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This paper presents a structural dynamic modeling of the Long Duration Exposure

Facility (LDEF), which is a Space Shuttle payload of passive scientific experi-
ments contained in trays mounted on a large cylindrically shaped structure.

Special detailed finite element modeling, using the SPAR system of computer pro-
grams, was required to obtain good agreement between analytical and test vibration

modes. The scientific experiment trays contributed significantly to overall LDEF

stlffnesses, and these contributions were realistically represented for each tray
by the stiffness matrix of an equivalent orthotropic panel in the overall LDEF

model. Orthotropic stiffnesses for this equivalent panel were obtained from

finely detailed statically loaded SPAR models which included stiffness coupling
and allowed for partial relative sliding of the tray clamping attachments. Sen-

sitivity to LDEF joint boundary conditions was determined, and static test data

proved valuable in assessing modeling of local end flttings.
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- SUMMARY

The purpose of this paper is to present the recent application of structural

modeling of the Long Duration Exposure Facility (LDEF) utilizing the SPAR

system of computer programs for vibration analysis.

The technical areas of interest consist of five parts:

1. Development of the LDEF finite element model.

2. Derivation of tray effective panel stiffness matrix using finite element

tray models.

3. Assessment of attachment conditions and end fitting flexibility by com-

paring SPAR with test static displacements.

4. SPAR Grouping.

5. Derivation of the LDEF frequencies and mode shapes and comparing

them with test,

Results indicate that the SPAR LDEF model gave good agreement between

analytical and measured data. This was true for the frequencies of the LDEF

model without trays and the LDEF model with trays. The static test data is

valuable in assessing end fitting boundary conditions to be used in the finite

element model.



INTRODUCTION

The Long Duration Exposure Facility (LDEF) vehicle will be launched

in the space shuttle and placed in earth orbit with 86 trays, most of them con-

taining passive experiments. After a period of time exposed to the space

environment, LDEF will be retrieved by a second spaceshuttle flight, and

its many experiments will be evaluated.

Because LDEF must interface with the space shuttle, it is important

that the LDEF finite element dynamic model be an accurate representation of

the actual structure. NASA Langley performed dynamic model survey testing

and static testing of LDEF with and without the trays being installed. The

SPAR finite element computer programs were used to model LDEF and the

static test data was used for correlation and model improvement. SPAR has

the advertized capability to perform a vibration analysis of a system with

thousands of degrees-of-freedom (DOF) but the analyst must check every

input to maintain the accuracy desired. The philosophy used in this LDEF-SPAR

model was to keep the model as simple as possible but maintain the required

accuracy and utilize a thorough checking of inputs. Each experiment tray was

modeled as a single effective fully coupled six-by-six stiffness matrix panel.

The stiffness matrix was obtained from static loadings on SPAR tray models.

One of these tray models has 4356 DOF compared with 1416 DOF for the

entire LDEF structure. Therefor, with 86 trays to model, the effective panel

approach becomes most attractive.

The information in the body of this report presents the LDEF model

construction, static test correlation for determining the joint boundary con-

ditions and end fitting flexibility, how the tray effective panels were derived,

and finally the comparison of frequencies and mode shapes with test data.

The information in the appendices consists of the panel and beam prop-

erties, the mesh size criterion, the tray moments of inertia, and the SPAR

eigenvalue extraction experience.
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SYMBOLS

General Notations

Cij Tray effective panel stiffness term - force in i direction
due to a unit strain in j direction

d distance between two panels

M
x

d - tray panel offset due to longitudinal extensional-bendingx N
x coupling

M

d - Y tray panel offset due to lateral extensional-bending couplingy N
Y
M

_ xy tray panel offset due to shear-twisting coupling
dxy N

xy

D single panel bending stiffness

D' effective panel bending stiffness

ex, ey extensional strain

e shear strain
xy

E Young' s Modulus

f force

F free boundary condition, applied load column matrix

E
G - Shear modulus

2 (1 + y}

h thickness, height of circular arch at mid point

I total tray plus ballast mass moment of inertia



Ib tray ballast mass moment of inertia

It tray mass moment of inertia

k rotational strain

2
k - 5 w rotational strain in x direction

x 2
5x

_2w
k - rotational strain in y direction

y _xy
2

?w
k = 2 _ twisting strain

xy 55
xy

K stiffness, stiffness matrix

K stiffness of rigid elementr

L length of effective tray panel

m moment

M bending stress resultant

M.. reaction moment at grid point i in the tray coordinate
D direction j

N extensional stress resultant

p applied static test load

p.. reaction force at grid point i in the tray coordinate
1j direction j

r rotation

R static test reaction load

4



ss simple support boundary condition

t thickness

t tray panel longitudinal effective thiclmess
X

t tray panel lateral effective thickness
Y

t tray panel shear effective thickness
xy

u extensional displacement

U displacement column matrix

w weight, deflection normal to surface

wb weight of tray ballast

W width of effective tray panel

x,y, z tray coordinate system

zb tray ballast mass moment arm

zt tray mass moment arm

percent displacement error by adding a rigid link in
series with a flexible element

m

6 deflection

0 rotation displacement



_y Poisson's Ratio

t_i stress in i direction

angle of rotation between tray coordinate system, x,y,z,
and the LDEF SPAR cylindrical coordinate system,
rO z'

SPA R Notations

ANG angle section

BA general beam elements

BB beam 6 x 6 stiffness matrix

E21 general beam elements such as angles, tees, zees,
tubes, etc.

E25 zero-length element used to elastically join two coincident

grid points

E 33 triangular membrane plus bending element

E 43 quadrilateral membrane plus bending element

BRL beam rigid link offset

CHN channel section

GIVN beam with extensional and bending stiffness specified

SA shell section properties



TUBE tube section

TEE tee section

o.

WFL I section

Experiment Tray Notation

DP 7.62 cm (3 in) side Debris experiment tray

S 7.62 cm (3 in) side shallow tray

N 15.24 cm (6 in) side nominal tray

D 30.48 cm (12 in) side deep tray

SR 7.62 cm (3 in) end shallow rectangular tray

NR 15.24 cm (6 in) end nominal rectangular tray

DR 30.48 cm (12 in) end deep rectangular tray

SC 7.62 cm (3 in) end shallow square (corner) tray

NC 15.24 cm (6 in) end nominal square (corner) tray

DC 30.48 cm (12 in) end deep square (corner) tray

C3 7.62 cm (3 in) rectangular end shallow tray stiffness

C6 15.24 cm (6 in) rectangular end nominal tray stiffness

C12 30.48 cm (12 in) rectangular end deep tray stiffness



LDEF STRUCTURAL TEST CONFIGURATION

The Long Duration Exposure Facility (LDEF) structure is primarily a

bolted assembly of 6061 - T6 aluminum extrusions. The LDEF structure

schematic is shown in Figure 1 indicating the principal dimensions and the

design features for the 12 sided regular polygon. The polygon is 4.267 meters

(14 feet) across the points and 9. 144 meters (30 feet) long. The center and

end bulkheads anchor the longerons and provide reaction points for the 8

diagonal tubes. The intercostals connected to the longerons divide the per-

iphery into 72 equally sized rectangles. The center and end bulkheads are

welded, the other joints are bolted. The center bulkhead has 2 trunnion

fittings and a keel fitting that support the LDEF in the Shuttle bay. The

forward bulkhead carries a trunnion fitting which acts thru a cross beam

(Figure 3) to provide 2 other attachment points to the Shuttle. Figure 2 shows

the aft end of the LDEF dynamic test configuration with the simulated trays

installed. Figures3and 4 show the forward end and the right side respectively

of the LDEF structure without trays in the transportation vehicle.

The longeron-intercostal joint design is identified in Figure 5 by the

triangular arrows. These are pin-clevis joints at each end of the intercostals

as shown in Figures 12 and 13. The clevis bolts are in the LDEF longitudinal

direction and can be considered as pinned joints in a finite element model. How-

ever, the clevis tolerance is such that some relative rotational motion could occur

about the 2 mutually perpendicular axes normal to the bolt axis. Therefor, the

analysis considered both pinned and ball joints at these connections.

The eight diagonal tubes can best be seen in Figure 4 with the detail of

the end joint at the center bulkhead shown in Figure 6. These clevis type pin

joints are in reality ball joints because of their internal design. Two ball joints

connect to a common flat plate type fitting extending from the center bulkhead.

The original SPAR model considered this fiat plate fitting as a rigid link while

a later refinement included its flexibility.

The LDEF side trays are riveted 6061 - T6 aluminum alloy angle and

sheet of either 0. 160 cm (. 063in) or 0. 3175 cm (0. 125 in) thickness with

0. 3175 cm (. 125 in) TorI section bottom cross beam members. Both the T and

I sections can be seen in Figure 7. The side tray experiment envelope is approx-

imately 1.219 m long and 0. 914 m wide with depths of 7.62, 15.24 and 30.48 em (3, 6

8



and 12 in). The end tray envelope is approximately °762 m square with depths

of 7.62, 15.24 and30.48 cm (3, 6 and 12 in). Figure7 shows a 7.62em (3 in)

side shallow tray mounted on a longeron-intercostal frame. The base plate of the

experiments are bolted to the bottom framework at some of the many nut plate

locations provided. For the LDEF dynamic configuration, all of the experi-

ments except the Debris tray were represented by a single 0. 457 cm (0.18 in)

aluminum base plate with 1, 2 or 3 stacks of aluminum ballast plates to repre-

sent the correct experiment mass. Each ballast stack was bolted to the base

plate at the four corners of the stack. These bolts can be seen in Figure 2 and 6.

