NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Photovoltaic Residential Applications Program Implementation Workshop Proceedings
February 12-13, 1980

May 15, 1980

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 80-22)
Photovoltaic Residential Applications Program Implementation Workshop Proceedings
February 12-13, 1980

May 15, 1980

Prepared for
U.S. Department of Energy
Through an agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

(JPL PUBLICATION 80-22)
CONTENTS

I. INTRODUCTION --- 1-1

II. SUMMARY OF PHOTOVOLTAIC RESIDENTIAL APPLICATIONS
 PROGRAM IMPLEMENTATION WORKSHOP -------------------------- 2-1
 A. PURPOSE --- 2-1
 B. SESSION I - INTRODUCTION AND CONTEXT ---------------- 2-1
 C. SESSION II - INFRASTRUCTURE DEVELOPMENT --------------- 2-1
 D. SESSION III - NON-HARDWARE AND SUB-EXPERIMENT
 DESIGN -- 2-3
 E. SESSION IV - WORKSHOP SUMMARY AND SYNTHESIS ---------- 2-4

III. RESULTS AND PROGRAMMATIC RESPONSE ----------------------- 3-1

APPENDICES
 A. AGENDA -- A-1
 B. CONFERENCE VIEWGRAPHS --------------------------------- B-1
 C. REMARKS --- C-1
 D. BIBLIOGRAPHY -- D-1
 E. PRECONFERENCE COMMUNICATIONS/LIST OF ATTENDEES -------- E-1
A workshop was held at the California Institute of Technology on February 12-13, 1980 to discuss factors which would impact the implementation of a Photovoltaic Residential Applications Program. Sponsored by the Jet Propulsion Laboratory (JPL), this workshop brought together twenty-six individuals from private industry, universities, national laboratories, and the Department of Energy (DOE).

There were two major aspects of the workshop:

(1) Presentations on aspects of the Photovoltaics Program and the National Solar Heating and Cooling Demonstration Program to provide a common basis for discussion.

(2) Focused discussions to elicit response and dialogue on the issues pertinent to the Residential Applications Program.

The workshop consisted of four sessions composed of brief presentations by participants and moderated discussions. The first session was an Introduction to the Photovoltaics Program as a context for the Residential Applications Program. The second session discussed the Solar Heating and Cooling Demonstration Program and the structure and operation of the residential market. The third session studied the factors to be considered in the design of non-hardware experiments. The fourth session consisted of a working forum in which the ideas and suggestions from the previous sessions were summarized and synthesized.

The agenda for the Photovoltaic Residential Application Program Implementation Workshop (Appendix A) shows how the workshop was broken down into the various presentations and topics discussed. Copies of the conference viewgraphs (Appendix B) provide further detail on the presentations. Remarks from attendees (Appendix C) are included with suggestions stimulated from the workshop. A bibliography (Appendix D) indicates the amount of information available on issues relevant to the program. It is no way inclusive nor does it indicate a higher value of those documents over those not included. Preconference communications and a list of attendees (Appendix E) are also included.

A. OBJECTIVE OF THE WORKSHOP

The objectives of the Photovoltaic Residential Applications Program Implementation Workshop were:

(1) To provide a forum for dialogue on JPL/DOE plans for the residential applications program in the context of the entire Photovoltaics Technology Development Program;
(2) To discuss approaches to the detailed implementation of the Residential Applications Program based on the experience of the Solar Heating and Cooling Program and other relevant concerns;

(3) To acquaint potential program participants with program objectives and begin to involve them in the planning process.
SECTION II

SUMMARY OF PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM IMPLEMENTATION WORKSHOP

Prepared by: Dr. Richard Tabora, MIT-Energy Laboratory

A. PURPOSE

The Photovoltaic Residential Application Implementation Workshop was held to introduce and discuss a set of concepts in the development and implementation of the residential component of the photovoltaics program. Because there was a significant number of individuals present who had not been previously involved in the photovoltaics program, the purpose was extended to include an introduction to the photovoltaics program, the residential implementation plan as currently drafted and the activities currently being proposed as components of the multiyear purchase program.

