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This  s tudy is  t h e  second phase of a preJ.iminary design f o r  t h e  cryogenic 

cooling system f o r  t h e  Cryogenic Cooled Llmb Scanning In ter ferometer  Radiometer 

t (CLIR; instrument t o  be  flown on t h e  Atmospheric-Pfagnetoopheric Physics S a t e l l i t e  

i (AMPS)  

The Phase I study was completed on Nay 31, 1978. The ?hase I Study included 

extens ive  t r a d e s  comparing t h e  relative e f fec t iveness  of var ious  s tored  cryogen 

systems, inc lud i r~g  s o l i d  cryogens and s o l i d  cryogens in  conlbination with helium. 

Comparisons were made between s ing le ,  dual  and t r i p l e  s t ages ,  

The results") indica ted  t h a t  t h e  s i n g l e  s t a g e  approach i n  combination with 

vapor cooling of t h c  o p t i c s  (30°K) and r a d i a t i o n  b a f f l e  (llO°K) offered  advant- 
I oges over dual  s t a g e  approaclles. The primary candidates t h a t  evolved from t h i s  
I " e f f o r t  were s o l i d  hydrogen and s u p e r c r i t i c a l  helium. Although s o l i d  hydrogen 

was a super ior  choice i n  terms of s i z e ,  weight, and temperature s t a b i l i t y  t h e  

s u p e r c r i t i c a l  helium was se lec ted  f o r  reasons of s a f e t y  and more cur ren t  s t a t e  

of development. 

The r e s u l t i n g  phase I des ign consis ted  of a c y l i n d r i c a l  helium tank  with hemis- 

p h e r i c a l  domes wi th  a l eng th  somewhat over two meters. 

The permiss ib le  envelope f o r  t h e  study was cons%tent  wi th  a contcr  of g r a v i t y  

type point ing  system (SIPS) and a s  such placed pxiucipal  l i m i t a t i o n s  on t h e  

diameter of t h e  package wi th  less emphasis on tb. length.  

The Phase I1 study presented here  c a l l e d  f o r  a re-configurat ion of t h e  cryogenic 

instrument package f o r  opera t ion  wi th  the  ASPS point ing system, which i s  a n  end 

mounted type  and a s  such al lows l a r g e r  diameters but  may b e n e f i t  from o r  r equ i re  

a reduced package length.  

ii 
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L. .  

The Pilase 11 Study was d i r e c t e d  a t  t h e  re-configurat ion of t h e  cryogenic 

system f o r  t h i s  mountirrg system and included refinements of t h e  ana lys i s  i n  

both tirennal and s t r u c t u r a l  a reas .  

The Instrument requirements f o r  temperature and vent  gas  cooling flow r a t e s  

were assumed t o  be  t h e  same a s  i n  t h e  Phase I study s i n c e  no add i t iona l  o r  

new instrument development work was done during the  Phase I1 study period, 

The p r i n c i p a l  r e s t r a i n t  of t h e  system was an  o v e r a l l  package l eng th  of 2 meters 

maximum which included t h e  1 meter high instrument. Within t h i s  r e s t r a i n t  

aeverai  conf igura t ions  were examined, t h e  primary ones being a to ro ida l  helium 

tank wick t h e  instrument i n s i d e  and a spheroidal  tank with t h e  instrunlent 

mounted on t h e  top. 

The comporlsons showed t h e  spheroidal  tank t o  be t h e  best: choice and more de- 

t a i l e d  s tud ios  were performed on t h a t  configurat ion.  

LOCKHEED MISSILES & SPACE COMPANY, INC. 

,-< .. .* " .  . , .. 
t .  

-. . " A. ... --.A .- I - 



\ 2.0 INSTRUMENT COOLING REQUIREMENTS 

The instrument cooling requirements used i n  t h l e  study were t h e  same a s  

w e d  i n  t h e  Phase I e f f o r t .  The c r i t e r i a  u t i l i z e d  .+re eummarized below. 

Detectors 

Optics Module 

Baf f lee 

Allowable Heat Load, W 
Temperature, O K  

P r i o r  s t u d i e s  of vapor cooling of t h e  instrument i n  Phase I indicated t h a t  

a helium flow r a t e  t o  t h e  instrument of 0.2 lbs /h r  will. meet ttlese require-  

ments, 

For t h i s  flow rate condit ion,  the  b a f f l e  sets t h e  requirement f o r  vetn  gas 

flow rate, and is cooled t o  l l O ° K  while t h e  r e s u l t i n g  optics module tempera- 

t u r e  is 24OK f o r  t h i s  flow rate. 

The d e t a i l e d  break-down of t h e  instrument heat  r a t e s  and t h e  v a r i a t i o n  i n  

instrument temperature with v a r i a t i o n s  i n  flow r a t e  have been ca lcula ted  and 
presented i n  t h e  Phase X e f f o r t .  " 

The mission l i f e t i m e  was 30 days. 
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t 3.0 CONFIGURATION SELECTION 

i 
One of Pile primary design c o n s t r a i n t s  f o r  t h e  study wag t h a t  t h e  o v e r a l l  1 , 
coaler/ instrument l eng th  was no t  t o  exceed 200 cm. Consideration of a l t e r n a t e  

approaci~es was l a r g e l y  dr iven by t h i s  c r i t e r i a  . 
1 

Prior t o  s e l e c t i o n  of t h e  base l lne  coo le r  conf igura t ion  (Section 4) sevc ra l  

a l t e r n a t i v e  opt ions  wcre studied.  The t h r e e  primary opt ions  were t h e  t o r o i d a l  

tank, e l l i p s o i d a l  tank with instrument mounted on the  s i d e  and t h e  se lec ted  

base l ine  of a spheroidal  tank wi th  instrument mounted above. Each of the  t h r e e  

conf igura t ions  a s  w e l l  a s  t h e  base l ine  cooler  developed i n  t h e  phase I study 

are shown schematical ly i n  Figure 3-1. Sl~own i n  Table 3-1 1s a summary of the 

major f e a t u r e s  exhibi ted  by each design. 

The t o r o i d a l  design offered a compact i n t e g r a t i o n  between t h e  wrperiment and 

cooler .  By plac ing t h e  experiment package between t h e  inner wal ls  of t h e  

toroid ,  a maximum 169.7 cm diameter by 149.5 cm long volume envelope could be 

rea l i zed .  The primary problem wi th  t h i s  design is the  r e l a t i v e l y  l a r g e  mass 

of t h e  cooler  system which i s  412 kg; twice t h e  phase I base l ine  cooler  mass. 

The main reason for t h e  increased system mass is  t h e  need f o r  a l a r g e r  and, 

i n  some loca t ions ,  a much s t i f f e r  vacuum a h e l l .  

I n  rout ing  of t h e  cooler  vent  l i n e  from the  cooler  t o  t h e  instrument f o c a l  

plane, penet ra t ion  i n t o  a cav i ty  having an ambient temperature boundary cauld 

no t  be  avoided. Although it was f e l t  t h a t  thermal i s o l a t i o n  techniques could 

be  employed ( insula t ion ,  sh ie ld ing,  e tc . )  t o  reduce the  heat  l e a k  t o  an 

acceptable  l e v e l ,  o the r  system conf igura t ion  approaches were considered. 

These thermal problems along wi th  t h e  high mass u l t imate ly  led  t o  t h e  s e l e c t i o n  

of an a l t e r n a t e  design. 