The Debris tray consists of two 0.457cm (0.18 in) aluminum plates with no ballast

plates, with each plate covering one half of the tray bottom. Each Debris plate

was bolted to the tray bottom frame with 15 bolts. All of the other trays with a

single base plate were bolted to the tray bottom with 6 bolts, 4 at the corners and

2 to the center framework. Figures 7 and 8 show the tray structure interface for

a side tray. There are no bolts passing through the tray lip. The tray clamp

design allows the tray to expand in the plane of the tray, due to thermally induced

loads,by overcoming the clamp friction load. For the dynamic analysis the four

corner clamps were considered to have no relative motion between the tray lip

and the LDEF structure. The four side clamps were assumed to allow relative

rotation about an axis normal to the tray lip.
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Note:

1. Location for a Magnetic Viscous Damper.
2. All openings on the LDEF are covered by either a tray or plate.
3. Longerons - 17.78 cm (7 in) Aluminum I-Section, End Frames - 15.24 cm (6 in) Aluminum I-Section,

Diagonals - 15.24 cm (6 in) Aluminum Tube. Intercostals are Aluminum T-Sections, one half
of a 17.78 cm (7 in) I-Section.

4. Auxiliary Trunnion for Ground Handling Only. Removed before flight.

Figure 1. LDEF Structure Schematic
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LDEF Dymumc Test Configuration \Vith Triiys



Figure 3. Forward End View of LDEF Without Trays



FIgure 4. Side View of LDEF \Vithout Trays



Figure 5. Longeron-Interoostal Joints and End BuI1dlfilad
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Intetio:r Diagonal End Joint at Center Bnlkhead



Figure 7. 7.62 em Side Expe:riment Tray Withou.t Base Plate
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SPAR LDEF MODEL

The SPAR computer programs of Reference 1 were used for the LDEF

finite element modeling and for the subsequent static and dynamic analysis.

Figure 9 shows a computer print out of the undeformed shape of the SPAR model.

The bottomj side and end views are shown. The model has 236 grid points with

1416 degrees of freedom. There are 381 beam elements, 16 three node elements

and 92 four node elements. The circles in Figure 9 represent the 16 ball joints

at the ends of the 8 diagonals. The model shown is the final configuration that

includes the diagonal end flexibility of the flat plate fittings between the center

bulkhead and the ball joints. The original model had rigid links for these flat

plate fittings. The triangle represents a pin joint that allows the cross beam to

rotate about the 3 axis relative to LDEF. The dots show the longeron-to-inter-

costal joint locations that were treated as pin or ball joints in the analysis. In

most cases each dot represents two pin joints as shown in Figure s 12 and 13 so

that the 12 grid points per station results in 24 pin joints per station. However,

at the forward and aft bulkheads,the top and bottom intercostals are of different

construction and do not have clevis pin joints as shown in Figure 5. There are

still 12 grid point locations but only 20 pin or ball joints per station making a total

of 136 of these joints in the LDEF model. There are no pin or ball joints at the

center bulkhead.

SPAR has the capability of subdividing the model into groups of substructure

elements. This grouping has the advantage of visually ohealdng each group plot for

modeling errors and obtaining the weights of each group for comparison with

actual weights for weight distribution control. The SPAR model was divided

into the substructure groups shown in Table 1.

18
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AX _

Figure 9. LDEF SPAR Model
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TABLE 1. SUBSTRUCTURE GROUPS

Modeling Sequence SPAR Group Element Type No. of Ele. Figure

1 Longerons E21-1 Beam 96 10

2 Intercostals E21-2 Beam 72 11

3 Center BHD E21-3 Beam 30 14

4 Forward BHD E21-4 Beam 40 15
E33-1 Triangular Plate 8

5 Aft BHD E21-5 Beam 40 16
E33-2 Triangular Plate 8

6 Diagonals E21-6 Beam (Tube) 32 17
E25-2 Zero length beam 16 9

(ball joints)
E21-9 Beam (end attach. ) 20 17

7 Cross Beam E21-7 Beam 13 18
E25-1 Zero length beam 1 9

(pin joint)

8 IECNI Shelf E21-8 Beam 21 19
E43-1 Quadrilateral Plate 6

9 Exp. Trays

Debris Side E43-2 Quadrilateral Plate 22
Shallow Side E43-3 Quadrilateral Plate 26
Nominal Side E43-4 Quadrilateral Plate 14
Deep Side E43-5 Quadrilateral Plate 10
End-Rectangular E43-6 Quadrilateral Plate 6
End-Corner E43-7 Quadrilateral Plate 8

2O



Longerons and Intercostals

The first substructure group modeled was the longeron group. The

longerons consist of 12 forward and 12 aft I beams attached to the center bulk-

head. Each longeron, at location A through L in Figure 10, was divided into four

beam elements as shown at the intercostal attachment points resulting in a total

of 96 beam elements. Figure 11 identifies all of the longeron grid point numbers

and the SPAR section property used. The second substructure group modeled

consisted of the 72 intercostals tabulated in Figure 11. Figures 12 and 13 show

the actual longeron to intercostal attachment and the SPAR model configuration.

The longeron beam elements were connected to grid points located on the longeron

neutral axis. The intersection of the neutral axes of two adjacent intercostals

fell outboard of the longeron neutral axis as shown in Figure 12. The intercostal

beam elements were modeled with beam rigid link offsets (BRL) to locate the

intercostalbeam elementsat their neutral axes. To avoidadding two additional

gridpointsattachedby a zerolengthbeam elementsforeachpinjoint,theinter-

costal beam elements bending stiffness was set equal to zero to simulate the pin

ended condition. For a ball-joint end conditions both of the bending and the tor-

sional stiffnesses of the beam elements were set equal to zero. The SPAR

section property BA16 was used for the ball-joint end condition and BA18

was used for the pin-joint end condition. Both of these section properties

have some of the tee section proper_:ies(BA2) set equal to zero as shown in

Appendix A (Table 9).

21



(2) I-- Center Bhd.

A&L I ///'-Intere°stals "

B&K g,," _/ i / IrLongeronsFwd. Bhd

Cross

Be am-_ "_ C&J _ (3)
D&I

E&H

F&G

Sta -4.5977_ ,i, I I 11.14.4313Sta -4.4313_.--_' !

-4.3498 -2.9401 -1.5304 0.0 1.5304 2. 9401 4.3498

(2)
I _ Longeron Grid Point LocationshL.

"_ (atLong. N.A., Radius = 2.0447)
K, ,B

J' I 'C

(1)

I° _D
View Looking Aft

!
I

H E
I f

G F

Location Coordinates

(1) (2)

A -.529206 1.975028
B -1.445821 i.445821

C -i.975028 .529206

D -1.975028 .529206

E -1.445821 -1.445821

F -.529206 -1.975028
G .529206 -1.975028

H 1.445821 -1.445821

I 1.975028 -.529206
J 1.975028 .529206

K 1.445821 1.445821
L .529206 1.975028

Figure 10. Longeron Grid Point Coordinates (All Dimensions in Meters)
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12 intercostals (])per station at
6 stations L A

B

' i(1)

1
G F

Type of Station Longeron Location (see Figure 10)
Structure (m) A B C D E F G H I J K L

Grid Point Numbers

Fwd Bhd. -4.4313 10 11 12 13 14 15 16 17 18 19 20 21

Intercos. -4.3498 35 36 37 38 39 40 41 42 43 44 45 46

Intercos. -2.9401 47 48 49 50 51 52 53 54 55 56 57 58

Intercos. -1.5304 59 60 61 62 63 64 65 66 67 68 69 70

Center Bhd. 0.0 71 72 73 74 75 76 77 78 79 80 81 82

Intercos. 1.5304 113 114 115 116 117 118 119 120 121 122 123 124

Intercos. 2. 9401 125 126 127 128 129 130 131 132 133 134 135 136

[ntercos. 4.3498 137 138 139 140 141 142 143 144 145 146 147 148

Aft. Bhd. 4.4313 149 150 151 152 153 154 155 156 157 158 159 160

SPAR Section No. of

Property Elements

(Table 9)

B:_I 96 17.78 cm (7. in) I beam - all longerons
BA1 4 top and bottom intercostals at end stations

BAI6 68 Ball Joint'_

or _ 8.89 cm (3.5 in) T section (BA2) - all other intercostals
BA18 68 Pin Joint J

Figure 11. Longerons and Intercostals
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Actual Configuration

Longeron

// Intercostal

°.

I ' [
._ 4-

"'-.. or Ball Joint

Longeron Neutral Axis

(Grid Point Location)

SPAR Configuration

Joint "
f Common Pin or Ball . .

--. 7--Intercostal Beam Element

IntercostalElement_Beam__ I _._ _ Axis)
Rigid----._°Intercostal Beam Links

11 (BRL)e

__,--- .
\

Grid Point .. -

(At Longeron Neutral Axis)

Figure 12. Longeron-Intercostal Attachments at Stations ± 4.4313m
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Actual Configuration

, /_ngeron
• I

_--Longeron Neutral Axis
./" (Grid Point Location)

Intercostal
_Clevis Fitting

x-Pin or Ball Joint

SPAR configuration similar to Figure 12.

