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1.0	 INTRODUCTI04
t

1.1	 Background

F

This report describes results obtained under Task #1, Exhibit

"B", "Ku-Band Bent-Pipe Channel Performance Evaluation." 	 Since Hughes

has been experiencing the greatest difficulty with the wideband bent-pipe

channel, we have concentr..:ted our efforts in this area. 	 Specifically,

the SPA mode 1 channel 3 input port has a bit detector which is the sub-

ject of considerable redesign effort by Hughes. 	 This port accepts high

data rate NRZ data (2- 50 Mbps) and clock. 	 The SPA input bit detector

attempts to sample the data at mid-bit in order to preclude sampling

during a transition.	 The inherent problem is the wide variability of

data rate and input waveform parameters.

The original bit detector circuit consisted of a derived two-

' phase clock and a coincidence circuit. 	 Proximity . of data/clock transi-

tions would trigger sampling on the alternate clock phase. 	 This circuit

proved to be unstable under worst-case conditions of data asymmetry and

rise time.	 A relatively simple modification, that of providing a four-

phase clock, also proved unsuitable at the higher data rates. 	 As a

x result, Hughes has had to design a new bit synchronizer.

1.2	 Summary

This report describes the two principal 	 designs considered by

Hughes as well as our analysis of these designs. 	 During the progress of

. this work, it became evident that the input waveform parameters had not

been adequately characterized and specified. 	 In particular, distortion

due to cable e-l"fects, in terms of frequency-dependent attenuation and

rise time, had not been .accounted for.	 In Appendix A, we discuss the

model used to calcilate the effects of cable attenuation and rise time

degradation.	 Results of this analysis we're subsequently incorporated

in the Rockwell specification. Discussions of the two prime candidate

designs for a bit synchronizer are contained in Appendices B and C.

The first synchronizer, which was proposed by Pat Conway, is

shown on page 2 of Appendix B. Since a detailed description is given

in Appendix B, we will summarize by stating that this loop utilizes a

phase-frequency detector to frequency track the received data clock
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frequency and a mid-bit and transition point sample detector to generate

a bit timing error (phase error) signal to control the relative phase

between the local clock and the local data stream.

It was determined that the basic design was adequate with sym-

metric bits but could 'lock up with a large timing error and be quasi-

stable (timing will	 not change unless the clock or bit sequence drifts).

R
This will result in incorrectly detecting some bits.

In particular, for the case of 25% asymmetry at 50 Mbps, the

k
following is true:

(1)	 With timing errors up to ±2.5 ns (±12.5%), no timing

change is performed by the loop and no bit errors will be made.

(2)	 With timing errors between ±2.5 ns and ±7.5 ns (+37.5%),

the loop error control will 	 reduce the timing error and no bit errors

will occur.

(3)	 With timing errors between ±7.5 ns and ±10 ns (+50%),

the loop will not adjust the timing error, but bit errors will occur.

A second bit synchronizer was analyzed and is treated in detail

in Appendix C.	 This synchronizer also utilizes a phase-frequency detec-

tor as the first one did, but has a different and rather complex bit

timing error detector to adjust the phase between the received and local

bit epochs.	 Whereas the Conway synchronizer tracked transitions, this

synchronizer tracks rising edges of the bit stream only. 	 It was deter-

mined (Appendix C) that this new bit synchronizer will	 successfully track

the rising edges of the received data bits with 25% asymmetry and up to

a 90 0 phase shift between the received clock and the data bit timing.

Furthermore, the data bits will be sampled correctly under these condi-

tions.	 In both synchronizers,	 it is advisable to zero the digital-to-

analog converter loop filter voltage in prder to avoid the possibility

of false lock.

ce 2.0	 CONCLUSIONS

Hughes has elected to implement the modified Pat Conway bit

synchronizer as described in Appendix C. 	 With input data and clock param-

eters within the specified limits, the bit synchronizer should track and

bit detect correctly.
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	1.0	 INTRODUCTION

During the redesign effort of the mode 1 channel 3 bit

synchronizer, it became obvious that the current input specifications

were inadequate. The specifications did not account for data-dependent

losses, e.g., losses incurred due to cable attenuation of the 01gher

frequencies, whereas this effect had been noted in cable measurements.

In addition, rise time effects had not been adequately modeled. Since

the new bit synchronizer is going to incorporate a variable threshold

to adaptively set decision levels, it has become mandatory to more accu-

rately predict the input waveform parameters.

	

2.0	 DATA-DEPENDENT LOSS EFFECTS

The concept of data-dependent loss is depicted in Figure 1.