B. SESSION I - INTRODUCTION AND CONTEXT

The first session introduced the concepts involved in the Multi-Year Program Plan (MYPP), the current residential program and the multi-year purchase program. Given the nature of the session there was little discussion of the underlying assumptions of the program, or of the technology development objectives and their likelihood of achievement.

C. SESSION II - INFRASTRUCTURE DEVELOPMENT

The second session focused attention on the development of an infrastructure within the construction industry from which to build a residential photovoltaics market. The first component discussion focused around the activities which were undertaken by the Department of Housing and Urban Development in the Solar Heating and Cooling (SHAC) program. While there was explicitly not an effort to evaluate SHAC, there was considerable discussion concerning the purpose of the SHAC program and its targets and implementation. There was considerable discussion on the correct audience for activities such as a solar heating and cooling demonstration program and/or a photovoltaics demonstration program. There was concern that there be a clear definition of the audience in the early phases of the program lest there be a misconception of the readiness of the technology or specific components for the market.
Five conclusions/recommendations emerged from the first component of this portion of the workshop.

(1) Experiments should be advertised as experiments not as demonstrations and the objectives of the experiments should be spelled out carefully so that persons looking into the program will recognize them for what they are.

(2) It is likely that the cast of characters involved in development of the market for residential photovoltaic power systems will evolve as the program evolves. It is not necessary to have a complete organization in place or to have all actors involved in every stage of the process.

(3) An experiment which can parallel the technical development work over the next several years should be developed to handle the "soft" issues of the market development process.

(4) If there is to be a significant involvement of electric utilities in the residential photovoltaic power system and/or the decision of an individual to purchase such a system, the state public utility commissions should be involved as soon as possible.

(5) Considerable thought should be given to the channels of information used to communicate the concept of photovoltaics to the potential buyers or installers. It was pointed out that one visit between trades persons may be worth one ton of paper generated by governmental study groups.

The second component of the infrastructure section of the workshop dealt specifically with the role of the builder and/or contractor in the market development process. The discussion involved a number of attendees formerly active in the SHAC photovoltaics program. Their comments reinforced and added to many of the conclusions from the preceding session.

There is a tremendous conservatism in the residential building industry which makes innovation a difficult and slow process. In general, the labor pool works inversely to the economic structure of the industry. In good times the skilled labor pool is diluted as additional workers are pulled in, making innovation unlikely given skills levels. At bad times, when there may be excess skilled manpower, there is frequently additional financial conservatism working against innovation. It was generally agreed that innovation occurred within the residential sector at times of stability both within an individual firm and within the industry as a whole.

Large builders generally will innovate with processes while small builders will innovate with materials.
A discussion was introduced on how best to bring a concept into the residential market—working from the custom built homes or from public housing (governmental sector). The strong conclusion was that the housing market always began at the best homes and worked its way down. The reasoning behind this was twofold. First "aspiration" played an important part in the filtering down effect. Second, placing any new product in low income housing both guaranteed its rejection from above and its rejection within the lower income environment where the "guinea pig" syndrome was of major concern.

Finally, the pathway used for introduction of the product must be the established one. Communications occur between the manufacturer, supplier, subcontractor, etc. These should be maintained and strengthened for photovoltaics to enter smoothly and routinely.

D. SESSION III - NON-HARDWARE AND SUB-EXPERIMENT DESIGN

The third session focused on the development of experimental designs for collection of market data in conjunction with the residential experimental work currently a portion of the program, or with the proposed multi-year purchase. Strategy discussion centered in two specific areas. The first was the development of market response data using rolling panels to collect large quantities of data from relatively smaller samples of respondents. The second discussion area was the use of experiments designed to collect specific data for econometric analysis of potential consumer response.

The conclusions drawn from this session were similar to those of the first session.

Technical experiments should be designed so as to collect a maximum quantity of economic and market data from those participating in and/or observing the experiment.

