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CONTEXT DISTRIBUTION ESTIMATION
FOR CONTEXTUAL CLASSIFICATION
OF MULTISPECTRAL IMAGE DATA

JAMES C. TILTON, PHILIP H. SWAIN,
AND STEPHEN B, VARDEMAN
Purdue University

ABSTRACT

A classification algorithm incorpora-
ting contextual information in a general,
statistical manner is presented. Methods
are investigated for obtaining adequate es~
timates of the context distribution (a sta-
tistical characterization of context) upon
which the classification algorithm depends.
Finally, a method of estimating optimal al-
gorithm parameters prior to performing pre-
liminary classifications is explored.

I. INTRODUCTION

The most widely used method for clas~
sifying remotely sensed data from such
spurces as multispectral scanners on air-
craft or satellite platforms is a point-by-
point classification technique in which da-
ta from each pixel in the scene are classi-
fied individually by a maximum likelihood
classifier [1]. The information normally
used by this classifier is only spectral
or, in some cases, spectral and temporal.
There generally is no provision for using
contextual information.

In contrast, when scanner data are
displayed in image form, a human analyst
routiinely uses context to help decide what
is in the imagery. Using context, he may
be able to easily pick out roads, delincate
boundaries of agricultural ficlds, and dif-
ferentiate between grass in an urban set-
ting (lawns) and grass in an agricultural
setting (pasture or forage crops) where a
maximum likelihood point classifier would
have much difficulty in doing so.

Recently we have developed a classifi-
cation algorithm which incorporates contex-
tual information in a gencral, statistical

This research was funded in part by
National Acronautics and Space Administra-
tion Contract No., NAS9-15466 and National
Science Foundation Grint MCS78-04366.
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manner [2]. 7This algorithm exploits the
tendency alluded to above of certain grou-
nd-cover classes to be more likely to oc~
cur in some contexts than in others.

An cstimate of the "context distribu-
tion" (a statistical characterization of
the context in the scene to be classified)
must be made before this classification al-
gorithm can be used. Mathods are investi-
gated hcere for obtaining sufficiently ac-
curatc estimates of the context distribu-~
tion. The process of estimating the con-
text distribution can involve a large num-
ber of preliminary classifications using
the statistical context classifier. With
the goal of limiting the number of prelimi-
nary classifications needed, a method of
predicting the optimal algorithm parameters
without performing classifications is ex-
plored.

II. THE CLASSIFICATION MODEY

Remote scnsing imaging systems gene-
rally provide data in the form of a two-
dimensional array of N=leN2 pixels of

fixed but unknown classification. Let the
observation at image coordinates (i,j) be

xij and the true but unknown classification
at that image point be oij c {wl,mz,...,wm)

where m is the number of cover classes re-
prescnted in the scene, and w, is the kth
cover class. Associated with“each xij and

0;; is a class-conditional density p(xijl
oij)' The maxinmum likelihood point classi-
fier estimates each Oij in the following
:ay: Decide Gijzuk if and only if gk‘xij)
= gﬂ(xij) for all £=1,2,...,m where gk(xij)
is the discriminant function

gy (X350 = PXy5ludpluy) (1)
and p(wk) is the prior probability of class
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Wy occurring in the scene, Usually a good
estimate tor p(wk) is not known (or even
sought) , and the approximation p(w,) = 1/m
is used (uniform priors).

Contextual informasion can be incor-
porated into a decision rule of the same
general type by modifying the discriminant

function. Let the context at image point
xij consist of obscrvations spatially near,

but not necessarily adjacent to, xij' Gr=-
oup these obscrvations along with xij into

a vector of observations 235 ol LSRR PYRRRY
XP)T with X “xi. and the number of observa-

tions taken as context being p~1 (the or-
dering is fixed but arbitrary). Call the
arrangement of pixels in xij the p-context

array. Let the possible classes associated
with X4 be 0P = (01102.-..,OP)T where

8, € {ul,wz,...,mm) and the ordering of the
elements in g? coincides with that in Xi4e

Assuming that the observatiqns are class-
conditionally independent gives a discrimi-
nant function incorporating context as

m m p p
gk(gij)xg)l;l...gzﬁ nllp(xnl9n>s(9 ) (2)
p—

where 68_ is fixed as Wy [2). 7he context

distribution, G(gp), is the relative fre-
quency of occurrence in the scene of the
class configuration in the p-context array
given by Qp. The similari¢y of this dis-
criminant function to the function used by
the maximum likelihood point classifier be-
comes clearer by rewriting gk(ﬁij) as

gk(-)-('ij) = P(xijl“’k) .
m m p-1
e np(x e))c(gp)
z{:cl L 5_:1=1[<n=1 nl % ]

where Opis again fixed as Wy » The summa-

tion term carries the contextual informa-
tion and can be thought of as an expanded
context~carrying version of p(mk) from the

peint classifier case. This discriminant
function is identical to the no-context
discriminant function when p=l since

1, .
G(0™) = pluy).