A long run of 1's or 0's will allow the cable output voltage to reach

MAX "1" or MIN 11 0 11 , respectively, whereas a single pulse preceded and

followed by data of the opposite sense will attain only MIN "1" or MAX

n0u

The analysis techniques involved modeling the frequency-

dependent loss of the cable and connectors, calculating the Fourier

transform of a single pulse, attenuating the Fourier coefficients, and

taking the inverse transform to ascertain the loss.	 In actual fact,

since the calculations were performed on a computer, the most simple

approach was to approximate the single pulse with a very low duty cycle

rectangular pulse train. 	 Thus, the Fourier series was used,

Worst-case conditions assume 92 ft of cable with seven con-

nector pairs.	 From [1], we find that the cable attenuation of RG142

can be modeled as 1.92x10-4 
(0.538 

dB per 100 ft.	 This is derived from

the table on page 194 of [1] by using a linear regression of the tabular

data.	 The resultant correlation coefficient is 0.9997, indicating that

the log of attenuation versus the log of frequency can be accurately

approximated by a straight line in the range of interest.	 Assuming SMA

connectors, the connector loss is given as 0.03 
/fGHz 

dB per connector.

The resultant data-dependent loss is calculated to be 11.4%.

That is, a single pulse will be 88.6% of the steady-state voltage dif-

ference.	 This can be written as:

1
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Figure 1. Hon-:-Case Short-Term Variation Single Pulse Aftel" Steady State 
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MIN "1"	 = VO +0.886 (VI - VO)

MAX "0"	 = V 1 -0.886 (V 1 - VO )	 .

3.0	 CABLE RISE TIME EFFECTS

The response of a cable to fast rise time inputs cannot be

modeled as a simple filter. Cable measurements indicate a very rapid

initial rise, followed by a slow tapering off to the final value. From

[21 and [31, we find that the response to a unit step O /S) input can be

given as:

V[t1 = 1 - erf	
R K

^Oort)

with z the cable length, K the cable attenuation constant in ohms per

unit length per square root hertz, and R  the characteristic impedance.

This expression is obtained by multiplying the Laplace transform of the

cable transfer function by 1/S, then taking the inverse transform.

The parameter K is not necessarily readily available for all

cables. Cable specifications are normally supplied as dB attenuation

per 100 ft at a specific frequency.

We can determine K/R0 as a function of attenuation, as follows:

(
K
 l

E0 = e- RO/ 2 Q the cable transfer function.
Ei

With s = jw and VY - 1 +

K VT 12—iT J1
 e Rp	 2

A, attenuation per 100 ft, is

EQ	 -(R	
120 3̂ r

A =	 = e 1 0/
E 



k=

r,
i	 g	 .

and

A^
dB	

1R^lV r 50

100 ft)	
20 log e

= 103 (K) Arflog e

Thus,

__ A	 1
K/R0	 F loci e 6 x 103

which can be substituted into the step response to give

V(t) = erfc 3.25 x 10' 4 kA

3^t

4
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1.0	 SUMMARY AND CONCLUSIONS

A bit synchronizer proposed by P. H. Conway of Hughes Aircraft

is analyzed in a noise-free environment. This task is accomplished by

considering the basic operation of the loop via timing diagrams and by

linearizing the bit synchronizer as an equivalent, continuous, phased-

lock loop (PLL).

It was determined that the basic approach was a good design

which, with proper implementation of the accumulator, up/down counter

and logic should provide accurate mid-bit sampling with symmetric bits.

However, when bit asymmetry occurs, the bit synchronizer can

lock up with a large timing error, yet be quasi-stable (timing will not

change unless the clock and bit sequence drift). This will result in

incorrectly detecting some bits. The a priori probability of falling into

this quasi-stable region is equal to the asymmetry (defined in Section 6.0)

expressed as a fraction. This a;sumes a uniform distribution over T sec.

Thus, except for the case of no asymmetry, there is always some possi-

bility of remaining in lock but incorrectly detecting some bits.

As a final comment, if the timing difference between the bit'

stream and the clock can be held to less than ± 
1-2SY T sec (T is the

undistorted bit duration), the bit synchronizer loop will never get -into

the third zone, where bit errors are made but the loop holds lock.

	

2.0	 INTRODUCTION AND DESCRIPTION OF THE NEW BIT SYNCHRONIZER

The purpose of this report is to discuss oi.e "fix" to the oper-

ation of a Shuttle Ku-band bit synchronizer -^uhich utilizes both clock

and data inputs. The present bit synchronizer has a jitter problem and,

consequently, occasionally will sample the same bit twice and skip the

following bit.

An alternative bit synchronizer suggested by P. H. Conway of

Hughes Aircraft [1] is shown in Figure 1. The loop is composed of a

Motorola high-frequency phase-frequency detector (^-DET) [274] which is

capable of detecting both phase and frequency errors and is used to

track the clock, and a bit transition detector which attempts to track

the transitions of the data bits.
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The Q clock signal shown in Figure 1 is compared with the

received clock (clock in) which, by virtue of the phase/frequency detector,
produces a signal which has a do component proportional to the frequency

error (if there is one). Then, when in frequency lock, it produces a

signal which has a do component proportional to the phase error between

the input clock and the VCO output.

Now, if the digital-to-analog converter (DAC) output was not

hooked up to the loop filter, the bit synchronizer would track the

received clock with negigible phase error. However, since the received

clock and data are at the same frequency but are not phase coherent, it
is.^:L-;,ssary to bump the clock phase so that data samples are taken at

mid-bit. The function of the DAC is to provide samples of the data at

the mid-bit point. The VCO clock runs at twice the rate of the received

click and is divided down to the clack rate by the D flip-flop following

the VCO. Actually, this flip-flop provides both an I and a Q clock which

are phased one-half a bit apart, as shown in the lower left corner of

Figure 1.