At tent ion  was s h i f t e d  toward an  e l l i p s o i d a l  tank conf igura t ion  having a more 

d i r e c t  coupling t o  t h e  instrument i n  t h e  cold cav i ty .  Of the  two opt ions  

shown i n  Figure 3-1, t h e  s i d e  mounted experiment conf igura t ion  was found t o  

r equ i re  a more complex gimbal support conf igura t ion  than t h e  top mounted con- 

4 1 I 
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t FIG. 3-1 

TOROIDAL 

'1 - a .ye+-Z CLIR INSTRUMENT 

SUPERFLUID HELIUM 

ASPS GIMBAL 

SIPS GIMBAL 

SCHEMATIC 

TANK 

SUMMARY OF SYSTEMS STUDIES 

SPHEROIDAL - EXPERIMENT TOP 
MOUNT 

ELLIPSOIDAL - EXPERIMENT SIDE 
MOUNT 

CYLlNDRlCAL COOLER 
PHASE I BASELINE ON CENTER SUPPORT GIMBAL 



TABLE 3-1 MAX) R FEATURES OF SYSTEMS STUD IED 

CONFIGURATION STRUCTURAL C0NS:DERATION MASS (ks) 
VOLUME 

ENVELOPE 
(INSTRUMENT + COOLER) 

PHASE I BASELINE; 
CYLINDRICAL TANK, 197.1 kg PRIMARY RESONANCE = 28 Hz 
INSTRUMENT AGOVE 
C.G, POINTING 
WSTEhl (SIPS] -- 

. PHASE ~~-CANDIDATES 
END MO?rr\lTED POINTING 
SYSTEM [ASPS) 

TOROIDAL 412.0 kg NOT ANALYZED, BUT N O  
PROBLEMS EXPECTED 

ELLIPSOID/ NOT DIFFICULT TO ANALYZE BECAUSE 
INSTRUMENT 'DETERMINED OF NON-RADIAL SYMMETRY 
SIDE-MOUNT 
SP!!ESOID/ 339 -9 kg PRIMARY RESONANCE = 21 -5 HZ 
INSTRUMENT 
SOP-MOUNT SUPPORT CONFIGURATION 

T H E W  
' CoNslMlUTtoN 

< 

300 cm LENGTH 
95.5 cm DIA. 

---- 

ODEWAR = 0.415 W 

EASIER TO IMPLEMENT THAN 
SIDE-MOUIUT CONFlGURATION 

OF SUPPORT TUBE 

149.5 cm LENGTH 
169.7 cm DM. 

NOT 
DETERMINED 

200 cm LENGTH 
152.4 em DIA. 

VENT LINE EXK)SED TO 
AMBIENT DOUNDARY 
TEWERATURES 

NOT 
DETERMINED 

QDEWAR 0.522 W 

CONTINUOUS VENT GAS COOLING 
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f t  f igura t ion ,  prinrarily because of t h e  lock  of r a d i a l  8ys01atry. This  l a c k  of 
L 1 

I my~~laetry also l e a d s  t o  a ve ry  d i f f i c u l t  s l ruc tu rak  a a a l y ~ i s .  Further ,  no 
I clear thennal  advantage over t h e  top  mounted approach would be gained a s  a 

r i n i l a r  coo le r / exp~r imen t  i n t e r f a c e  wi th  t h e  top mountod conf igura t ion  would 
> 

be anployed. For t h e s e  reasons, t h e  top  mounted conf igura t ion  was sa lec ted  
i 

f o r  f u r t h e r  analys is .  
f 

Tho t h i r d  approach consis ted  of a spheroidal  t ank  wi th  t h e  instrument mounted 

on t h e  top. Allowing f o r  vncuum s h e l l ,  experiment door, mul t i layer ,  and 

support s t r u c t u r e ,  t h e  CLIR experiment was located  a s  c l o s e  t o  t h e  end of t h e  

200 cm limit a s  possible.  Within t h e  volume remaining, e maximum cooler  semi- 

minor a x i s  ( tank height)  was deterrnincd (38.1 cm) which a l s o  al lows f o r  

insu la t ion  around t h e  cooler .  The remaining semiaxis was then se lec ted  such 

as t o  make a spheroid ( t o  preservx r a d h l  symmetry) having a t o t a l  volume of 

712 liters. Adding tile thicknas-es required f o r  mul t i lay@r on t h e  tank s i d e s  

t h e  t o t a l  volume envelope is 152,4 cnr d i a  by 200 cm long. The mass of t h e  
1 cooler  i s  considerably less than t h a t  of t h e  t o r o i d a l  conf igura t ion  a t  339.9 kg 

however, t h i s  s t i l l  r ep resen t s  a70X inc rease  i n  mass over t h e  phase I 

base l ine  cooler  mass. Again, a s  wi th  t h e  t o r o i d a l  design,  t h i s  increased 

mass is  mostly made up by 1% l a r g e r  and s t i f f e r  vacuum s h e l l  over t h a t  required 

f o r  t h e  SIPS gimbal. 

This arrangement of cooler  and experiment provides f o r  r e l a t i v e l y  easy access 

of the  ven t  cooling gas 1Ane t o  t h e  experiment through a low temperature 

region of t h e  package. This system appears t o  b e  a simpler approach than the  

o the r  two considered which l eads  t o  reduced l o s t  and schedule r e l a t i v e  t o  tho  

o ther  approaches, 



4.0 BASELINE SYSTW 

4.1 S M s R ' f  -,- 

Fig. 4-1 summarizes some of t h e  major thermal, mechanical, snd o p e r a t h g  

c o n ~ l d c r a t i o n s  f o r  t h e  CLIR cooler  system. A s  with t h e  cooler  designed i n  t h e  

Phare I study, cool ing  of t h e  instrument w i l l  be provided by t h e  cold vent  gas 

from helium nainta ined i n  a s u p e r c r i t i c a l  state between 6 - 12.K. The tank 
5 i n t e r n a l  p ressu re  w i l l  b e  maintained constant  a t  4.1 x 1 0  n t h 2  (60 peia)  

during witlndrawal by an abso lu te  pressure  r e l i e f  va lve  located a t  t h e  e x i t  of 

t h e  tank vent  l i n e .  The cold vent  gas  from t h e  dewar is routed d i r e c t l y  t o  

t h e  f o c a l  p lane  heat  exchangers before  being used t o  c o o l  e i t h e r  the  ins t ru -  

ments o p t i c a l  bench o r  r a d i a t i o n  b a f f l e  t o  30°K and 104°K respect ive ly .  Upon 

e x i t  from t h e  experiment, t h e  gas is used t o  cool  f i r s t  a r a d i a t i o n  sh ie ld  and 

second, a por t ion  of t h e  f i b e r g l a s  support tube. 

For t h e  i n i t i a l  f i l l ,  t he  t ank  is  f i l l e d  t o  a t e n  per  c e n t  (10%) u l l a g e  with 

normal bo i l ing  point  helium. The f i l l  and ven t  l i n e s  a r e  then closed and 

t h e  system is allowed t o  se l f -p ressur i ze  t o  4.1 x lo5 nt/m2 (60 psia) a f t e r  n 
1 

minimum 68 hour ground hold time. This f i l l  procedure w i l l  s impl i ty  t h e  1 

ground support equipment required when compared t o  f i l l i n g  l n i t i a l l y  with 

s u p e r c r i t i c a l  helium a t  h igh pressure.  
! 
1 
i 
1 

1 
After  venting begins, t h e  expected steady s t a t e  p a r a s i t i c  heat  load t o  tho  

dewar w i l l  b e  522 mw with a vapor cooled s h i e l d  teniperature of 114.2'K. I n  I 
! 

order t o  maintain t h e  o p t i c a l  elements a t  30°K, a flow r a t e  of 2.5 u gn/sec 1 
(0.2 l b l h r )  is  required. Depending on t h e  cryogen temperature, betwecn 1 5  t o  i 

i 
991 mw of a u x i l i a r y  e l e c t r i c a l  hea te r  power w i l l  be necessary i n  order  t o  main- 

t a i n  t h i s  flow r a t e .  Because the  power required i s  a funct ion  of t h e  hellum I 
temperature i n  t h e  dewar, a feedback con t ro l  loop is required t o  provide t h e  1 
proper experiment temperature. This feedback c o n t r o l  loop w i l l  sense t h e  

insrrument temperatures and vary t h e  power i n t o  an e l e c t r i c a l  r e s i s t a n c e  heater  
1 

wrapped about t h e  dewar, ad jus t ing  t h e  flow rate as necessary. 
1 
I 
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FIG. 4-1 SUMMARY OF PRIMARY PAMMETERS OF BASELINE SYSTEM 