111, ESTIMATING CONTEXT DISTRIBUTION--G(QP)

To evaluate gk(§1 ) we must know va-
lues for the p(X [0 ) and 6(0P). Methods
for cotimating p(xnion) are well establish-

ed from considerable experience in using
the no~context maximum likelihood decision
rule (as in Lq. 1) for classification (sce
(1)), optimal methods for estimating G(OP)
are not yet established. Preliminary work
on finding practical methods for estimating
G(ﬂp) is presented in [2].

The most successful method developed
to date for estimating G(0P) goes as fol-
lows:

1. Perform a no-context uniform-
priors classification on the training set,
restricting the classifier's decision rule
to choosing among spectral classes in the
correct information class,

2. Estimate the context distribution,
G(0P), from the resulting 100 percent ac~-
cufate classification of the training set
by counting the number of occurrences* of
aél possible class configurations given by
[l

This method was used on a 50-pixel
squarec area from the northeast corner of
the Large Area Crop Inventory Experiment
(LACIE) Seqgment No, 1860 in Hodgman Coun=-
ty, Kansas. 'The class~-conditional densi-
ties were estimated for the 16 spectral
classes from randomly located training
fieclds scattered throughout the entire 117-
by-194 pixel Landsat data frame. The co-
ordinates of the training set fields were
chosen by selecting pixel coordinates from
a random number table and surrounding the
sclected pixel by the largest homogeneous
rectangle (up to fiecld size 20 by 20),

The classifications were tested for accura-
cy over five information classes (pasture,

idle, wheat, corn and alfalfa) from "wall=-

to-wall" pixel-by-pixel ground truth.

The restricted no-context classifica-
tion was performed over the first 25 lincs
of the 50-pixel~-square area and the context
distribution was estimated over those 25
lines. The classification results were
evaluated over the last 25 lines. The re-
sults show (Table 1) that this method pro-
duced an estimate of the context distribu-

tion, G(gp), which in turn produced con-

The estimate of the context distribution,
G(4P), does not nced to be normalized so as
to be an actual probability estimate. The
normalization factor does not affect the
classification decisions based on the dis-
criminant function in Eg. 2,

!
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Table 1
CLASSIFICATION CLASS RESULTS ON LACIE DATA
) (X )
Accuracy,
Lines 25-50
Avorage~-
Classification Ovarall by=-Class
Uniform-priors no-context
--uprestricted 78.0 75.6
1 ]
4 ncarest neighbors 85.5 8l.6
]
8 nearest neighbors 87,1 81.9

G(Op) estimated from restricted uniform-
priors no-context classification over
lines 1-~25.

** Cclassification performance can be tabu-
lated in two ways. OQverall accuracy is
gimply the overall number of correct
classifications divided by the total
number attempted. Average=by-class ac-
curacy is obtained by first computing
the accuracy for each class and taking
the arithmetic average of the class ac~-
curacies. The latter is significant
when the classification results exhi-
bit a tendency to discriminate in fa-
vor of or against a subset of the
classes.

=R Ealy S grer Aoy

textual classifications with significant
improvement in classification accuracy over
the conventional uniform~priors no-context
classifieation on this data set.

while this method can produce good es=-
timates of the context distribution, it
suffers the limitation that a sufficient
number of blocks of ground truth of suffi-
cient size are needed to make an accurate
estimate of the context distribution. 'This
me*hod cannot be used at all when blocks of
groand truth data are not available, while
the monditional probabilities can be esti-
mated from ground truth at random pixel lo-
cations.

Another possible method of estimating
the context distribution would be to base
the estimate on a uniform-priors no-context
classification. Such an estimate might
then be refined by basing a new estimate on
the context classification made using the
first context distribution estimate. The
estimates micht even be iterated until the
estimate producing the most accurate clas-

sification over the training set is found.
{(The final result should then be evaluated
on a test set disjoint from the training
get.)

Results from a straightforward imple-
mentation of this iterative “bootstrap” me-
thod were reported earlier in [2). Esti-
mates of the context distribution were made
from counting the number of occurrences of
all pessible elass configurations in the
appropriate classification. While this me-
thod produced excellent results when simu-
lated data were used, results using real
Landsat data were disappointing.