The I ' and Q clocks are used to sample the data one-half of

a bit apart, when synchronized. This sampling is effected by the two D

flip-flops following the divide by 2 flip-flop. By using the "exclusive-

OR" of two successive data samples, a transition detector is created,

f

	

	 thereby producing a binary one with a transition and a binary zero when

there is no transition. This control enables or disables the up/down

counter to count either up or down. By comparing the I and Q data sam-

ples (I n and Qn in Figure 1), an estimate of the error inthe actual

t

	 transition sample (Qn ) and the data transition location is obtained.

It is to be noted that the exclusive-OR output yields only the algebraic

sign of the error, riot the magnitude. This error, assuming a data tran-

sition, will be accumulated in the up/dowr y (U/D) counter 'until it either

underflows or overflows. The accumulator actually has two functions.

The first is to reduce the speed to the DAC the second is to control

the quantization ofthe loop phase error control. The second up/down

counter feeds into a DAC which converts the accumulated count into an

analog voltage, which drives the bit synchronizer loop filter. In effect,

the up/down counter- acts upon the bit timing error signal the same way
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an integrator would. This integration is precisely what is needed to

force the mid-bit data sampler into the mid-bit position! This fact

will be made clearer in Section 5.0.

In conclusion, the bit synchronizer shown in Figure 1 is

designed to track the clock and sample the data sequence at the mid-bit

point. We now consider the phase/frequency detector and the bit detector

in more detail in the following sections.

3.0	 DESCRIPTION OF THE MOTOROLA PHASE/FREQUENCY DETECTOR

Both the MC4344/MC4044 [3] and MC12040 [4] Motorola phase/

frequency detectors can be used in a broad range of phased-lock loop

applications. Both sets of detectors are functionally equivalent, how-

ever, the MC12040 is capable of operating at higher clock speeds.

Because of the functional equivalence, we shall confine our discussion

to the MC4344/MC4044 unit.

The Motorola MC4344/MC4044 phase/frequency detector is com-

posed of a phase/frequency detector, a quadrature phase detector, a

charge pump and an amplifier. It is the function of the charge pump to

convert the pulses out of the phase/frequency detector to a DC value

which is essentially proportional to either the phase or frequency error.

In Figure 2, the phase/frequency flow table for the phase/

frequency detector is given, along with the charge pump/amplifier fre-

quency control.

In order to understand the usage of Figure 2, we shall consider

an example. Assume that the received clock (R input to the ^-frequency

detector) lags the local reference (V input to the ^-frequency detector)

by one-twelfth of a square wave clock cycle, as shown in Case I of Fig-

ure 3. Starting at state 8 in Figure 3 which corresponds to the R,V

pair being in state 1,0, we go to Figure 2a and note that state (8) (with

the parentheses) produces an output U1 = 1 and Dl = 1. Now, in the time

interval denoted by (7), we note that R,V = 1,1. Moving horizontally in

the same row to the left, one column (under R-V = l,l), we find a seven.

Therefore, we look vertically in the column for (7) which we find one row

higher, with a corresponding output of U1 = 1 and Dl = 1. The next

-input is R= 0, V= 1. Moving horizontally in the fifth row, we find a 2.

Moving vertically to the second row, we find the (2), which has a
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R Phase U1
Frequency
Detector

V 0 #1	 o D1

(a) Phase Frequency Detector Flow Table

U1	 1 lower fv
Dl	 0

Ul	 0 raise fv
Dl	 1

U1	 1 ^. don't change fv
D1	 1

k u ; unavyc rump-nmpiiiicr uunt,ru i

Figure 2. Phase/Frequency Detector Flow Table
and the Charge Pump-Amplifier Frequency Control

R-V R-V R-V R-V
U1 D1

0-0 0-1 1-1 1-0

(1) 2 3 (4) 0 1

5 (2) (3) 8 0 1

(5) 6 7 8 1 1

9 (6) 7 12 1 1

5 2 (7) 12 1 1

1 2 7 (8) 1 1

(9)' (10) 11 12 1 0

5 6 (11) (12) 1 0
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	Case I. AT = 1/12 T 	 T `ice

	

R 1
	

^. AT
0

V1
0

	

1	
8) (7)	 ( 2 	 5 )	8) (7) (2)(5)(8)

Ul
	0	 I Raise f  a little

DO ^.
0
Case II. AT = 1/6 T

R1

0

V1

	

0	 . ........