It is important to carry out the experiments in an environment where there is contact with those individuals who will be involved in the final marketing of the residential systems. It is also important to maintain the experimental nature of the presentation and the data collection activity.

There are a number of data analysis and organization structures which may be of use in planning for the governmental role in final market deployment of residential photovoltaic systems. The data requirements for each of these should be evaluated in the near term if they are to be incorporated into the experiments of the next two years. This will assure that the programs management will be able to prepare appropriate solicitations and seek the participation of groups and institutions which would further the objectives of the photovoltaics program. This should also include the ability to incorporate individual components of the residential program into an overall program structure.

2-3
that includes both milestones for governmental activities and points of
evaluation for further governmental involvement. In addition, it is
necessary to recognize that it is the private marketplace that is the
final instrument for acceptance of photovoltaics. Many activities can
be accomplished more effectively through private industry than through
government intervention.

There were a number of specific suggestions as to programmatic
activities both to introduce photovoltaic systems to the residential
housing market and to solicit information from individuals within that
market.

The following is a summary of suggestions:

A set of smaller workshops for subgroups within the building
community should be held. These should involve a separate small work-
shop for architects, for professional engineers, for architectural and
engineering firms, and for builders. A note of caution was requested
in the timing and information presented in these sessions and it was
suggested that the material and meetings be presented by members of the
craft rather than by members of the photovoltaics program. By extension,
it may be argued that this suggestion carries over into other specific
portions of the market such as electric and public utility commissions,
insurance industry representatives and possible to the financial
community.

A set of comments focused specifically on the organization of
cycles or rounds associated with the proposed multiyear purchase stra-
tegy. The most frequent of these was a concern for involvement of a
number of groups.

E. SESSION IV -- WORKSHOP SUMMARY AND SYNTHESIS

The final session of the workshop was intended to bring together
a number of the themes covered in the earlier sessions and to elicit
from the individual participants a sense of the meeting in terms of the
potential areas of action -- and areas of potential problems -- within
the residential sector.

In response to governmental initiatives, there were a number of
points brought out concerning both the type of solicitation required
and the anticipated lead organization. The model which appeared to
have the most support was one in which the solicitation appeared di-
rectly from the government and called for a team effort involving the
architect, builder, photovoltaic manufacturer, developer and possibly
also the final consumer. The discussion from representatives of archi-
tectural firms was that they would be the logical leaders for such a
team effort, and that in all likelihood they could and would respond on
relatively short notice. The model of going directly to the developer
did not have much support, particularly given the problems associated
with this model when used with the SHA program. Other models such as
complete laboratory control were seen as necessary in early experiments
but less acceptable later in the market development process.
Throughout the meeting, there was a stress on stating the objectives of the experimental, purchase strategy or market development programs early in the planning process. This would include architects, developers, builders, etc., in a program that could, with a relatively small number of experiments, work out many of the logistical bugs. Such early actions could accelerate the rate of purchase activities and, at the same time, absorb some of the risk associated with the much larger purchases scheduled for one to three years later. It was pointed out, however, that these activities should be integrated with the technical experimental work already underway.

The workshop ended with a number of the participants agreeing to later discuss the organization of additional meetings which would involve smaller professional groups. It was evident from the discussions that the first of these proposed meetings will be open to architects and planners.
SECTION III
RESULTS AND PROGRAMMATIC RESPONSE

Prepared by: Rosalyn Barbieri, Tom W. Hamilton (JPL)

The workshop elicited a great deal of discussion, ideas, suggestions, and recommendations on issues pertinent to the Photovoltaic Residential Applications Program. While specific action items did not come out of the workshop, issues and approaches were raised which have generated programmatic activities and discussion of how to formulate the Residential Applications Program. In addition, the workshop stimulated certain participants to subsequently provide additional suggestions of benefit to the program.