MECHANICAL 

OVERALL DIAMETER (IWCL. VACUUM SHELL) 152.4 cm 
CRYOGEN TANK VOLUME 712 LITER 
DRY WElGtl? (INCL. 20% MARGIN) 259.9 kg 
USABLE HELIUM WEIGHT 68.1 kg 
RESIDUAL HELIUM WEIGHT 11.9 kg 
TOTAL LOADED WEIGHT 339.9 kg 
PRIMARY RESONANCE 21.5 Hz 
DESIGN SAFETY CRITERIA - SUPPORT TUBE SURVIVE QUAL RANDOM 

WlTH 30 PRODABILITY - HELIUM TANK SAFETY FACTOR = 4 (BURST) - VACUUM SHELL SAFETY FACTOR -- 2 (BUCKLING) 

THERMAL 

HEAT LClAD TO HELIUM = 9.522 W - CONTINUOUS VENT GAS COOLlNG O f  SUPPORT TUBE BETWEEN AMBIENT 
AND VAPOR COOLED SHIELD 

- SINGLE VAPOR-COOLED SHIELD (T = 114.2 K) - 6.4 cm SILK NET/DOUBLE ALUMINIZED MYLAR INSULATION 

OPERATING CON DITIONS - - 
SUPERCRITICAL HELIUM CRYOGEN 
CONSTANT PRESSURE WITHDRAWAL AT 4.1 ,r lo5 nt/m2 (60 psia) 
REQUIRED FLOW KATE TO INSTRUMENT 2.5 x gm/r (0.2 lb/hr) 
REQUIRED HEAT tNPUT FOR WITHDRAWAL .02 W m' 6 K 

OF 2.5 ,.: 20-2 gm/s HELIUM .99 W P 12 K 
FILLING MOOE 
- FlLL TO 90% (MIN) WlTH NBP HELIUM - SELF PRESSURIZE TO 4.1 x 105 nt/m2 (60 pria) 
GROUND HOLD TIME (FROM END OF FlLL TO START OF VENT) 68 hr 



t Unlike t he  cooler developed i n  P h ~ s e  X of t h i s  program, t he  present cooler 

configuration makes use of the  vent gas from tho radlat ion shie ld  t o  cool 

t ha t  portion of the  support tube between ambient and the  rad ia t ion  shield.  

The need f o r  vapor cooling of the  support tube i n  t h i s  configuration was made 

necessary because of packaging constra ints  which required the  use of a shorter  

ye t  th icker  ( larger  rarlii) support tube. 

Overall length of the  cooler from the  ASPS in te r face  t o  the  cooler/instrument 

In te r face  is 140.7 cm. By recessing the experiment i n to  t he  cooler cavity,  

ample space is provided t o  insure the  maximum length envelope of 200 cm w i l l  

not be  exceeded. 

4.2 COOLER CONSTRUCT= 

A layout showing hardware d e t a i l  of the  CLIR cooler is  shown i n  Fig. 4-2. 

Helium Tank 

The helium tank is  a 712 l i t e r  6061 T4 aluminum obla te  spheroid having major 

and minor semiaxes of 66.79 crn and 38.10 cm respect%vely. The tank which 

has a uniform thicfcness of 0.318 cur is spun formed i n  two halves and joined 

along the  major ax is  by a weld jo in t .  Three penetrations a r e  made in to  

t he  Front portion of the  tank where, the two f i l l l v e n t  l i n e s  and a s i n g l e  

f l u i d  withdrawal l i n e  is mated t o  the  dewar, a l so  by a weld bond. A l l  welded 

j o i n t s  w i l l .  a l so  incorporate an epoxy bonded element t o  provide addi t ional  

assurance against  vacuum leaks. 4 
i ; 4 

4 " 
a Support Tube 

I - 
; F 

f 

. Both the  dewar and vapor cooled radiat ion shie ld  a r e  supported by a s ing le  
f f iberglaa  support tube. l'he support tube is mounted t o  a strongback portion e y  C 

of t h e  vacuum siiel'i so  tha t  t he  launch and re tqrn a t ruc tura l  loads w i l l  be 
f transmitted t o  the  ASPS gimbal mounting pad through the  vacuum she l l .  The prev- 

a ,  

f %ous Phase I design provided support d i r ec t l y  t o  the gimbal in terface.  Although 
f i 
:t 1 

10 4 
4 
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BASELINE COOLER LAYOUT 
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W P  WT PORT 4 
VACION PWM? MANI~D 
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HELIUM VAPOR 
TO VENT .. 

' .  .' 

BELLWS VA 

HELIUM VENT 
fQOM IN5TRUMENT 

ABSOLUTE y s w e  
E U E F  VALVt -60 PSIA 

BELLOWS VALE 





+ ! t 
; t h i s  is a more d e s i r a b l e  s i t u a t i o n ,  s t r u c t u r a l  analyses (see Sect ion  4 . 5 )  on 

i t h e  vacuum s h e l l  show t h a t  design criteria f o r  t h c  s h e l l  t o  survive  buckling 
i w i l l  make f o r  a s u f f i c i e n t l y  "stiEf enough" s t r u c t u r a l  member t o  i n s u r e  t h a t  

t h e  d i f fe rence  between t h e  two mounting c o n f j p ~ r a t i o n s  w i l l  be n e g l i g i b l e  with 

r e spec t  t o  t h e  s t r u c t u r a l  loads  t o  be incurred hy t h e  cooler .  

The tube  i t s e l f  is a monocoque 0.203 cm t h i c k  i m e r t e d  r i g h t  c i r c u l a r  trun- 

ca ted  cone constructed of 1543lE787 f i b e r g l a s  epoxy. The minimum ( a t  the  

strongback) and maximum tube r a d i i  is 57.71 cm and 65.94 c m  respect ive ly ,  and 

has an unsupported s l a n t  length  of 73.56 cm. 'I'he support tube f l anges  a r e  each 

machined i n  two pieces  s o  a s  t o  con ta in  t h e  support tube i n  a clam-shell fashion 

when assembled. Attachment t o  t h e  strongback is  made by mechanical f a s t e n e r s  

whi le  a more pernranent epoxy bond is made t o  t h e  dewar. 

Vapor-Cooled Shield 

A vapor cooled sh ie ld  i s  provided f o r  thermal i s o l a t i o n  about the  r e a r  por t ion  

of t h e  cooler  and the  cold  s e c t i o n  of t h e  f i b e r g l a s  support tube. Around t h e  

cooler ,  t h e  s h i e l d  fol lows t h e  contour of t h e  dewar, maintaining a uniform 

3.2 cm spacing. A s  t h e  sh ie ld  extends over t h e  f i b e r g l a s  support tube, i t  a l s o  

t akes  t h e  shape of a r i g h t  c i r c u l a r  t runcated cone, only having a s l i g h t l y  

s t eeper  slope. The s t eeper  s lope  causes t h e  sh ie ld  t o  i n t e r s e c t  t h e  support 

tube with a g e n t i l e  t r a n s i t i o n  a t  a point  57.15 cm from t h e  dewar. A t  t h e  

support tube, t h e  s h i e l d  is epoxy bonded t o  t h e  tube along a 2.92 cm wide annular  

pad. To cool  t h e  sh ie ld ,  a s imi la r  annular  pad i s  epoxy bonded t o  t h e  inner wa l l  3 

of t h e  tube a t  the  same loca t ion  a s  t h e  outer  pad. The vent  gas plunihing is  

routed t o  t h e  inner r i n g  where contac t  is made over a f u l l  circumference. An 

aluminum s h i e l d  is a l s o  coupled t o  t h e  inner annulus t o  a c t  a s  a r a d i a t i o n  

sh ie ld  f o r  t h e  cold components wi th in  t h e  main vacuum cavi ty .  Exact termination 
1 
E 

of tllis s h i e l d  is a s  y e t  undefined, pending f u r t h e r  d e f i n i t i o n  of t h e  experimentor's 1 
package. j 

i 

i 
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Vacuum S h e l l  

The vacuum s h a l l  i s  can t i l eve red  o f f  t h e  ASPS gimbal mounting system which 

i n  tu rn  provides tlre s t r u c t u r a l  support f o r  both t h e  cooler  and the  CLIR 

experiment. The e n t i r e  s h e l l  is a two p iece  cons t ruct ion  of 6061-'26 aluminum 

having a common O-ring vacuum seal. 