	

(8	 7	 2)	 5	 8	 7	 2)	 5	 8
_	 U11

0 Raise f more

	

D1 1 	— --
0

Case III. AT = 7/12 T

1 ►--- AT, --►j

	

R1
	 t

0

V1
0

	

1	 8	 1)	 ( 2 ) (^1	 8	 n)	 ( 2 )	 (3

	

Ul0	 l
Raise f greatly

'

	

D1 1	

v

0

Case IV. AT = + 13/12 T or - 1/12 T

R1
0

V1

0

	

1	 0-2) (11) (6)(9) 1121	 (11) (6)	 (9)

U10

	

l	 Lower f
v 

greatly

	D10
	 _J

Figure 3. Performance of the Phase/frequency Detector for Various Phase Errors
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corresponding output of U1= 0, D1= 1. Hence, at this point, the Ul output

drops to zero while the VI remains at one, as shown in Figure 3. Con-

tinuing in this manner, we find that the phase/frequency detector goes

through the states (5), (8), (7), (2), (5), (8), etc., generating the

waveforms U1 and Dl shown in Case I, Figure 3. Now, by considering Fig-

ure 2b, we see that, when Ul,DI = 0,1, the DC voltage out of the charge

pump/amplifier is increased and, when U1,D1 = 1,1, the DC voltage does

not change. As a consequence, the DC voltage applied to the loop filter-

amplifier increases to the VCO input, causing the local reference to

catch up to the received clock.

By viewing Figure 3 cases II and III, it is seen that a large

timing or phase error prodaces a larger DC voltage out of the charge

pump. By virtue of the way the charge pump works, the error control

signal, when properly smoothed, is proportional to the timing error over

the region ±T, • where T is the clock or bit period. In viewing the error

to be phase rather than timing, we find the error signal to be linear

over ±2fr.

In case IV of Figure 3, the situation when the timing error is

increased to 12 T or-- 
112 

Tl- is shown. Even though the error is equiva-
\	 1	 --

lent to case I of Figure 3, the error signal - derived-f-rom_the flow table

of Figure 2 yields a different error control voltage. The reason

this difference is obvious when one considers the S-curve of Figure 4.

Because of the memory in the phase/frequency detector, there

are two error control signals for each error position, or phase error, ^. I

The arrows in Figure 4 indicate how the the loop behaves as the phase

increases, first to 2fr and then to 4w on a different branch, then returns

to zero on the new branch. The original stable point was 0 rad on the

first'branch but the second branch is stable at 2fr rad (T sec).

The above discussions were concerned with phase or timing

errors. We now consider frequency errors. Using the flow table of

Figure 2a, we can establish that, when fR/fV = 10 or when fV/fR = 10,

error control amplitude is monotonically increasing with increasing fre-

quency error (it is not linear). The results are plotted in Figure 5

for the case of 10:1 frequency error and Figure 6 for 3:1 errors. 	 1
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4.0	 DECRIPTION OF THE DATA DETECTOR

As was mentioned previously, the phase/frequency detector

provides an error signal to track the clock while the data detector pro-

vides a perturbation error signal to force the data sampling to be mid

bit. The divide-by-two D flip-flop of Figure 1 produces both the I and

Q samples which are one-half a bit apart in time when the loop is in

frequency lock. The in-phase samples are delayed one bit in the second

D flip-flop, labeled "delay" in Figure 1. Using an exclusive-OR gate,

the present data bit is modulo-two added with the previous data bit.

When the past and present data bits are of the same algebraic sign,

obviously no transition could have occurred; hence, sampling the tran-

sition point could yield no useful timing information so that the accum-

ulator is not enabled. On the other hand, when a transition occurs, the

previous and past data bits do not agree and useful information can be

obtained from a transition sample. The exclusive-OR gate enables the

accumulator only when a transition occurs.

Data bit timing error information is obtained by comparing the

present I and Q samples via an exclusive-OR gate. As shown in Figure 7,

when the clock timing samples are either late or early, the modulo-two

sum of I n and Q  is either O or 1, respectively. Therefore, I n Q+ Qn,

where Q+ denotes modulo-two addition, determines in which direction the

loop timing should be adjusted in order that the Q samples lie very near

the transition of the bits. Therefore, the I samples will be in the mid-

point of the data bits, which is the result desired to avoid missing bit

samples.

By using an accumulator with overflow, an up/down counter can

be used to reduce the speed of the up/down counter driving the DAC. Fur-

thermore, the accumulator sets the quantization error in the bit time

tracking accuracy. The DAC converts the up/down counter output to an

analog voltage which, in turn, adds with the phase/frequency detector

to produce the loop filter input signal.

When the bit synchronizer is not frequency locked, it produces

no useful information. Although it is not necessary, inhibiting the bit

detector DAC output during acquisition would improve acquisition time.
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5.0	 LINEARIZED ANALOG EQUIVALENT LOOP ANALYSIS
f

In this section, we model the loop of Figure 1 in a simplified,

linearized, loop structure shown in Figure 8. First we replace the

phase/frequency detector with a phase detector (multiplier). Next, we

replace the data detector with a phase detector (multiplier). Finally,

the accumulator and up/down counter are replaced with an integrator since,

in effect, that is the function they perform.

In order to utilize this t ,-Jel, the clock and the data must be

replaced with sinusoidal signals, as shown in Figure 8. We have assumed

that the phase of the data is arbitrary with respect to the clock which

is indicated by the phase angle ^.