It is thought that the no-context uni-
form-priors clagsifications of real Land~-
sat data simply did not produce an accurate
enough classification for the "bootstrap®
method to work., The classifiction of the
simulated data was accurate enough because
the class-conditional probabilities p(x|o,)
were modeled exactly, whercas the class-
conditional probabilities were not modeled
exactly on the real data classifications.
This resulted in cstamates of the context
distribution, G(QP), in the real data cases
that contained nore spurious class configu-
ration counts than in the simulated case,
which in turn gave poorer context classifi-
cation results in the recal data case.

There are several ways in which the
context distribution estimates from real
data no-context classifications could be
"cleaned up." One could employ a threshold
procedure which deletes all class configu=-
rations with counts below a certain number,
Another approuch would be to divide each
class configuration count by a fixed num-
ber and take the integer part of the re-
sult as the new count, deleting all class
configurations with counts that become
2Cro.

Yot another method for reducing the
cffoct of spurious class configuration cou-
nts is to raise each count to a power and
use the result as the context distribution
estimate, FPor powers greater than one, the
class configurations with larger counts are
favored even more heavily versus those with
relatively small counts in the discrimi-
nant: function in Eg. 2. Conversely, for
powers less than one, the class configura-
tions with large counts are less heavily
favored. GCoing to the extreme of a power
of zero results in all class configurations
being cqually favored as in a uniform-
priors no-context configuration.

This power method was first tried on a
simulated data set to investigate the me-
thod's characteristics undisturbed by un-
known effects from inaccurate modeling in
the real data scets.,  This simulated data
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set [2] was gencrated from a very accurate
no~context classification of Landsat-1 data
from an urban area (Grand Rapids, Michigan),
A 50-pixel~square segment was used in the
tests., See Figure 1 for a summary of the
results. The results scem to indicate
that when the model is exact, as the power
used is increased (to a certain point), the
classification results tend towards the re-
sults obtained when the context distribu~
tion is estimated from ground truth. Also,
as expected, as the power used is decreased
below one, the results tend toward a unis
form-priors no-context classification.

The power method was also used on a
50~pixel~square segment of Landsat data
containing approximately equal amounts of
urban and agricultural area located to the
southeast of Bloomington, Indiana. Statis-
tics for the spectral classes were estima-
ted using the 100~pixel-square area center-
ed on the 50-pixel-squarec segment. A very
careful uniform-riors no-context classifi-
cation using 14 spectral classcs was per-
formed to delincate agricultural, urban and
forested areas., As there were too few fo-
rested pixels to delincate forest test a-
reas rcliably,; the eclassification was test-
ed only for accuracy in classifying the ag-
ricultural and urban classes. Out of the
2500 pixels in the segment, a total of 867
pixels were manually interpreted as agri-
culture and 450 pixels as urban, The iden-
tification was made by interprotation of
color infrared photography taken by air-

craft on the same day as the Landsat pass.

As mentioned earlier, a straightfor=-
ward implementation of the iterative boot-
strap method of estimating the context dis-
tribution for this data set produced disap-
pointing results. Whereas the no-context
uniform~priors classification had an over~-
all accuracy of 83.1 percent and average=~
by-class accuracy of 82.7 percent, the
best the bootstrap method could do in three
iterations was 85,3 percent overall accura-
cy and 84.8 percent average-by-class accu-
racy. The fourth iteration produced no
improvement.

Figure 2 summarizes the resul.s using
the power method on two-nearest-ncighbors
context (ncighbors to the north and cast)
based on an estimate of G(0F) from the no-
context uniform-priors classification.
Trading off overall accuracy against aver-
age-by=~class accuracy, the best classifica-
tion was produced using a power of 5, for
which an overall accuracy of 87.0 percent
and average-by-class accuracy of 86.1 per-
cent was achieved. This nearly doubled
the accuracy improvement over the no-con=-
text classification produced by the strai-
ght bootstrap mcthod. Note also that the

results in Pigure 2 follow the general tre-
nd of the simulatced data results in Figure

A sccond iteration of estimating the
context distribution, G(6P), was then made
based on the classificstions listed in Pi-
gurc 2, The sccond estimate of G(uP) based
on the classification using the £irst esti-
mate raised to a power of 10 produced the
best classification results with an overall
accuracy of 88.5 percent and an average-by=
class accuracy of 87.5 percent (using G(0¥)
raised to a power of 5), See Table 2 and
Figure 3 for a summary of results, This
second estimate of G(EP) gave a total 5.4
pereent improvement in overall accuracy and
4.8 percent improvement in average~by-class
accuracy over the no-context classification.
Even though thege improvements are not as
large as in the results using simulated da-
ta, or using the more restrictive method on
real data, these results are certainly en-
couraging,

Table 2
SECOND ITERATION POWER METHOD RESULTS

Best four nearest-neighbor classifications
with G(Qp) based on the classification in
Figure 2.