Figure 13. Longeron Intercostal Attachments at Stations _- 1. 5304m and 4- 2.9401m
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Bulkheads

The third substructural group modeled was the center bulkhead made up

of 30 beam elements as shown in Figure 14. There are 14 vertical and lateral

I beam members with the outer 14 ring elements representing a box section made

up of two channel sections with inner and outer webs attached. Grid points 71

through 82 are the longeron grid points. Grid points 83 and 88 are the locations

of the main support trunnion fittings and grid points 84 and 87 the attachment

points for the 8 diagonals. Grid points 99 and 100 are the attachment points for

each side of the IECM shelf. All beams are located at their neutral axes and

beam rigid link offsets were used to join the beam element ends. The

fourth and the fifth substructure groups are the identical forward and aft bulk-

heads shown in Figures 15 and 16. They each have 40 beam elements and 8

triangular plate elements. Grid points 10 through 21 and 149 through 160 are

the longeron grid points. Grid point 28 connects to the cross beam. All of the

vertical and horizontal beam elements represent I beam sections except the four

connected to the center grid points. These four beams are box sections made up

of two channel sections opening outboard with plates on the forward and aft sur-

faces. The eight triangle plate elements represent two plates 15.24 cm (6 in)

apart. These two plates were input as a single effective panel stiffness matrix by

using the FORMAT = 2 option in shell section properties (SA) inputs. The

derivation of these properties is shown in Appendix A. The two plates are

assumed to bend as a single panel and have an extentional stiffness equal to the

sum of the two plates. The effective panel bending stiffness is:

, Et 1 d2 2 t2
D - 2 (_ +dt +-_- ) (1)

(1 -V)

where

t = . 3556cm (. 14 in)

d = 15.24 cm (6. in)

26



(2)

,_ 1. 8796m . 4808m

• 40958 '-- Beam Rigid Link (BRL)m

BA5

BA5
BA4

7£

B _qq j_, BA5 i
BA4 BA4 i.3565m

B0 IBA5 BA3 BA3 .... BA3 BA5 73

"-€-'--83 _4. BK" [_6 J 8_'• 5 5865n_

BA5 BA4 BA4
• 48082m BA5

I

78 __._ ' ' o . .

) ( JT_
77 BA5

SPAR
S_cti_n No. of ,

Property Elements

(Table 9)

BA1 5 - 17.78 cm (7in)Ibeam

BA3 3 - 30.48 cm (12 in) I beam .i

BA4 6 - 24.13 cm (9.5 in) I beam (average section)
BA5 16 - Built up Box Section

Figure 14. Center Bulkhead at Station 0.0 _
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(2)

'°
-

ZO,__// _' " 2_ II

SPAR
Section No. of

Property Elements
(Table 9)

BA6 36 - 15.25 em (6 in) I beams
BA7 4 - 35.56 x 25.4 cm (14. x 10. in) built up box beams
SA1 8 - Triargular panel elements

Figure 15. Forward Bulkhead at Station - 4.4313m
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(2)

/6o I CYP)

. ,_ .

eL-'vl

\t

\

/ \

150 163 164- tY7 16ff /g6 )/Hi
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I
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Beam Rigid Links (BRL)

(8 places)

SPAR
Section No. of

Property Elements
(Table 9)

BA6 36 - 15.25 cm (6 in) I beams
BA7 4 - 36.56 x 25.4 cm (14 x 10. in) built up box beams
SA1 8 - Triangular panel elements

Figure 16. Aft Bulkhead at Station 4.4313 m

29



Diagonals

The sixth substructure group modeled was that of the eight diagonal Cubes with

the end ball joints and end attachment fittings shown in Figure 17. The circles

represent the 16 ball joints. Flexible beam elements connect the ball joints to

grid points 84 and 87on the center bulkhead and at eight grid points on the

longerons near the end bulkheads. The original model had rigid links from

the ball joints to these end grid points. The ball joints were modeled by locating

two grid points at the ball joint location and connecting them with a zero length

element (E25) using a beam six-by-six intrinsic stiffness matrix input (BB) in

SPAR. The stiffness matrix, K , is defined as

F = KU (2)

where

T

F = (flf2 f3 mlm2m3)

U = (u lu 2u 3 r 1 r 2 r 3)T

In the above f, m , u and r equal applied force, applied moment, displacement

and rotation at the origin _)f the beam element in the global coordinate system.

For the diagonal ball joints, the K matrix takes the form

KII 0 0 0 0 0

0 K22 0 0 0 0

0 0 K33 0 0 0

K = 0 0 0 0 0 0 (3)

0 0 0 0 0 0

0 0 0 0 0 0
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The diagonal term is set equal to zero for each unrestrained degree of freedom

desired. The diagonal terms not set equal to zero represent the"rigid spring"(Kr)
that is in series with the flexible element. The value must be large enough to

limit the displacement error but not so large as to result in computer computa-
T!

tional errors. The rigid link stiffness'_ Kr , required to obtain a given displace-

ment error ( _ ) was obtained from:

100K
- K (4)

r

where

TT T!

The percent displacement error of a rigid elen_nt (Kr)

in series with a flexible element (K) compared with the

displacement of K by itself.

For the diagonal elements, the extensional stiffness, K , of the upper diagonal

was 48. 6906 MN/m (. 27803 x 106 lb/in). The value of 700508 MN/m (4.0 x 109

lb/in) was used for K indicating a diagonal extensional error of 0. 007 percent.r

This value of K was used for Kll K22 and K33 in equation (3).r '
Each tube was divided into four equal beam elements. The mesh size

criterion is discussed in Appendix B. The criterion used states that the natural

frequency of a simple supported beam element must be greater than 50 Hz. If

this criterion was not met an intermediate grid point was added. For the diagonals,

with the length between ball joints used, the natural frequency was 20.5 Hz and with

one intermediate grid point at the center the frequency was 82 Hz. The additional

quarter point locations were added because of the actual ball-joint boundary con-

ditions at the diagonal ends ; the criterion is actually intended for structures

with built in ends.
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0 = Ball Joints
_ .22875m Left Side

(2) _'.

46 191/192 4-. 36916m (typ) .)19

l 225 BA8 (typ) 233 14S
91 229 95
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2O(

t_ (3)

! ' , 16507m/.,_ "_24j

1.

J [ I :'_'_28 beam'rigid link

-"_1 _18D-_9 (BRL) (4 places)0 21_' 143
v _

Right Side

(_) 214/213

35_._/186_ "/ " 234_f0_234" "
137

"--_2 222 194 7 0 230 .
' [ - _. 191 _037_ _ I

.//'"223 _ __ I '

•
40 18_ " _'_ _' 142

All intermediate grid points are at 1/4 points

Lateral Locations (1) GP 193-212 at ± 1. 8796m
GP 185,186,191,192,213,214,219 & 220 at ± .63391m
GP 187-190,215-218 at ±. 61468m

SPAR

Section No. of

Properties Elements
(Table 9)

BA8 32 - 15.24 cm (6 in) tube (all main diagonal elements)

BA19 4 - fiat plate 2.54 x 18. 288 cm (1.0 x 7.2 in) with 18. 542 cm (7.3 in)
BRL at grid point 84 and 87.

BA20 16 - fiat plate 1.905 x 17.78 cm (. 75 x 7.0 in) connecting ball joints

to grid points 195,200,205,210, 35, 40, 41, 46,137,142,143 & 148

Figure 17. Diagonals
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Cross Beam

The cross beam shown in Figure 18 was the seventh substructure group

modeled. This group consists of 13 beam elements and one zero length beam

element, E25 , between grid points 9and 184 to represent the pin joint. The

spar input stiffness matrix, BB, was of the form of equation (5) for a pin joint

about the 3 axis. All values on the diagonal of the stiffness matrix were given

a value of 700508 MN/m or a value at least two orders of magnitude larger than

the bending stiffness of the spindle pin (3 elements connecting grid points 184

to 28). The error in the bending deflection of a simple cantelever beam in

series with a rigid link using equation (4) was less than one tenth of one percent.

The four lateral tubes have relatively stiff end fittings. The fittings were made

rigid by using beam rigid link offsets so that the flexible tube lengths were

correct. The upright beam elements connecting grid points 3 to 9 and 7 to 9

are of a complex I beam configuration seen in Figure 3. The torsional stiffness

due to differential bending was added to the basic torsional stiffness of these
4

beam elements. The basic section had a torsional stiffness of 105.7 cm corn-

4
pared with the differential-bending torsional stiffness of 1111. cm . This

stiffness controls the frequency of the first flexible mode.

The SPAR input stiffness matrix, BB , was of the form

Kll 0 0 0 0 0

0 K22 0 0 0 0

0 0 K33 0 0 0

K = 0 0 0 K44 0 0 (5)

0 0 0 0 K55 0
0 0 0 0 0 0

for a pin joint about the 3 axis.
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= beam rigidlink(BRL)

(2)

t
Pin Joint 9 "1_

About _ ._ ...... I, (3)
.184J I

BA15 BA1 .BA15

4 4 4 4
I I I I

Section A-A
SPAR

Section No. of

Properties Elements
(Table 9)

BA9 8 - lateral members are 10.16 em (4 in) dia. tubes
BA10 2 - built up section, torsion stiffness includes differential bending
BAll 1 - complex flexible section at center of spindle pin
BA15 2 - solid circular shaft

Figure 18. Cross Beam at Station - 4.4313m
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IECM Shelf

The eighth substructure group was the IECM shelf structure consisting

of 21 beam elements and 6 quadrilateral plate elements as shown in Figure 19.

