The day of the year and the year are given

on the bottom, with the month/day/year printed at the top left corner,

The time of day is printed on the bottom. The electron spectrum is

always placed above the ion spectrum.

The count rate is modified slightly before plotting. The major

modification is the background to be subtracted from channels 0-15

of the electron detectors.

A
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Axes

The energy axes on the sides is a combination of linear (0» 10 eV)

and logarithmic (10 to 80 eV). The electron scale is on top, the ion

scale, usually inverted, is on the bottom, The time axis on the bottom

is in universal time, and normally s pec ific p hours and minutes.

Tntensii

The intensity scale runs from 1 to 10. The program converts the

count rate to this scale according to the following formula.

In = 0. 4 * C<log10(l +CR.* 10'x) ) /DBS + 4 * s a

where;	 In intensity

CR. = count rate

x = DBE or DBP, an offset factor that determines the

minimum count rate which gives a non-zero intensity

DBS = contrast, smaller DBS gives higher contrast

= weighting factor, about 1. 0, 1. Z5, 1. 5, 1.75; needed

for plotting purposes.

For maximum contrast, it is desirable to work on the straight line

portion of the intensity curve. This implies setting 
10x 

approximately

equal to the minimum count rate of interest. For normal DBS (about 0.06

or 0, 07) 2 orders of magnitude in count rate will raise In to 16. There

is an overflow mode where the scale cycles. In this mode, the intensity

reaches a maximum lightness, then recycles to black, and starts over

again.

The most useful parameters printed at the top of the spectrogram

are the longitude (LNG) and the command. Appendix 5 is provided to

help interpret the command, which gives the detector status at the begin-

ning of the spectrogram. A black triangle just above the electron spectra

indicates a command change.
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The magnetic field data is plotted across the top of this page, The

different plots should be distinguishable by their different behaviors, and

their intensity (thickness), The north/south and east/west spectrograms

are treated differently. On the north/south spectrogram, we find the

pitch angle (a) of particles seen by that detector, B  , B t , and 1, the

Inclination of the magnetic field, On the cast-west spectrogram, the

north/south pitch angle is replaced by the angle of the detector with

respect to the EME package, since a; is almost always *,r 90 °. The

magnetometer suffered a failure on day 251/75; the y axis was lost at

this tine, Also, the z axis misbehaves if the outward field is greater

than 20 y. After this date, B t and 1 are replaced by -B z , The relative.

intensities are as follows:

Pitch and detector angle	 15

B 	 8

B t	 8

1	 10

B ^z	 10

If the detectors are rotating, the angle plot is immediately noticeable
as such, except in spectrograms covering G hours or more, In this case,

the minimum angle is plotted whenever it occurs. This usually shows up

as a series of small dots near the bottom of the scale. The scales for the

magnitude of B and B  are on the left hand side, in gammas. The

scale for angles on the right side is more complicated, The scale for

the north/south pitch angle is at the bottom of the plot area, with only

0* and 45* labeled. The +90, 0, -90 above these marks are the scale

for the inclination of the magnetic field. The east/west spectrogram is

similar, but replaces pitch angle with spacecraft angle.

14



3. 0 REVIEW Or PREVIOUS WORK

3, 1 INTRODUCTION

Active control of spacecraft charging is possible by emitting charged

particles. Variation of spacecraft poto,,,4 nl in this way has not been the

primary purpose of any known experiments. However, it has been a by-

product of 4 number of experiments.

In particular, those experiments involving ion thrusters have been

our main source of data on ion emission. Electron emission has been

done with the hot filament of the ATS-5 neutralizer, and with. a variety

of electron guns in ionosphere and magnetosphere studies. Ion emission

has primarily been from satellites, electron emission from rockets,

A review of earlier experiments follows, Gendrin (1974) gives a

good review of electron gun experiments and mentions several unpub-

lished shots as well as discussing the physics of beam propagation,

3, 2 AERmEr 17. 03 (XANUAI.Y 26, 1969)

This was Wilmot Hess's experiment to test the feasibility of emitting
an electron beam from a rocket, The rocket was launched from Wallops

Island, reaching an apogee of about 270 km. It carried 10 guns working

off a commoi-i accelerator at 10 kcV and .5 amp. The stated purpose of

the experiment was to generate an aurora artificially, and the experi-

ment was successful.
To enhance vehicle neutralization, the rocket carried an aluminized

mylar screen. Unfortunately, it did not fully deploy so the collection

area was unknown. Gull diameter was 26 m, ) The current from the
screen to the rocket was measured.

15



The payload included two retarding potential analyzers covering

0-90 *V and 100-2000 cV. There was no clear break in the particle

spectrum. On thin evidence, it is balieved that the potential remained

below ZOOO volts. The low energy RPA saturated when 
'beal'11 ^ 50 

nu.

other result ,,v arc as follows:

1) "The spectrum of returning electrons showed an ave^rago of

4-20 *V with no obvious break points, 11

2) "The ambient electrons were strongly heated by the beam, ►►

3) The return current did not initially equal the beam current on

pulses with I 
beam  

50 ma, but rose slowly to match the beam current

over at period 
an 

the order of 100 msec.

4) 11Z nhanced fluxes of hot electrons persisted after the pulses, ►►

These decayed in times on the order of 100 moac (Hess, 1969, 1971;

Trichel, 1971).

This group was involved in another experiment in 1972. On October

15, an electron accelerator was launched from Hawaii, They succeeded

in generating at least one artificial aurora in the Southern Hemisphere,

using a 1 -sec burst at 24 koV and ow 200 ma (Davis, 1973).

3, 3 E. CI-10 : INTRODUCTION

This is a series of rocket flights (fou • so far) designed to study the

ionosphere and magnetosphere. The basic promise is that electrons may

be injected along field lines and bounced back irori the southern hemi-

sphere to the sending rocket. (ARAXS is based on the same idea. ) The

project is headed by Dr. Sohn Winckler of the University of Minnesota,roi

They have succeeded 
in 

the basic idea, and are now moving toward

analyzing the interaction of the beam with the magnetosphere, atmosphere,

and aurora.

There are some indications of positive potential during gun firing,

but none of the potential measurement a seem definite as yet (Winckler,

1976).

16



3.3.1 Echo I (August 1.3, 1970)

This was the prototype for the project, and proved: the feasibility of

the echo idea. A number of one and two bounce echoes wore seen. This

rocket also carried extensive neutralization apparatus and diagnostics,

The electron gun swept from 34-43 koVs with 70 ma output for

16 » sac. The bounce period was about .65 sec at the Mell.wai;n L

parameter L "- 2.56. (Apogee it 350 km, ) {.wick echoes were seen

from below the rocket in times 0.30 milliseconds,

The first additional neutralization devices used was an argon plasma

source, Ground tests showed it to emit approximately 100 ma of 25 eV

argon ions and 10 eV ale ctrons, The current was neutral.

Before the argon source was switched off, an aluminized mylar

shield was deployed, It was predicted that it would intercept a thermal

current of about 700 ma, about 10 time  the beam current.

The main diagnostic was a Faraday cup, It showed that the bare

rocket body, ax conductor, drew a sufficient return current to approxi-

mately neutralize the effect of the beam. with 0 4 75 always, and

0 , 1 volt usually (Hendrickson, 1972).

3.3.2 Echo II (September 25, 1972)

This experiment represented an attempt to repeat the results of

Echo I at a new launch site3 , with L = 8, 5, apogee = 264 km. Based on

results from Echo L no neutralization equipment was carried. Langmuir

probe measurements showed that the bare rocket body was sufficient to

maintain 0 c4 100 volts. There were no co gfiramed echo observations

(Winckler, 1975a).

•
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3. 3. 3 Echo III (April 17, 1974)

Echo III and IV were Launched from Poker Flats, Alaska, at
L — 5. 4, apogee - 275 km. Echo III was designed to begin investigation
of the near-rocket interactions, including the quick-bounce below the
rocket and the strong electron flux to the rocket during beam emission.
Therefore, thi rocket carried a photometer (3914 A) and a back-
scattered electron detector to observe the beam atmosphere 4.1teraction.
It also carried the standard scintillation/ photometer with a low energy
cutoff at about 25 keV, a Low, energy ion spectrometer (0 -5 eV), and a
new feature, a variety of metal tabs to measure the return current in
various directions.

The gun was activated between 30 and 40 kV, at about 80 ma.
The results of this flight are being debated in the literature

(Israelson, 1974, 1975, 1976; Hanser, 1976).
The ion detector has resolution in the milliseconds regime, and

seems to have shown 0 t 10 V immediately after the gun firing. The
"DESA"' analyzer for backscattered electrons also had rnsec resolution,
and covered 0-50 keV. Analysis of the 8 msec gun pulses shows a great
deal of time-energy structure. The indication is that there is a heating
effect of the plasma near the rocket, enhancing the return current. The
result as indicated by the ion spectrometer, is that the rocket goes from
positive during firing to tens of volts negative immediately afterwards,
gradually returning to 0 se -1 volt.

This experiment seems to offer a great deal of promise in providing
information on the spacecraft and beam interactions with the atmosphere
(Winckler, 1976).

.
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3. 3.4 Echo IV (January 31, 1976)

Echo IV was a refinement of Echo III, spinning at a slower rate

(T s 1 sec), and carrying an attitude control system that allowed align-
.

ment of the rocket axis almost parallel to B. New capabilities were

the ability to release N 2 from the attitude control system to enhance

neutralization, a Langmuir probe for potential measurements,

photometers for 5777	 electric field booms, and several current

and particle detectors.

Echoes were detected by both particle and photon detectors. In

addition, ground television monitors observed a number of downward

injections (Flallinan et al. , 1978).

Langmuir probe measurements showed the rocket to be about

*20 volts with respect to the probe during the 30 kV gun pulse. It is not:

clear how this relates to the potential with respect to the distant plasma

(Winckler, 1976). Israelson and Winckler (1978) give the fascinating

results of the N 2 dump. Whereas normally the return current measure-

ments generally showed Ireturn < I
beam , during the N2 dump, the

detectors saturated, indicating 'beam < Ireturn' This indicates that the

return currents are localized on the rocket surface, and that a neutral

gas around the rocket will enhance the return current. A current

oscillation of about 22 Hz was set up after a 1 second, 40 kV, 80 ma

gun pulse. A similar oscillation was seen by onboard photometers at

the same time.

r
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3.4 ZARNITIA (MAC' 29, 1975)

A preliminary experiment in the AR.AKS series occurred in 1973,
Launched at L Pi 2 from the Volgograd region, it reached an apogee of
161. 5 Ian.

Zarnitza carried an electron gun, and its beam was seen to travel at

least 40 km by ground observers.
No potential, measurements were made. The beam was . 5 A at 10 ke"V'.
A glow discharge was seen around the rocket, and is believed to be

connected to the return current to the rocket. As of publication (Cambou,

1975), the relationship has not been established..

3. 5 ARAKS

This is a joint French-Russian operation to study electron beams in

the ionosphere.

Two flights with an Eridan rocket have been reported. Both were

launched from the Kerguelen Islands; the first northward on January 26,

1975, the second eastward on February 15, 1975. Each was equipped

with electron guns operating between .5 and 1. 0 amp at 15 and 27 keV.

They carried active neutralization devices, cesium plasma sources, and

various particle detectors (Cambou, 1976), (Cambou et al. , 197$).

The charging data in a report by Winckler (1976) shows 0 to be less

than 300 volts for one flight.

3.6 PRECEDE (OCTOBER 17, 1974)
EXCE DE II (APRIL 13, 1975)

These two rockets are part of a DNA/Air Force Geophysical

Research Lab project to study auroral phenomena..

PRECEDE was launched from White Sands to an apogee of 120 km.

A retarding potential analyzer was carried. A 25 kV, .8 amp electron
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beam was emitted. At 120 km, the spacecraft potential was less than

120 volts. At 90 km, it was less than 17 volts (O^Neil et al., 1978a).

EXCEDE II was launched from Poker Flats to an apogee of 137 km.
r

The retarding potential analyzer suffered a partial failure but the space-

craft potential was less than 200 volts for the 3 kV 0 amp beam

(O'Neil et al., 1978b).

An interesting theoretical result showed that 0 should oscillate at

about 105 Hz. Unfortunately, this is beyond the instrumental time

resolution (Bien, 1974, 1975).

3.7 JAPAN

K-9M-41 (January 17, 1973)

A wave oriented experiment was conducted in 197 3 by Matsumoto

(1975). An electron emitting cathode was mounted on the rocket. This

provided an electron beam at about 3 eV, due to the potential of the

rocket. This potential was caused by a d. c. bias on the receiving

antennas.

No potential measurements were made.

A large variety of wave phenomena were seen, suggesting that the

emitted electrons were escaping and exciting waves.

A similar experiment was done by Miyatake (1974) on K-9M-35,

K-9M-46 (September 15, 1974)

A carefully reported (Kawashima et al. , 1978) mother-daughter rocket

shot was made with a plasma gun and Langmuir probe diagnostics. No

potential measurements were made.

X-10-11 (September 24, 1975)
K-10-12 (January 18, 1976)

.

	

	
These two successful electron beam rockets were reported on

briefly by Kawashima (1976).

21



Both carried Langmuir probes and electrostatic analyzers. They

both were fired to an apogee of 200 km, and showed potentials of only a

few volts. The electron guns operated at 200-300 volts, from , 3 ma

to 3 amps,

There was a neutral gas release.

The following date are from a University of Tokyo book: Sounding

Rocket Data in Japan, Vol, 3, (1976-1977), March 1, 1979.

K 9M-57 (Aug. 31, 1976)

This was another plasma wave/electron gun experiment,

K-9M-58 (January 16, 1977)

This was an electron beam experiment in artificial aurora produc-

tion. Election beams from 0 -5 keV and 0-350 mA were used, Auroral

lines were created. A potential rise was measured by a floating probe

and the heating of the ambient plasma by a Langmuir probe.

K-9M-61 (January 27, 1978)

A similar operation, using a 0-2 keV, 0-35 mA beam. The vehicle

potential rose to more than 60 V at 300 km and more than 400 V at

200 Ian when the 2 keV, 35 ma setting was used. Artificial aurora were

created, indicating escape of the beam,. The spatial distribution of the

potential around the rocket was meamared. Low frequency (, 100 Hz)

oscillations in potential and return current were seen at bbeam _ 10 ma.

SE PA C

A proposed shuttle experiment is described by Obayashi et al. (1975).

22



3, 8 SERI II (LAUNCHED FEBRUARY 3, 1970)

Ion thruster operations are principally represented by SERT. This

spacecraft carries a mercury thruster with a hollow cathode neutralizer

in a 1000 km circular polar orbit, in its first year SERT 11 was continu-

ally in sunlight, The thruster provides .25 amp of FIg* at 3 M The
u	

neutralizer is a low energy plasma emitter. It may nominally be biased

to 0, X25, X50 volts with respect to the main frame. The neutralizer

may be operated Independently of the thruster at zero or negative bias

(driving the spacecraft in the positive direction). Potentials were deter-

mined with hot wire emissive probes.