Power Used Accuracy, %

Power Used in This Average-
in Fig, 2 Classification Overall by-Class

2 5 86.5 85.6
3 5 86.3 85.7
S 5 87.3 86.7
7 5 88.1 87.2
10 5 88.5 87.5
15 3 87.7 87.2

Prior to making the sccond iteration
estimate of G(yP) above, it was assumed
that the more accurateaclassification was,
the more accurate the estimate of G(0P)
from it would be. Tne results quoted here
show clearly that this is not always the
casc., Iurther study is required before it
can be determined wheother this type of be-
havier is typical, and before this bchavior
can be esploiied optimally.
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IV. PRACTICAL CONSIDERATIONS

The general approach to estimating the
context distribution, as sugqgested by the
results reported in the previous secction,
can involve a large number of context clas-
sifacations before the best cstimate is
found. In addition to determining the best
power of the context distribution to use at
cach iteration, the best p=context array
(how many and which neighbor(s) to use)
needs to be determined at each iteration,

The size and shape of the p-context
array directly affect computation cost and
clasgifiction accuracy. Generally, the
larger the p-context array, the higher the
computation cost. When the classification
from which the context configuration is
estimated is sufficiently accurate, larger
p=context arrays yield higher classifica-
tion accuracies. Less accurate template
classifications can result in cases whore
a large p~context array will produce a
classification that is less accurate than
the no-context classification. Also, p-
context arrays of given size may produce
differine classification accuracies, de-
pending on the shapes of the arrays, It
would be desirable to be able to predict
the optimal size and shape of the p-con-
text array and the best power of the con-
text distribution to use at cach iteration
before any actual classifications are
performed,

V. ESTIMATION OF OPTIMAL P~CONTEXT
ARRAY AND POWER

A theoretical measure of context has
been developed from the perspective of ap-
plying this measure to predicting the op-
timal p-context array. This same measure
may also be useful in estimating the best
power to use of the context distribution.

Suppose that tha relative freguency
function G(0P) is such that it can be writ-
ten in factored form, i.e.,

6(e®) = a(o (e (3)
1 2 3
4 5 6
7 8 9

Fig. 4. Pixel locations used in testing Acg

where 07 and 00" are, respactively, q and
p=q vectors of classes. The last element
of 0P77 is the same as the last element of

2
oP, If this factorization can indeed be
realized, Eq. 2 can be rewritten as

m m /9q 1
] NHi.
gy (X 4) 313“1-. .RE_I("QIMX,,!%)G (g

m m p 1
T .. X( nlp(xn[on>c(,g‘2’"‘) (4)

£q+ln1 Lpulnl n-q*

where lp-k and the last element of Qg-q is
Wyee Since the term in the first sect of

brackets is independent of k, it is just a
constant term that can be ignored when
classifying point (i,3). When such a fac-
torization as in Eq. 3 can be made, wo can
reduce the size of the p~context array, re-
ducing computation cost with no loss in
classification accuracy.

. 1f G(0P) can be factored as in Eq. 3,
it is clear that the distribution G(gP) is
one of independence for Q? and 02"9 This

suggests that a measure of nonredundant
contextual information from the pixel posi-

tions in 0] as compared to that from the
pixel positions in ¢8™¥ would be a measure
of departure from independence fox g? and
Qg—q in the distribution G(g?). A possible
measure of this departure would be

m m

2
aP= L. L 6(89) 6(0P™) - g(6P) (5)
T 1y=1 R A -

where G(gg) and G(gg-q) are now the margi-
nals of G(gp). Other distributions of in-
dependence with marqinal(;@g'q) and other
measures of departure from G(6F) could be
used. This particular form for Acg is at-

tractive because it is particularly casy
to calculate.

The "context measure” AGP can be used
to estimate the optimal p-context array in
the following way: Establish gg-q as a
fixed core (p-q)-context array. Calculate
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the values of AGP for various g-context
arrays as Qq. distinct from the core array.
The best p-tontext array for 0P would be

gg‘q combined with the gg that produced the
largest value for Acz. This, of course,
assumes that the contextual information
contributed by g? is not so crroncous that

it would actually decrease classification
accuracy. This may not be a rcasonable
assumption in all cases.