Grid points 85_ 86, 99 and 100 are located on the center bulkhead. The

5.08 cm 12. in} diameter diagonal tubes support the IECM shelf off of the

center bulkhead. The outer frame and the support beams at stations ° 2794 m

and. 9906 m are made of channel sections. The other panel stiffeners at

stations . 5364 m, . 7396 m and 1. 2002 m are angle beam elements. There

are six. 160 cm (. 063 in} thick quadrilateral plate elements.
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J

..f.(_-. 16] 125-:_-.//-'16.12,5-_ j/(center bhd./. . //
BA14

/ /iBi 14

t "" //

S'/ _6//(center bhd)

SPAR
Section No. of

Properties Elements
(Table 9)

BA12 16 - 7.62 x 4.445 cm (3. x 1.75 in) channel

BA13 3 - 2.54 x 2. 2352 cm (1. x . 88 in) angle

BA14 2 - 5.08 cm (2. in) dia. tube
SA2 6 - . 160 cm (. 063 in) plate

Figure 19. IECM Shelf
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Experiment Trays

The ninth and final substructure group included the 86 experiment trays that

were modeled as equivalent orthotropic panel elements as depicted in Figure 20.

A static SPAR tray model was used to obtain the six by six panel stiffness

matrix for each type of tray. Figure 21 shows the tray locations.

Figure 21
T_es of Tray Tray Depth Code

Side Trays

Debris experiment 7.62 cm (3 in) DP
Shallow 7.62 cm (3 in) S
Nominal 15.24 cm (6 in) N
Deep 30.48 cm (12 in) D

End Trays

Shallow rectangular 7.62 cm (3 in) SR
Nominal rectangular 15.24 cm (6 in) NR
Deep rectangular 30.48 cm (12 in) DR
Shallow square (corner) 7.62 cm (3 in) S C
Nominal square (corner) 15.24 cm (6 in) NC
Deep square (corner) 30.48 cm (12 in) DC

As shown in Figure 20 there is coupling between extensional and bending terms as

well as between the shear and twisting terms. Figure 22 shows the extentional-

bending coupling of a shallow side tray. Figure 23 shows the shear-twisting

coupling of the base plate of a deep side tray. In Figure 21 each rectangle

represents a tray with the type of tray in the upper left hand corner and the

total tray weight in the lower right hand corner. The bay location and the row

numbers are also shown in Figure 21. The tray model shown in Figure 20 is the

Debris experiment tray. All of the four side tray types were modeled and the

nominal and deep rectangular end trays were modeled.
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Static Tray Model

Longeron

Equivalent panel plane

Rigid Link

I I I , i

Membrane I 1_ Mem-Bend I

I I i I
l I i I

I Shear I ! ! T-Sh /_

I J I I

- Mem-Bend .... L Bending I
l I
I I I

l J I I

I I T-Sh I I I Twist
t

Equivalent Orthotropic
Panel Stiffness Matrix Panel

Oo

, Figure 20. SPAR Model of LDEF Experiment Tray
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Figure 21. Tray Locations and Total Weight (kg) (See Figure 1)
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Longeron-Intercostal Joint

Figure 22. Static Deformation of Tray Under Unit Longitudinal Strain
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Figure 23. Shear-Twisting Coupling of the Deep Side Tray Base Plate

(Shear Strain Equal to Unity}



TRAY EFFECTIVE PANEL STIFFNESS PROPERTIES

Stiffness Matrix From SPAR Tray Models

The flanges of the side trays are clamped to the structure at 8 locations

as shown in Figure 8. Rigid links were used to connect these 8 clamping points

on the tray lip to the plane of the four corner longeron grid points and to four

points mid way between these grid points.

! x

) [ -I
I

o_ I • . •
!,, , ,oJt: I I,'1",,

/\

I

x tt '

/ ! L (length)
2 ..... Y -< , _......., 5 z< ..... 4-_2,._"

'.
i

}

:.........................,_..... ':\',. l J
, ..... N--" \ .... .,_ '_............#

Tray grid points 1, 3, 4 and 6 are at the actual location of the LDEF longoron

grid points. Tray grid points 2, 5, 7 and 8 are located midway between the

longeron grid points.

The SPAR panel stiffness matrix is of the form

Nx Cll C12 0 C14 C15 0 e

Ny C21 C22 0 C24 C25 0 e

Nx = 0 0 C33 0 0 C36 :e (6)

M C41 C42 0 C44 C45 0 |k
1_

M C51 C52 0 C54 C55 0 ] k

M 0 0 C63 0 0 C66 - Lk _J
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where

52w 52 w 52 w
k - k - k = 2--

x 2 ' y 2 ' xy
5x 5y _x 5y

Each column of this stiffness matrix was obtained by setting one of the strains

- equal to unity and all others equal to zero. The six resulting conditions are

the longitudinal strain equals unity ( e = 1.0), the lateral strain equals unityx

( e = 1.0) , the shear strain equals unity ( e = 1.0), the longitudinal rotationy xy
equals unity ( k = 1.0), the lateral rotation equals unity ( k = 1.0), and the

x y
twisting rotation equals unity ( k = 1.0). Table 2 shows the actual displace-xy
ments imposed on the tray model at the ends of the rigid links for each of the

six displacement conditions. The force reactions output at grid points 1 through

8 were used to determine the stiffness coefficients in equation (6). The stress

resultants on the left side of equation (6) can be expressed as functions of these

reaction forces.

Using the SPAR panel sign convention Mxy

lNxy : Mx
..4.:_.... ._'-- ........

x , x
A Mxy i

Ny ._..... y .¢ >-- _ Y -_ "_-:: ...........

i ............... I --_
__ My _).

Plx + P7x + P4x SPAR Reaction Sign ConventionN =
x W

Ply + +P2y P3y ,_ MixN =
y L

8 ',Pix

Ply + P7y + P4y i_l(Mz)l

W + 2 L W Miy Ply '_

where Grid Point i -

43



or
+ _M

Plx + P2x P3x z
N =

xy L 2 LW

M7y 4yMly + + MM
x W

-Mlx - M2x - M3x
M =

y L

- - Plz - P3z
M = -Mly M2y M3y +

xy L 4

+ M4x P - por Mlx + M7x Iz 4z
M = + (7)

xy W 4

where

P.. Reaction Force
lj

M.. Reaction Moment
D

Subscript i is the grid point number

Subscript j is the tray coordinate direction

L Length of effective panel

W Width of effective panel

From equation (6) and the boundary conditions in Table 2 the values of the stiffness

matrix are calculated by inserting the reaction forces and moments into equation (7).

The first column of the stiffness matrix is obtained by setting e = 1.0 inx

equation (6) and all others equal to zero.

e = 1.0 e = 1.0
x y

x 1] '1_

"5] '5€_

)

LxyJ ,.
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fore 1.0 fork = 1.0
xy = x

°° C 2 ,

@ = =
• ' C4,

C

fork = 1.0 fork = 1.0

(1 !

(2

(5

(

The design of the tray-to-structure clamp allowed in plane relative sliding motion

between the tray flange and the mounting structure. The four side mid point

clamps were allowed some relative motion by letting Oz be free to rotate at

grid point 2, 5, 7 and 8. This is shown in Table 2 for the shear (exy 1.0}

and the twisting (kxy 1.0) boundary conditions. By allowing this flange motion

the shear and twisting stiffnessos are reduced to 54 and 58 percent of the values

for the original boundary conditions, as shown in Appendix A.

To demonstrate theprocedure, the numerical resultsfrom the evaluation

of the Debris tray subjected to a longitudinal strain equal to unity ( ex = 1.0) will

be shown in the following discussion. The reaction forces and moments from the

SPAR static run are shown below.

REACTION FORCES (MN) REACTION MOMENTS (Mm-N)

._,52@ 1.4:-__'_,qg3 o_ _.os_,_ .o_o_ ,'.oc:-_,

=-_ _-_ =_-_.:. _=N, _- '_ -_- _-, _--_,

---_ %,. "+mr_.. -e-'---7"2", _ 'f_ _ _ "--'_)"?>",
t..,!..s t,_. ,._; _,, t_ t_j

45



With a panel length (L) of 1. 5304 m (60• 25 in) and a panel width (W) of 1. 0584 m

(41. 6698 in) the stress resultants from equations (7) and (8) result in the first

column of the stiffness matrix

Nx = Cll = . 3604 MN/cm

N = C21 = --. 04186 MN/cmY

Nxy C31 0.0

IVIx = C41 = 4.034 MN

M = C51 = -• 4675 MNY

= C6 =Mxy 1 0.0

All of the other five static boundary displacements are imposed on the same tray

model to obtain the six-by-six stiffness matrix.

Original Debris Tray Stiffness Matrix (MN/cm, MN & Mm - N)

• 3604 -; 04186 0 2. 522 -. 1953 0
ix

Y
4. 034 -. 4319 0 . 2564 -. 02164 0

I x

:___ -.4675 .8332 0 -.01165 .07187 0 [k

iY
0 0 -.2264 0 0 .009610 Ik

_ _

Because some of the off diagonal terms are not equal, the average values were

taken resulting in the final stiffness matrix for the Debris tray of

3604 -. 04186 0 3. 278 .3314 0
_x - ex

o o Oy
0 0 .05594 0 0 -° 2264

MMX:I 3.278 -.2702 0 .2564 -.01664 0 I x i-.3314 .7864 0 -.01664 .07187 0
Y]

Mx_ 0 0 -.2264 0 0 .00961
X. -_)
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The final stiffness values used in all the equivalent panels are tabulated in

Appendix A.