The phase error is defined to be the error between the data

clock and the VCO reference, r(t). thus,

^(t) = e +	 - 6(t)	 (1)

We shall now show that, for any value of ^, ^(t) -> 0 as t 	 Note

that ^(t) is proportional to e 4 (t). Now,

C l (t) = CLK(t) • r(t) = 42-A sin(Wot+e) rB sin(wOt 
+6

)
 

(2)

or

el(t) = AB sin (e-6)	 (3)

where we have neglected the 2w O term which will be filtered out by the

loop filter and VCO. Now,

K
e2 (t)	 AB sine-6) + S e4 ( t )	 (4)

where

t

S e4 (t) _ /	
e4 (u) du	 (5)

with S being the Heaviside operator. We use the Heaviside operator nota-

tion in what follows. Now we have

1
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Data
Clock

CLK(t)

CLK(t) _ 32 A sin(wot + 0)

	

r(t) _	 B cos(wDt + e)

	

DCLK(t) =	 A sin(wpt + © + 1)

s

Figure 8. Simplified, Linearized Model of the Bit Synchronizer
f
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E4(t) = r(t)-DCLK(t) _ Y"2B cos(wOt+B) 2A sin(wOt+O+^)	 (6)

or

E4(t) = AB sin (e+^-6) = AB sink	 (7)

i

If we linearize (3) and (7), we obtain
E

El (t) = AB(04)	 (8)

E 4 (t) = AB(0-6+^) ; e l (t) + ABq,	 (9)

Now we can also linearize (4) to yield

K
e 2 (t) = AB(04) + ^K ABA	 (10)

The phase estimate out of the VCO, 6(t), in Heaviside operator notation

is given by

6 = F(S) K̂ E	 = F(S) K11 ^AB(O-6) + ! ABJ	 01)l	 S

where F(S) is the loop filter represented as a function of the Laplace

variable S. Now, 6 also satisfies, from (1),

	

6 = 0 + * - ^	 (12)

so that	

1

o +	 F(S) 
KV 

1A6(8-) + KF AB^ 4	(13)

	

S t	 S	 l

Since 0 is unimportant in our analysis, we can let it be zero, producing

from (13)

1  + ABKvF(S)

S
YtS)

k;	 ^(S) Y 
	

(14)
BKvF(S) ^, ABKvKFF(S) + 1

S	 S
2

L,
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where V(S) is the LaPlace transform of ^(t), i.e.,

T(S) = y[g t)l	 (15)

and O(S) is the LaPlace transform

'D (S) = "f'f^M	 (16)

In order to evaluate how well the loop samples the midpoint of

the bit, we must consider the phase error, f(t), as time increases with-

out bound. Letting the T(S) be modeled as a phase step in time so that

	

T(S) = S^	 (17)

where 
*0 is a uniform random variable taking on values in the range (-ir,

,r) and using the final value theorem of LaPlace transforms, we have

lim ^(t) = lim [S^P(S)] 	 (1E)
t-^-	 S-r0

Hence, using (17) and (18) produces

AaK^F
1 +	

S 

(S))

	 'O

t^ 
^(t) = S^ AQK^F S	 AQK^KF F S	 (19)

+ 1i

S	 S2	 1

Assuming a second-order loop requires that the loop filter be of the form

1 + 'r2S
F(S) =	 T1S

so that (19) can be evaluated as

(20)
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lim ^ M = 0	 JKFI > 0	 (21)
•	 t.,a,

•

i

which means that, in our simplified and unquantized model, the data sam-

ples are always taken midbit, as desired, irrespective of the phase rela-

tionship between the clock and the data. It should be noted that, if e

were not zero, the result of (21) would still hold. It is interesting to

consider the tracking error, ^(t), when the feedback integrator is

removed, corresponding to K F = 0. In this case, we find that

 (1+T2S
[,2 + ABK	

T
1lim ¢(t) = 11111	

AQ 
	 = *0	(22)

t--	 S->	
i

0	
T	 ( l+T2 S) + S2

Therefore, without the integrator (or accumulator up/down counter), the

bit synchronizer is incapable of controlling the location of the data bit

samples. This fact satifies one's intuition.

We now establish that, while e 2 (t)-+0 as t-^-, neither e5 (t) nor

e l (t) approach zero as t-^-. From Figure 8, it is obvious that

C5(t)	
SF e4(t)	 S AB(e+, -6)	 (23)

Also, the oscillator output phase estimate is given by [using (11) and

(23)]

e = F(S) S 	 + e	 (24)

	

S 
^AB(04)
	 5^

Rearranging, we obtain

ASK F(S)
e +	 S	 8	 AB 

K 

S	

K
F(S)e + S F(S) e 5	 (25)

k

i

a

c 3
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Solving (25) for 6, we obtain

AN 

F ( S )e(S) + KV F (S) c5(S)
e -

ABKVF(S
1 + S--

Rearranging (23) produces

c5 =
ABK
 S F 

(6 
(S) + T ( S )) ` A SKF ^	 (27)

Using (27) in (26) produces, after some algebra, the result (again let-

ting e = 0)

(26)

A SKF '^(S)

e5 (S)	
ABKFKVF(S)/S2	

(28)	
{

1 + 1 + ABKVF (S )/S

Again using the final value theorem, we obtain

1 mme5(t) = lim 
FeO^
	 (29)

t	 S+O

so that, assuming ^(t) is a step in phase of 
*0 

rad, we have, using (28)

and the fact that T(S) = 'O/S, that

"M e5 (t)	 AB^O	 (30)

It can be shown that (30) also holds for a first-order loop (where F(S)=1)

and it also holds for a step in phase of e.