The hal f  spheroidal  dome p iece  is 0.381cm th ick ,  reinforced i n  the  cen te r  

by six 2.5 cm t h i c k  r a d i a l  sp ide r  arms. A f l ange  is provided f o r  connection 
1 

t o  t h e  truncated cone/strongback piece.  The truncated cone sec t ion  is  an i 
0.381crn thick,  r ing-s t i f fened sec t ion  having a s lope  p a r a l l e l  t o  t h a t  of t h e  I 

5 

vapor cooled sh ie id .  The strongback por t ion  of t h e  p iece  is a 1.91 cnl th ick  I 
1 

annulus which provides a s t r u c t u r a l  base f o r  both t h e  cooler  and experiment. 1 
This strongback represen t s  t h e  cooler /exper i r~ent  i n t e r f a c e ,  a s  wcll  a s  t h e  ! 
mounting surface  f o r  a l l  coo le r  plumbing l i n e s .  

Insu la t ion  

A 3.2 c m  th ick  blanket  of s i l k  net ldouble aluminized mylar i ~ ~ s u l a t i o n  

completely surrounds both t h e  vapor cooled r a d i a t i o n  sh ie ld  and t h e  helium 

dewar . 
A s  indica ted  above, t h e  vacuum s l l e l l  along the  con ica l  sec t ion  i s  p a r a l l e l  t o  

t h e  r a d i a t i o n  sh ie ld  so t h a t  between these  two members, the  layax dens i ty  is 

constant  a t  14.6 l aye r s l cn~ .  I n  t h e  region beyond t h e  r a d i a t i o n  sh ie ld ,  3 

over t h e  f ibe rg las  support tube, t h e  number of l a y e r s  rlclr~tlins constant .  However, 

the  change i n  s l o p e  between tlre r a d i a t i o n  sh ie ld  and t h e  support tubes fo rces  , 

a s l i g h t  b i t  of crushing,  increas ing t h e  l aye r  dens i ty  t o  a maximum of 16.8 
1 

I 
layerslcm. Dexiglas is inse r t ed  a t  t h e  edge of t h c  blanket  t o  a i d  In reducing 

edge e f f e c t  heat  leaks .  

C 

i I n  t h e  region between the  vapor-cooled sh ie ld  and t h e  f i b e r g l a s  support tube, 
i 

. t 
i- t h e  l a y e r  dens i ty  w i l l  remain constant  throughout t h e  length  of t h e  
1 

i. I sh ie ld  a t  14.6 layers/cm, t h e  same d e n s i t y  a s  over t h e  dewar back sec t ion .  To 
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dewor w i l l  be  individual ly  "cut-to-length" a t  t h e  point  where con tac t  is made 

wi th  t h e  f i b e r g l a s  bupport tube. By varying t h e  length  of each wrapping, t h e  

HLI edge temperature w i l l  more near ly  match t h e  support tube  temperature a s  

Inner l a y e r s  are coupled t o  t h e  colder  por t ion  of t h e  tube. This has the  r e s u l t  l 1 
of near ly  e l iminat ing  any major edge e f f e c t  hea t  leaks.  To prevent the  cooler  

c a v i t y  from being exposed t o  t h e  support tube wa l l  gradient ,  t h e  inner su r face  t 
of t h e  tube  and r a d i a t i o n  sh ie ld  i s  insu la ted  wi th  a 0.64 cm t h i c k  blanket.  

To implement t h i s  wrapping, t h e  required contour is  molded from a t h i n  mylar 

s h e e t  and t h e  i n s u l t i o n  is wrapped over t h e  mold. After  being wrapped, t h e  j 
e n t i r e  blanket/mylar asstlnbly is posi t ioned i n s i d e  the  tube. F i n a l l y ,  t h e  

f r o n t  su r face  of t h e  helium dewar is  wrapped wi th  a 0.32 cni th ick  blanket  of s i l k  

net double-aluminized mylar. 

Plumbing 

i 
Shown i n  Fig. 4-2, i n  view A-A is  t h e  plumbing i n t e r f a c e  with t h e  cooler .  

a 1 
Mounted i n  t h e  strongback por t ion  of t h e  vacuum s h e l l  is an  annular  sec to r  1 

3 

plumbing access  f l ange  which conta ins  t h e  cooler  f i l l / v e n t  l i n e ,  vapor cooled I 
s h i e l d  vent  l i n e ,  vacuum pump-out access  ( including vac-ion pump), and e l e c t r i c a l  

feedthrough. The pumpout l i n e  t o  t h e  i n s u l t i o n  space c o n s i s t s  of a 2.5 cm 

diameter Cryolab valve  t o  provide access  t o  an a u x i l i a r y  sorpt ion  pump system 

and an 8 fi/s vacion pump t o  u l t ima te ly  maintain pressures  i n  t h e  i n s u l a t i o n  

space  at  less than t o r r .  The e l e c t r i c a l  fesdthru  provides access  t o  

tank thermometry, seve ra l  redundant s t r a i n  gauges used t o  monitor t h e  tank 

i n t e r n a l  pressure ,  and a heater  located  on t h e  tank t o  con t ro l  t h e  cryogen vent- 

ing rate. 

Three plumbing l i n e s  comprise t h e  helium f i l l  and vent  l i n e s ;  a l l  being 1.3 cm 

i n  diameter. I n  t h e  dewar, a s h o r t  aluminum s e c t i o n  is welded t o  t h e  tank 

wall. I n t e r n a l  t o  t h e  tank, t h e s e  l i n e s  terminate such t h a t  f i l l i n g  of t h e  

t ank  may be  made t o  wi th in  a s i x  per  cen t  (6%) u l l a g e  i n  e i t h e r  a v e r t i c a l  o r  

hor i zon ta l  tank pos i t ion .  This  s e c t i o n  couples t o  an aluminum/stainless 

t r a n s i t i o n  tube, keepins t h e  l e n g t h  of aluminum required t o  a minimum. 

14 
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\ Within t h e  s t a i n l e s s  sec t ion ,  aevertrl loops a r e  made i n  t h e  l i n e  LO f i r s t  climin- 

ate p o t e n t i a l l y  harmful thermal o t r e s s o s  and t o  second reduce tlre plumbing hear 

l e a k  to t h e  helium dewar. A second connection is made near the  strongbnck t o  

allow f o r  easy removal of t h e  pluiibing access  f lange.  A l l  couplings u t i l i z e  

 amah" type  f i t t i n g s  o r  equivalent .  On t h e  o u t s i d e  of t h e  tank, tire l i n e s  a r e  

supported by o bayonet f i t t i n g  capped by a 0.95 c m  diameter Nupro metal bellows 
5 2 2 

type access  va lve  i n  p a r a l l e l  with a 2.5 cm diameter,  5.5 x 10  nt/m (80 l b / i n  ) 
5 2 2 

d i f f e r e n t i a l  b u r s t  d isk .  This  l e v e l  is  set above t h e  4 . 1 ~ 1 0  nt/m (60 l b / i n  ) 

abso lu te  pressure  of t h e  t ank  t o  insure  no vent ing  of t h e  cryogen occurs through 

these  l i n e s ,  Ins tead ,  venting of t h e  cryogen i s  accomplished through t h e  vapor 

flow ven t  l i n e .  