The units for the stiffness matrix are partitioned as

MN/em I MN ex

I e

_:_.!_ _ _ __>MI

' [!iL ,. xy2 [
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TABLE 2. DISPLACEMENT BOUNDARY CONDITIONS
FOR TRAY STATIC MODELS

e = UNITY e = UNITY
x y

u u u 0 8 0 u u u e 0 0
x y z x y z x y z x y z

1 L 0 0 0 0 0 0 W 0 0 0 0

2 F 0 0 0 0 0 0 W 0 0 0 0

3 0 0 0 0 0 0 0 W 0 0 0 0

4 L 0 0 0 0 0 0 0 0 0 0 0

5 F 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 L 0 0 0 0 0 0 F 0 0 0 0

8 0 0 0 0 0 0 0 F 0 0 0 0

e = UNITY k = UNITY
xy x

u u u 0 O e u u u 0 8 O
x y z x y z x y z x y z

1 W/4 L/4 0 0 0 0 0 0 0 0 L/2 0

2 W/4 0 0 0 0 F 0 0 h 0 0 0

3 W/4 -L/4 0 0 0 0 0 0 0 0 -L/2 0

4 -W/4 L/4 0 0 0 0 0 0 0 0 L/2 0

5 -W/4 0 0 0 0 F 0 0 h 0 0 0

6 -W/4 -L/4 0 0 0 0 0 0 0 0 -L/2 0

7 0 L/4 0 0 0 F 0 0 0 0 L/2 0

8 0 -L/4 0 0 0 F 0 0 0 0 -L/2 0

k = UNITY k = UNITY
Y xy

u u u 0 0 0 u u u 0 8 0
x y z x y z I x y z x y z

1 0 0 0 W/2 0 0 0 0 WL!16 L/8 -W/8 0

2 0 0 0 W/2 0 0 0 0 0 0 -W/8 F

3 0 0 0 W/2 0 0 0 0 -WL/16 -L/8 -W/8 0 .

4 0 0 0 -W/2 0 0 0 0 -WL/16 L/8 W/8 0

5 0 0 0 -W/2 0 0 0 0 0 0 W/8 F "

6 0 0 0 -W/2 0 0 0 0 WL/16 -L/8 W/8 0

7 0 0 h 0 0 0 0 0 0 L/8 0 F

8 0 0 h 0 0 0 0 0 0 -L/8 0 f

W = width L = length

F = free boundary h = calculated height of a circular arch
at the mid point

48



Extrapolation of Rectangular End Tray Stiffness

Because the end bulkhead structure is of a rigid welded I beam configur-

a/_ion, the end tray panel stiffness will have a minor effect on the LDEF dynamic

response. For this reason only two of the end trays were modeled, the nominal

and deep rectangular trays, and the stiffness for the other trays were extrapolated

from this data. The valueof each stiffness term of the shallow tray rectangular

matrix ( C 3 ) was extrapolated linearly from the nominal ( C6 ) and deep ( C12 )
rectangular stiffness terms:

C 3 = C 6- (C12- C 6 ) = 2 C6 - C12 (9)
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Tray Panel Effective Properties

The construction and clamping of the rectangular and square end trays

were very similar so the following set of equations were used to obtain the

square trays stiffness matrix knowing that the x and y direction properties

must be equal. The effective tray panels can be represented as orthotropic

panels that have membrane-bending coupling and twisting - shear coupling be-

cause of rigid link offsets.

orthotropic panel

• w y
" I'_-_-_ .... _ S- rigid link offset

J- -f, ; _.-_Z._j ii

--_ ...... _--- ...... I(_,_ . __ corner grid point

The orthotropic stiffness matrix has the form:

Nx Cll C12 0 0 0 0 ex

Ny C21 C22 0 0 0 0 ey

Nxy = 0 0 C33 0 0 0 (10)

Mx 0 0 0 C44 C45 0

My 0 0 0 C54 C55 0

Mxy 0 0 0 0 0 C66

Because of the offset ( d ) there are coupled loadings in the xz plane.

i" i dx
I •'1.N -4---. ¸-......... ." "

x , "N M = dN.z. x (11)_--M M x x x
x x

For coupled loadings in the yz plane,

--1

i"%
....... • i. My = %Ny

Ny TNy
)_My My -z 50



For coupled loadings in the x = L/2 plane,

% Idxy

M M = -d N
xy _" xy xy xy

Using these coupling equations, the left side of equation (6) can be rewritten.

x. - I:
Cll C12 0 C14 C15 0 e

0 02 0:>= 0 0 C33 0 0 C36 (12)

.,, ,,20 ,,0I% % o_ o o_ o_ o

By equating the first row equation with the fourth row

d C41ex + C42e + +
x = Y C44kx C45k (13)

Clle x + C12ey + C14kx + C15ky

By equating the second row and fifth row equation

C51e x + C52ey + C54k + C55 kd =
Y + +%ex 02_e_02_kx+0_%

By equating the third row and sixth row equation

d = - C63exy + C66kxy
xy

C33exy + C36kxy

The three load coupling offsets d , d and d change with changes in the
x y xy

boundary strain conditions. For extrapolating purposes these equations were
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reduced to the following by using the boundary conditions:

e = 1, e = k = k = 0
x y x y

C41
d -

x Cll

e = 1, e = k = k = 0
y x x y

(14)
C52

d -
Y C22

o = 1,-k = 0
xy xy

C63
d -

x_ C33

Using the orthotropic equations for composites from Reference 3, the values of

the Poisson's Ratios and the extensional and shear effective thicknesses for each

type of panel can be derived.

C12
I) =

yx Cll

C12
I) =

xy C22

Cll
t = (1 - v v ) (15)x E xy yx

C22
t = (1 - v v )
y E xy yx

C33t =
xy O

From equations(14) and (15) the orthotropic properties and the offsets of each tray

type are tabulated in Table 3.
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Extrapolation of Square End Tray Stiffness

,
For the square end trays the following set of stiffness terms were used :

d +d
' ' x yd = d =

x y 2

, C11 + C22

Cll = C22 = 2

, C44 + C55

C44 = C55 = 2

C33 = C33

C66 = C66

! ! !

C41 = C52 = dx Cll

d = d
xy xy

!

C63 = -dxy C33 (16)

Let the Poisson's Ratio be the average of the orthotropic values defined in

Reference 3.

+y
' Yxy yx

I_ =
2

T T T

C21 = y ell

! ! !

C15 = C21 dY

!

C45 = C45

The primed quantities represent the square end trays 53



TABLE 3. TRAY PANEL EFFECTIVE ORTHOTROPIC PROPERTIES

Type t t t d d d y yx
cm ci_ c_ x yxom xy

Side Trays

Debris .0493 .0112 .0211 9. 096 9.627 4. 049 -. 116 -. 512

Shallow .0500 .0109 .0142 9. 174 9. 716 4. 016 -. 118 -. 538

Nominal .0950 .0282 .0254 9. 136 9. 474 -1. 199 -. 105 -. 351

Deep .100 .0323 .0188 9. 098 9.558 -25. 077 -. 111 -. 344

End Trays

Rectangul_

Shallow .104 .121 .0254 7. 836 7. 859 i. 803 -. 0742 -. 0641

Nominal .113 .129 .0198 7. 922 7. 963 .305 -. 0461 -. 0404

Deep .121 .136 .0145 7. 996 8. 057 -2. 316 -. 0217 -. 0193

Square

Shallow .113 .113 .0254 7.849 7.849 1.803 -.0692 -.0692

Nominal .121 .121 .0198 7.943 7.943 .305 -.0433 -.0433

Deep .129 .129 .0145 8.026 8.026 -2.316 -.0205 -.0205
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STATIC TEST - ANALYSIS EVALUATION OF ATTACHMENTS

Static test data was used to evaluate the SPAR model longeron-_o-

intercostal joint condition and the diagonal end-fitting flexibility. The two

types of static tests that were performed are shown in Figure 24. The SPAR

static deflections are shown as a percent of the test deflections for both the

bending and torsion tests. The model and tests were performed on the LDEF

configurations without trays. The ball and pin joints refers to the longeron-_o-

intercostal joints previously discussed and shown in Figures 5, 12, and 13. From

this information it was decided to perform first the dynamic analysis without

trays, using the model that included the diagonal end flexibility. The pin joint

model was considered to be the intent of the longeron-to-intercostal joint de-

sign. However, it was observed that there was some out of plane motion

because of the tolerance in the clevis joints that led to the consideration of

modeling using ball joints. The true joint condition is someplace between

these two. For the dynamic analysis without trays, it was decided to evaluate

both the ball joint and pin joint conditions for comparison because the static

test deflection correlation with analysis was not conclusive.
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LDEF Configuration Without Trays

Bendin_ Torsion

P P

Side Longero_ p Side. Longerons $

R - g R, .._.,__P. /

** ** ** **
Without End With End Without End With End

Flexibility Flexibility Flexibility Flexibility

(%) (%) (%) (%)

Ball 77.7 99.7 94.4 110.6
Joints

,
Pin 71.1 89.6 75.6 84.8

Joints

SPAR deflection
Percent = x 100

test deflection

,
Longeron-to-Interc0stal Joints

**
End Flexibility Refers to the Diagonal-to-Center Bhd Flat Plate Fittings

_n

Figure 24. Analytical and Measured Static Deflections



MASS PROPERTIES

As previously discussed in the section on the SPAR LDEF model, the

model was divided into nine substructure groups as shown in Table 1. For each

SPAR group in Table 1, the consistent mass matrix is generated by SPAR and

the weight of each group is printed out. Table 4 shows the Weight of eight of the

nine groups representing the weight of the SPAR model without trays before the

diagonal end flexibility beam elements were added. All of the groups had E21

beam elements and the IECM shelf also had E43 panel elements. The total

SPAR weight at the group level was compared with the drawing weight and the

lumped masses in SPAR were adjusted at the group level for better agreement

with the drawing weight. This procedure results in an accurate overall weight

distribution control. The total SPAR weight without trays is 3648 kg (8041 pounds}.