The group of participants also has created a resource for the photovoltaics program which can be used to provide advice, review and comment, and channels of communication to their colleagues. Feedback from these individuals will increase the ability of the photovoltaics program to provide credible programmatic activities. It will also provide a real world perspective on the ability of the program to perform certain functions and meet established goals and objectives.

The wealth of discussion that resulted from the workshop supports the need for continuing these types of interactions. A different organization of the workshop would have elicited different types of discussion and participation from the attendees. Issues not discussed but which are important are seeds for other workshops of this nature. The workshop provided a much clearer insight for the photovoltaics program as to the parameters required to successfully implement and manage a residential applications program, and particularly the importance and proper design and use of experiments.

Appendix C contains some after the fact impressions of the workshop. Dorothy Leonard-Barton of SRI International discusses the market diffusion strategy, the importance of proper timing and targeting of experiments and information. She suggests how marketing activities should parallel and complement the system and technology development process. A mission team concept is introduced and described.

Jeffrey L. Smith has summarized his impressions and conclusions arising from Session III. He focused on the distinction between "experiments" designed to elicit new information and "demonstrations" designed to disseminate known information. A clear statement of detailed objectives of each phase of the residential program is essential to an efficient program.

Tom W. Hamilton discusses some nomenclature inconsistencies and offers his impressions of what was learned and what direction the program should take.
AGENDA

FEBRUARY 12, 1980

SESSION I - INTRODUCTION AND CONTEXT
8:30 a.m. - 11:30 a.m.

Moderator: PAUL CARPENTER, JPL

Presenters: BOB EAST, JPL
TOM HAMILTON, JPL
ED KERN, MIT/Lincoln Laboratory

Topics:
1. The context of the residential applications program within the photovoltaic program as a whole.
2. The status of current residential technology development and experimentation plans (strawman scale and timing).
3. The objectives of and a strawman implementation approach to the Multi-Year Purchase Program aspects of the Residential Applications Program.

LUNCH
11:30 a.m. - 1 p.m.

SESSION II - INFRASTRUCTURE DEVELOPMENT
1 p.m. - 3:30 p.m.

Moderator: RICHARD TABORS, MIT/Energy Laboratory

Presenters: TOM NUTT-Powell, Harvard/MIT Joint Center for Urban Affairs
DICK RITTELEMAN, Burt, Hill, Kosar & Rittleman (presentation Wednesday morning)

Topics:
1. Development of issue agenda--recommendations if appropriate.
2. Work assignments.

End of Day One Sessions
AGENDA (contd)

FEBRUARY 13, 1980

SESSION III

NATURE OF THE HOUSING INDUSTRY AS IT PERTAINS TO THE PHOTOVOLTAIC PROGRAM

8:30 a.m. - 9:30 a.m.

Presenter: DICK RITTLEMAN
Moderator: JEFF L. SMITH, JPL
Presenters: TOM HAMILTON, JPL
FRANK CAMM, Rand Corporation
GARY LILIEN, MIT Sloan School

Topics:
1. Experiment and sub-experiment implementation.
2. Example sub-experiment concepts: user response measurement and rate structure experimentation.
3. Implications of sub-experiment concerns for program design.

LUNCH
11:30 a.m. - 1 p.m.

SESSION IV - WORKSHOP SUMMARY AND SYNTHESIS
1 p.m. - 3:30 p.m.

Moderators: TOM HAMILTON, JPL
PAUL CARPENTER, JPL

Topics:
1. Development of issue agenda--recommendations if appropriate.
2. Work assignments.
APPENDIX B

CONFERENCE VIEWGRAPHS
PHOTOVOLTAIC RESIDENTIAL APPLICATION PROGRAM

IMPLEMENTATION WORKSHOP

INTRODUCTION, OBJECTIVES AND FORMAT

Paul R. Carpenter

Photovoltaics Lead Center
Planning, Assessment and Integration

February 12-13, 1980
DOE PHOTOVOLTAICS PROGRAM
RESIDENTIAL APPLICATIONS PROGRAM IMPLEMENTATION WORKSHOP

OBJECTIVES

• TO DISCUSS CURRENT JPL/DOE THOUGHTS ON THE RESIDENTIAL APPLICATIONS PROGRAM IN THE CONTEXT OF THE ENTIRE PHOTOVOLTAICS PROGRAM