A schematic of t h e  plrmbing is  shown i n  Fig. 4-3. The o p t i c s  and b a f f l e  tempera- 

t u r e s  are monitored and maintained constant  through a cryogen tank heater  feed- 

back c o n t r o l  loop tb c o n t r o l  heliwn vent  r a t e .  S u p e r c r i t i c a l  helium i s  vented 

through tlre two de tec to r  f o c a l  planes maintaining temperatures t o  less than 13%. 

The cold  vapor continues through the  instrument, cooling t h e  o p t i c s  box t o  3Q°K 

and r a d i a t i o n  b a f f l e  t o  104OK. From t h e  r a d i a t i o n  b a f f l e ,  t h e  cooled vapor 

is d i r e c t e d  t o  t h e  cooler  vapor cooled sh ie ld  which i s  dr iven ta  114.2"K. The 

gas is then used t o  vapor coo l  t h e  support tube, wrapping one completc turn  

i n  h e l i c a l  fashion along t h e  tube length ,  A t  room temperature, the  gas is  
5 2 2 

f i n a l l y  exi ted  froin the  cooler  through a 4 . 1 ~ 1 0  nt/m (60 l b / i n  ) absolute  

p ressu re  r e l i e f  va lve  which c o n t r o l s  t h c  pressure  of t h e  tank. I n  p a r a l l e l  with 

t h e  pressure  r e l i e f  va lve  is  a Nupro metal bellows-type valve  which can be used 

t o  blow the  tank down t o  one atmosphere p ressure  f o r  r e f i l l  operat ion 011 ground. 

Mass 

A mass summary of t h e  main components required f o r  t h e  CLIR cooler  i s  shown 

i n  Fig. 4-4. A t o t a l  cooler  system mass o f340  Kg (7481bs)  i s  predicted f o r  t h e  

s u p e r c r i t i c a l  helium cooler ,  of which 80 Kg (176 l b s )  o r  24 per cen t  is due 

to  t h e  helium cryogen. 

LOCKHEED MISSILES & SPACE COMPANY, INC. i 
1 

* 

- .  - - - 1  d --- .- -.....Al"_ I 
1 -- - - - . a d  



VAPOR FLOW 
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FIG. 4-4 COOLER WEIGHT SUMMARY 
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Comparing t o  t h e  cooler developed i n  t h e  Phasc I i n i t i a l  study, t he  t o t a l  

mymtem mas6 has increased approximetely 143 Kg. The main reason f o r  th$s in- 

crease is i n  the  mass oE the  vacuum she l l .  In t he  currcst design, extra  

r t i f fen ing  is required f i r s t  a t  t he  base of t he  cooler where coupli~rg t o  t he  

ASPS gimbal system occurs,and second a t  the  strongback. Second ordar increases 

were observed i n  the  vapor-cooled shie ld  and mounting flanges. It is Eeit t h a t  

some of t h i s  incrcase i n  mass wSZ1 be recovered when the  t o t a l  system mass is 

determined. Since t he  experiment is recessed i n t o  t he  cooler vacuum space, 

a smoller vacuum cover w i l l  be required f o r  t h e  experiment than tha t  required 

i n  the  Phase I Study. 

4.3 VENT LINE ANALYSIS 

Fig. 4-5 shows a schematic of t h e  vent l i n e  i n  which the  d i f f e r en t  heat 

exchanger sections and connecting l i n e  configurations a r e  described. The l i n e s  

between the  heat exchanger sect ions  a r e  assumed t o  be isothermal a t  the  tem- 

perature of the  component from which the gas flows. Number and types of bends 

i n  the  experiment sect ion a r e  approximate pending more experinlent def ini t ion.  

However, changes w i l l  have a negl igible  e f f ec t  on t he  t o t a l  pressure drop. 

Selection of the  l i n e  lengths i n  t he  isothermal sections was taken d i r ec t l y  

from the cooler layout fo r  sect ions  7, 9, 11 and 13. For those sections within 

t he  experiment, a conservative extimate was made based on the  small dc tn i l s  

avai lable  on the  experiment cavity.  

Each focal  plane heat exchanger (sl~own lumped i n  Fip,. 4-5) was assumed to  be 

comprised of 33 layers  of 200 mesh screen, layered i n  a 1.24 cm diameter tube 

uniformly spread along a 2.54 cm length. Using the  f r i c t i o n  factor  and pressure 

drop re la t ionship suggested by Kays and e on don' f o r  flow through a woven screen 

cloth,  the  pressure drop through each focal plane heat exchanger is  found to  be 
2 2 only 19.5 nt/m or 39.1 nt/m (0.0057 psia) f o r  t he  e n t i r e  focal  plane heat 

exchanger section. 
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FIG. 4-5 VENT LINE SCHEMATIC + r r  ---- - 

FOCAL 
PLANE 

ISOTHERMAL LiNE CONFIGURATIONS 
LENGTH NO. OF NO. OF 

L I N E  
(cmi 45-deg BENDS 90-deg BENDS 

HEAT EXCHANGER LINE CONFIGUWiTION 
LEN GTH 

Ccm) 

2 N/A - 2 EA WIRE MESH SCREENS 

e 

NO, OF TEMPERATURE 
180-deg BEN DS (K) 



(+ The r u i n i n g  heat exchanger sect ions  u t i l l z e  e i t he r  oont inwus (along the  sup- 

port tuba) o r  s i ng l e  point (at a l l  o ther  locations) vent gas cooling. Solutions 

t o  the  Gractz problwa2 shows tha t  95% of t he  ma~bum heat ranoving capacity 

of a venting gas 2. achieved provided t h e  dinensionlaas flow parameter &plskl 
i l 

is l e e r  than 1.2. The required length i n  each heat  axchange section woe 

determined from t h i s  re la t ionship and then doubled fo r  conservatism. Each value 

ws then compared t o  t h a t  found i n  t he  layout. In  a l l  cases except tho op t ics  

box heat  exchanger t h e  mechanical requirement exceedad t h e  thernlal requirement. 

The l a rges t  value of the  two is a s  shown i n  Fig. 4-5. For t h e  ven t lAne  cooling of 

the support tube, t h e  length required f o r  one he l i ca l  revolutgon about t he  e n t i r e  

tube s l a n t  length is used. 

A t  a mass flow r a t e  of 2 . 5 ~ 1 0 ~ ~  gm/sec, t he  Reynolds number i n  a 0.635 crn 

diameter tube can be approximated f o r  helium by R e -  10415fT Oe6" so t h a t  between 

30 - 3QQ°K, the Reynolds raun~ber var ies  between lIQQ and 250 respectively,  making 

the  flow laminar. Using the  c l a s s i c a l  relatSonship f o r  f u l l y  developed flow 

where f = 16IRe. 

2 The pressure drop per length of l i n e  a t  4.14 x n t / n  (60 psia) and mass 

flow r a t e  of 2 . 5 ~ 1 0 ~ ~  gm/sec is  given by 

(the T~~~~~ fac tor  occurs because of temperature dependent helium viscosi ty  and ni 
3 

the  density re la t ionships  used i n  evaluating the Reynolds number). A s  can be  

seen, t he  maximum pressure gradient occurs a t  the  higher tamperature portion oE 

the  l i n e ,  A s  an upper bound, i f  the  e n t i r e  l i n e  were assumed to  be a t  ambient 
2 temperature (300°K) t h e  pressure drop realized would be 325 nt/m (0.05 psia) 

where an equivalent length including bends of 1700 cm was assumed. A s  ac tua l  

temperature within the  vent l i n e  a r e  l e s s  tlmn 100°K through 88% of the  l i ne ,  

it can be assumed that: flow within the  vent l i n e  w i l l  be  isobaric.  

20 
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4.4 THERMAL ANAtY S t S  

The re la t ionsh ip  between t h e  required heat  Snput t o  t h e  s u p a r c r i t i c a l  helium 
5 d a n r  f o r  a constant  ven t  r c t a  of 2.5x10-~ gmls(0.2 lb /hr)  a t  4 . 1 ~ 1 0  nt/m 2 

(60 ps ia)  and t h e  percentage of helium remaining i n  t h e  dewar is ahown i n  
Fig. 4-6. To insure  no more helium is vented than required,  t h e  p a r a s i t i c  

heat load t o  t h e  tank must be below t h e  minimum required heat  r a t e  of 537 mw 
which occurs a t  tho 65% f i l l e d  condition. 