The first test of AGP was made on the

simulated data with p=2 and g=1 and the
context distributions estimated from the

ground truth. The context arrays gi and gg

were defined with respect to the pixel lo-

cations defined in Figure 4. gl was first

fixed as pixel position 5 and 21 wasg va-
1

Table 3
AG: TESTED ON SIMULATED DATA WITH CONTEXT
DISTRIBUTIONS ESTIMATED FROM GROUND TRUTH

ol pl Accuracy, 3

1 T2 2 . 4
Pixel Pixel AGlxlo Average~
Location Location Overall by-class

8 5 5.09 92,7 74.0

2 5 4,99 91.6 73.5

4 5 4,90 9).7 71.8

6 5 4.90 91.7 73.9

7 5 3.42 90.8  71.2

3 5 3.31 90.4 69.8

9 5 3.26 90.6 79.6

1 5 3.19 90.6 70.1

7 1 2.58 90.3 68,6

3 1 2.27 90.2 70.3

8 1 1.98 89.4 €7.9

6 1 1.87 90. 4 70.2

9 1 1.53 89.9 69.5

e e B e R A S o LRI T Tt
Table 4
AG: TESTED ON SIMULATLD DATA WITH CONTEXT
DISTRIBUTIONS ESTIMATED FROM UNIFORM=PRIORS
NO~CONTEXT CLASSIFICATION

Accuracy,
21 o} ’

Pix:l 91321 Acix105 Average=~
Location Location Overall by-Class
8 5 7.56 79.8 81.7
2 5 7.30 79.1 81.9
4 5 6.13 76.8 80.6
6 5 6.11 79.0 8.4
7 - 4.71 78.8 80.9
3 5 4.53 78.6 80.6
9 5 4,28 78.4 80.6
1 5 4.22 78.3 79.7
7 1 .n 78.5 60.9
8 1 2.7 78.0 80.0
3 1 2.65 78.0 80.9
6 1 2,31 78.0 80,8
9 1 2.17 78.0 80.1

— s

ried over the remaining positions., g; wa3s

also later fixed as pixel position 1 with

gl varied over the pixel positions relative
t& position 1 not covered previously (l.e.,
positions 3' 6‘ 7‘ 8 and 9)-

As can be secen in Table 3, acP clearly

predicted that the best neighbor to use for
context would be any of the four nearest
neighbors (pixel positions 2, 4, 6 or 8 re-
lative to position 5). AgP did not so

clearly predict which nearest neighbor was
best.

Acg was again tested on the simulated

data, but this time with the context dis-
tributions estimated from the uniform=-
priors no-context classification. As shown
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in Tabla 4, in this casc ““5 again tended
to predict the best p-context array. This

time Acf predicted pixel position 8 to be
the best neithboring pixel to usc as con-

- BERAEE R E NN R - NS

Table 6
bcﬁ EVALUATED AS A PREDICTOR OF
BEST TEST DISTRIBUTION POWER ON

text while pixel position 2 came in as a BLOOMINGTON, INDIANA, DATA TEXT
close second, These predictions held up 2
quite well whan compared to the classifica- 8) = pixel locations 26

tion accuracies. Thesc distinctions among

the rcamining pixels, however, weren't pre- o} = pixel location §
dicted as clearly. =2
P Context distributions estimated from
A test of AG, was also made using the uniform-priors no-context distribution A

Bloomington, Indiana Landsat data with the
contoxt distributions estimated from the
uniform-priors no-context classification

Accuracy, §

(sce Table 5), Here Acg did not predict Acg ’ chr:gc-
the bost p-context array as well as in the Powor Overall by-Class
simulated data case. Acg does correlate .5 2.87x10"7 84.4 84.0
positively with the accuracy results, but -7 ‘
the correlation is fairly weak, It scems +8 8.23x10 84.9 84.4
that the context here is too erroncous for rura=6 :
the predictor to function properly. 1.0 2.05x10 85.0 84.5
1.2 4.81x107° 85.0 84,5

‘ It was then checked to sce A% Acg cou-

. -6 , ;
| 1d be usecd to predict the power of fhe con- 1.4 9.27x10 85.1 84.5
? text distribution to use for a particular