• TO CONSIDER APPROACHES TO THE DETAILED IMPLEMENTATION OF THE RESIDENTIAL PROGRAM BASED ON EXPERIENCES IN THE SHAC PROGRAM AND OTHER CONCERNS

• TO ACQUAINT PRESENT AND POTENTIAL PROGRAM PARTICIPANTS WITH PROGRAM OBJECTIVES AND INVOLVE THEM IN THE PLANNING PROCESS
I. INTRODUCTION AND CONTEXT

- OVERVIEW OF PV PROGRAM PHILOSOPHY, STRUCTURE AND SCHEDULE
 Robert Easter, Jet Propulsion Laboratory

- CONTEXT SURROUNDING RESIDENTIAL PROGRAM

- ON-GOING RESIDENTIAL ACTIVITIES AND PLANS
 Ed Kern, MIT Lincoln Laboratory

- TECHNOLOGY DEVELOPMENT, SYSTEMS DESIGN, INITIAL EXPERIMENTATION

- RESIDENTIAL ASPECTS OF THE "MULTI-YEAR PURCHASE PROGRAM"
 Tom Hamilton, Jet Propulsion Laboratory

- AN IMPLEMENTATION APPROACH AND STRAWMAN SCHEDULE AFTER INITIAL EXPERIMENTATION
AGENDA

TUESDAY 2/12
I. INTRODUCTION AND CONTEXT

WEDNESDAY 2/13
II. INFRASTRUCTURE DEVELOPMENT
III. NON-HARDWARE SUBEXPERIMENT DESIGN
IV. SUMMARY AND SYNTHESIS
DOE PHOTOVOLTAICS PROGRAM
PROGRAM OVERVIEW

OBJECTIVE

PROVIDE WORKSHOP PARTICIPANTS WITH BACKGROUND AND CONTEXT VIS-A-VIS
RESIDENTIAL APPLICATIONS WITHIN PHOTOVOLTAICS PROGRAM AS A WHOLE
DOE PHOTOVOLTAICS PROGRAM

PROGRAM OVERVIEW

OUTLINE

- CURRENT PHOTOVOLTAICS TECHNOLOGY EVOLUTION SCENARIO
- PHOTOVOLTAICS APPLICATIONS STRATEGY
- UNDERLYING PROGRAM STRUCTURE (THE "LAZY Y")
- KEY MILESTONES
- COMMERCIAL READINESS GOAL SETTING
- COMMERCIAL READINESS PRICE GOALS
- THE PROGRAM MATRIX
- SUBPROGRAM FUNCTIONS
- ROLES (PROGRAM ORGANIZATION CHART)
- RELEVANT PLANS, DOCUMENTS, LEGISLATION
- COMMERCIAL READINESS REQUIREMENTS
- ROLE OF THE MULTI YEAR PURCHASE PROGRAM
- SOME INSTITUTIONAL ISSUES
DOE PHOTOVOLTAICS PROGRAM

PROGRAM OVERVIEW

A PV TECHNOLOGY EVOLUTION SCENARIO

<table>
<thead>
<tr>
<th>CY</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE 1</td>
<td>PHASE 2</td>
<td>PHASE 3</td>
<td>PHASE 4</td>
<td></td>
</tr>
</tbody>
</table>

INDUSTRY AND TECHNOLOGY

- SI INGOT COLLECTORS
- NO AUTOMATION
- MODULE SUPPLIERS
- "CUSTOM" SYSTEMS

- SI INGOT AUTOMATED
- SI NON-INGOT PILOTS AND AUTOMATION INITIATED
- CONCENTRATORS (SI)
- MODULE AND SYSTEM SUPPLIERS

- SI NON-INGOT AUTOMATED
- SI INGOT TECHNO-EXPORTABLE
- ADVANCED COLLECTORS PILOTS

- STABLE GROWTH INDUSTRY
- COLLECTOR MIX

MARKETS

- FOREIGN AND DOMESTIC REMOTE ATTENDED
- FOREIGN DOMINATES
- 10-100 MW (?)