A nodal tllermal model of the  CLIR cooler  was constructed t o  determlne cooler  

heat rates which includes both rad ia t ion  and conduction coupled heat  t r ans fe r  

e f f e c t s .  Computations were made using t h e  iockheed developed thermal analyzer 

program, THERbf. TllERM can be used t o  solve  both t r a n s i e n t  and steady s t a t a  

tempsrature and flow problems by use of a forward f i n i t e  d i f fe rence  algorithm 

f o r  solvlng an analagous It-C e l e c c r l c a l  network. 

Deta i l  between t h e  ambient and vapor cooled sh ie ld  por t ion  of t h e  cooler  were 

not included i n  t h e  nodal analys is .  Rather, cooler  heat  r a t e s  wore evaluated 

so le ly  a s  a function of t h e  vapor cooled sh ie ld  temperature wllich was variad 

i n  each configurat ion from betwden 100°R t o  150°K. 

A t o t a l  of 78 nodes were used i n  t h e  ana lys i s  of which 67 described sect ions  of 

t h e  mul t i layer  insula t ion.  Each PC1 node between t h e  vapor cooled s l ~ i e l d  and 

t h e  cooler  o r  support tube is 0.397 cm th ick  with rs t o t a l  of 8 node thicknesses 

between t h e  sh ie ld  and cooler .  Width of t h e  nodes over t h e  cooler  wcrs se lcc tcd  

t o  g ive  t h r e e  equal surface  area   section^. Between the  suppor t  tube and 

vapor cooled sh ie ld ,  t h e  widths were selected t o  g ive  s i x  equally spaced node 

sect ions .  The sec t ion  neares t  t h e  cooler  conta ins  7 1 /2  node thicknesses and 

because of t h e  s l a n t  angle  between t h e  support tube and vapor cooled sh ie ld ,  

each succeeding sec t ion  conta ins  one less node thickness u n t i l  t h e  f i n d l  sec t ion ,  

which conta ins  2 1 /2  node thicknesses. I n  a l l  sec t ions  t h e  1 /2  thickness occurs 

because of t h e  wedge formed by t h e  s l a n t  ang le  between t h e  support tube and 

node, which is assumed p a r a l l e l  t o  t h e  vapor cooled sh ie ld .  

f 
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FIG. 4-6 REQUIRED HEAT INPUT DURING HELIUM WlTHDRAWAL 



Both p a r a l l e l  and perpetrdicular h a t  t r a n s f e r  e f f e c t s  between adjacent  MLT, nodes 

was included. I n  addi t ion ,  t h e  conductivi ty of both t h e  f i b e r g l a s  support tube and 

3 , 4 9 5 .  MLI ( p a r a l l e l  and perpendicular) wera assumed t o  be temperature dependent. 

h i s s i v i t y  of t h e  cold experiment surfaces  was assumed tc be 0.1, a conservatively 

high value. 

F ive  d i f f e r e n t  c ,n f igura t ions  were considered, each assuming the  f i b e r g l a s  

support  tube thickness t o  be 0.203 cm. Varied was t h e  type of boundary 

condi t ion  imposed on t h e  end MLI nodes - e i t h e r  thermally shorted o r  r a d i a t i v e l y  

coupled t o  t h e  adjacent  f i b e r g l a s  support tube  node - a s  w e l l  as t h e  use  of a i 

1000 2 gold coat ing  along the  ou te r  su r face  of t h e  support  tube. Also considered 1 
1 

was the  use  of a sandwich const ruct ion  f i b e r g l a s  support tubc a s  discussed i n  

Sect ion  4.5. The sandwich support  tube is a l s o  0.203 cm t h i c k  having a 0.025 

c m  t h i c k  inner  and ou te r  f i b e r g l a s  wall  over a 0.152 c m  t h i c k  cen te r  of. epoxy 

or foam. The conf igura t ions  considered are summarized i n  Table 4-1 and the  

r e s u l t s  a r e  shown i n  Fig. 4-7, Also shown a r e  t h e  one-dimensional hand 

c a l c u l a t i o n  performed f o r  cases  3 and 5. A s  can b e  seen,  good agreement t o  

wi th in  10% is achieved a t  a l l  sh ie ld  temperatures, ind ica t ing  a small e f f e c t  
1 

from p a r a l l e l  heat  flow i n  the  MLI, ! 

The conduction heat  t eak  from t h e  gold coat ing  overwhelms any benef i t  gained 

by reducing the  r a d i a t i o n  coupling t o  the  MLI edges and w i l l  no t  be used on t h e  1 

cooler .  Cases 3 and 4 bracket t h e  dewar tieat load lower and upper 

bounds respect ive ly .  

To determine t h e  sh ie ld  temperature, a one dimensional heat  t r a n s f e r  ana lys i s  

is performed equating t h e  net  p a r a s i t i c  hea t  load t o  t h a t  removed by the  incom- 

ing  cold vent gas a t  104OK f o r  s e v e r a l  s h i e l d  temperatures between 100 and 150°K. 

In  ca lcu la t ing  the  n e t  heat load,  t h e  heat  renioved from t h e  sh ie ld  t o  t h e  dewar 

as found from the  nodal ana lys i s  i s  included. Resul ts  show t h a t  t h e  change i n  

s h i e l d  temperature caused by t h e  d i f fe rence  i n  the  n e t  heat  load change hetween 

cases 3 and 4 causes a n e g l i g i b l e  ( 0.2OK) change i n  t h e  vapor cooled sh ie ld  

temperature which w i l l  run a t  114.2'K. A t  t h i s  temperature, t h e  p a r a s i t i c  heat  

4 
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TABLE 4-1 CONFIGURATIONS STUDIED 1N THERMAL ANALYSIS 

CASE 

1 

2 

3 

4 f 

5 

!I 
MLI BOUNDARY COUPLING TO 

SUPPORT TUBE 

RADIATION THERMAL SIIORT 

r t  

SUPPORT TUBE 

X 

X 

MONOCOQUE 

X 

GOLD COATING 

X 

X 

X 

SANDWICH 

X 

X 

I 

1 X 
X I x 

X 

>r, 

X I 
X 





load t o  elre dewar w i l l  be  betweeir 488 t o  5221nw depending on tlie MLI boundary, 

less tikin t h e  required mininium of 537 mw t o  provide venting a t  a  r a t e  of 2 . 5 ~ 1 0  2 
a 

gm/eec. To maiirti~in t h i s  flow r a t e  conetant ,  between 15  mw and 991 nrw (@ 12'K) 1 
8 

a u x i l i a r y  heat ing w i l l  be  required during tihe mission. 

A btoakdown of t h e  cooler  heat  loads  f o r  t h o  c a s e  of conf igura t ion  4 i s  shown i n  
2 Fig. 4-8 a t  t h e  2 . 5 ~ 1 0  gmlsec flow condit ions.  A s e n s i t i v i t y  a n a l y s i s  on the  

vapor cooled sh ie ld  shows t h a t  a  cooler  heat  r a t e  c l~an&e of 2 h i l l  occur f o r  

c w r y  10% change i n  t h e  sh ie ld  hea t  r a t e .  Note t h a t  no support tube heat  l e a k  

exists i n t o  t h e  vapor cooled sh ie ld  because of continuous vent  gas cooling 

u t i l i z e J  along t h e  lengths  of t h i s  tube sec t ion .  The nlajor heat  l e a k  is  through 

t h o  Eiberglas support tube - 76% of t h e  t o t a l  522 nlw. 

Reoliaing t h a t  t h e  522 nlw heat  l e a k  is  marginal1.y c l o s e  t o  t h e  required 53'7 mw, 

t h e  concept of a  sandwich const ruct ion  support tube was considered i n  c a s e  2. 