Now consider the steady-state value of c l (t). We use linear-

ized equations in the following. From (8), we have

c l	 AB(e-6)	 (31)
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and from ( 10) we have

K
e2	AB(e-0) + S e4

Also from (9), we have

e4 = el + ABA ►

Now, since

9 = KS F(S) e2 = F(S)	 el + SF e4

we can use (33) in (34) to yield

K

6 = F ( S) S [el + S ( e1 +ABA

From (31), we have

(32)

(33)

(34)

(35)

0	 - AB0 

Now equating (36) and (35) produces (letting 0 = 0)

ABKVKF
2	 T(S)

C l (S) =	 S

	

KVF(S)	 KV KF	 1+	 + —

S	 S2	 AB

Again assuming a step in the phase term ^(t) yields

(36)

(37)
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ABKV K
F 00

e l (S) =	 S2	 S	 (38)

	KVF(S)	
'V 'F 1

S	 S2	 AB

using

lim e l (t) = lim Se(S)	 (39)
t-*	 S->0

produces

lim e l (t) = -ABA O	 (40)

From (30) and (40) and Figure 8, we deduce that e2(t)->0.

Therefore, when tracking, the bit synchronizer operates in such a man-

ner that e2 (t)	 O and e l (t)	 e5(t). Without the feedback, of course,

the loop would drive e l (t)	 0.

6.0	 THE EFFECTS OF ASYMMETRY ON BIT DETECTION

In this section, we address the problem of bit asymmetry on

both synchronization and bit demodulation. Bit asymmetry percentage is

defined by

ASY = IT - OI x 100%	 (41)
T

1	 0

where T 1 is the bit duration of a "one when preceded and followed by a

zero, and TO is the bit duration of a "zero" when preceded and followed

by a one. It is predicted that the total asymmetry due to rise time and

transmitted asymmetry will be in the region of 25-35% when the bit rate

is at 50 Mbps.

In Figures 9a-c, the case of 25% asymmetry is shorn for an

alternating one/zero sequence, running at 50 Mbps, with three distinct

}	 timing error regions. Since T l = 15 ns and TO = 25 ns, we see that, in
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fact, ASY =25%. For the vertical lines, the Q i ,I i pairs determine which

way to adjust the phase of the VCO according to I n + Qn = 0-+ADVANCE

(INCREASE VCO VOLTAGE) and I n + Qn = 1+ RETARD (DECREASE VCO VOLTAGE) when

I n + I n-1 = 1, and no bit timing change when In+ Inl = 0. For example, in

Figure 9a, region I errors are illustrated. For this timing relation-

ship, the input to the accumulator up/down counter would be the sequence

advance (A), retard (R), advance (A), etc. or, equivalently, ones and

minus ones to the accumulator which would not change the sample points

relative to the bit stream. In Figure 9b, the error is ±5 ns, which pro-

duces a sequence of advances. In this region (±2.5-±7.5 ns), the loop

would pull in to the ±2.5 ns region and correctly decode the data bits.

When a shift of 8 ns (7.5-10 ns) is considered in Figure 9c, we find

that there would be a sequence of A's and R's which would not reduce the

error but would cause bit errors to be made in the bit sampling process.

For the case of alternating one/zero shown, the detected bits are all

zeros, resulting in errors on every other bit. By carefully considering

Figures 9a-c, it can be concluded that, with 25% asymmetry, the follow-

ing is true (timing error is defined as timing difference between sam-

piing at the center of the bits and the actual sampling point)

1. With timing errors up to ±2.5 ns, no timing change is

effected by the loop and no bit errors are made.

2. With timing errors between ±2.5 ns and ±7.5 ns, loop

error control will reduce timing error and no bit errors will occur.

3. With timing errors between ±7.5 ns and x-10 ns, the loop

will not adjust the timing, but bit errors will occur.

The case of 35% bit asymmetry is illustrated in Figure 10 for

an alternating one-zero sequence. After careful study, we conclude that

the following is true:

1. With timing errors up to ±3.5 ns, no timing change is

effected by the loop and no bit errors are made.

2. With timing errors between ±3.5 ns and ±6.5 ns, loop error

s
control will reduce the timing error and no bit errors will occur.

3. With timing errors between ±6.5 ns and ±10 ns, the loop

will not adjust timing, however, bit errors will occur.
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Sequences other than the one-zero alternating sequence were

considered and the result was basically the same for any level of asym-

metry.

In conclusion, we see that three "zones" or timing error regions

will apply. The first region is a dead zone in the sense that the no-

error control signal is generated in the accumulator because the error

signals alternate back and forth in algebraic sign. This region extends

in magnitude from zero timing error to 
AS2•T 

seconds, where T is the

undistorted bit symbol duration. The bits are correctly detected in

this region.