The large solar arrays had exposed conductors at an unknown (pre-

sumably positive) voltage. They could have caused some of the effects

seen by serving as particle sinks, but were not generally cited (J. M.

Sellen, private communication, 1977).

Passive spacecraft potentials varied from -5 to -12 volts, depending

on geomagnetic latitude and whether the spacecraft was on the sunrise or

sunset side of earth.

During active operations with the neutralizer at zero bias, about

1/4 amp (I4g +) was emitted, The potential varied between -15 and

-30 volts.

With the neutralizer biased, the potential could be effectively con-

trolled, and driven to zero. Positive voltages were not obtained. The

neutralizer power supply became current limited when this was attempted.

A variety of loop currents could explain this, including a current to the

positive spacecraft (solar array). Spacecraft potential was driven as far

as 77 volts negative.

Tests using only the neutralizer were made in 1974. Potential. was

successfully held between 0 and -5 volts in this manner. Negative bias

on the neutralizer did drive the spacecraft positive.
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3.9 ,A.TS-4 (LAUNCHED AUGUST 10, 1968)

This satellite carried a cesium ion engine identical to ATS-5 1 s. Fail-

ure of the launch vehicle forced the satellite into a. low altitude orbit

(218 km perigee, 760 kni apogee), but several tests were conducted.

The satellite remained attached to the launch vehicle, which provided

a large surface area for return current collection.

Neutralizer current varied with altitude (density), sunlight, and

beam current. Low altitude and darkness seemed to be the environment

favoring a higher neutralizer current. Currents up to 346 µamps were

seen, at a beans current of 387 µamp.

In the last test, spacecraft potential was measured. At a beam cur-

rent of 756 µamps, there were maxima in potential and neutralizer cur-

rent. These were -132 volts and 330 µamp, respectively, in daylight.

It is believed that the neutralizer was emission limited, but it is not

known why.

The spacecraft reentered the atmosphere shortly thereafter, and no

further data was obtained (Hunter, 1969).

3. 10 ATS-5 (LAUNCHED AUGUST 1969)

This satellite carries a cesium ion thruster with a hot filament

electron emitter to serve as a neutralizer. The primary diagnostic is

the UCSD Auroral particles Detector. it measures ions and electrons

from 50 eV to 50 keV in 64 steps. The satellite remained at 105' West

longitude from launch until late 1976. It is at geosynchrohous altitude

spinning with a period of .8 seconds.

The thruster was designed to accelerate ions through a 5 kilovolt

potential, supplying a current between . 2 and 1. 0 milliamp. Due to the
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accidental spinup of the satellite, ordinary operation of the thruster
never occurred. In spite of the difficulties the thruster was operated
once in 1972 and once in 1973. Results are limited by the sparseness
of the data. However, it was possible to conclude that, at geosynchronous
altitude, normal use of the thruster did not alter the potential of the
spacecraft, which was less than 50 volts. In a brief non-neutralized
operation, the spacecraft charged to the accelerating potential
(DeForest, 1973).

A much greater body of data is available from the operations with
the hot filament. Preliminary reports have been given by Goldstein
(1976) 0 and Purvis (1976), The filament is a 7 mil wire, made of yttrium
doped tantalum, and operates at 1750' centigrade (mss, 2 eV). The filament
is operated at 3, 5 volts a. e. It was operated regularly in each eclipse
Period from fall, 1974, to fall, 1976, Particle data shows the potential
dropping rapidly from thousands of volts negative to a few hundred volts
negative when the neutralizer is switched on, The transition time is
less than the instrumental response time. The potential rapidly returns
to a value between the pre-neutralizer and initial operation values while
the neutralizer is on. then resumes its pre-operation value at neutral-
izer off.

3. 11 ATS-6 (LAUNCHED MAY 1974)

Applied Technology Satellite-6 is a large multi-purpose satellite which
resembles ATS-5 in that it carries particle detectors and a cesium thruster

at geosynchronous altitude.
The particle detectors cover the 0-80 keV region in 64 step, and

combine high angular resolution with the ability to rotate: in two planes.

The ion thruster carries a hollow cathode neutralizer which is the major
difference between the thrusters on ATS-5 and ATS-6 for purposes of



this study. As with SERT II, this neutralizer is a low energy plasma

source, which may be operated independently of the thruster,

On July 1$, 1974, the first iota engine was operated for one hour.

Attempts were made to restart than engine on July 20, 1.974. Due to

excessive high voltage arcing, it was impossible to restart the engine,

A number of attempts were made to restart the engine over the following

month., but thruster operation was never obtained.

Following the fall eclipse season, a 100 hour test was made, From

October 19 to 23, 1974, the second engine was operated. Once turne=d

off, it too proved impossible to restart.

The reasons for the failures involve problems with the cesium now

and engine contamination. The neutralizers are still usable, subject

mainly to power constraints.

A, neutralizer test was performed on February 26, 1976 in daylight.

The effect was small, but it did show that the neutralizer was operating.

Operations during the latter part of 1976 will be discussed in a

later section.

Proper analysis of the ion engine operations has not yet been done.

Goldstein (1976) has done some work on these operations. Preliminary

indications are that when the engine is operated, the spacecraft potential,

shifts to -5 volts and stays there, independent of environment. Any

potential barrier is breached or destroyed. It is possible, but unproven,

that ions from the thruster make their way to the detector. In the

100 hour test, an injection of high energy particles failed to cause the

spacecraft to charge to a high negative potential, which is the space-

craft's normal response.

One peculiar effect is the observation of electrons from the -550 volt

ion accelerator electrode during the July ;Firing (Barlett, 1975),
(

i
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4. A EFFORTS UNDER THIS CONTRACT

The objectives of this contract are listed in Figure 2. A major por-

tion of this contract involved the reduction of data acquired in previous

years to spectrograms, Spectrograms are the main method of present-

ing the data in this report. The format for these mpectrograms is dis-

cussed in section 2.6. The approach implemented to achieve the objec-

tives listed in Figure 2 is detailed in section d. 1.

Experiment plans were prepared to implement these objectives.

These plans were prepared by UCSA personnel in consultation with both

NASA/Goddard and NASA/Lewis. The plans called for special opera-

tion of both the ATS-5 and ATS-6 particle emitters and the UCSD particle

detectors. They are given in section 4. 2. One of the aims of the active

experiments was to obtain data on the effects of particle emission on

spacecraft potential during an eclipse. Because of the fact that space-

craft power is a critical item during an eclipse, only limited operations

could be performed, Early operations were performed successfully and

good data was obtained. As a result, additional operations were sched-

uled with similar success, A summary of all the active and eclipse data

which has been obtained with the two spacecraft is shown in Table 4.

4.1 APPROACH OF THIS INVESTIGATION

The ion thrusters on ATS-5 and ATS-6 are not available for opera-

Lion. Hence active experiments were restricted to use of the neutral-

izers. With 'this restriction, the following activities were feasible in

reaching our objectives:

1. The comparison of the ATS-5 and ATS-6 spacecraft potentials,

both in and out of eclipse conditions, and both with and without the

operation of the neutralizers.

2. The investigation of the effects of the neutralizers as a function

of local time for both spacecraft.
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3. The investigation of the effects of the neutralizers during goo-

magnetic storms, for both spacecraft.

4. Operation of the low E bridge on ATS-6 to determine quantita-

tively the effect of the emitter on the potential barrier.

4.2 EXPERIMENT

August, 1976;

Operate the emitters on both ATS-5 and ATS-6 throughout a 24-hour

period. On 
ATS-5 the emitter should be operated for 10 minutes out of

every hour. On ATS-6 the emitter should be operated for one-half hour

every two hours.

September, 1976:

A. Select the first three days in September when ATS-5 is scheduled

for operation, During those days, operate the emitter on ATS-5 for

10 minutes during eclipse if the eclipse is less than 30 minutes in length.

If the eclipse is longer than 30 minutes, operate the ATS-5 emitter for

two 10-minute periods during the eclipse. During these same three days,

turn on the ATS-6 emitter before the ATS-6 enters eclipse, and turn the

emitter off approximately half-way through eclipse.

13, After the data from these operations have been evaluated, a plan

will be formulated for operating the emitter on ATS-6 in at least three

more eclipse days, based on the results that have been obtained.
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§Exin _l
ATS- 5

Based on a desire to study the time decay of the neutralizer current,

two long operations were planned. Authorization was obtained to drain

batteries to the danger point during neutralizer operation.

ATS-6

Based on desire to see the leading edge of the neutralizer on,
transition,operations were scheduled so that neutralizer ignition occurred

during eclipse. Three operations were scheduled at the beginning, and

four at the end of eclipse period.

Summer 1977

ATS-A

Operation of the neutralizer was scheduled in attempts to transinit

cesium ions along magnetic field lines to OEOS, with the GEOS mass

spectrometer- as the diagnostic. This would give information on the

escape of the; neutralizer plasma from the spacecraft.

Operations were conducted from 164 to 178/77. (GEOS did not

report seeing any cesium.)

Fall 1977

Spring 1.978

ATS-5

The attempts at longer operations ( F:td 10 minutes) are to be con-

tinued. The following plan was also developed;

ATS-5 Ion Engine Experiment Flan

To date, all ATS-5 eclipse ion engine tests have used engine

number two only. The purpose of this series is to verify that the other

ion engine has the same effect on spacecraft charging and to measure the

effect of two ion engines operating simultaneously.

Test 1. In eclipse, operate ion engine number one in the same

fashion as the previous ion engine tests as allowed by the spacecraft

power budget.
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1. Turn 121 ME ON

2. Turn Ion Engine Regulation No. I ON

3. Turn Ion Engine No. I Ionizer ON

4. Turn Ion Engine No. I Ionize, 
OFF

5. Turn Ion Engine No, 1 Regulator OFF

6. Turn E ME OFF

Note: Ion Engine No. 1 is on Telemetry Encoder No. I only,

Test  2. operate both ion engines simultaneously in eclipse no

allowed by the spacecraft power budget.

1. Turn ZME ON

2. Turn Ion Engine Regulators 1 & 2 ON

3. Turn Ion Engine No. I Ionizer ON

4. After a 3 to 5 minute delay, turn Ion Engine No, 2

Ionizer ON

S. After a 3 to 5 minute delay, turn Ion Engine No. 1
Ionizer OFF

6. After a 3 to 5 minute delayo' tern Ion Engine No. 2

Ionizer OFF

7, Turn Ion Engine Regulators 1 & 2 OFF

8. Turn EME OFF

If the power budget would allow a longer operation with both engines it

would add useful information, However, if pressed for power, the test

would still be useful if both engines were commanded on without delay.

ATS-6
The UCSD detectors failed in May 1977. Therefore, operations

were scheduled in Fall 1977 (Days 281-285) using the University of New

Hampshire experiment as the diagnostic. The Spring 1977 pattern was

followed, The UNH experiment does not have the energy resolution of

the UCSD instrument, but does have the possibility of finer time resolu-

tion. Operations in Fall 1977 determined that the energy range was not

sufficient for our purposes, and no further analysis was done.
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4.3 RESULTS

4. 3. 1 Data Obtained

Table 4lists all the data collected and processed under this contract.

4.3. 1, 1 Passive data: eclipses

A

From 1976-8, most of the eclipses involved operations of the neutralizer.

For pure eclipse data, it is necessary to go back. to 1969-70.

ATS-6

This spacecraft has taken data continuously in each eclipse period

from launch until fall, 1976, ,During portions of the faH, 1976, and spring,

1977, eclipses seasons, the detectors were in low bias, in order to extend

the detector lifetimes.

4. 3, 1. 2 Active operations

Pre-Contract

Ion engine operations occurred in 1974 on ATS-6, and one daylight

neutralizer operation occurred in February, 1976, On ATa-5, neutralizer

operations have been conducted in eclipse since fall, 1974.

Daylight

Under this contract, operations began with a series of daylight neutral-

izer tests on both satellites on August 20 and 21 of 1976. A similar series

of operations was conducted on November: 14 and 15, 1976. These con-

sisted of 10 minute operations of the neutralizers. On the November dates,

the two spacecraft were passing each other, providng the opportunity to

obtain data in nearly identical environments,

f

e
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Es se
Fall ► 1976 experiments with the ATS-5 neutralizer followed the pattern

established in previous years; enter eclipse, neutralizer on, neutralizer

off, exit eclipse. Two exceptions to this schedule were on September 1 and

2, when the neutralizer was turned on before entering eclipse, in order to

facilitate comparison to ATS-6 data. These operations were on the order

of ter: minutes long, approximately double the time of previous operations.

In the spring of 1977, two operations were run. Based on a request made

by UCSD, longer tests were made, for approximately fifteen and eighteen

m inute s.

In Fall, 1977, several changes were made, Previously, engine No. 2

had been used. It is possible that operation of the main thruster had

changed the filament in some way. To check for possible differences, the

neutralizer from engine No. 1 was operated, Also, the two neutralizers

were operated in tandem, giving a new, unique, data set.

The first operation of the ATS-6 neutralizer in eclipse occurred in

September, 1976. In these first tests, the neutralizer was turned on

before entering eclipse, and then turned off in eclipse. This pattern was

considered safer for the satellite. In spring, 1977, ATS-6 operations

were again conducted in eclipse. The neutralizer was turned on and off

in eclipse in these tests, duplicat ng the ATS-5 pattern.

ATS-6 operations after this time did not produce any useful data.

4. 3. 2 Data Reduction

ATS-5

All available data tapes have been received 'for  the 1974 to 1978 eclipse'

seasons, reduced, run as spectrograms, duplicated, and delivered under

this contract.

ATS-• 6

All of the data tapes for ATS-6 operations have been received,

processed, into spectrograms, duplicated, and delivered.
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4. 3, 3 Analysis

4.3,3,l Passive data: eclipses

A large, 	 bank exists for eclipses of ATS-5 and ATS-6. A quali-

tative summary follows,

Spacecraft charging is in general at maximum in the midnight to dawn,

region, Effects are even more dramatic during eclipse. The photo-

electric current, one of the major factors in the current balance at this

altitude, disappears, The particle flux now determines the charge

balance, and whon the anibient plasma is highly energetic, potentials

from 5 to 10 kilovolts can be observed. At the opposite end of the spec-

trine, the ambient plasma may be relatively cool, resulting in small
potentials oil the spacecraft, in this case, the spacecraft seems to ride

at a slight positive potential before eclipse. Then, with the photoelectric

current vanishing, the spar ,,ccraft shifts to a slightly negative potential,

This reveals the previously hidden low energy ions. The low energy

electron band disappears, which is largely explained by the disappearance

of photoelectrons, but may also be due to the absence of secondaries

trapped by a potential barrier around the spacecraft. Note that informa-

tion on low energy data (E <50 eV) and luw potentials I 't I < 50 V) is

from ATS-6 only, because , of the different instrument ranges.