The keel pin and the damper_hts _e not included in this model or the test con-

figuration. This model weight was 0.2% lighter than the weight statement. The

final lumped masses and grid point locations for the final configuration with trays

are tabulated in Table 5. Most of these weights are the end fitting weights and

miscellaneous hardware. Table 6 shows SPAR weight distribution for the final

eonfiguration with trays. The total SPAR tray weights, 5218.1 kg (11504 pounds},

exactly equals the test configuration and includes the weight of the trays, the base

plates and the dummy weights that were bolted to the base plate. These total

weights for each tray am tabulated in Figure 21. The total with tray SPAR model

weight was 9057 kg (19967 pounds}.

The total weight for each tray was distributed uniformly over the

surface of the effective panel area. The radial location of the tray and

base plate center of gravity is based on SPAR weight outputs of the static

tray models. The effective panel area of bays A, B, E and F was

1.4921m 2 (2312.7 in2). The two center bays C and D had an effective panel

area of 1.6197 m 2 (2510.6 in2). The mass moments of inertia of each tray

due to the radial offset of each tray center of gravity from the plane of the

four corner longeron grid points was determined and one fourth was applied

to each of the four corner grid points as shown in Appendix C.
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TABLE 4. SPAR GROUPING FOR WEIGHT BALANCE,

CONFIGURATION WITHOUT TRAYS

SPAR Group Title SPAR Lumped Total Drawing

Type Number _t Ma s s SPA R Weight
(leg) (kg) (kg) (kg)

E21 1 Longeron 910.3 189.1 1099.4 1082.6
E21 2 Intereostals 355.9 0.0 355.9 366.7

E21 3 Center Bhd. 639.5 278.7 918.2 945.6
E21 4 Forward Bhd. 188.8 64.0 252.8 257.0

E21 5 Aft Bhd. 188.8 64.0 252.8 257.0

E21 6 Diagonals 279.0 154.7 433.7 433.8

E21 7 Cross Beam 94.2 75.3 169.5 169.4

E21 8 IECM Shelf 16.6 4.5 26.3 26.2
E43 1 IECM Shelf 5.2

Sub Total 2678.3 830.3 3508.6 3508.3

Misc. Hardware (on Bhds. ) _ 55.2 55.2 55.2

2 Trunnion Instl. (on Center Bhd. ) _ 56.5 56.5 57.3

Spindle Pin Instl. (Fwd. Bhd. ) 19.8 19.8 19.8

80 Clips (Fwd. and Aft Bhd. ) _ 7.4 7.4 7.4

2678.3 969.2 3647.5 3648.0

_n
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TABLE 5. LUMPED MASS LOCATIONS,
CONFIGURATIONWITH TRAYS

Grid Mass Grid Mass
Point Point

(kg) 0tg)

1 26.08 79 30.37

5 26.08 80 30.16

9 32.99 81 22.01

10 15.32 82 34.61

11 .66 83 78.24

12 .66 84 50.07

13 .66 87 50.07
14 .66 88 78.24

15 15.32 99 2.25

16 15.32 100 2.25
17 .66 149 15.32

18 .66 150 .66

19 .66 151 .66

20 .66 152 .66

21 15.32 153 .66

22 1.65 154 15.32
23 1.65 155 15.32

24 1.65 156 .66
27 i.65 157 .66

28 115.43 158 .66
29 1.65 159 .66

32 1.65 160 15.32
33 1.65 161 1.65

34 1.65 162 1.65

71 34.61 163 1.65

72 22.01 166 1.65

73 30.16 167 1.65
74 30.37 170 1.65

75 22.01 171 1.65

76 34.61 172 1.65

77 34.61 181 133.24
78 22.01

Total 1102.00

(2429.5 Ib)
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TABLE 6. SPAR WEIGHT, CONFIGURATION WITH TRAYS

SPAR Lumped Total

Weight Mass SPAR

(kg) (kg)

Longerons 910.3 189.1 1099.4

Intercostals 355.9 0.0 355.9

Center Bhd. 639.5 278.6 918.1

Fwd. Bhd. 188.8 64.0 252.8

Aft Bhd. 188.8 64.0 252.8

Diagonals 315.8 154.7 470.5

Cross Beam 116.1 75.3 191.4

IECM Shelf 21.7 4.5 26.2

Miscellaneous _ 271.8 271.8

Total Without Trays 2736.9 1102.0 2828.9

Trays 5218.1 0.0 5218.1

Total 7955.0 1102.0 9057.0
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COMPARISONOF FREQUENCIESANDMODESHAPES

Configuration Without Trays

The comparison of some of the SPAR and test vibration modes is

shown in Figure 25 for the LDEF without trays. The ball-joint and pin-joint

analyses bracket the test data at the lower LDEF frequencies. In general, the

longeron-to-intereostal ball joint boundary condition was closer to the test data

so this boundary condition was selected for the vibration analysis with trays.

Analytical frequencies were higher than test for the second vertical and lateral

bending modes. There were many intermediate modes not showr_ especially in

the 16 to 30 Hertz range where the predominate response was diagonal motion

often coupled with longeron lateral motion.

The first SPAR lateral bending mode shape at 20.85 Hertz is compared

with the test mode at 21.38 Hertz in Figure 26. The dashed lines represent

the undeformed test shape. The straight solid longeron lines are those that

hac_no transducers in the test. By comparing the shape of individual longerons

and diagonals, reasonable mode shape comparisons exist. The first SPAR

vertical bending mode shape at 28.39 Hertz is compared with the mirror image

of the test mode at 28.52 Hertz in Figure 27. Again the individual longeron

and diagonal mode shapes compare. Figure 28 shows the first SPAR torsion

mode at 12.94 Hertz compared with Figure 29 showing the test mode at

14.14 Hertz.

Configuration With Trays

The LDEF configuration with trays was evaluated using the longeron-_o-

intercostal ball joint SPAR model. Figure 30 shows the comparison of a few

SPAR and test modes of LDEF with trays. The SPAR and test frequencies

of the first three fundamental LDEF modes had very close correlation con-

sidering the complexity of the variation in trays and the longeron-_o-4ntercostal

joint motions.
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Frequency, Hz Mode Description

SPAR Test

Ball Joints Pin Joints

5.90 5.90 6.55 Cross Beam Rigid Body Yaw

9.41 9.41 10.14 Cross Beam Longitudinal Bending

12.94 15.90 14.14 First Torsion

20.85 22.29 21.38 First Lateral Bending

(_:: 2 t_9 _30.(17.7 t_0 (_:to} Predominantly Diagonal Motion

28.39 30.15 28.52 First Vertical Bending

28.86 31.60 29.28 Second Torsion

38.86 40.23 33.37 Second Vertical Bending

40.78 41.26 I:4.5._ Second Lateral Bending
k3 6)5.3

Figure 25. LDEF SPAR and Test Vibration Modes Without Trays
b_



SPAR
20.85 Hz

x

r •

TEST
21,38 Hz

Figure 26. First Lateral Bending Mode Without Trays



SPAR TEST
28,39Hz 28,52Hz

X

I
¥

Z

I

Figure 27. First Vertical Bending Mode Without Trays



SPAR
12.94Hz

Z

"._f

, --_._.. ",:-i-_t

X

i ! - .....

Figure 28. First SPAR Torsion Mode Without Trays
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TEST
14.14 Hz

Z _

\

X

Figure 29. First Test Torsion Mode Without Trays
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(Longeron to Intercostal Ball Joints)

Frequency, Hz Mode Description

SPA R Test

5.72 6.10 Cross Beam Rigid Body Yaw

9.33 10.10 Cross Beam Longitudinal Bending

19.06 19.20 1st Torsion

22.75 21.83 1st Lateral Bending

25.74 23.90 1st Vertical Bending

Figure 30. SPAR and Test Modes With Trays



REMARKS AND CONCLUSIONS

The LDEF structure presented some unique features to challenge the

finite element modeling techniques.

1. The design of the longeron-to-intercostal clevis pin joint modified

the LDEF bending stiffness and torsional stiffness. Static bending and tor-

sional test data of the LDEF vehicle without trays installed was valuable in

assessing this joint boundary condition. The ball-joint boundary condition was

selected as more accurate than the pin-joint boundary condition based on this

static test data and by comparing the vibration analysis of the two boundary con-

ditions with vibration test data of the LDEF configuration without trays.

2. The design of the diagonal end fitting that connected two diagonals to

a common point on the center bulkhead was a tee shaped flat plate. This fitting

appeared to be stiff enough so that it could be treated as a rigid link. However,

there was a slight angle offset between the diagonal and the plane of the end fitting

so that axial loads in the diagonal resulted in bending and twisting of this fitting.

Again, the static bending and torsional test data was found to be valuable in deter-

mining that the flexibility of this diagonal end fitting was required.

3. The design of the tray-to-structure clamps shown in Figures 7

and 8 allowed in plane relative sliding motion between the tray flange and

the mounting structure. At the four side mid point clamps this relative

sliding motion was approximated in the tray effective panel stiffness matrix

by allowing degree of freedom 6 to be free when the tray finite element model

was subjected to static shear and twisting deformations. This boundary change

reduced the shear stiffness to 54 percent and twisting stiffness to 58 percent

of the shear and twisting stiffnessas for the original boundary condition.