1.6 1.37x10"° 85.2 84.5
; R— e 2.0 1.34x10°° 25,4 84.8
r Table 5 6
3.0 1.20%10 86.3 85.9
AGP TESTED ON BLOOMINGTON,IND. LANDSAT DATA -
a 5.0 4.04x10 87.0 86.1
r SET. CONTEXT DISTRIBUTIONS ESTIMATED FROM ",
7.0 1.98x10 87.2 85.0
UNIFORM-PRIORS NO-CONTEXT CLASSIFICATION
! 10.0 under £low 86.4 82,5
1 1 Accuracy,
. L 2 .5
Pixel Pixel Aclxlo Average~

Location Location Overall by-Class

p-context array. Qé was set as position 5
7.69 84,2 83.8 and Qf was set as positions 2 and 6. The

4 5
ower used was varied as previousl ce
1 6 5 7.68 84.6 84.1 P f’ usly (ae
Figure 2), [NOTE: G(gp) was normalized
2 5 5,40 85.2 84.8 for ecach value of & s0 as to remain a pro-
bability estimate.]
8 5 5.31 83.8 83.4
In Table 6, AGi shows a distinct pat-
3 5 3,79 84.2 83.8 tern of behavior as“the power of the con-
text distribution is varied, As the power .
2 5 3.61 84.0 83.5 is inecrcased fromone, 4G, increases at T
farst and then decreages? In this case,
1 5 3.04 84.4 84.1 the power at which 4G3 falls to approxima-
tely its value in thopower of one case
9 5 2,96 83.7 83.2 corresponds closely to the power that

yields the highest classification accura-
cies. As the power is increased further,

)
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o8

et Al

-9 =

Aag decreases sharply, When the power

is increcased to the value that produces the
classification that in turn produces the
best context distribution estimate ({in this
case, a power of 10), AG3 is so small that
it gan'e be calculated in the precision
used.

Further investigation with this and
other data scte is needed to determine whe~
ther this is a unlversal pattern that can
be exploited in cstimating the power of the
context distribution that yields the baest
clasgsification results. These results
make it seem unlikely, however, that AgP
could be used to predict the power which
produces the best context distribution
estimate,

V1, CONCLUDING REMARKS

Tha multispoctral maximum likelihood
clasgsifier has been extended to include con-
textual information from arbitrary points
near, but not necessarily adjacent to, the
point being classified. The successful ap-
plication of this statistical context clag-
sifier depends, however, upon the success-
ful estimatlion of the a priori context dis-
tribution, G(aP), A mE&thod hds been devel-
oped which can provide good estimates of
the context distributions, assuming that
blocks of representative ground truth are
available.

Attempts at developing a more general
"bootstrap" methed of estimating the con-
text distribution have not yct baeen totally
successful, Encouraging results have been
obtained on the one data set tested by using
the power method described in this paper.
1t is not clear, however, whether the p-con~
text arrays and powers used in testing the
power rethod were actually optimal. Other
methods of producing cleaned-up context
distribution estimates, such as the threshold
method or division method, have yet to be
tested. Further, practical application of
these bootstrap methods is clouded by the
need to run several classifications to deter=
mine the best p-context array and the power
of the context distribution to use at cach
iteration.

A theoretical basis for predicting the
best p-context array has been developed. As
with the power method itself, this predictor

has unly been tosted on one data set. These
preliminary results du nevertheless indicate
certain trends warranting further study with
other data scts,

It sacoms that the Acs predictor does
not necessarily strongly correlate with clas-
sification accuracy where the available con=
textual information isx somewhat inaccurate.
This considers only the initial interation
two-neighbors classification and not the sec-
ond iteration four-neighbors or third itera=
tion eight-neighbors classification results.
A stronger correlation betweoen best initial
p~array as predicted by AcP oand the classi-
fication results may appear in the elght=-
neighbor results.

This same predictor was also tested
with respect to determining (in some sense)
the best power of the context distribution
for the power method. Preliminary results
indicate that the predictor may hold some
promise in finding the power of the context
distribution which produces the best clas-
sification results, It does not scem likely,
however, that the predictor can be used for
finding the power of the context distribu=-
tion which produces the best context dis~
tribution estimate for the next iteration.

It must be emphasized that the above
results are provisional as they are based
on a study of only one data set. They must
be confirmed by studies involving other data
sets, Quite possibly, no reliable estimation
procedure simpler than actually performing a
contextual classification can be found., If
this is the case, the most cffective way
to "estimate" the best p-context array and
context distribution power would be to per~
form contextual classifications on represen-
tative portiony of the scene before the total
scene is classified,
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