It is necessary to understand these effect's to cope with 
the 

thruster

data. Particularly, the behavior of spacecraft potential during thruster

oporaLion mimics the low energy shift, See), in some eclipses.

The major quantitative result to date involves comparison of data

between the two satellites (see Figure 7). In fall, 1974, ATS-5 and

ATS-6 were 10° apart in longitude. The two completely dissimilar space-

craft charged to roughly the same potential when both were in eclipse.

This encourages us to believe results from these satellites may be

generalized to other flights (Purvis, 1976).
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Reduction of ATS-6 data to spectrograms for recent eclipse seasons

reveals data that falls into three main categories. ThcJirst is the no

change category-. A tiatellite riding between plus 5 and minus 5 volts

undergoes no change as it enters eclipse beyond the disappearance of the

low energy electrons attributed to photoelectrons. (The resolution limit

is 3-5 volts in this region. ) Second is the small negative shift category,

liere, the potential seems to drop from a few volts positive to a few volts

negative, revealing a low energy band of positive ions, Lastly is the

dramatic change category, where the spacecraft charges to kilovolt

potentials. Spectrogram I t from October 2, 1975, displays categories 2

and 3 very well.

The first distinguishing feature is the bright band of low energy

protons beginning with the eclipse at 20:57. Note also the disappear-

ance of the low energy band of electrons. Then, at 21:22, an injection of

high energy particles occurs, as seen by the wide bands of electrons and

ions reaching above, 10 kilovolts, These particles cause the spacecraft to

charge to about -3000 volts. This is shown by the absence of ambient

ions below this energy, with an abrupt transition from no particles to ail

extremely high count rate, (The thin black line along this boundary is

caused by the overflow of the gray scale to the next level. ) When the

eclipse terminates at 22:00, the spacecraft immediately drops to about

-50 volts, with most of the ambient particles now visible.

Category 2 mimics the behavior of the particle data in operations of

the neutralizer and the thruster on ATS-6 when it is at low potentials.

(The energy range that permits differentiation between categories I and 2

is not available on ATS-5. )

It is possible that cases 1 and 2 are differentiated by the presence

(or lack) of low energy ions.

1
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4.3.3.2 Active operations

ATS-5 Thruster Operations

A large quantity of old data was reduced under this contract. Part

of this data has been reported on by Purvis (197(-,).

A data printout for September 20, 1974, was reduced to graphical

form in Figure S. Spectrogram 2 displays the same data. The transi-

tions at 6:31:30 and 6;36 correspond to neutralizer on and off commands.

There is an immediate drop in the magnitude of the potential when the

neutralizer is switched on., The speed of the transition is beyond the time

resolution of ATS - 5, It is not known how close to zero volts (or the

detectors 50 volt lower limit) the spacecraft is driven. The magnitude

of the potential then begins to rise to an equilibrium with an apparent

exponential behavior.

In the great bulk of ATS=5 Spectrograms, it is apparent that switch-

ing on the neutralizer (the electron emitting filament) does drive a nega-

tively charged satellite back towards zero potential, (Soo Figure 9. )

The potential for neutralizer on is from the end of the operation. The

success of the neutralizer is not always clear, partly because of the lack

of data in the 0-50 volt region.

During some operations, an overshoot in potential is seen at the

neutralizer off command. Typically, the magnitude of the potential rises

to 10 or 20% more than its pre-operation value, and then returns to that

value within 20-40 seconds. This is seen in Figure 11 at 04:30.

Operations of the neutralizer caused no visible change in the data

when the initial potential was less than 50 volts in magnitude
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Operations in the second year of this contract provided

some surprises .. Until this time, only the neutralizer from

1. E. #Z was used. operated singly, the I. E. #1 neutralizer appears

to have given similar results to those obtained previously, opera-

tions of the two together gave an unusual result, illustrated in

figures  10 and 11, for days 50 and 59 of 1.978.

The switching on of a second neutralizer had a small effect

on the spacecraft potential. More startling is the drop in potential

when the first neutralizer is turned off I This result is tentatively

ascribed to a buildup of differential charging, but no calculations

have been done to explain the result.
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ATS-6 Thruster Operations

The initial operation of the ion thruster occurred on J41y 18, 1974.

The results are displayed in Spectrogram 3. In a brief operation, the

spacecraft was apparently taken to a slightly negative 'potential, with any

differential charging of the spacecraft greatly reduced. This can be seen

in the great reduction in intensity of the broad band of secondary electrons

(0-100 volts) at 3:10 when, the neutralizer goes into full operation for

5 minutes, and again Ltom 3:31 to 4:03 and from 4:10 to 4:35. The

thruster was on in the latter two time periods, which may be the reason

for the greater number of low energy ions. This could either be due to

a different potential on the spacecraft or to the abundance of cesium ions.

Electrons can be seen at 550 volts during the engin'-, operations. These

have been attributed to secondary electrons from the accelerator grid of

the engine.

The second test ran for 92 hours. it is displayed in Spectrogram 4,

which covers day 292, hour 0, to day 296, hour 12. The engine

ignited at 8:01 UT on day 292. A low energy band of ions immedi-

ately appears, This band continues with small variations throughout the

test. (The white indentations occurring between hours 12 and 24 of the

first three days are instrumental temperature effects and may be ignored.

This low energy band of ions may be attributed to cesium ions front the

engine or ambient ions brought -n by a shift in the potential. A negative

drop of a few volts in the potential. is consistent with both of these

explanations.

There are two large injections of energetic particles, the first

beginning at approximately 3:00 UT on day 293, the second at about

•	 6:00 UT on clay 295. Two injections of slightly lower energy particles

occur on days 294 and 296. Charged particle injections have caused

ATS-6 to fall to potentials of several hundred volts below ground in

daylight. The engine may therefore be compensating for the change in
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the particle faux. It does hold the satellite within a few volts of ground

throughout the test.

The low energy band of electrons associated with differential charging

disappears when the engine is switched on, More detailed analysis

(Olsen and Whipple, 1978) showed that before 08:00 UT on day 292, a

barrier of about -100 volts existed. The spacecraft potential dropped

from -50V to near zero at 07:40 UT, when the neutralizer ignited. The

differential potential, as seen in the trapped electrons, persisted until

08:07, when the main thruster ignited,

ATS-6 Neutralizer Operations

Daylight Operations

The first daylight operation of a neutralizer occurred at the beginning

of the ion engine operation on July 18, 1974. The ability of the neutralizer

to push a positive spacecraft negative was demonstrated. By this the

neutralizer showed its ability to emit ions when in spot mode,

Some of the highest quality data was obtained during the restart

attempts of engine No, 2 on July 20 and July 21, 1974, only preliminary

analysis was done, but the neutralizer demonstrated its ability to shift

the spacecraft potential, with only a mild effect on differential charging.

These tests showed that electrons could be emitted when in plume mode.

There was a neutralizer operation at the beginning of the October

1974 test as well. It showed the ability of the neutralizer to supply

electrons in plume mode. Differential charging was reduced but not

eliminated.

There were neutralizer operations during restart attempts after this

test, but they have not been analyzed yet.

A neutralizer test was performed on February 26, 1976, in daylight.

The effect was small, but it did show that the neutralizer for ion
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engine 1 was operating and successfully altering the spacecraft potential,

while engine no. 2 was completely lost.

During the contract period, two sequences of daylight operations

'	 occurred, Spectrogram 5 shows two of the neutralizer operations from

August 20, 1976, The effects of particle emission can be seen at hours 8

and 10 in the low energy bands of ions appearing at these times. In the

24 hour spectrogram (not shown.) a sligbt diurnal variation in the potential

is seen. This shaft, on the order of a volt in magnitude, is not seen on

spectrogram 6 for November 14, 1976, This shift may be due to an

instrumental temperature dependence.

if these low energy bands are ambient ions, we are seeing

a slight negative shift in the potential, bringing into view previously

unseen particles. If so, we are seeing the same behavior as in a cate-

gory 2 eclipse, Another possibility is that we are detecting particles

from the neutralizer.

On November 14, 1976, the operations at 11:35 and 13:35 took

the spacecraft from -100 volts to within a few volts of ground,

The reduction in secondary electrons implies the differential charge

on the satellite has been reduced. At 11:35, the barrier seems

to drop from 40 volts to 15 volts, while at 13:35 it drops to approxi-

mately 0 volts.

Operations in Eclip se

Neutralizer operations during eclipse seasons have been difficult

to examine because of degradation in the low energy channels.

Fall 1976

The neutralizer was ignited before the spacecraft entered eclipse.

This ignition was difficult to observe in the spectrograms. Generally,

ignition came at low potentials and the change in particle data was small.

The main effect was the disappearance of the normal low energy band of

electrons. It is believed that this corresponds to a shift in potential com-

bined with the breaching of a potential barrier (Whipple, 1976b).
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Movement of the spacecraft into eclipse drought small changes in

the particle data. Normally, this transition is marked by the disappear-

ance of the low energy electron band attributed to photoelectrons, but

these had already disappeared. There were small shifts in potential at

this time, Several of the low potential phenomena occurred on

October 14, 1976, (Ste Spectrogram 7, ) The pertinent times are,

Neutralizer ignition 03:50

Spot mode 03:57

Full eclipse 04:13

Neutralizer off 04:21

Exit eclipse 04:29

The normal daylight behavior is seen when the neutralizer enters

spot mode. Low energy electrons (photoelectrons) disappear, while a low

energy band of ions appears. This signals a shift from a few volts posi-

tive to a few volts negative. Upon entering eclipse, the spacecraft poten-

tial drops a few volts more negative, When the neutralizer is switched

off, the spacecraft moves back up a few volts, and then goes positive

again upon exiting eclipse.

On a few days, operating the neutralizer caused a dramatic change in

the particle data. One such event occurred on September 3, 1976. It is

displayed. in Spectrogram 8. Significant tunes here are:

Neutralizer ignition	 00:03:00

Begin entering eclipse	 00:17:55

Full eclipse	 00:20:50

Neutralizer off	 00:30:35

Begin exiting eclipse	 00:52:00

Full sunlight	 00:54:55

A low energy band of electrons (0-10 volts) appears at 00:09 and

persists until the neutralizer is turned off. This is directly contrary to
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expected behavior, or at least the behaviour seen on previous occasions.

An equally peculiar feature is the low energy band of ions (0-10 volts)

running frou"n 00:1 9 to 00:27. The beginning may correspond to entering

oclipso, but the end dues not correspond to aiiy known evollf. . As wiIh

the previously seen ions, these may either be from the neutralizer or the

.	 ambient plasma.

Once the neutralizer is turned off, it seems to take the satellite

approximately two minutes to charge to -4000 volts. This is a typical

potential for ATS-6 in eclipse, and is probably the potential it would have

charged to without the neutralizer operation. This implies that the

neutralizer was succeeding in keeping the satellite from reaching its

normal potential in such an environment. Upon leaving eclipse, the

potential rises to about -100 volts, again with about a two minute time

constant.

Sprin 1977

The early eclipse season operations came during a quiet period for

magnetic activity, and little new information was obtained. However, at

the end of the ;season, on days 97 and 98 of 1977, we obtained our most

impressive data. On these days the neutralizer ignition and turn-off both

occurred in eclipse.

Data from day 98 is displayed in Spectrogram. 9, with analysis

results in Figure 12. The spacecraft is fully eclipsed by 9:07, and exits

eclipse at 9:36. The potential swings negative upon entering eclipse, then

back toward zero upon exiting.. This is the normal behavior of the satel-

lite in an energetic environment. The 0-500 volt error bars reflected the

lack of low energy particle data (a detector sensitivity problem). The

data shows that at 9:12 the neutralizer ignites, promptly discharging the

satellite. Entering spot mode at 9:22 has no visible effect on the space-

craft. Switching the neutralizer off allows the spacecraft to charge back

up to its previous equilibrium. potential.
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i4. 3. 3. 3 Differential Charging

A portion of our support went toward the analysis of differential

charging on ATS-5 and ATS-6.

Two types of differential charging behavior have been noted on ATS-5

and reported by DeForest (1973). The first is the establishment of a bar-

rier to low energy electrons the second is the return of the spacecraft

generated ions to our detector.

Spectrogram 10a shows the first effect occurring on Nov. 30, 1969,

between 0500 and 1100 UT. During this time, there is an absence of

electrons below 500 eV. At the same time, there is a modulation in the

low energy ion data. The pattern is caused by the beating of the energy

scan frequency and the spin of the spacecraft. No such effects are seen

in the perpendicular detector (Spectrogram 10b).

The same phenomena are seen on October 16, 1969, with an additional

factor. The data from this day are seen in Spectrogram 11. Here, the

spacecraft was in eclipse between hours 6 and 7. The differential charging

effect goes to zero about 20 minutes after entering eclipse. During this

period enhanced electron fluxes are seen below 100 eV. These could be

electrons coaxing from the differentially charged surface as it discharges.

The differential charging takes about 20 minutes to build up after the space-

craft exits eclipse.

These effects have been attributed to the thermal louvers adjacent

to the parallel detector inside the spacecraft. The surface of the louver

is insulating. When the sunlit spacecraft is tilted perpendicular to the

sun, the louver is eclipsed, and charges negatively with respect to the

spacecraft. This effect does not occur in the summer ranonths, when the

louver is illuminated.

Spacecraft generated ions are identifiable during charging events.

During the eclipse on Sept. 20, 1969, the spacecraft charged to several

42



kilovolts. The perpendicular detector saw ions below the spacecraft

potential. The moot likely source for these particles is ions sputtered

from a surface at a different potential than the main-frame.

On ,STS-6, differential charging takes a different form. We com-

monly see a barrier of about a hundred volts returning secondary elec-

trons and photoelectrons to our detector (Whipple (1976b)). In a com-
I	

panion paper, Whipple (1976a) showed that sheath effects could not pro-

duce the observed results, and that differential charging is the culprit.

The effect is seon ► in Spectrogram 12, on September 5, 1974. 13e-

tween hours 9 and 10, the spacecraft is charged to about -200 volts,

and there is a barrier of about the same magnitude. The barrier is

marked by light spots near 100 eV in the electron data. Since these spots

always come at the maximum energy of the differential charging barrier,

they must come from the source of the barrier, or another surface at a

similar potential. For this reason, the spots were studied 'Co determine

their source and its characteristics. Our hope is to use these results to

model the fields causing the phenomena.

The spots are also given the name 'spike.' The latter name is

given because of the shape of the line plots for these high fluxes. Such

data can be seen in Figure 13, a line plot for Sept. 5, 1974.

These spikes have very little structure so most of the particle

distribution is fitting inside one channel.. The channel width Ar, is 0. 20

times the channel energy, so the temperature of the particle flux must

be several times lower than the energy at which the flux is measured.

This fits nicely with the model of secondary fluxes corning from a differ-

entially charged surface to our detector. On rare occasions, magneti-

cally returned electrons have been seen, but the spikes usually occur
.

independently of the magnetic field orientation. Electrostatic forces

must be the cause.