4. Using the SPAR LDEF model and incorporating the modeling

features described above resulted in good agreement between analytical and

measured data. This was true for static deflections and vibrations modes.
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APPENDIX A

PANEL AND BEAM PROPERTIES
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TRAY PANEL STIFFNESS

Effect of Boundary Conditions on Tray Panel Stiffness

After examing the clamping conditions of the tray lip to the mounting

structure it was decided to allow some clamp sliding due to shear loading.

As shown in Figure 8, the clamp friction is the only restraint for relative

in-plane motion, since there are no through bolts. The 4 clamps at the

center of each side of the tray were allowed to slide parallel to the edge of

the tray to relieve some of the shear loads being transferred at these clamp

locations. No sliding was allowed at the 4 corner clamp locations. By

freeing the degree of freedom 6 boundary condition at the ends of four rigid

links as shown below in the right hand column, it was determined that the

total shear transfer per side was reduced to approximately one half when

the unity shear strain loading conditions were applied. The Debris tray

stiffness matrix was derived with and without the relaxed boundary condition

being used for the unit shear and unit twist cases. The numerical comparison

is shown in Table 7. The shear and twisting stiffness terms were approxi-

mately one half as stiff with the relaxed boundary condition. This relaxed

boundary condition was used for the derivation of all of the effective panel

stiffness terms with the values tabulated in Table 8.

Original Boundary Relaxed Boundary
(No Relative Tray Lip Motion) (With Relative Tray Lip Motion)

(See Table 2)

Grid 0 8
z zPoint No.

1 0 0
2 0 Free
3 0 0
4 0 0
5 0 Free
6 0 0
7 0 Free
8 0 Free

SPAR BEAM SECTION PROPERTIES

The SPAR beam configurations and section properties are tabulated in

Table 9. The locations of these beam elements in the SPAR model are indicated

in Figures II, 14 and 19.
70



TABLE 7. FLANGE ROTATION EFFECT ON

DEBRIS PANEL STIFFNESS MATRIX

Relative Flange MoUon Allow.ed ( O = Free)
Z

N× .3604 -.04186 0 3.278 -. 3314 0 " (e x

J::Ny -.04186 .08170 0 -.2702 .7864 0
N = 0 0 .05594 0 0 -.2264

xy

Mx 3.278 -.2702 0 .2564 -.01664 0 _ k

L::My -.3314 .7864 0 -.01664 .07187 0

Mxy _ - 0 0 -.2264 0 0 .009610

Relative Flange Motion Not AHowed ( 0 = 0 )Z

.3604 -. 04186 0 3.278 -.3314 0 - _eyeX
-.04186 .08170 0 -.2702 .7864 0

= 0 0 .1034 0 0 ".4059

3.278 -.2702 0 .2564 -.01664 0 I x I

-.3314 .7864 0 -.01664 .07187 0 [k I

0 0 -.4059 0 0 .01655

where the units are

MN/cm I MN

MN I Mm-N
_ [ -

The only stiffness terms that change are the C33 , C36 , C63 and C66

terms. By allowing the flange motion the shear stiffness, C33 , reduced from

• 1034 to . 05594 or only 54_ 1 percent as stiff. The twisting stiffness, C66 , re-

duced to 58.1 percent and the coupling term, C36 , reduced to 55.8 percent as
stiff.
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TABLE 8. TRAY PANEL STIFFNESS TERMS

(Side Flanges Free to Rotate)

Cll C12 C22 C33 C14 C15 C24

MN/em (MN/cm) (MN/cm) (MN/cm) (MN) (MN) (MN)

Side Trays

Debris .3604 -, 04186 .08170 o05594 3. 278 -. 3314 -. 2072
Shallow .3690 -. 04361 .08105 .03748 3. 386 -. 3616 -. 2943

Nominal ,6805 -. 07112 .20245 .06772 6. 217 -. 5654 -. 3527

Deep .7192 -. 07972 .2319 .04963 6. 544 -. 5712 -. 3671

End Rectangular

Shallow .7234 -. 05368 .8375 .06713 5.669 .03661 .00934

Nominal .7788 -. 03590 .8877 .05277 6. 169 .08776 .06107

Deep .8341 -. 01813 ,9380 .03841 6. 669 .1389 .1128

End Corner

Shallow .7805 -. 05401 .7805 .06713 4.448 -. 4261 -. 4261

Nominal .8333 -, 03604 .8333 .05277 6. 618 -. 2862 -, 2862

Deep .8861 -. 01816 ,8861 .03841 7.113 -. 1458 -. 1458

C25 C36 C44 C45 C55 C66

(MN) (MN) (Mm-N) (Mm-N) (Mm-N) (Mm-N)

Side Trays

Debris .7864 -o 2264 .2564 -. 01664 .07187 ,009610
Shallow .7873 -. 1505 ,2678 -. 02001 .07249 .006602

Nominal 1.918 .08118 .3868 -. 01580 .1655 .003100

Deep 2. 216 1. 2446 .3480 .00264 .1866 .02307

End Rectangular

Shallow 6. 582 -. 1210 .4365 .01427 .5481 .004519

Nominal 7.069 -. 01606 .4802 ,01271 ,5922 o009850

Deep 7.556 .08892 .5232 .01115 .6363 .02106

End Corner

._ Shallow 6o 126 -. 1210 .4923 o01427 .4923 .004519
Nominal 6. 618 -. 01606 .5362 .01271 .5362 .009850

Deep 7.113 .08892 .5797 .01115 .5797 .02106



c r

TABLE 9. SPAR SECTION PROPERTIES
i

Beam Elements

SPAR
Beam

Section SPAR

Property Designation B1 T1 B2 T2 B3 T3 Area 11 12 J
(cm) (cm) (cm) (cm) (era) (cm) (cm 2) (cm 4) (cm 4) (em 4)

BA1 WFL 11.43 .9652 15.8496 .5588 - - 30.92 240.4 1746.7 7.8

BA2 TEE 11.43 .9652 7.6708 .5588 - - 15.32 120.2 79.4 3.8
BA3 WFL 17.78 1. 4732 83. 1514 .9144 - - 77.56 1381.8 12619.7 44.9

BA4 WFL 11.43 .9652 22.1996 .5588 - - 34.47 240.5 3471.2 8.1

BA5 GIVN 35.56 1.270 25.40 .635 8.89 1. 016 129.03 12444. 1 17975.4 8495.3
BA6 WFL 10.16 .762 13.716 .4572 - - 21.75 133.3 910.5 3.4

BA7 GIVN 26.518 .3556 15.24 .4572 3.7338 .762 42.78 3788.6 1940.5 2080.6
BA8 TUBE 6.985 7.620 .... 29.14 778.3 778.3 1556.6

BA9 TUBE 3.81 5.08 .... 35.47 357.6 357.6 715.1
BAI0 GIVN 38. i0 i. 5748 12.70 I. 27 22.86 2.54 116.52 10570.2 877.8 1216.6

BAll GIVN 5.08 3. 302 8. 636 .762 2.54 .508 32.52 119.3 426.5 63.7

BA12 CHN 4.445 .6604 6. 2992 .4318 - - 8.59 80.3 17.2 1.0
BA13 ANG 2.235 .1600 2. 380 .1600 - - 0.74 0.7 0.2 0.01

BA14 TUBE 2.416 2.54 .... 1.94 6.0 6.0 11.9
BA15 TUBE .254 6. 9088 .... 149.75 1789.4 1789.4 3578.7

BA16 GIVN ( Same as BA2 for Ball Joints) - - 15.32 0 0 0

BA18 GIVN ( Same as BA2 for Pin Joints) - - 15.32 120.2 0 3.8
BA19 GIVN 18. 288 2.54 .... 46.45 1294.6 25.0 99.9
BA20 GIVN 17.78 1.905 .... 33.87 892.3 10.2 41.0

' -T--i-[F-1F =-T
,, " H u' --,t;_" ,_,_T,i IB,=-,-,I'r , _ =6N_ _ cH_" TEE_ WF_ _A 6- _ 8_ 7

• _#i_ _ EI_?D 3A/O ,IJ3A// T_BE
¢.o



Plate Elements

[.........................._........__].........._..___t=__ .3556_m(.14in)
SA1 HA d = 15.24 cm (6. in)

E ] -- t= .3556 cm (.14 in)

The bending stiffness for a single panel is:

Eh3
D -

2
12 (1 - v )

This bending stiffness was derived in Reference 2 from the integration

h/2

M = _ _xZdZ
-h/2

For a two plate configuration the integration is

-d/2 d/2 + t

aza .+  zaz
-d/2 -t d/2

resulting in the bending stiffness

1 d2 2 t2
D' - Et ( _- +dt +-_ )

(1- /2)

SPAR FORMAT = 2 inputs

i1 - y2) - i

r = 2 E____t 2 VE_____t 0

(1 - y2) (1 -

= 2 __----Lt 2 E---l--t0

ii 2(1 - v ) (1 - 2)

Et

_. 12 - 0 0 (1 + y)

o 1Yl2 = y D D' 0

D'(l-p) ¢
_1 _ 0 0 2 - xyJ

SA2

•160 em (.063 in.)