The second region extends from 
AS2•T 

seconds to (
J-2SY

)T sec-

onds. In this region, the loop provides an error control signal from

the bit timing error detector which reduces the error to the outer edge

of zone 1. The bits are correctly detected in this region.

In'the third zone, the error ranges from ( l 2S Y)T seconds to

T/2 seconds. This region causes the bit timing error detector to pro-
x.	

duce a sequence of alternating ones and minus ones which will therefore

not exceed the accumulator threshold and, consequently, not update the

loop (i.e., a quasistable lock point). Bit errors will occur in this

region. When the one-zero sequence is considered, only zeros or all

ones will be detected depending on whether the one bits or the zero

bits are of greater duration due to asymmetry. For arbitrary sequences

of ones and zeros, errors will occur although not at a 50% rate.

As a final comment, if we assume that the a priori probability

of the initial timing just after acquistion is uniformly distributed,

the probability of locking in the third region, where bit errors occur,

is given by

2-(1-ASY) 
T

PFL =
	 T	 - ASY

2

and therefore, only with zero asymmetry does this problem disappear. If

the timing error between clock and bit stream could be held to be less

than ( 1-ASY 2)T seconds in magnitude, it is possible to avoid the

troublesome third region.

i
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1.0	 SUMMARY AND CONCLUSIONS

A bit synchronizer proposed by Hughes Aircraft (Culver City)

is analyzed via timing diagrams in a noise-free environment. This syn-

chronizer is, in part, a substantial revision of the bit synchronizer

F	 proposed by P. H. Conway [1] of Hughes Aircraft Company (HAC).

Based on a review of a HAC note [2] and the timing diagrams

of Figures 2 through 9, itis believed that this new bit synchronizer will

track the rising edge of the data bits with 25% asymmetry and up to a 900

phase shift between the received clock and data bit timing. In addition,

the data bits will be demodulated correctly.

It is not true that phase shifts larger than 90 9 will neces-

sarily be corrected by this bit synchronizer, as evidenced by Figures 8

and 9. However, the specifications currently require the loop to operate

over only a ±75 0 phase shift between the received data stream leading edges

and the bit synchronizer leading edges; consequently, there should be

no problem.

2.0	 INTRODUCTION AND DESCRIPTION OF THE LEADING EDGE
BIT SYNCHRONIZER

The purpose of the bit synchronizer, shown in Figure 1, is to

track the leading edge of the incoming bit stream with the aid of the

received clock and, from this, to regenerate a symmetric bit stream to be

processed by the convolutional encoder. In addition, the synchronizer

provides a clock at the data rate as well as twice the data rate.

In Figure 1, two additional subsystems are shown; the first is

an adaptive threshold device that attempts to restore symmetry to the

bit stream, and the second is a false frequency lock detector. Since the

asymmetry corrector will be the subject of another report, we will now

discuss the false frequency lock detector,

The purpose of the false frequency lock detector is to ascer-

tain whether the bit synchronizer is in true lock or false frequency

lock. This is accomplished by counting both the received clock and the

synchronizer-generated clock in two separate 8-bit counters. After either

one counts to its maximum count of 256, the other counter is inhibited

from further counting. At this point, the count of the unfilled counter

is compared to 256. If the error is small enough, true lock is accepted;

PAGE BLANK NOT FILMED
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otherwise, false lock is assumed. If false lock is detected, the

digital-to-analog converter (DAC) voltage is set to provide 0 DC bias

into the loop filter, which allows the loop to reacquire in true lock.

The bit synchronizer loop is composed of a Motorola high-frequency

phase-frequency detector (gyp-F) [3-4] which is capable of detecting both

x	
phase and frequency errors and is used to track the received clock, as

well as a bit tinting detector, based on positive data transitions.

The phase-frequency detector has been discussed in some detail

in [1] and will not be discussed here except to say that its function is

to act as a discriminator in a frequency lock loop during frequency acqui-

sition and as a phase detector during tracking.

In effect, the ^-F detector removes the frequency error between

the VCO and the received clock, then removes the phase error. The func-

tion of the flip-flops, least significant bit detector, and counter-DAC

unit is to position the clock-generated bit timing so that the Q-clock

straddles the leading edge of each bit.

The VCO is run at 4- 100 MHz and divided by 2 by the D flip-

flop (F/F) following the VCO. From the Q output, the Q-clock is generated

and, from the Q output, the I-clock is generated. Flip-flop FDI then

provides samples of the 1 sample (mid-bit samples) whereas FDQ outputs

the Q samples (or transition samples). The function of FEQ is to delay

the I sample by one-half of one bit so that the positive data detector

gate will go high when a positive transition occurs. The up/down gate,

along with the J-AND and K-AND gates, set the JK flip-flop so as to

increase or decrease the counter count and, therefore, the DAC voltage.

This voltage is subtracted in the loop filter amplifier, thereby adjust-

ing the loop VCO phase relative to the received clock phase. Both the

Q-clock and the X2 clock., plus the resynchronized data, are sent to the

convolutional decoder. The function of the least significant bit tran-

sition detector is to provide a settling time of 2 ms before a new update

can be processed.