Whipple studied the data from day 24$174, and found a strong energy

and angle dependence for the charging spikes, He identified. two different

sources for the fluxes (see Figures 14 - 16). The higher energy spike
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cane at low detector angles (sa 40 * ), while a lower energy spike comas

in at or 100 °. The 140 eV spike was attributed to particles coming from

the solar arrays or dish antennae, while the 100 eV, 100 spike can

probably be assigned to a more local (EME package) source, The major

point of this data is that there are two distinct sources of electrons that

are returning to our detector. It is possible that one of the sources is

creating the dominant field, and resulting barrier,

Thirteen slays with charging spike data were studied and reported

on by Johnson (1978), The data seat studied was;

Day Year Time (t?T)

186 1974 03:30 ., 07:00

188 1974 03:00 - 07:30

195 1974 03:00 » 15,00

197 1974 03:30 - 10;00

201 1974 05,30 .. 08,00

203 1974 08:00 - 10:00

206 1974 04:00 - 06:45

236 1974 04:30 » 08:30

266 1974 07:00 - 08:15

297 1974 06:30 08:00

299 1974 06:00 - 10:30

33 1975 09:30 - 10:30

66 1976 20:30 » 23:00

The first result to notice is that differential charging events have

the same local time distribution as spacecraft charging (i.e. ;w Local

midnight), (See Figure 17. ) This is not a surprising result, since the

high enemy electron fluxes which cause large negative spacecraft

potentials come in these same regions.

Further statistical results are that such spikes are seen at all

detector angles in the North/South, head. (See Figure 18. ). The two
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peaks in Figure 18 may again represent two different source a. Data

from day 236/74, for example, showed the spike at *4 100' over several

hours of time. The spikes occurred over the complete range of pitch

angles, further reducing the likelihood of magnetic causes,

Since the spikes are considered to come in at an energy equal to

(or greater than) the differential potential of their source, a study of

their energy should show how the source potential varies, Figure 1.9 shows

the spike energy versus the spacecraft potential, The spike energy rarely

exceeded 280 eV, and over 80 0Jo stayed below 150 eV. The same charging

proces ses are occurring on insulator and spacecraft, but the insulator

charges more negatively. Leakage currents may limit the differential

potential tnat is developed. The difference in potentials would be due to

a difference in photoelectric yield, illumination, or secondary yields,

A study of day 33, 1975, sheds some light on the question. Spectro-

gram 13 and Figure 20 show that between 10:06 And 10,15 UT as the detec-

tor potential increases, so does the spike energy. The solid line is from

a least square fit of the logarithms of the spike energy and potential. The

temperatures of the distributions in the spikes also increases from 30 eV
to 50 eV. This is reasonable for secondary or baekscattered electrons,

but not for photoelectrons (Knott, 197 2).

Candidates for the source of the spike have included the solar arrays

and the dish antenna, but evidence was found to bring us back to our

neighbor, the University of Minnesota Electron-Proton Spectrometer.

The local midnight condition corresponds to the time when the

"tope of the EME package is shaded. Without a photoelectric current,

it is easy for an insulator to go negative with respect to the main

spacecraft. Most of the EME package is covered with a conducting

gold foil, and a thermal blr.k^ket (also conducting). The U.M. experi-

ment is coated with an insulating white paint, and sticks out of the

n« 
EME box (see Figure 21). One of the heads rotates, stepping 15* every

8 seconds. It is essentially a cube, but the detector face makes it non-

symmetric.
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Our most convincing evidence came on August 24, 1974. The space-

craft potential was P4 -55 V while the spots were reaching our detector at

Ad 60 eV, The north/south detector was set to dwell at 61 eV, looking only

at the electron flux. In Figure 22, we see what happened when the

U.M. experiment head rotated from 345 1 to 360* (north). There was

a dramatic increase in the flux of secondary electrons in the differ-

ential spike at 04:34:46, The change in the flux occurred within milli-

seconds of the University of Minnesota command to rotate, (In terms of

counts, the jump was from 8, 000 to 21, 000. ) The gradual change in flux

during this period is due to the rotation of the UCSD detector. Eight sec-

onds later, the UCSD detector scans through this energy and the flux has

dropped back to 4, 000 counts. This evidence supports the idea that the

University of Minnesota rotating detector is a source of accelerated elec-

trons, and possibly for the barrier around the EME package.

4.3.4 Summary

A large data bank has been acquired and reduced to spectrogram

form, For ATS-5, we have several years of data involving electron

emission to study. It appears thatthe electron emitter on ATS-5 effectively

modifies the potential of the negatively charged satellite, but that it does

not ground the spacecraft to the ambient plasma.

Reduction of several years of ATS-6 eclipse data has revealed a

rich variety of phenomena both at high and low potentials. Th

Wp:^tential data has been interesting because of the similarity tc

the data from engine operations. Data taken at high potential

us with an opp^,,rtunity to determine which particle spectra cat

charging,

Eight experiments were conducted with the ion engine newt;

on ATS-^ in 1976, and seven were made in the first 100 days
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This and earlier data have been reduced and given preliminary

analysis. As with eclipses, the effect on the spacecraft depends on the

particle environment. The ion engine seems to completely dominate all

other particle sources, bringing the spacecraft within a few volts of

ground and holding it there. Experiments with the smaller plasma bridge

(the neutralizer) are not as overwhelming to the spacecraft but seem to

hold it near ground before, during, and after the transition into eclipse;

When the spacecraft was in sunlight, operation of the neutralizer reduced

the differential charge on the satellite, but did not eliminate it.

5.0 RECOMMENDATIONS

This contract supported a preliminary analysis of a rich data

set. Analysis of the collected data is continuing.	 Potentials on

the spacecraft surfaces need to be determined, particularly on ATS-6,

where the structure is extremely complicated. Coincident with this work

should be analysis of the particle fluxes to and from the spacecraft.

Special attention should be paid to the time dependence of the particle

distribution originating from the thrusters and neutralizers.

Experiments should be conducted on the SCATI-TA satellite to confirm

our results on steady state behavior. New experiments should pay special

attention to variations in the spacecraft potential as a function of time.
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Objective

Study feasibility of actively controlling spacecraft
potential by charged particle emission

Approach

Conduct experiments using:
-- ATS-5 electron emitter
-- ATS-6 plasma emitter
-- UCSD particle instruments

Analyze particle data to obtain:
- - Spacecraft potentials with and without

particle emission in various environments
-- Differences in the effectiveness of electron

and plasma emission

Figure 2, Objective of investigation

^N
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UCSD II DETECTOR

UCSD 1 DETECTOR

ION ENGINE NO 1 -

- ION ENGINE NO. 2

ATS-5 SPACECRAFT
79CO 6 004

FIGURE 3 ATS-5 DETECTORS AND ION ENGINES
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Table 1. Comparison of spacecraft and systems

AATS-5	 TS-6

Characteristic	 2 m	 l0 
s ize

Stabilization	 Spin (axis parallel	 3-Axis

Outer surface

Ion engine
neutralizer

Neutralizer-
placement

UCSD detectors

to earth's)

Mostly quartz
(good insulator)

Thermal emission
(electrons only)

Recessed: 2.5 cm

Body mounted
(50 eV - 50 keV)

Quartz, kapton t paint,
aluminum (mixed
insulator and conductor)

Discharge plasma

Outboard: 17 cm,

Rotating (I eV - 80 keV)
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Table 2. Comparison of neutralizers

ATS-5 ATS-6

Turn-On Time: < l min 35 min

Turn-Off Time < 1 min N 2 mitt

Full-On Operation Times 5 min 10 min

Emission Limited Currant: < 6 ^tA < x mA

Energy of Emitted Particles: ti 2V N 7 V
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Table 3. ATS-6: UCSD auroral particles experiment

Species electrons, ions Energy/charge detectors

Energy ranges NS	 1 0 - 81 ke-V 64 log spaced steps
EW 50 eV - 40 keV so 30 log spaced steps

AE/E .18 + 20VVE(eV)

It electrons 1.8x10 - cmam 2. ster
t rate

Energy Flux	 count:

ions	 2.4x10"4cm2.ster

Angular mono-energetic 2.5 
0 

X2.60
Resolution full-spectrum	 2.50 x' 0

Time Lengths SCAN	 16 see Full spectra
DWELL I see - 128 see Fixed energy-ground selecte(

Sampling 4 sample/sac - 24/sec ground selected

Rotation NS period	 314 see
NS range	 2200 centered on radial,

anti-earth. direction

EW no longer rotates	 now points west

Power	 7.	 12. watts	 mode dependent (-average)
plus 5.4 watts	 when rotating (-average)

4
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Table 4. Data collected - 1974 to 1978

Year Day(s) ATS-13

At 105 *W1974

238-285 Fall cQlipse
(246-283) (neutralizer op)

IE No. 2

1975 51-97 Spring eclipse
(56-96) (neutralizer op)

235-283 Fall eclipse 
(263-281) (neutralizer op)

49-95 Spring eclipse1976
(51-75) (neutralizer op)

233-282 Fall eclipse

(233-234,
245-246) (Neutralizer up)

319 Neutralizer op

Day($) AT$-6

166 Launch 9411W

199-ZOZ
2,16, 226, Thruster #2 operation
234-5

247-290 Fall eclipse

292-296 Thruster #1 operation

60-105 Spring eclipse

—140-174 Moved to —35"E

244-290 Fall eclipse

57 Neutralizer operation

58-103 Spring eclipse

215-337 Move to 140 0 W

233 Neutralizer operation

244-270 Fall eclipse

(245-247, (Neutralizer operation)
285-288)

317 Drifts past ATS-5

319-320 Neutralizer operation

338 140' (—IIO*W) W
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Table 4 (Continued)

Year Day(s) ATS-:) Day(s) ,E TS-6

1977 58-60 Neutralizer operations-
eclipse

90-91 I. E. No,	 1
Neut. ops. -
eclipse-long 96-99 Neutralizer operations J

eclipse

242-245 Neutralizer No. 1
operations -eclipse

27 5 - 27 8 Double neutralizer
operations-eclipse 281-285 UNN/Neutralizer

operations

1973 49-56 Double neutralizer
59, h0 operations -eclipse

63-91 I. E. No. 2
Neutralizer
operations-eclipse

.
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Appendix 1, Bibliographical Notes

Acrobee

The mv, 1, useful published material is in th(t paper by Hess (1971).
This paper also contains an extensive bibliography (1 -i the ionosphere,

magnetosphere, aurora, and early experiments (mainly particle detectors

and barium releases),

Additional information is in papers by Davis (1971, 1973) # Hess
(1964), an(I Tridliel (1971),

Echo
The Echo Series has an extensive bibliography, which breaks

down into flici following categories:
E C.11 o 1:

Cartwright (1971, 1970

Hendrickson (1971, 1972, 1975)

Mc,Eatirc (1974)

Winckler (1974a)

E Clio 11:

Xellogg (1976)

Winelcler (1974aob, 1975a)

Echo III:

I-Tanser (1976)

Hendrickson (1975, 1976)

Is raeln on (197 4, 197 5, 1970

Kellogg (1976)

Morgan (1k)75)

WincIder (1974b, 1975b)

E cho IV

WincIder (1976)
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Echo 1;
I

The most useful information on Ahe neutralization of the rocket

is contained in two technical reports (Hendrickson (1972); Winckler (1976)),

The instruments are discussed and data. presented,

Hendrickson (1971) and Cartwright (1971), give quick summaries

of Echo 1, with Hendrickson describing the neutralizer apparatus,

Hondrickson's thesis (1972) provides fhe beat act of information on

neutralization, and in essential in any study of Echo I data,

The other Echo I papers concentrate on the magnetosphere and

traveling beam physics.

Echo 11:

The papers on this expaximent are concerned with things other

than neutralization, as was the experiment.

Echo III:

The Israelson-Winckler dialogue with Planser and Sellers has some

of the most pertinent information on the satellite (laraelson (1975, 1976);

Hanser (1976)), The most useful information # however, is in the technical

report by Winckler (1976). The remaining papers serve mainly as back-

ground, from the. neutralization viewpoint.

Echo IV:

The Winckler technical report (1976) includes a great deal of

Information, Published data by Israelson and Wincicler (1978) and

I-Tallinan (1978) is good.

PRECEDE and E XCEDE

O'Neil et al. (1978a) and (1978b) have covered bot'k rocket shots.
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ARAKS

The ARAKS data was ;first presented at a symposium in 1976

in Toulousm, France. Data has been unavailable except for a graph in

Winehl.er (1076) ► The ARAKS talks are referenced by him, The Boulder

Symposium provided abstrikets from which the basic data presented in

this paper was obtained,

An overview is given in Nature by Caznbou (1978),

T1.e authors involves are Caambou (1975,'976), Gendrin (1970,

Gringauz (1976), Rime (1976) ► and Zhuli,n (1976). There is a host of

co-a^ithors whose names could be chocked for publication in the future.

The Space' Science Instrumentation articles, Cambou (1978),

Charles (1978), and Weill (1978) have not been reviewed.

Japan

Japanese experiments are not yet well published in the U. S.

The mot3l, useful information is in a paper by Kawashima (1976).

One plasma operation was reported by Kawash ma (1978).

The University of Tokyo publication is complete in items, but

thin in coverage.

SER.T Il

Most of the information on the spacecraft potential is in Jones

(1970) and Kerslake (1975), A good set of data is in Kerslake (1971),

For descwiption:3 of the neutralizer, see Rawlin (1968) and Ward (1968),

Ward is a good general reference on neutralizers which would also be

useful for ATS-6. In turn, Worlock (1973) is useful as a reference for

SERI as well as ATS.

The remaining papers give background information, diagrams

and test results from ground and space. These are by: Bechtel (1968),

Byers (1970), Kerslake (1970, 1973, 1976), and Rawlin (1970).
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ATS-4, 5, 6

ATS-4 is represented sololy by the paper by hunter (1969).

ATS-5 papers consist mainly of environmental results from the

UCSD detectors.

The published data on the ATS-5 thruster is represented, by a

paper by Worlock (1969),

DeForest (1973) details the unneutralized operation of the ATS-5

thruster.

Goldstein (1976) describes all other significant results, but for

completeness, the paper by Bartlett (1975) is useful,.

The operations of the ATS-6 ion thrusters received an early

write-up by Worlock (1975), including the engine failures and clean-up

attempts.

Good background material on the engines is contained in the

papers by James (1970, 1973, 1975). The most useful ground tests were

by Worlock (197 3), includin g, biasing of the neutralizer. This paper ale

contains a good comparison between ATS-6 and SDRT 11.

Papers and Talks

A number of presentations have been made of the data obtained

under this contract.

At the beginning of the contract, Bartlett et al, (1975) presented a

paper at the AIAA.	 Goldstein and DeForest (1976) published

this work in an AIAA book, accompanied by Whipple's (1976x)

JGR paper.