Because of a 3,ower \lent l e a k  t o  tlie dewar the  sh ie ld  w i l l  increase  i n  tanpera- 

t u r e  s l i g h t l y  t o  1 l G . l o K  a t  which point  the  hcat  l eak  t o  t h c  dewar w i l l  b e  

282 niw, - a 46% reduction.  

Although t h e  present  base l ine  design provides f o r  a  workable system, the  much 

more comfnrtnblc s a f c t y  nlargin which can be achieved by inlplul~entation of tile 

sandwich const ruct ion  support tube drSves the  f i n a l  desi,qn towards i~ icorpora t ion  

of t h e  sandwich const ruct ion  support tubc,  Bcfore this can bc done howevar, 

sandwich tubcs need t o  be  cans t ructed  and subjcctcd t o  appropr ia te  t e s t i n g  t o  

v e r i f y  confidence i n  t h c  conccpt. 

The s e l e c t i o n  of a 0.203 c m  t h i c k  support tube was made a s  a r e s u l t  of sonic of 
f 
1 t h o  ea r ly  s t r u c t u r a l  analyses.  La te r ,  nlattc rcf  i.ncd anal.yses which were coulplcted 

I a f t e r  t h e  thermal. design s t u d i e s  wcrc perfortncd i n d i c a t e  t h a t  t h e  0.203 th i ck  i 
1 tube is overdcsigned and t h a t  a  0.152 c~u t h i c k  tube meets the s t r u c t u r a l  c r i t e r i a .  1 
t 

I Expected coo le r  heat  r a t e  using a  0.152 cm t h i c k  support tube would drop from 5 

I 0.522 wa t t s  t o  0.434 wat ts  -- a f i g u r e  Inore i n  l i n e  with the  heat  r a t e s  predlctcd 
i 
4 

i n  t h e  phase f cooler  d e s i g ~ t ,  0.415 watts .  i 

i 
26 
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I F IG. 4-8 SUMMARY OF THERMAL COND IT IONS 

(. - * - 

SUPPORT 
TUBE MLI PLUMB1 NG OUTER 

I VAPOR 
COOLER? Q = 1,500 GI = 0.371 

** ------- AL ---- 
Q = 0.399 Q = 0.118 Q = 0.005 

. i 
I I I 

i .  
v 

HEAT LOAD TO 
CRYOGEN (W) 

0.399 

0.118 

SUPPORT 
TUBES 

MULTl LAYER 
INSULATION VAPOR COOLED SHIELD LOCATED 

3.05 cm FROM CRYOGEN TANK 
SILK i\(ET/DOUBLE-ALUMINIZED MYLAR 

K = 15.3 x W/cm - K (114.2- 300) 
15.8 x 10-8 W/cm - K (6 - 114.2) 

PLUMBING STAINLESS STEEL 
1.27 - cm DIAMETER 
0.013 - cm WALL THICKNESS 

CONFIGURATION 

0.203 cm-THICK RIGHT CIRCULAR 
TRUNCATED CONE 
73.6 cm SLANT LENGTH 
65.9/57.7 cm MAXIMUM/MINIMUM RADIUS 

OVERALL THICKNESS = 6.35 cm 



- - -my-  * -- --- - " --.--- ---- -- - --- 
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4 .5  STRUCTURAL ANALYSIS 

6 
f The BOSOR4 computer code was used t o  make a s t r u c t u r a l  a n a l y s i s  of t h e  
6 

CLIR coo le r .  The n~odel  used i n  t h e  ~ n a l y s i s ,  a s  drawn by t h e  computer system, 

ie sbown i n  F ig .  4-9. The mass of t h e  experiment is represented  by a  c y l i n d e r  

w i t h  uniformly d i s t r i b u t o d  mass (310 l b s ) ,  and t h e  mass of t h e  cryogcm gas 
t 

f and t a n k  is represented by on e l l i p s o i d  (274 l b s ) ,  a l s o  w i t h  a uniformly d i s -  

t r i b u t e d  mass. The experlinrent i s  ns3wncJd t o  be  r i g i d l y  supported t o  t h e  

"strongback" s i n c e  t h e  d e t a i l s  of tile suppor t  were not  a v a i l a b l e .  Addi t iona l  

a n a l y s i s  w i l l  b e  requi red  wllcn t h e  mounting technique  is e s t a b l i s h e d .  The 

s t r u c t u r a l  p a r t s  a t e  a l l  modeled as s h e l l s  wi th  t h e i r  masses d i s t r i b u t e d  

according t o  t h e  th i ckness  d i s t r i b u t i o n .  The f i g u r e  r e p r e s e n t s  t h e  mean sur-  

f a c e s  of a11 t h e  items making up t h e  model. 

The major s t r u c t u r a l  items a re :  

o  The vacuum s h e l l ,  made of 0 . 1 5  inch  t h i c k  nluminum. Tlze c o n i c a l  

p a r t  i s  s t i f f e n e d  by 3 r i n g s ,  each 0.3 inch wide and 0.5 inch  high.  

The bottom ellipsoidal p a r t  is 2 inch  t h i c k  (waffled conf i gurn t i o n )  

a t  t h e  support  po in t  ( a t  r a d i u s  = 4 inch) ,  g radua l ly  decreas ing  t o  

0.15 inch ,  a t  r a d i u s  = 20 inch.  The e x t e r n a l  c o l l a p s e  p re s su re  of 

t h e  vacuum s h e l l  is  est imated t o  be about  30 p s i d ,  

o  The support  tube,  made of 0.08 inch  f ibergl i lss /epoxy wi th  the  

fol lowing p rope r t i e s :  

Shear Modulus: 750,000 p s i  

Elas  t i c  ?ladulus , Axial:  5,550,000 p s i  

E l a s t i c  Modulus, Hoop: 2,190,000 p s i  

Axial  T e n s i l e  S t rength :  169 k s i  

Axial  Compressive S t rength :  89.5 k s i  

Yloop T e n s i l e  S t rength :  28.6 k s i  

iloop Compressive Strength:  35.7 k s i  

The ends of t h e  f i b e r g l a s s  tube  a r e  encapsulated i n  aluminurn 
4 s leeves .  
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C./l o The vapor she l l ,  made of 0.03 inch th ick  al.uminum, 

o The cryogenic tank, made of 0.15 inch thick aluminum. 

(However, i n  the  model shown i n  Fig. 4-9 the  tank mass is 

included i n  the cryogen weight and its s t i f f n e s s  .is prac t ica l ly  

i n f in i t e .  A separate  analysis  of the  tank was made, see below), 

A nodal analysis  and a dynamic stress ana lys i s  f o r  l a t e r a l  v ibrat ions  were 

made f o r  t h e  model shown i n  Fig. 4-9. The f i r s t  frequency is 21.3 Hz, with 

a mode shape a s  shown i n  Fig. 4-10. This mode involves primarily the  vacuum 

r h e l l  and the  experiment package. The second mode, 59.4 Hz, see  Fig. 4-11, 

is the  most s ign i f ican t  one f o r  the  f iberg lass  support tube, contributing more 

than 90% t o  the random vibrat ion stress. Higher modes, up t o  the  s ix th ,  a r e  

shown i n  Figures 4-12 through 4-15. 

The s t a t i c  and dynamic environment is described a s  follows: 

S t a t i c  acceleratd.cn, ultimate: 4.95 g 

Sinusoidal vibration: 0.5 g, 5-40 Hz 

0.77 inlsec ,  40-80 Hz 

1.0 g, 80-200 Hz 

+6 d B / ~ c t ,  20-130 Hz 
2 0.18 g /11z, 130-1000 Ilz 

The sinusoidal  vibrat ion r e f e r s  t o  the l a t e r a l  vibrations,  which is  the c r i t i c a l  
i 
L 

case and t h e  only one investigated here. No sinusoidal  vibrat ion requirements 

I a r e  given f o r  more than 200 Hz. 

t 
t The maximum a x i a l  support tube s t r e s se s  occurs a t  the  narrow end, and 

I are: 
! 