Now consider Figure 2, which illustrates how the loop provides

corrections so as to align the leading edge of the Q-clock with the lead-

ing edge of the bit stream. The top row illustrates an early data stream

in the solid line and a late data stream in the dashed line. The next

three rows illustrate the I, Q and X2 clocks.
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In the 5th row, the FDI D-type flip -flop samples the data stream

r	 at the rising edge of the I-clock (CLK), whereas FDQQ outputs the Q-CLK

sample of the data in row 6. The 7th row indicates that the FDQQ output

is simply the complement of FDQ Q . Notice that both FDQ Q and FDQQ are

dependent on the data timing relative to the Q-CLK timing.

Row 8 illustrates the output of FEQQ which is a one-half-bit

delay of the I samples. FEQQ is the complement of FEQQ . In the 10th row,

the positive transition detector output AND-gate is shown. Notice that a

pulse occurs one-half a bit after the occurrence of the leading edge of

each bit.

The 11th row illustrates the up/down gate output for both late

and early data streams. In the 12th row, the count enable flip-flip is

indicated. In order for the count enable to be high, the reset input

must be at the 0 state and the transition detector must be high when the

Q-clock arrives. When the Q-output is high, the up/down counter is free

to accept a unit change in its count.

In the 13th row, the 1 kHz clock tick marks are shown, for

convenience, at a much higher rate than 1 kHz. The counter enable (Q)

output of the flip-flop of row 14 is the inverse of the 12th row output.

Row 15 depicts the output of the J-AND gate, illustrating the

difference for early and late data streams. In the same manner, row 17

illustrates the output of the K-AND gate. In row 16, the inverse of

the up/down gate is illustrated.

Row 18 illustrates the least significant bit output of the up/

down counter which feeds the LSB delayed flip-flop. This control stays
x	 high for 2 ms rather than 1 ms since the up/down counter is enabled just

after the next 1 ms clock occurs, which therefore requires 2 ins to change

the LSB.

In row 19, the least significant bit detector flip-flop output

stays high for 2 ms, as can be seen from the sketch. The reason for the

2 ms duration is the same as for the LSB 2 ms duration. The reset control

for the counter enable F/F is just the modulo 2 sum of the LSB and the

LSB-delayed F/F, which is shown in row 20.

In the 21st row, the JK F/F called FHQ(Q) provides the advance

or retard signal which, when clocked into the up/down counter and converted

via the DAC,'provides the timing error reduction. This advance or retard
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is relative to the Q-clock epoch times. Finally, the last row illustrates
the times when the counter is updated to correct the loop timing. Notice

`	 that the correction will be an advance of the VCO-generated clock when the
leading edge of the bit stream leads the clock and a retard if the data
leading edge is retarded from the clock.

3.0	 TIMING DIAGRAMS UNDER IMPERFECT DATA STREAMS

In this section, timing diagrams are presented which consider

data asymmetry of 25% and various timing errors. In Figure 3, the case

of 25% asymmetry is illustrated via a timing diagram. Asymmetry is

defined as

T -T
ASY = T 1+ T I x 100%	 (1)

1	 0

where T 1 is the bit duration of a "one" when preceded and followed by a

zero, and To is the bit duration of a "zero" when preceded and followed

by a one. It is currently expected that the total asymmetry due to rise

time and transmitted asymmetry will be no more than 25% at 50 Mbps, and

less at low bit rates.	 I

In the last row of Figure 3, it is seem that the updating is in

the correct direction; that is, the Q-clock is advancing. We conclude

from Figure 3 that errors up to 90° (data leading edge of the Q-clock)

are acceptable to the bit synchronizer when the data "ones" are larger

than the data "zeros" with 25% asymmetry.

In Figure 4, the same case as in Figure 3 is illustrated, except

that the data lags the Q samples leading edge by 67.5 0 . As can be seen

in row 6, the Q samples are all zero; however, the last row of the timing

diagram indicates that the error correction signal retards the timir,

which is the proper action for the loop to take. We conclude from g-

ure 4 that, with errors up to 90° (data lagging the leading edge of the

Q-clock) and 25% asymmetry, the bit synchronizer works properly so as to

decrease the timing error.

Figure 5 illustrates the same case as Figure 4 except that the

phase of the 1 kHz clock has been changed to verify that the loop operates

properly, which it does.

I
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In Figure 6, the case when the data leads the Q-clock by 22.50

is illustrated. This figure has the "ones" larger than the "zeros" but,

again, the bit synchronizer provides the correct correction so as to

reduce the tracking error.

Figure 7 illustrates the case where data lags the Q samples

by 1000 and has 25% asymmetry with the "zeros" wider than the "ones."

As can be seen from the last row, the loop still corrects in the proper

direction so as to reduce the timing error.

The point of Figure 8 is to illustrate the fact that the bit

synchronizer has limitations as to how large a timing error can be toler-

ated. With the data lagging the leading edge of the Q sample by 190°, it

is seen that the loop has no response; that is, no loop correction occurs

since the counter enable is always at 0 or, equivalently, the counter is

disabled.

Finally, Figure 9 illustrates the case when, with 25% asymmetry,

and the data leading the Q-clock by 100', the loop is incapable of provid-

ing updates to reduce the timing error.

F
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