The USAF/NASA charging conference in 1 1)76 was marked by the

paper by Purvis et al. (1976). (The Conference Proceedings were

published by Pike tv Lovell in Feb. 1977, as AFGI,,-TB-77-0051 or

NASA - TMX -7 3 5 37 )
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The only 1977 publication was •e first major contract report

on this work, by Olson & Whipple in 1977. It Is superseded by this

report. C)ler , n (1977) presented ATS-5 results at the Dec. 1977

AGU Conference in San F ancisco.

Things picked up in 1978. Olsen cat al, (1978) spoke at the

Ionospheric Effects Symposium in January 1978 at Arlington, Va.

Olsen (1978a) presented the same information at the AIAA

Confere nce in San Diego, Calif. , April 1978,

At the 
USAF/NASA Charging Conference in Colorado Springs,

Bartlett and Purvis (1978), Olsen and Whipple (1978), and Johnson

and Whipple (1978) all preserved results from this work.

The year was rounded out by AGU presentations by DeForest

(1978) and Olsen (1978b).
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Appendix 2, ATS-5 Command Log

Engine Commands

Ionizer Heater ON

This command activates the ionizer converter which supplies power

to the ionizer heater, the neutralizer heater, and supplies power to internal

logic circuitry. All the remaining telemetry and command discriminators

are active at this point. The High Vrat:agi ON command should be given

within 15 minutes of this command b,, oyd a—,r to preclude the possibility of

emitting neutral cesium.

High Voltage ON

This command activates the high voltage converter supplying plus

3000 volts to the ionizer button and minus 2000 volts to the accelerator

electrodes. In addition this converter supplies power '4o the vaporizer

heater and the beam deflection supplies, which are not active at this time

since each is controlled by separate commands, The automatic neutralizer

select circuitry also becomes active at this time.

The currents in both the plus and minus high voltage leads are con-

tinuously monitored. if they exceed their predetermined trip level, the

high voltage converter will shut down and automatically come on again after

approximately 10 milliseconds. If the overload is again present the cycle

will repeat. An arc counter circuit accumulates the net duration of the

converter "off-time" and after about one and a half minuts of continuous

arcing, the experiment is automatically turned off. The thrust on com-

mand may now be given if it has been preceded by the ionizer on and high

voltage on commands.

High Voltage OFF

This command removes the high voltage accelerating potentials from

the ion engine by turning off the high voltage converter. It may be pre -

em.pted by the Ionizer Heater OFF command if desired, since a High Voltage

r	OFF command would then automatically be issued internally.
v
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Ionizer Heater OFF

The Ionizer Heater 
OFF 

command turns off the ionizer converter.

This removes power from the ionizer heater, the neutralizer heater, and

most of the telemetry as previously described. In addition, this command

internally generates a High Voltage OFF and a Thrust OFF command.

This is done to preclude the possibility of shutdown commands being given

in an improper sequence. The ion engine experiment is now shutdown.

The system may be immediately restarted by repeating the turn-on

procedure.
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ATS-5 Neutralizer Legend

CUD	 Description

ISO Ion Engine #2 High Voltage ON

171 Ion Engine #2 Heater OFF

254 Ion Engine #2 heater ON

246 Ion Engine #2 Regulator ON

310 Ion Engine #2 Regulator OTT

B N	 Enter Eclipse (ixmbra)

EX	 Exit Eclipse (umbra)

Eclipse times are predicted, and have not been measured.

Command times come from the corfunand logs supplied by
Goddard Space Flight Center.

a
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ATS-5	 Ion Engine Test

July 20, 197 2

202/72

	Time	 CMD	 Function

	

20:36:00	 254	 Ion heater OFF

	

20:36:30	 150	 HV ON

	

20:41:00	 171	 Ion he ate r OFF

21: 26 :00 254 Ion he ate r ON

21:26:30 150 I-IV ON

21:31:00 171 Ion he ate r OFF

21:31:04 150 HV ON

1
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ATS - 5 Ton Engine Test

September 26, 1973
Day 26 9

Time CMD function

03:19:40 246 Ion cng 2 P/ L rcg on

03:20:45 254 Ion hts on
03:20:55 150 I-IV on
03:25:55 171 Ion htr off
0:26:03 150 HV on

03:35;55 254 Ton htr on
03;36:02 150 ITV on
03:40:55 171 Ion lztr off
03:41;02 150 HV on

03:50:55 254 Ion lztr on
03;51:01 150 HV an
03,57:55 171 Ion htr off

05:04:05 254 Ion htr on
05;04:16 150 HV on
05:06;25 254 Ton htr on
05:06:30 150 HV on

05:08:10 254 Ion htr on
05:12:00 150 1-IV on
05:13:00 171 Ion htr off
05:13:08 1.50 ITV on
05;14:50 275 I-iV off

q

05:43:10 254 Ion liar on
'	 05:51:10 150 ITV on
-	 05;54:00 171 Ion htr off

05:54:06 150 HV on
05:55:00 310 Ion eng 2 reg off

2-5
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ATS-5	 Eclipse Season Neutralizer Operations

No data taken with operations before September 2, 197 4

September 3, 1974

Day 246 - Nate: No data was received for this day,

CMD	 Time

246	 06:04:35

254	 06,05:05

171	 06,07:20

F,N	 06:37:52

254	 06:43:45

171	 06:48:45

254	 07:14:00

171	 07:19-.00

EX	 07:26:46

150	 07:45:00

254	 07:45:50

171	 07:53:00

150	 07:53:25

310	 07:56:00

No log available for September 4, no data recorded.

No neutralizer operations for September 5 and 6.

No data received, September 6.
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ATS-5 Eclipse Season Neutralizer Operations
1974

C?VID

EN
254
171

254
171
EX

EN
254
171.

254
171
EX

EN
254
171

254
171
EX

EN
U	 254

171

254
171
EX

Sept. 7 C11 D	 So pt. 12 CMD
250 255

6;31;55 EN	 6;26:53 EN
6:41:35 254	 6:20:40 254
6:46:35 171	 6;25;40 171

254	 7:01:55 254
171	 7:06:55 171

7:29:53 EX	 7:31:25 EX

Sept, 8 Sept.	 13
251 256

6; 30:47 EN	 61026:04 EN
6:40:15 254	 6:35:15 254
6;45:15 171	 6:40:15 171

7:36:00 254	 7:15:20 61454

7:41:00 171	 7:20:20 171
7:30;24 EX	 7:31 :32 EX

Sept. 9 Sept.	 14
252 257

6:29:39 EN	 6:25:24 EN
6:39:05 254	 6;34:40 254
6:44;05 171	 6:38:40 171

7:30:40 254	 7:13:15 254
7:35;45 171	 7:17:15 171
7:30:45 EX	 7:31:30 EX

Sept.	 10 So pt.	 15
253 258

6:28:36 EN	 6:24:44 EN
6;38:15 254	 6:34:10 254
6:43:15 171	 6:38:10 171

7:24:05 254	 7;11:05 254
7:29: 20 171	 7 :15:05 171
7:31:06 EX	 7:31:27 EX

Sept, 16

259

6;24:14
6:33;40
6;37:40

7:14:15
7:13:15
7;31:16

Sept. 17
260

6:23:43
6;33:25
6:37:25

7:1.3:20
7:17:20
7:3 1:04

,Sept. 18
261

6:23:17
6:32:45
6:36:45

7:12:05
7:16:05
7:30:47

Sept. 19
262

6:22:56
6:32:30
6:36:30

7:11:45
7:15:45
7:30;26

Sept. 11
254

3DLE off
No operation

ra	 w
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R

1974 (Continued)

CMD Sept. 20 CMD	 Sept, 24 CMD Sept, 28
263 267 271

EN 6-.22:40 EN 6:22:16 EN 6:23;1
254 6:31:25 254 6;32;20 254 603:55
171 6:35:25 171 6:36:20 171 6:37;55

254 7,09;10 254 7:15:30 254 7:12:45
171 7:13:10 171 7:25:20 171 7:16:45
EX 7:30:01 EX 7:27:35 EX 7:24:04

Sept. 21 Sept. 25 Sept. 29
264 268 27 2

EN 6:22:28 EN 6:22:23 EN 6:23:43
254 6:32:00 254 6,32:35 254 6;33:50
171 6:36:00 171 6 x36:35 171 6:37:50

254 7:11:35 254 7:16:45 254 7:13:10
171 7:15:35 171 7:20;45 171 7:17:10
EX 7:29:30 EX 7:26:51 EX 7:23:01

Sept. 22 Sept.	 26	 1 Sept, 30
265 26 9 273

EN 6:22 :21 EN 6:22:35 EN 6:24:14
254 6:32;05 254 6:36:55 254 604:20
171 6:36105 171 6:40;55 171 6:38:20

254 7:14:15 254 7:14:55 254 7:13:25
171 7:18:15 171 7:18:5 5 171 7:17:25
EX 7:28:55 EX 7;26:01 EX 7:21:48

Sept. 23 Sept. 27 Oct.	 1
266 270 274

EN 6:22:19 EN 6:22:52 EN 6:24;53
254 6 :32:30 254 6:33:05 254 6:35:05
171 6:36:30 171 6:37:05 171 6 :39:05

254 7:11:45 254 7:12:25 254 7:13:10
171 7:19:00 171 7:16:25 171 7:18:15
EX 7:28:20 EX 7:25:03 EX 7:20:31

2^8
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197 	 (Continued)
=	 r

CMD Oct. 2 CMD Oct. 6
275 Z79

B:N 6:25;43 MN 6:30:33
254 6:35;55 254 6:40.45
171 6:39:55 171 6:45;00

254 7:13:50 254 ;'400:40
171 7:17:50 171 7:04;50
EX 7:19:04 EX 7:11:58

Oct. 3 Oct, 7
276 280

EN 6:26:41. L1v 6:32:23
254 6:36:45 254 6:43:20
171 6:40:45 171 6:47; 25

254 7:13:55 254 6;54:3
171 7:17:55 171 6:58:40
EX 7:17:33 EX 7:09:39

Oct, 8Oct. 4
277 281

EN 6:27:45 EN 6:34:37
254 6:38:00 254 6:45:40
171 6:42:00 171 6:50:00

254 7:15:45 254 6:54;50
171 7:20:15 171 6:59:00
EX 7:15:52 EX 7:06:58

Oct. 5 Oct. 9
278 282

EN 6:29:07 EN 6:37:28
254 6:40:15 254 6:50:20
171 6:45:00 171

254 6:58:35 254 --
171 7.03:20 171 6:55:30
EX 7:14;02 EX 7:03:38

CMD

EN
254
171

254
171
EX

End of
eclipse
season.

Oct. 10
283

6:41:30
6:49:25

6:54;25
6:59:04
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^w•	 I "owl	 ,- _ Ow

CMD March 6
65

EN l4t40:47
254 6:54:20
171 6:59.40

254 7.25:35
'171 7 :30:35
EX 7:42:11

March 7
66

EN 6:39:53
254 6.152:40
171 6 :57:40

21 54 7:26:05
171 7131;05

EX 7 :42:32

March 8
67

EN 6 :39:04
254 6:51.25
171 6:56:25

254 7:22:15
171 7:27:25
EX 7:42:53

Marchch `J
68

EN 6:38:19
254 6:51 :20
171 6 :56:20

254 7:23:40
171 7:28:55
EX "x:43:10

b

J%

9

Spring 197 1

No operations Fob. 20«24

CM10 Feb. 25 CUD March 2
56 fi 1

EN 6;54:15 EN 6 :45.23
254 7."5.55 Z54 (:05-0.I
171 7:1.1:00 171 7:10:00
EX 7.32:37 i

_^- 254 7 : 28.25
Feb. 26 171 7:33: 00
57 EX 7:39t 27

EN 6 :52:02 March 3
254 7:06;00 fit

171 7:12:00
EX 7:34:27 EN 6: 44:01

254 6:50:00
Feb. 27 171 6,55:00
58

254 7:20:00

EN 6:50:07 j 171 .-	 00
254 7:05:00 EX 7:40:16
171 7:10:00
EX 7:35 :59 Mwech 4

6 3
Feb. 28

59 EN 6:42;53
254 6:47:00

EN 6 :48:22 171 6:52:00
254 7:05:00
171 7:10:00 254 7;23:00

EX 7:37:16 171 7:28:00
EX 7:41:01

March 1 ^^-^-
60 March 5

64
EN 6:46:45

254 7:05:00 EN 6:41:45
171 7:10.00 254 6 :46 :00
EX 7:38:29 171 6:51.;00

254 7:24:00
171 7 :29:00
EX 7 :41:41

2-10
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CMD March 10 CMD March 14
69 73

EN 6-37:39 EN 605:42,
254 6:49:50 254 6:43:45
171 6:54;55 171 6;47:45

254
171

7:20:10
7:25:25

254
1:71

7:33:40
7:37:40

EX 7:43:17 EX 7:43:07
111 ON WOOMOW—mummm"m

March 15March 11
70 74

EN 6:37:04 EN 6:35:26
254 6:49:20 254 6:42;40
171 6:54:20 171 6:46:40

254 7:19:55 254 7:34100
171 7-.24-.55 171 7:38:00 
EX 7:43:19 EX 7:42:51

March 16March 12
71 75

EN 6:36;34 EN 6:35:09
254 6;49:25 254 6:48:00
171 6:54:25 171 6:52:05

254 -_ 2$4 7:34:05
171 -- 171 7:38:20
EX 7:43:22 EX 7:42:35

March 13 March 17
72 76

EN 6:36:02 EN 6:35:02
Q	 254 -_ 254 6:47:50

1:71 171 6:51:50
no ops

254 254 .. _
171 171 -
EX 7:43:15 EX 7:42:14

CMD March 18
77

EN 6:34:55
254 6:47:35
171 6:51,35

254 702:30
171 70600 
EX 7:41:48

March 19
78

EN 6:34:53
254 6:47:50
171 6:52:50

254 7:29:15
171 7:34:15(7:36:10)
EX 7:41:13

March 20
79

EN 6:34:55
254 6:47:30
171 6;52:30

254 7:25:00
171 7:30;00
EX 7:40:37

March 21
80

EN
	

6:35:02
254
	

6:47:35
171
	

6:52:35

254
	

7:25:00
171
	

7:30:00
EX
	

7:39:58

Spring 1975 (Continued)
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Spring 1975 (Continued)

CMD March 22 CMD March 26 CMD March 30

81 85 89

EN 6:35:14 EN 6:36:48 EN 6:40:09

254 6,47;30 254 6;50;30 254 7:00:30
171 6:52:30 171 6:55:30 171 7;05:45

254 7:25:00 254 -- 254 --

171 7 :30:00 171 - - 171 --

EX 7:39:13 EX 7:35:23 EX 7:29:51

March 23 March 27 :,4arc'h 31

82 86 90

EN 6:35:30 EN 6:37:28 EN 6:41:22

254 6:40:10 254 6;50:00 254 7;00;25

171 6:45:10 171 6:55:00 171 7:05:30

EX 7:28:10

254 7:10:15 254. 7:20:00 -- ---

171 7:15:15 171 7:25:00 April 1

EX 7:38:24 EX 7:34:11

EN

91

6:42;44March 24 March 28
83 87 254 7:01:00

171 7:06:00

EN 6;35:52 EN 6:38:12 EX 7:26:15

254 -- 254 6:50:00 -	 -

171 -- 171 6:55:00 April 2
no ops 92

254 - _ 254 7:2Z:00 

171 -- 171 7:27:00 EN 6-,44-,20

EX 7:37:30 EX 7:32;53 254 7:05:00
171 7:10:00----

March 25 March 29 EX 7:24:06

84 88
April 3

EN 6:36:17 EN 6:39:06 93

254 6:50:30 254 6:50:00

171. 6:55:30 171 6;.55;00 EN 6:46:20
254 7:00:30

254 7:20:35 254 7:20:00 171 7:05:30

171 7:25:45 171 7:25:00 EX 7:21:38

EX 7:36:27 EX 7:31:27
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Spring 197 	 (Continued)

CMD April 4
94

EN 6:48:43
254 7:00:35
171 7:05:35
EX 7:18:43

April 5
95

EN 6:51:48
254 7:00:35
171 7:05:35
EX 7:15;05

April 6
96

r, N 6:56:45
254 7:01:10
171 7:06:10
EX 7:09:39

April 7
97

EN
254
171
EX

End of
eclipse
season.