S t a t i c  Load: 0.4 k s i  

Sine vibration,  1st mode: 
i i: 0.2 k s i  
i f 
I ?  

2nd mode: 0.2 k s i  

3rd mode: 0.1 ksi 

Random, 3u (99.7%) : 2.2 k s i  

2 9 
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1 C ~h~ dmping f ac to r  used I n  t he  above analysis  is 2.5X. We note that t he  
f 
B rtrerres l i s t e d  above a r e  only (i few per cen t  of the  s t rength of the  tube. 

I 

A t  t he  99% design level ,  the  buckling allowable of t he  support tube is 129 
1 l b / i n  a x i a l  force. The maximum applied a x i a l  force  is t h e  30 random vibra- 
t 

t i o n  force,  which is 117 lb/ in .  Thus, t he  probabil i ty of buckling of the  

tube in random vibrat ion is less than 0.00003. The applied load i n  the  s ine  
1 

vibra t ion  case is 65.5 1b / in ,  giving a margin of sa fe ty  of 1.8 a t  tho 99% 

design level .  

Thus, t h e  0.08 inch thick tube is qu i t e  adequate t o  i ts task,  and could pro- 
I bably be made somewlmt thinner, perhaps 0.06 inch. Even less tube material  

would be  required i f  the  tube is made i n  sandwich construction. A possible 

design would be two g lass  layers  of facing, each 0.02 inch thick,  separated 

by a 0.1 inch th ick  layer  of epoxy. This r e s u l t s  i n  a wall design equivalent 1 
t o  about 0.05 inch th ick  from the  thermal point of view, and more than 0.1 

3 
. i 

inch th ick  from the s t ruc tu ra l  point of view. 
j 

I 
i 

The r e l a t i ve ly  low f i r s t  frequency, 21.3 Hz, is  due t o  the  very narrow base 1 
~~~~~~~t assumed fo r  the  ASPS (only 4 inch radius,  see  Fig.4-9. An improve- 

1 

ment would be t o  expand the  support to ,  say, a radius of a t  l e a s t  20 inches, i 

o r  t o  provide a secondary support point a t  t h a t  point. I f  the  payload were 

I'tipped over" and latched during launch the  f i r s t  mode frequency would be 

subs tan t ia l ly  increased. This study should be performed when the  instrument 

and pointing system a r e  more fu l l y  defined. 

The cryogenic tank, with a wall  thickness of 0.15 inch, experiences a t o t a l  
i 
I 

axial growth of 0.105 inch when an in te rna l  pressure oE 60 p s i d  i s  applied, Q 

see Fig. 4-16. The c l a s s i c a l  buckling pressure is  138 psid,  external ,  with 

t he  buckle appearing a t  the  pole. The s t ruc tu re  is  imperfection-sensitive, so 

a "knock-down" factor  of 114 is appropriate, leaving a design buckling pressure 

of 34.5 psid, which is qu i t e  adequate, giving a sa fe ty  margin of 2.3. 

i--? - -- 
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FIG. 4-9 INITIAL UNDEFORMED STRUCTURE 



FIG. 4-10 DEFO W E D  STRUCTU RE MODE NO. I 
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DEFORMED STRUCTURE MODE NO. 2 5m942+01 CPS. 



DEFORMED STRUCTURE MODE NO. 3 2.013+02 CPS. 
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FIG. 4-15 DEFORMED STRUCTURE MODE NO. 6 5*481+02 CPS. 

*'0° 0 --I---, I 



FIG. 4-16 CRYOGEN l C TANK DEFO RMED STRUCTU RE ut I o o I s s c .  oooo C. 

LOAD STEP 3, LOAD= 6.000+0 1 PRESTRESS 



3.0 SUMMARY AND RECObIENDAPTIONS i 
This Phase 11 Study has r c su l t cd  i n  tltc design of a cryogenic system t o  be  

u t i l i z e d  with an  end mounted point ing  system (ASPS). The a n a l y s i s  i n d i c a t e s  t h a t  

t h e  r e s u l t j n g  design is s i g n i f i c a n t l y  lreavier than t h e  des ign which evolved 

during t h e  Phase 1 Study f o r  t h c  C,G. mounted poirtting systenr (SIPS). This 

a d d i t i o n a l  weight (340 Kg v s  197 KC) f o r  Phase I dcs ign is l a r g e l y  due t o  t h e  

increased diameter of t h e  tsystem r e s u l t i n g  i n  g rea te r  t ank  and vacuum cnclosure 

weights. Addit ional  weight is a l s o  required $11 t h e  a r e a  wlrerc t h c  payload i s  
a t tached t o  t h e  point ing systcm i n  order  t o  provide a d d i t i o n a l  s t i f f n e s s  t o  t h e  

payload. The vacuum s h e l l  requircd t o  enclose the  instrurncnt is  sl tortcr  i n  t h i s  

design and the re fo re  an  at ter tdcnt  reduction i n  instrunlent package weight w o ~ ~ l d  

be expectcd. 

Although the  cryogenic system design appears t o  allow a s t ra ight forward  i n t e -  1 
g ra t ion  of t h e  instrument package, many a r e a s  of tlre instrument-cooler 'fnter- I 

j 

f a c e  remain t o  b e  defined before  compa t ib i l i ty  is assured.  The hea t  r a t e s  t o  I 

var ious  regions of the  instrument a r e  dependent upon t h e  cooler  dcsign and may 
i 
i 

change when a couplcd thermal a n a l y s i s  of thc, instrument and cooler  i s  per- 

formed a f f e c t i n g  the  cryogen requ#.rm,ent. 

The primary rcsonance of tlte cooler-instrument puckagc? occurs a t  21 Hz. This mode 

i 
is one i n  which t h e  f l e x i b i l i t y  of t h e  vacuutul s l l e l l  a l lows motion of the cryogcn 

t ank  and instrument. This resonance can bc increased by a d d i t i o n a l  s t i fXcning 

I 
i n  t h e  region of t h c  pa in t ing  systa~u-vacuum s h e l l  connection at: tile c o s t  of 

a d d i t i o n a l  weight, 

The second rcsonance a t  59 Hz i s  due t o  v i b r a t i o n  of t h e  heiir~m tank on tlte 

f i be rg lns  support tubes . 
In  the thermal a r e a  t h e  predic ted  hea t  loads  t o  t h e  system (0.522W) a r e  s l i g h t l y  1 

i below t h e  values  required f o r  cons tan t  p ressu re  expulsion of t h e  cryogcn (0.55\5), 

however, it is f e l t  t h a t  an a d d i t i o n a l  margin is dcs ixab le  t o  a s s u r e  s a t i s f a c t o r y  

systeni operat ion.  

LOCKHEED P A L 0  A L T O  RESEARCH L A B O R A T O R Y  
L O C K N I d O  M I S S I I I S  1 S C A C f  C O M C b N V ,  I N C  



The p a r a s i t i c  hea t  load can be  reduced t o  0.28W by t h e  u t i l i z a t i o n  of a sandwich 

support tube  s t r u c t u r e  i n  p lace  of t h e  monocoque s t r u c t u r e  assumed i n  t h e  

design. This  s t r u c t u r e  has  not  been u t i l i z e d  f o r  cryogenic support  t o  t h e  

writer's knowledge and theref  o r e  would requ i re  some development t e s t i n g  be£ o r e  

incorpora t ion  i n t o  the  design. It i s  recommended t h a t  t h i s  development b e  

pursued during t h e  deta'il design phase of t h e  cooler  and t h a t  both support 

conf igura t ions  be  s tudied  f u r t h e r  before  a f i n a l  s e l e c t i o n  is made. 

The coo le r  design does not  appear t o  r equ i re  any s u b s t a n t i a l  new technology dev- 

elopment (except perhLps t h e  sandwich support tubes) and appears t o  be  

r e l a t i v e l y  straightforward.  
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