Plate element having extensional, bending and shear stiffness 74
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MESH SIZE CRITERION

Maximum finite element grid intervals or mesh sizes were determined

by use of a criterion stating that a beam or plate element having simply sup-

ported boundary conditions should have a natural frequency greater than 50

Hertz. If the natural frequency was less than 50 Hertz, intermediate grid

points were added until the criterion was met. The value of 50 Hertz was

selected because the region of LDEF frequencies of interest were those up

to 50 Hertz. As shown in Figure 31, the only place that intermediate grid

points were required was on the diagonals and lateral members of the cross

beam.
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Required: Frequency > 50 Hz

Boundary Condition.- Simply Supported

Beam Elements

L, Max. Grid . I

[" Interval r[

Met Criteria Failed Criteria

(>50 Hz) (<50 Hz)

(Intermediategrid pointsadded)

Longerons Diagonals

Intercostals Cross beam - lateralelements

Bulkheads

IECM Shelf

Cross beam - verticalcenter
element

Plate Elements

SS

Max. Mesh
SS SS

Size

SS

Met Criteria

( > 50 Hz)

• All plate elements met the criteria

Figure 31. Mesh Size Criterion
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TRAY MASS MOMENTS OF INERTIA

The mass moment of inertia of a given tray type (It) was obtained from

the SPAR tray substructure group weights and the radial offset distance (zt)

. to the tray mass center from the plane of the corner longeron grid points. These

values are tabulated in Table 10.
- _ WZ
Z =

_w

2
m

It = z _3w

The average ballast height for each tray and the total ballast weight (Wb) for each

tray was used to determine the ballast offset distance (_b) and the ballast mass

moment of inertia (Ib). These values are tabulated in Table 11°

2

Ib = ZbW b

The total tray radial offset mass moment of inertia for each tray is

, __ ,t+_

One fourth of this value was then applied at each of the four corner grid points

and rotated from the tray coordinate system to the LDEF cylindrical coordinate

system.
r z

{9 x, y, z Tray coordinates

__ r, 8, z' LDEF coordinates_f ..... Y

Mass Moments of Inertia in LDEF Coordinates

2 2
I^ = I__cos q_+I sin q_-2 I sin_cosq_

(7 y z yz
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2 2
I = I sin _+I cos _+2I sin_cos
r y z yz

1

ler = lyz cos 2(p+_ (ly-lz)sin2

For I = I/4 ;I =I =0.0
y z yz

2

Is = (I/4) cos

2
I = (I/4)sin

r

2

Ire = (I/8) sin

I , = I/4
z

= ± 15°

2
cos _ = .93301

2
sin q_ = .06699
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TABLE 10. SUMMARY OF SIDE TRAY OFFSETS
AND MASS MOMENTS OF INERTIA

_'t
Tray and Tray

• Tray Base Plate Mass
Type Mass Offset It

kg (lb} cm(in} m'2U-kg{in-lb-sec 2}

Debris 24.05 (53.023} 2.78 (1.096} .01863 (. 1648}

Shallow 26.09 (57. 519} 2.35 (. 925} .01443 (, 1276}

Nominal 29.00 (63.937} -3.53 (-1.390} .03614 (. 3196}

Deep 32.24 (71.083} -9.01 (-3.547} .2619 (2.316}

Deep* 48.14 (106. 137} -40.4 (-15.9} 7.847 {69.40}

Special deep tray at location D-12

81



TABLE Ii. SIDE TRAY BALLAST MASS MOMENTS OF INERTIA
m

;b zb
Tray Ballast Ballast T Tray Ballast Ballast T

Location Weight Offset _b Location Weight Offset _b

(kg) (cm) (m---2_g) (kg) (cm) (m--2_-kg}

A-1 0 - 0 D-1 73.94 4. 902 .1777

A-2 70.31 -3.037 .06486 D-2 0 - 0

A-3 51.71 4.318 .09643 D-3 0 - 0

A-4 68.04 -3.037 .06278 D-4 73.94 4.902 .1777

A-5 0 - 0 D-5 0 - 0
A-6 0 - 0 D-6 70.31 -3.037 .06486

A-7 16.33 2.945 .01416 D-7 0 - 0

A-8 0 - 0 D-8 74.84 4.903 .1799

A-9 70.31 -3. 037 .06486 D-9 0 - 0

A-10 70.31 -3. 037 .06486 D-10 27.22 3. 326 .03012

A-11 0 - 0 D-11 73.94 4. 902 .1777
A-12 38.56 3. 835 .05672 D-12 131.09 -49. 530 32.159

B-1 0 - 0 E-1 16.33 2. 945 .01416

B-2 68.04 -i0.659 .7730 E-2 68.04 -I0.659 .7730

B-3 70.31 -3.037 .06486 E-3 65.32 4.901 .1569
B-4 8.16 3.254 .00864 E-4 70.31 -3.037 .06486

B-5 68.04 -i0.659 .7730 E-5 68.04 -10.659 .7730
B-6 13.15 3.125 .01284 E-6 28.12 3.327 .03112

B-7 68.04 -10.659 .7730 E-7 68.04 -I0.659 .7730

B-8 8.16 3.254 .00864 E-8 70.31 -3.037 .06486
B-9 70.31 4.903 .1690 E-9 70.31 -3.037 .06486

B-10 31.75 -12.182 .4712 E-10 68.04 -10.659 .7730
B-II 0 - 0 E-If 0 - 0
B-12 8.16 3.254 .00864 E-12 i0.43 -12.616 .1660

C-1 8.16 3. 254 .00864 F-1 16.33 2. 945 .01416

C-2 0 - 0 F-2 11.79 2. 996 .01058
C-3 26.76 3.250 .02827 F-3 37.19 -4.181 .06500

C-4 27.22 3.326 .03012 F-4 0 - 0

C-5 42.18 3.887 .06373 F-5 11.79 2.996 .01058

C-6 70.31 -3.037 .06486 F-6 10.43 -4.946 .02551

C-7 0 - 0 F-7 0 - 0
C-8 73.94 4.902 .1777 F-8 44.00 3.886 .06644

oo C-9 21.77 3. 125 .02126 F-9 37.19 -4. 181 .06500
b_

C-10 8.16 ' 3. 254 .00864 F-10 0 , - 0
C-II 73.94 4.902 .1777 F-II 0 - 0

C-12 33.57 3.632 .04428 F-12 44.91 -4-054 .07382
i
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SPAR EIGENVALUE EXTRACTION EXPERIENCE

Vibration modes are computed in SPAR by means of a sparse matrix

eigensolver as described in reference 1. The procedure implements an

iterative process consisting of a Stodola (matrix iteration) procedure followed

by a Rayleigh-Ritz procedure, followed by a second Stodola procedure, etc.,

resulting in successively refined approximations of a reduced set of m

eigenvalues. Since K need not be positive definite, this method can be used

to solve "shifted" vibration eigenproblems. This "shifted" procedure is

required for a free-free system to make the stiffness matrix non-singular.

The procedure used in SPAR is to alter the original linear vibration problem

rMx-Kx = 0 (:}

by adding and subtracting cMx from the left side,

(r- c) Mx- (K- cM}x = 0 (2}

Equation 2 is of the same form as equation 1_ except that (r - c} has re-

placed r, and (K - cM} has replaced K. The value c is the shift value.

SPAR inverts the shifted stiffness matrix (K - cM} and computes the

eigenvalues in the neighborhood of c. When this inversion is being made, the

number of negative terms encountered in factoring K - cM is equal to the

number of roots (eigenvalues} below the shift value (c} in equation (2}.

Using this SPAR procedure for the LDEF model without trays

required eleven computer runs to obtain all of the flexible modes up to

50 Hertz as illustrated in Figure 32. The inputs shown for each computer

run are the upper and lower frequency bounds (V1 and V2} and the shift

location indicated by the triangle. The outputs shown are the number of

converged eigenvalues and the frequency range of these converged eigen-

values. The first run is shown on the bottom right of the figure with a shift

at 50 Hertz and the last run is shown at the top right. From the first run,
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which was used to determine how many eigenvalues existed below 50 Hertz,

93 flexible modes were indicated, and 15 converged modes were found. The

next four runs directly above and to the left of the first run in Figure 32 were

run Simultaneously. From these runs, thirty-four additional converged modes

were identified, leaving forty-four that were found in the remaining runs.

At the lowest frequency range, only two modes converged. This

is partially due to the fact that there were only two modes in the immediate

vicinity of the shift frequency while the other runs had many closely spaced

modes near the shift location. However, there were 7 modes between the

frequency bounds of V1 and V2 in this low frequency run so that more

converged modes were expected. More problems were encountered in

obtaining converged modes at the lower frequencies when the lower bound

V1 was near the rigid body (zero frequency} modes.

In all of the runs, the value of IN-IT (number of initially chosen vectors}

was set equal to 15. The value of NDYN (number of iterations} was inereased

from the default value of 8 to values of 13 to 16. With NDYN equal to the

default value, the number of converged modes per run decreased considerably

in many runs, and this procedure was not considered cost effective for the

LDEF model with 1416 degrees of freedom. By examining the runs in

Figure 32, the number of converged modes after 8 iterations (NDYN = 8} was

tabulated and compared with the converged modes from the computer runs.

The results are shown as follows:

Shift NDYN No. of No. of Converged
Frequency in Converged Modes if

(Hz} Ikm Modes from Run NDYN = 8 (default}

7.96 16 2 , 2
13.96 16 12 12
18.15 15 6 6
20.00 13 12 9
22.51 15 12 6
29.00 15 10 4
35.59 16 13 13
38.98 16 10 5
41.20 15 4 4
43.59 16 11 6
50.O0 16 15 9
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The increased number of converged modes obtained with an increased

number of iterations may be due to the large number of degrees of freedom

and the numerous modes with nearly identical frequencies.
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