A



r- all	 197 5

CMD Sept. 20 CMD Sept. 24 CMD Sept. 28

263 267 271

EN 6:20:47 EN 6:20:57 EN 6:22:31

254 6;29;55 254 6;30;10 254 6:31:35

171 6:34:55 171 6:35:10 171 6:36:35

254 7:03:00 254 6:59:25 254 7:01:25

171 7,08:00 171 7:04:25 171 7:06:25

EX 7:27:26 EX 7;24:32 EX 7:20:29

Sept.	 21 Sept, 25 Sept, 29

264 268 27 Z

EN 61, 20:40 EN 6:21:13 EN 6:23:10

254 6:28:35 254 6:30:35 254 6:32:20

171 6:33:35 171 6 ; 35:3535:35 171 6:37:20

254 7:00:00 254 7:00:30 254 7:02;00

171 7:05:00 171 7:05:30 171 7:07:00
EX 7 - 26:51 EX 7:23-39 EX 7:19:16

Sept.,	 22 Sept. 26 Sept.	 30

265 269 27 3

EN 6:20:43 EN 6:21:34 EN 6:23:55
254 6:30:00 254 6:30:55 254 6;33:05
171 6:35:00 171 6:35:55 171 6:38:05

254 7:00:20 254 7:01:05 254 7:02:35
171 7:05:20 171 7:06:05 171 7:07:35
EX 7:26:06 EX 7:22:40 EX 7:17:54

Sept.	 23 Se pt:.	 27 Oct.	 1

266 270 274

EN 6:20:50 EN 6:22:00 EN 6:24:49

254 6:30:00 254 6:32:00 254 6:34:20

171 6:35:00 171 6:37:00 171 6:39:20

254 6:59:50 254 7:01:40 ?;;4 7-, 10:05
171 7:04:50 171 7:06:40 171 7:15:05
EX 7:25:22 EX 7:21:37 EX 7:16: 27 

2-14
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CMD Oct. 5
278

Eli` 6:30:12
254 6:39:40
171 6:44:40
EX 7:08:53

Oct. 6
279

EN 6:32:17
254 6:41:50
171 6:46:50
EX 7:06:25

Oct. 7
280

EN 6; 34:44
254 6:44:50
171 6:49:50
EX 7:03:20

Oct. 8
281

EN 6:38:13
254 6:48:45
171 6:53:45
EX 6:59:28

Oct. 9
282

3DLE
off

End of
eclipse
season

1975 (Continued)

.

CMD

EN
254
171

254
171
EX

EN
254
171

254
171
EX

EN
254
171

254
171
EX

Oct. 2
275

6:25:52.
6:35:25
6:40:25

7:14:51

Oct. 3
276

6:27:05
6:36:35
6:41:35

7:13:06

Oct. 4
277

6:28:32
6:38:00
6:43:00

7:11:06

2-15
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1976

CMD Feb. 24 CMD Feb. 28CMD	 Feb. 20

51 55 59

'"N 7:04:28 EN 6:52:49 EN 6:46;16
254 7:16:30 254 7:04:00 254 6:58;00
171 7:21:30 171 7:09:00 171 7:03:00

254 -- 254 -- 254 7:27:30
171 - - 171 -- 171 7:32:30
EX 7:24:46 EX 7:35;10 EX 7:40;10

Feb. 25Feb, 21 Feb. 29
52 56 60

EN 7:00:31 EN 6:50;54 EN 6:44:58
254 7:11:50 254 7:03:20 254 6:55;00
171 7:16:50 171 7:08:20 171 7:00:00

254 - - 254 254 7:25:00
171 -- 171 -- 171 7:30:00
EX 7:28:24 EX 7:36:41 EX 7:41:04

Feb. 22 Feb. 26 March 1
53 57 61

EN 6:57:26 EN 6:49:09 EN 6;43:46
254 7:08:35 254 7:00:25 254 6:56:30
171 7 :13:35 171 7:06:25 171 7:01;30

254 7:14:25 254 -- 254 7:27:00
171 7:17:05 171 _ _ 171 7:32:00
EX 7:31:11 EX 7:37:59 EX 7;41:48

Feb. 23 Feb. 27 March 2
54 58 62

EN 6;54:58 EN 6:47:38 EN 6:42:42
254 7i!05:45 254 6:55;00 254 6:55:00
171 7:10:45 171 7:00:05 171 7:00:00

254 -- 254 7:20:00 254 7 :28:00
171 -- 171 7:25:00 171 7:32:00
EX 7:33:20 Ear; 7:39:11 EX 7:42:24
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1976 (Continued)

CMD March 3 CMD March 7 CMD March 11

63 67 71

EN 6:41:44 EN 6;38;41 EN 6;36:44

254 6:55,00 254 6:48:55 254 6:46;50

171 7:00:00 171 6;53:55 171 6:51;50

254 7:25:00 254 7:20:05 254 7:18:25

171 7:30:00 171 7-.25-.05 171 7:23:30 

EX 7:42:54 EX 7;44:09 EX 7:44:04

March 4 March 8 March 12

64 68 72

EN 6:40:50 EN 6;38:06 EN 6;36:23

254 6:51:30 254 6:48:15 254 6:46:35

171 6:56:30 171 6:53:15 171 6:51:35

254 7:22;10 254 7;19:00 254 7:17:00 

171 7;27:10 171 7:24:00 171 7:22:10 

EX 7:43:20 EX 7:44:16 EX 7:43:53

March 5 March 9 March 13

65 69 73

EN 6:40:05 EN 6;37:35 EN 6:36:11

254 6;50:25 254 6 :47:40 254 6;46;20
171 6:55:25 171 6:52:40 171 6:51:20

254 7:19;40 254 7:18:00 254 7:17:20

171 7:24:40 171 7:23,00 171 7:22:20 

EX 7:43:41 EX 7:44:14 EX 7:43:36

March 6 March 10 March 14

66 70 74

EN 6:39 :21 EN 6:37:05 EN 6:35:59
254 6:49;45 254 6:47:15 254 6:50;50

171 6:54:45 171 6:52:15 171 6:55:50

254 7:18:45 254 7:16:50 254 7:20:25
171 7:23:45 171 7:21:50 171 7:25:25

EX 7:43 :57 EX 7:44:11 EX 7:43:15

i
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CMD March 15
75

EN 6:35:52
254 6:46:25
171 6:51:25

254 7:17:20
171 7:22:20
EX 7:42:49

March 16
76

EN 61,35:50
254 6:46:20

171 6:51:20

254 7:01:20
171 7:06:20
EX 7:42:19

March 17
77

Data unproce s sable
EN 6:35:52
254 6:46:25
171 256:51;25

254 7:01:30
171 7.,06:30
EX 7:41:48

March 18
78

Data unproce s sable

EN 6:35:54
254 6:59:40
171 7:05:20

254 7:15:15
171 7:20:00

EX 7:41:09

L	 Al

197 6 (Continued)

CMD March 19 CMD March 23

79 83

EN 606:06 EN 6:37:35

254 6:54,-35 254 6:49t1.0

171 6:59:35 171 6;54:10

254 7:10:00 254 7:04:10

171 7:15:00 171 7:09:10

EX 7:40:29 EX 7:36:48

March 20 March 24
80 84

EN 6:36:23 EN 6:38:15
254 no 254 6;49;05

171 operation 171 6:54:05

254 254 7:04-05

171 — 171 7:09.-10

EX 7:39:39 EX 7:35:40

March 21 March 25
81 85

3DLE on EIS? 6:38:55

no 254 6:50:05

operation 171 6:55:05

March 22 254 7-05:05

82 171 7:10:05

EX 7:34:28

3DLE off
no March 26

operation 86

EN 6:39:44
254 6-.51:40
171 7:01-15

254 7:11:50
171 7:17:05
EX 7:33:06
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CMD

EN
254
171

254
171
EX

EN
254
171

254
171
EX

1976 (Continued)

March 27 CMD March 31
87 91

6:40:43 EN 6:46:20
6:51:25 254 6;58:00
6:56:25 171 7:03:00

7:06:25 254 7:14:00
7:11:25 171 7:19:00
7:31:39 EX 7:24:04

March 28 April 1
88 92

6:41:51 EN 6:48:29
6:53:00 254 6:59:35
6;58:10 171 7:05:05

7:08:00 254 7:15:10
7:13:00 171 7:20:10
7:30:03 EX 7:21:27

CMD April 
94

EN 6:54:49
254 7:05:20
171 7:10:20

254 7:20:25
171 7;25:30
EX 7:14:11

End of
eclipse
season

April 2
93

EN 6:51 :o6
254 7:00:10
171 7:05:10

254 7:15:15
171 7:20:20
EX 7:18:17

March 29
89

EN 6:43:08
254 6:55:20
171 7:00:20

254 7:10:20
171 7:15:20
EX 7:28:17

March 30
90

EN 6:44:35
254 6:56:15
171 7:01:15

254 7:11:15
171 7:16:15
EX 7:26:18
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ATS-5 Daylight/ Neutralizer Operation August,

CMD

1976

Sept.	 1CMD	 Aug. 20 CMD	 Aug. 20
233 233 245

254 6:01:15 254 18,-03-.25 254 6:25:15

171 6:11:15 171 18:14;50 EN 6-,31:43
171 6.,35:15

254 7:00:50 254 19:00:25 EX 7:28:07

254 7:02:55 171 19:10:25

171 7;15:20 Sept. Z

254 20:00-,46 246

254 8:00:50 171 20:10:50
254 8:02:40 254 6:26:05

171 8:10:50 254 21;00:2,5 EN 6:30:26

171 8:11:50 171 21:10:55 171 6:38:50

171 8:12:55 EX 7;28:43

254 22:00:25
254 9:00:45 171 22v-10:05 Sept, 3
171 9:10:45 247

254 23:00:25
254 10:00:45 171 23:10:00 EN 6:29:18

171 10:10:45 254 6:35:10

Aug. 21 171 6:45:10

254 11:00:40 234 EX 7:29:08

171 11:10:40
254 00:00:30 Sept. 9

254 12:00150 171 00:12:40 253

171 12:10:00

254 01:04:00 EN 6:24:08
254 13:01:10 171 01:12:05 254 6:25:30

171 13:10:25 171 6:35:30

254 02:00:30 EX 7:30:14
254 14:04:40 171 02:10:00
171 14:14:20 Sept.	 15

254 03;00:40 259
254 15:00:30 171 03:09:30
171 15:10:45 EN 6:21:24

254 04:00:25 254 6:25,00
254 16:02:25 171 04:10:40 171 6:35:45

171 16:11:30 EX 7:2,8:50

254 17:00:30

171 17,10:30
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Neutralizer Operation, 1976 (Conti

CMD Sept. 22 CMD Nov,	 14
266 319

EN 6:21:27 254 5:33:40

254 6:25:15 171 5:38:55
171 6:35:20
EX 7:24:15 254 6:31:50

_	 --.
171 6:36:50

Sept,	 29
273 254 700:15

171 7:35:15
EN 6:25:38
254 6:25:00 254 8;30;50
171 6:35:00 171 8:36:15
EX 7:15:56

254 9:29:40
Oct, 4 171 9;34;55
278

254 10:30:30

EN 6:33:33 171 10:35:35
254 61,35:00
171 6:45:00 254 11:30:35
EX 7:05:30 171 11:35:50

Oct,	 5 254 12:31:35
279 171 12:36:35

EN` 6:36:15 254 13:30:55
254 6:40;00 171 13:35:55

319

254 19;31:50
171 19:37:0$

254 20:32:35
171 20:37:35

254 21;30:40
171 21:38:15

254 22:32:15
171 22:37:15

254 23:31:15
171 23:36:15

Nov, 15
320

254 00:30:40
171 00:35:40

254 01:30:25

171 01:35:30

254 02:30:00
171 02:35;00

254 03:31:55
171 03:36:55

254 04:30:30
171 04:35:40

254
171

254
171

254
171

254

171

171	 6:50:00

EX	 7:02:16

Oct, 6
Z80

15:30:40
15:35:40

16:30:55
16:35:55

17:34:45
17:40:05

18:31:40
18:36:40
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ATSw5 0 erati.ons • 1977

Eclipse and Neutralizer 'times

Neutralizer 2 March 31. 1977 April 1., 1977
i

Enter Eclipse 05:20'40 05:22:11
Neutralizer On (254) 05:31:10 05;32:45
Neutralizer Off(171) 05:49:30 05:43:X.X **	 .
Exit Eclipse 05:52:14 05:47;44

Neutralizer 1 August 30 August 31 September 1 S02temb

Enter Eclipse 04:12: 39 04:11,.27 04;10:19 04:09;11
Neutralizer 1 on (044) 04:22:35 04;21;15 04:20:35 04:18:45
Neutralizer l off(112) 04:28:00 04:26:15 04;26:15 04;23:45
Exit Eclipse 05:08:31 05:09:06 05:09:32 05:09:58

Neutralizers 1 and 2 October 2 October 3 October 4

Enter Eclipse 04:12:04 04:14:13 04:12
Neutralizer 1 on (044) 04:12:30 04:12:50 ** 04:15:55
Neutralizer 2 on (254) 04:16;20 04;1600 04;20:55
Neutralizer 1 off(112) 04:19:45 04:20:20 0425:55
Neutralizer 2 off(171) 04:24:10 04:25:45 04:30:55
Exit Eclipse 04:48:33 04:45:56 04:42:46

Neutralizers 1 and 2 	 October 5. 1977

Enter Eclipse 04:20:47
Neutralizer 2 on (254) 04:20;05*
Neutralizer 2 off(171) 04:24:00
Neutralizer 1 on (044) 04:25:55
Neutralizer 2 on (254) 04:28:55
Neutralizer 1 off(112) 04:34:55
Neutralizer 2 off(171) 04:36:50
Exit Eclipse 04:38:31

** Within accuracy of eclipse prediction and log times, Lhere is overlap
between eclipse transition and neutralizer command.

Note: Eclipse times are based on prediction generated at GSrC unless time
is starred (*). In this case time is taken from change in particle
data.
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ATS-5 Ogerations - 1978

tclippc and =Noutrnlixer Times

.

.

Command February 18 February 19 Ftebruarlr 20 February 21

enter eclipse 04:36 04:32 04:32 04:30
Neut. 1 an 04:36:25 04:34:05 0402:30 04:29:20
Neut. 2 on 04:39:20 04:37:35 04:36:00 04:32:45
Neut. 1 off 04:41 :55 04;40:35 04:39:00 04:35:50
Neut. 2 off 04:44:55 04:42.05 04:42:00 04:38:55
exit eclipse 05:12 05:14 05:16 05:17

Command February 22 February 23 February 24 FebruaEZ 25

enter eclipse 04:29 04:27 04:26 04:25
Neut. 1 on 04:27:30 04:26:05 04:24:35 04:23:30
Neut. 2 on 04:30:50 04:29:30 04;28:00 04,26:35
Neut. 1 off 04:33:50 04:32:30 04:31:00 04:29:35
Neut. 2 off 04:37:00 04:35:35 04,34:00 04;32:35
exit eclipse 05:19 05:20 05:20 05:21

No Operations February 26,--27, March 2, 3, 6

Ommand February 28 March 1 March 4 March 5

enter eclipse 04:18	 * 04;21 04:19 04:18
Neut. 1 on 04:19:50 04,19:25
Neut. 2 on 04:23:10 04:22:45 04:21:50 04:20:10
Neut. 1 off 04:26:10 04:25:45 - -
Neut. 2 off 04:29:10 04:28:45 04:37:15 04:43:30
exit eclipse 05:23 05:24 05:24 05:24

Command March 7 March 8 March 9 March 10

enter eclipse 04:13	 * 04:17 04:17 04:17
Neut. 2 on 04:19:00 04:18:50 04:18:20 04:19:00
Neut. 2 off 04:34:25 04:34:00 04:33:35 04:34:15
exit eclipse 05:24 05:24 05 :24 05:24

Command March 11 March 12 March 13 March 14

enter eclipse 04:16 04:16 04:1?	 * 04:11
Neut. 2 on 04:17:30 04:17:15 04;17:10 04:16:50
Neut. 2 off 04:32:30 04:32:25 0402:35 04:32:00
exit eclipse 05 :23	 ' 05:23 05:23 05:22

Command March 15 March 16 March 17 March 18

enter eclipse 04:16 04!12	 * 04:11	 * 04:17
Neut. 2 on 04:17:15 04:17:15 04:18:00 04:18:10

.	 Neut. 2 off 04:32:35 04;32:20 04:33:00 04:33:20
exit eclipse 05:22 05:21 05:21 05:20
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A - 0 orations - 1978
Nclinso and Neutrnlizer Times
page 2

Command Hers	 ch 19 March X20 March 21 Mar,	 ch 22
enter eclipse 04:10	 * 04:18 04:18 04:14
Ncut. 2 on 04:18:20 04:18:45 04,:18:50 04:19:45
Ncut. 2 off 04:33;20 04.33:45 u4 :33 ;50 04:34.50
exit eclipse 05;19 05418 05:17 05:16

No -Operations March 25„

Command March 213 March 24 March 26 March 27

enter eclipse 04:14	 * 04:21 04:17	 * 04:19
Neut. 2 on 04:21:00 04:21:30 04:25:00 04:24;45
Neut. 2 off 0406:20 04:36:30 04:40:00 04:39:45
exit; eclipse 05:15 05 :13 05:10 05:09

Co Mauch 28 March 29 March 30 Marchc_ h 31
enter eclipse 04:20	 * 04:21	 * 04:29 04:28
Neut. 2 on 04:26:25 04:28:10 04:30;15 04:33:30
Neut. 2 off 04.,41.-30 04:43:10 04:47:50 04:48:35
exist eclipse 05:07 05:04 05:02	

,
04:59

Command	 April 1

enter eclipse	 04:30
Neut. 2 on	 04:38:00
Neut. 2 off	 04:51:05
exit eclipse	 04:55

`	 2.24
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Appendix 3. GSEC ION ENGINE EXPERIMENT

The Ion engine experiment is important because of the
effect its operation has on particle data. The spacecraft
potential is shifted, and the diffusion of particles around
the spacecraft reduces or eliminates differential charging.

Experiment Description

The objective of the ATS-6 Ton Engine Experiment was to
demonstrate north-south stationkeeping for a geostationary
spacecraft. It was the second ion engine experiment to
successfully fly on a satellite.(SERT II was the first.
ATS-A & 5 both carried goad engines, but the spacecraft
failed.)

There are two ion engine systems on the spacecraft with
their thruster subsystems mounted on the north and south
faces of the Earth Viewing Module (EVM). The Z-axis(yaw
axis) is Earth pointing and the velocity vector of the
spacecraft lies in the X-axis(roll axis). The thrust vector
makes a 36 0 angle with the yaw axis in the roll rotation
plane and passes through the spacecraft center of mass.

The cesium bombardment ion thruster utilizes the mag-
netoelectrostatic plasma containment concept. A two grid
extraction system is employed with 1.1 kv across the grids.
At full power the thruster supplies about .1 Amp. Neutral-
izing electrons are produced by a plasma bridge neutralizer.
The thruster floats with respect to the spacecraft. The
outer grid is nominally at -550 volts. The beam and thrust-
er are tied to the spacecraft through the neutralizer, which
works within a volt of the spacecraft ground. There is a
potential drop associated with the beam tie-in of a few
volts.

The exhaust from the ion thruster consists of a semi-
collimated cesium ion beam, with a half angle of 15 0 , and an
efflux of uncollimated cesium ions, neutral cesium(which can
charge exchange with the beam) and aluminum atoms. The ion
beam, which constitutes 90% of the exhaust, impinges on no
spacecraft component or structure. The remaining ions and
neutral atoms leave the thruster with an approximate cosine
distribution into a solid angle of 1.8 pi sr.(There were
tests on the spacecraft to see how much cesium did hit' the
spacecraft surface.	 Results were mostly negative, i.e. no
more than a monolayer during all experiments.)
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V 1/73

Operations

There were two major operational periods of the Ion
Engines. The first lasted for about one hour, and came
on July 17, 1974 (day 199). Note that this was the only
operation that ocurred while all of the UCSU detectors were
operating at full capacity.	 A spectrogram for this opera-
tion is in section VII.	 The second operation was for 92
hours, beginning October 19, 1974 (day 292). Although only
the north/south head was functioning properly, this data is
excellent for the study of low energy(1-1000 ev) particles,
particularly during substorms. This is because this opera-
tion of the thruster clamped the spacecraft at about -5
volts, and almost totally eliminated differential charging.
A spectrogram of the on transition is in the charging
appendix.

The main thrusters of both the north and south ion en-
gines became flooded with cesium at the end of their initial
operations. This was caused by the faulty design of the
feed valve.(This was one of those unique cases where zero
gravity did make a difference.) The plasma bridge neutrali-
zers were still usable as plasma sources.

During the initial attempts to restart the engine(July)
the south engine became so flooded with cesium that  the pow-
er supplies were loaded down by the resulting short circuit.
After day 202/74, even the neutralizers failed to operate,
because not enough power was supplied to the heaters. This
slowed the on transitions of the neutralizers in the early
part of day 202, providing another useful data set.

Additional operations of the plasma bridge neutralizer
on the north engine were run in 1976 and 1977 as part of the
spacecraft charging project. These were short operations
(10-20 minutes), primarily duricig eclipses.

Following this section is a list of the times when the
engines or neutralizers were operated successfully. Logs of
all the times the engines were commanded on are not neces-
sary for studying particle data, but are available in a con-
tract report by Olsen & Whipple(1977). The information on
the status of the engine/neutralizer was obtained from a te-
lemetry print out for the ion engine.
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Engine Vocabulary

The important terms used in commanding the engine and
interpreting its status are given below. 	 ,

LIC	 Load Interface Circuit-the con-
nection between the s/c and
engine

MC	 Master Converter- the power
converting circuitry of the ion
engine.

Neutralizer on	 Supplies power to the heaters in
the neutralizer, which causes
cesium flow. Voltage is applied
to bridge where discharge will
occur,

plume mode	 When cesium flow is high enough,
an are strikes across the plasma
bridge. This is a low density
plasma. It is capable of sup-
plying enough electrons to dis-
charge a negative spacecraft.

spot mode	 As flow increases(hotter cathode
etc.), a transition occurs in
the type of discharge. A nice
dense plasma, all at the plasma
probe potential. It is capable
of supplying ions in the space-
craft current balance. In this
mode, a positive spacecraft will
swing negative.

AV,KV	 Anode Vaporizer and Cathode Vap-
orizer. Turning these on turn
on heaters in the main thruster
cesium supply loop. Low volt-
ages are applied to begin dis-
charge. (After chamber was
flooded, AV or KV on caused are
ing, which causes MC off intern
ally)

HV	 High Voltage- this command sets
up the voltage on the extraction
grids.
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Ion Engine Operations

The following times were obtained from the ion engine
telemetry printouts provided by GSFC. Times are accurate to
within one minute. Further accuracy requires more careful
consideration of the nature of the ion engine, and a more
careful definitions of terms. The identification of plume
mod* is usually not possible in the telemetry, and it must
either be inferred from normal (laboratory and flight) en-
gine behaviour or from the particle data.

DAY	 TIME	 DESCRIPTION

199/74	 00;30 LIC on,	 MC on,	 engine #2(south)
42:55 Neutralizer on 	 begin startup
03:00 Neutralizer ignition, plume mode
03:10 Neutralizer into spot mode
03:14 HV,AV,KV	 ON, caused
03:15 Neutralizer off because of arcing

03:20 Restart
03:31 Neutralizer spot mode
03:32 AV,KV,HV	 on, thruster ignited

ran smoothly for	 30 rain. Insuf-
ficient neutralizer cesium flow
caused

04:03 Neutralizer to plume mode,	 thruster
off

	

04:12	 Neutralizer in spot mode,
thruster on

	

04:33	 heaters off, begin shutdown

	

04:35	 Neutralizer, thruster extinguished

201/74	 Engine #2 restart attempts
Neutralizer tended to go into spot
mode briefly, then fall back into
plume mode.

05:50 Neutralizer on
06:05 Neutralizer ignition,	 plume mode
06:14 briefly in spot mode,	 then plume
06:20 Neutralizer off

06:31 Neutralizer on
plume mode

06:50 spot mode
06:54 Neutralizer off
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Neutralizer on
plume mode
spot mode, for 20 see.
then return to plume
spot mode
Neutralizer off

Neutralizer on
plume mode
spot mode for 20 sec.
Neut. off

Neut. on
plume mode
spot mode for 20 sec.
spot mode
newt off

Neut. on
plume mode
spot mode for 20 see.
neut. off

Neut. on
plume mode
spot mode
Neut. off

Neut. on
reignited very quickly
plume mode
spot mode for 20 sec.
spot mode
Newt. off

Neut. on
plume mode
spot mode
Neut. off

Ion Engine #1 (north)
Neutralizer on
plume mode(change in s/c pot.)
spot mode
thruster struck

on continuously until
day 296

201/74	 07:06

07:18

07 :28
07:33

19:31

19:56
20 :00

20:26
1
20:42
20 :49
20:52

202/74	 02:08

02:27
02:29

03:04

03:32
03:38

03:43
?

03:49
03:57
04:15

04:20
0

04:34
04:37

292/74
07 :27
07 :38
07 :43
08:01
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296/74	 03:45 thruster off
03:47 Neutralizer off

A	 03:48 Magnetospheric substorm

05:46 Neutralizer on
06:03 spot mode
06:04 Neut.	 off

57/76	 20:56 I.E.	 #1	 neutralizer operation I
21:06 Neutralizer on
21:26 ignition(change in s/c pot.) 1
21:28 spot mode 1

21:32 Neutralizer off
21:33 (injection)

233/76 I.E.	 #	 1	 Neutralize ► 	 op.s
05:43 Neut.	 on

plume mode
06:05 spot mode
06:19 Neut.	 off

07:41 Neut.	 on
? plume mode
08:02 spot mode
08:14 Neut.	 off

09:41 Neut.	 on
? plume mode
10:03 spot mode
10:14 Neut.	 off

11:42 Neut.	 on
? plume mode
12:03 spot mode
12:14 Neut.	 off

13:41 Neut.	 on
? plume mode
14:02 spot mode
14:13 Neut.	 off'

15:41 Neut.	 on
d

? plume mode
16:02 spot mode
16:12 Neut.	 off

17:41 Neut.	 on
? plume mode
18:01 spot mode
18:12 Neut.	 off
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233/74 19:112 Neut.	 on
7 plume mode
20:01 spot mode
20:11 Neut. off

23:42 Neut.	 on
? plume mode
? spot mode(between 23:50 & 00:07)

234/76 00:15 Neut. off

234/76 03:112 Neut.	 on
? plume mode
04:03 spot mode
04:15 Neut.	 off

244/76 23:51 Neut.	 on
245/76 00:05 plume mode(photo-elec. disappear)

00:11 spot mode
00:14 enter eclipse
00:27 LIC off(causes neut off)
00:37 exit eclipse

23:39 Neut.	 on

246/76
?
23:59(est.)

plume mode
spot mode

00:15 enter eclipse
00:29 LIC off
00:55 exit eclipse

23:43 Neut.	 on
247/76 ? plume mode

00:03 spot mode
00:19 enter eclipse
00:31 LTC off
00:55 exit eclipse

285/76 03:09 Neut.	 on
? plume mode

spot mode
enter eclipse

03:59 LIC off
? exit eclipse

286/76 03:^7 Neut.	 on
? plume mode
? spot mode

enter eclipse
04:06 LIC off

exit eclipse
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288/76	 03:33
03:50
03:57
04:13
04:21
04:29

319/76	 05:11
05:34
05:46

07:12
07:33
07 :44

09:11
09 :33
09:43

11:11
11:25
11 :33
11:43

13:11
13:25
13:33
13:43

15:12
15:33
15:43

17:11
17:33
17:43

19:12
19:33
19:46

21:11
21:32
21 :44

23:11
23:32
23:45

Neut. on
plume mode
spot mode
enter eclipse
LIC off
exit eclipse

Ne4t. on
spot mode
Neut. off

Neut. on
spot mode
Neut. off

Neut. on
spot; mode
Neut. off

Neut. on
plume mode(change in s/c pot)
spot mode
Neut. off

Neut. on
plume mode(
spot mode
Neut. off

Neut. on
spot mode
Neut. off

Neut. on
spot mode
Neut. off

Neut. on
spot mode
Neut. off

Neut. on
spot mode
Neut. off

Neut. on
spot mode
Neut. off
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320/76 01:11 Nev.	 on
01:3?, spot mode
01.44 Neut.	 off

03:11 Neut.	 on
03:32 spot mode
03:44 Neut.	 off

58/77 08:55 Neut.	 on
09:17 enter eclipse
09:17 spot mode
09:30 LIC off(=neut.	 off)
09:48 exit eclipse

59/77 08:51 Neut.	 on
09:14 spot mode
09:15 enter eclipse
09:26 LIC off
09:51 exit eclipse

60/77 08:49 Neut.	 on
09:12 enter eclipse
09:12 spot mode
09:24 LIC off
09:53 exit eclipse

96/77 09:01 Neut.	 on
09:02 enter eclipse
09:25 spot mode
09:36 LIC off
09:43 exit eclipse

97/77 09:03 Neut.	 on
09:04 enter eclipse
09:15 plume mode(change in s/c pot.)
09:25 spot	 mode
09:33 LIC off
09:41 exit eclipse

98/77 09:00 Neut.	 on
09:06 enter eclipse
09:13 plume mode
09:21 spot mode
09:30 LIC off
09:38 exit eclipse

99/77 08:57 Neut.	 on
09:09 enter eclipse
09:18 spot mode
09:27 LIC off
09:35 exit eclipse
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roll 1974 Eclipse Times

Umbra
Ray Enter

249 6S as
250 fa: nU
:25 1 `:rìi S i7

253 5$52
254 5: efq
2555 5:40
2 6 5: a6
5P7 5:4

250 5:4 5
25 9 5 ^	 ,y

bl . a A'w

1,1 6 0 d.41
261 5; 40
:262 $10,39
' ►, 3 5:38 

26 4 :;37
X26 1 f It 	 X76
26 6 5 1,145
:2 67 t12 ,3115
2 611 x,. 34
269 w"1 : ,34

273.
272 hl 1 M7 i)

273 ^ •
274
2 7,15 5. X3:3

276 51, 33
277 v..
M70 w/ f 3N

279 3a
C1ty is 34

283 X1.436
2 r84 S X37
1

GI al " 	 X	 `l
M1 . M{ ^/

86 5# 40 
207 5 41
288 '5	 4;3

290 5. a8
291 1: 2

Exit

6:25
6128
6 113 1
6:33
62 34
6:36
6:37
6:38
6:39
c1a: qp
6140
6241

6*0 4 :i
6 :41.

6: 42
6 : 42
6i4
6242
6: 4."•2
6.42
6:4:1
6:4:1
62 43,
6:40
6*a0
6.39
6138
6: ;38
6:3
6236
6: 35
6 #34
6 : 3."

6 003 1
6M)
6*428

6227

6.25
6:22

6220
6 17
624,4
6:09
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Exit

6:37
4i:41.
6:44
6:46
6:40
6:50

6:53
6:54

6 :'Ii
6:56
6*56
c?► : ^i 6

6 el f

6 : 157
6:.9/
6 : 57
6:5,7
6: 51
6 : V; 7

6 i b`!6

6 : ;! 6
6:56
6 '0'55

6 : u; 4

6 : ':S 4

6: 153
6 '•T) 2
6:11;1.

.6 : ;;! 0
6:49
6:41:1
6:46
6 11 4 t=;
6 : 4 '3

6:4 ^')^..
6:40
6:37
6 : ;5 t:
6: 3
6:'203

r Xy6 • 2f ',I

Spring 197 5 Eclipse Times

Umbra

6 2 6::1 9

63 6:1,S
64 6 :12

65 6:09
66 6:06
67 6:04
68 6:03
69 6: 09.
70 : 59
71;:5a
72 : ;x7

74 5:54
5 kl:54

76 ""1 ♦ Iwo

77 5 • ►r2

78 15:;;1.
79 5:51.
110 U

43 9. d: 50
(12 ,.I.4 9
(13 ,,, . 49
84 .,I . 4 9
4:3 5 5:413
06 ;si : 4 E3
87 ;i : 4 E3

411:3 1 : 48
89 , : 4113

90 ;1:49
9J. `r, 49
IP2 tzi:49
^!' ^.7 wl ♦ til ^^

94
9117 MJ . MJ

96 NI . M,
^
.
1
:
^
f

97 1.,)1 a! 3

98 5: `'i 4
99 191 ".5LI..

1., ^ fir! V!

:100 5 Of 	 7
1.01, 11-5 #1 `.5
1.02 6:01,
103 6'# 0 4
1.04 6 #0 09
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Tall 197  Eclipse Timm

Umbra
D	 ^. Enter	 ExitExit

246 1 1 t 32 21.1: t 47
247 21 *27 21151
240 21:23 211t54
249 21;20 211151)

21150 21 t IFJ 21:58
251 21"16 2*00
252 2 1.t14 22#101,
263 2 1 t 1 2 22 " 02
254 21 t .L O 2203
255 21 109 042204
256 W07 2	 t 05
257 2 1 t 06 2205 
25 S 21 '0$ 22 106

2.59 2 1$0 4 22'06
260 23,0 3 22 t 0 6
26:1 21 1 02 22t06
262 P.1,t01 2210 6
,t 21, t 03, 22 * 07

26 4 _?1,t0U 22106
Ain A # 0 NI

11 6 6 2 0 t wi ry 22 t 0 6

267 20 t 5
^
S
.
:
i(
i 22#106  

269 20 f 1 8 22 t 05

270 20 1 L.78 22*005
271 20; 57 22  04
272 20 '057 22#103
273 20:57 ?2 0,3
274 rs 0 . w

/W	 ♦ "
,.s ,.s , ,gal 	 s,22 10 Art

2715 202	 e3 ',t01.
20" 58 22"' 00

277 201St.) 21. t	 9
278 20 '#59 As l t IS8

2'
7
r 9 21 ♦00 3,	 ',5 7

,,.470 2 1 It 00 21,515,
2 C) 1 21, . 01. 2 1. # w, 4
2@2 02 2

AIV3 21," 03 21. 1:"1 1.
284 21. #1 0 IS 2J.:49

21 06
226 2:1.t0C.3 21 +4x3
287 121, t 1.1. 21.41
288 i 114 2 1 t 37
't3 ' 1 t 15s 21 t 3:1.

4
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Spring 1976 Eclipse Times

Umbra
Day Enter Exit

!;9 2j. 14 6 211 1.5 9 

6() 21t4J. 22 :04
61 21.1#37 22,t 0a

64 21 Mie7N df2 }.1. 4
65 21;2e 22.
66 21t26X1,6

,'r 2; 1. W

67 2 1,124 22 tI S
6 E W* 23 22: 1 0
69 2 1. t22 2 t:1. 9

as. ,

^

I+• R d...

n
lr Ab ASr r d.. ^

r

^N

I

72 21 #' 3.9 22!s1
/gy pr 2

1 **18 21
2}.2

74 R,kf. J. R ,lf ^ 224# 2 3,

f
y 
^ Ai. J. t al. 6 A.. Ax 1 Ait /rfx

121: I 	 t rl. kl 22 1# 22

78 2:1 } 1. 4An	 e }' 22 . try :1d.. Air R du .,

79
t,	

R
.^' ^r R +I. ^   1  22"2 :1,

 

#-r3 0 2:1. R 14 12 12 t 2 .I.
13.1 2 141r) ' 2 }2J,
1i3' 2 :I, t J,3 22'020  

(3 13 Na Jr R wl. M7 /:+r Iifr } A+. 0

s
1:34 n'	

r.

A^fl	 t.r.l.^3 t rf^ t rs ♦ 	 .9^... ^ .i

13 1 2 :1. 13 22 R 31 1)
06 2 3, R 13 22 R J. 8
13 7 21t:I.3 22 01 :1.I
0e 2:1f t :1.3 22	 :I, 6

13 9 21 R'1.4 22 } .I. IS
90 2 1;14t 14 'e2 2 R 1.4
9 J. ,.

92 t s 'I. }:i5Ai.,	 R	 . k
t
l dr. dx R	 , AJ22} :112,

93
94 2J,	 :1,7 22:09
95 21. t:1, 1:J 2207
96 21:1 9 A`'2 R 06
97 12 1, 22 t 04
98

r	 R t•
.^:G R . M b( 22

du An '4+ (/ :If
tip

* l
9 21 #1 2 1,1 ^.^:I. t wi r^

l ooo 2 fl. t ;2, 7 2 1 } I.; 1^f^
3,0 Jf A'1 ♦3 Jr 2 .1. Rtb l
1.0 12 2J.	 Z 0 '23. *" 4,1

it
4-5



Fall 1976 Eclipse Times

`	 Umbra
Day	 Enter	 Exit

Af 4 M!	 le	 0:32 !

246	 00,18	 0:42	 !

t	 247	 0It20	 0 3,5'

24113	 0123	 lr :00
249	 217	 l 10

25 00	 0 • ,3U	 1, 	 1
I '	 0: ;3 4	 1 ; 22
2k 2	 U a,36	 : r)Y

,; «	
2 

	 71•°	 j.

2 X14	 ()	 41	 4 2	 1
Irl r. IS	 1.. ` 
Aw1,1 N!	 ^) ^ 

1,..1
1/'	

49
• 

2 156	 t5

257	 1, 2VU 2 01
110 1.5U 1.5	 ',: U7

260	 1.:1 ;1

261	 1. *20	 2025

;,? 6 3	 1. : 30	 2+437
64	 1.: 36	 2#43

'	 26;a	 J.	 4:1.	 2 +# 48
n

Ar_I '! ^s lS	 1#4 6 	2: w°i 4^ 

E17	 •^ "	 2#
rq t 	 1: 157	 3 : 0 i^;

I•,69	 2	 03	 ;3.10	 g

270	 f;()r,^	 3.1,
A'.	

•	 _	 i

71	 ..'.•14	 3 120

272"y	 Aid : '20	 ;31#2 6

2 7 3	 ": 02 El	 3 : 31
6

.	 a

^? 7' i	 :?.:.x., 1:3 	'' '' •̀ 40

27 6 	e?:45	 ;3:4 i
277	 115 1	 3

278	 2 : 5 7	 ,3 • Nr, r;:!•

;:'79	 ;	 04	 :3 : 59

;?i3(?	 :3::11	 4:0:3
N3•.1t3281`	 4 • 00

202	 3 • 29	 4#12

284	 31,3 9 	 4; 19

I '! [] 5	 34$0 47  	 4.2) 2
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Appendix 5

Guide to Detector Commando on Spectrograms

In order to interpret the commands printed on spectrograms

and line plots, a guide is supplied which gives the most useful subset

of commands. Commands printed on the spectrograms have syllable 1

at the beginning and syllable 14 at the end, with leading zeroes

deleted,
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i'1

1/13/79

Syllable 1 controls the flow of data from the five UCSD detectors

into the five accumulators provided in the Westinghouse EME encoder.

in the normal mode each detector is gated to a single accumulator

which is sampled four times a second. The superfast modes direct

data from a single detector into all five accumulators. This mode

only functions during the dwell portion of the dwell-scan cycle (see

syllable 4). During the scan portion of the dwell-scan cycle data is

gated as in the normal mode.

Syllable 2 controls the position of the rotating heads. Theta

is the angle of rotation for the NS detector, with theta = 0 correspond-

ing to north. Phi is the angle of rotation for the EW detector, with

Phi = 0 corresponding to west. The normal south triad mode (180, 90)

is specified by two redundant commands. During the normal sweep

mode (sync 1), the detectors are synched 90° out of step, with the NS

detector leading. The other sweep mode (sync 2) sweeps the two

detectors independently.

Most of the normal combinations of syllables 1-3 are shown

in the table. Note that since syllable 3 consists of only one bit,

syllables 1 and 2 are shifted two bits when outputted.



1/13/79

Syllable 4 determines the mode of operation of the energy

analyzers, choosing between scan only and scan/dwell modes. A8

determines this portion, while bits A9 and A10 are concerned with

motor voltages and pulse widths as follows.

A9	 Voltage	 A10	 Pulse Width

0	 40 volts	 0	 80 ms

1	 30 volts	 1	 40 ms

Syllables 5 and 6 determine the first energy step in a dwell

cycle. Syllable 7 determines the length of time of each dwell step.

Syllable 8 selects the size of the energy step between dwells in

one cycle. Syllable 9 chooses the number of dwells in one cycle.

Syllable 10 determines the spiraltron biasing for the individual,

detectors. High bias corresponds to increased sensitivity.

i
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ATS - 6 Commands

Syllables 1-3

Accumulator Detector Inter- Syllables
Gating; Position calibrate 1-3

0	 ^O Octal

Normal 00	 900 Normal. 000

90°	 90° 010

180°	 90 0
004

130 0	90° 014

mtr	 off 002

sweep	 0 1 012
sync 1 006

sync 2 016

Super fast 01) 	 90 ° Normal 060
protons
north/ south

9 0 0 	 go- 070

1800	 90 0 064

180 0 	900 074

mtr	 off 062
sweep	 0° 072

sync 1 066

sync 2 076

Super fast 00	 900 Normal 100
electrons

900	 go- 110north/ south
1800	 900 104

180 0	 90° 114

i-ntr	 off 102

sweep	 0 0 112

sync 1 106

sync 2 116
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ATS-6 Commands

Syllable 4

M

Scan/motor power

Mode	 Octal

Scan/dwell	 0, 1, 2, or 3

Scan only	 4, 5, 6, or 7

Syllables 5 & 6
First dwell. step

Step Octal

00

Step

47

Octal

02

Step

31

Octal

01
Step

15

Octal

0363

62 40 46 42 30 41 14 43

61 20 45 22 29 21 13 23

60 60 44 62 28 61 12 63

59 10 43 12 27 11 11 13

58 50 42 52 26 51 10 53

57 30 41 32 25 31 9 33

56 70 40 72 24 71 8 73

55 04 39 06 23 05 7 07

54 44 38 46 22 45 6 47

53 24 37 26 21 25 5 27

52 64 36 66 20 65 4 67

51 14 35 16 19 15 3 17

50 54 34 56 18 55 2 57

49 34 33 36 17 35 1 37

48 74 32 76 16 75 0 77

Syllable 7

(seconds)	 1	 2	 4 8	 16	 32 64	 128
Octal	 0 1	 2 3	 4	 5	 6	 7

Syllable 8

Size	 0	 1	 2 4 8	 16	 32	 0
Octal	 0 1	 2 3 4	 5	 6	 7
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ATS-6 Commands

Syllable 9

Number of dwell stops

#	 2 4 8 16 32 64 64 64

Octal	 0 1 2 3 4 5 6 7

Syllable 10

Spiraltron bias

Octal 0 1 2 3 4 5 6 7

NS 10 to 10 to hi hi hi hi

EW to to hi hi to to hi hi

FD 10 hi to hi to i	 hi to hi
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