- FOREIGN AND DOMESTIC GRID-CONNECTED DISTRIB
- DOMESTIC DOMINATES
- FOREIGN MARKET FOR PRODUCTION EQ.
- 100 MW - ?

- FOREIGN AND DOMESTIC DISTRIB AND CENRAL
- 500 MW - ?

SYSTEM PRICES

- 10-25 $/Wp
- 6-13 $/Wp
- 1.60 - 2.60 $/Wp
- < 1.60 $/Wp
DOE PHOTOVOLTAICS PROGRAM

PHOTOVOLTAICS APPLICATIONS STRATEGY
(as put forth in the MYPP)

GRID-CONNECTED EMPHASIS - MAJOR SAVINGS OF CONVENTIONAL FUELS
REQUIRES PENETRATION OF PV INTO APPLICATIONS NOW SERVED
BY ELECTRICAL GRID.

RESIDENTIAL EMPHASIS - FAVORABLE ECONOMICS (RELATIVE TO OTHER
GRID-CONNECTED APPLICATIONS) ALLOW RELATIVELY EARLY PENETRATION.

INTERMEDIATE LOAD CENTERS - DIVERSE CLASS, SELECTED ELEMENTS OF
WHICH ALSO HAVE POTENTIAL FOR EARLY PV PENETRATION.

CENTRAL STATION - 1990 CR TARGET, TO ALLOW DEVELOPMENT OF LOWER-
THAN-BASELINE COST TECHNOLOGIES. AEROSPACE CENTRAL STATION
ACTIVITIES SUGGEST POSSIBILITY OF LIMITED PRE-1990 MARKET FOR
BASELINE (1986) TECHNOLOGY.

REMOTE STAND ALONE - IMPORTANT AS NEAR-TO-MID-TERM PRODUCT FOR
INDUSTRY IN INTERNATIONAL MARKETS
DOE PHOTOVOLTAICS PROGRAM

KEY MILESTONES IN THE PHOTOVOLTAIC RD&D PROCESS

<table>
<thead>
<tr>
<th>MILESTONE</th>
<th>DEFINITIONS/REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNICAL FEASIBILITY (TF)</td>
<td>TECHNICAL FEASIBILITY IS REACHED FOR A PARTICULAR TECHNOLOGY: (A) STABLE AND REPRODUCIBLE PERFORMANCE CHARACTERISTICS HAVE BEEN ACHIEVED; (B) A LABORATORY-SCALE PROCESS HAS BEEN DEFINED THAT YIELDS PRODUCTS WITH CONSISTENT CHARACTERISTICS AND; (C) ANALYSIS INDICATES THAT MASS PRODUCTION IS TECHNICALLY FEASIBLE AND LIKELY TO YIELD A TECHNICALLY AND ECONOMICALLY Viable PRODUCT AFTER SUITABLE TECHNOLOGY DEVELOPMENT</td>
</tr>
<tr>
<td>TECHNOLOGY READINESS (TR)</td>
<td>TECHNICAL READINESS IS ACHIEVED: (A) WITH A SUCCESSFUL SUBSCALE DEMONSTRATION OF ALL THE INDIVIDUAL STEPS IN A PRODUCTION PROCESS THAT WOULD YIELD ECONOMICALLY COMPETITIVE AND RELIABLE PRODUCTS IF PRODUCED IN SUFFICIENT QUANTITY AND; (B) WHEN PROTOTYPES ARE AVAILABLE FOR INTENSIVE PERFORMANCE AND RELIABILITY ANALYSIS</td>
</tr>
<tr>
<td>SYSTEM FEASIBILITY (SF)</td>
<td>SYSTEM FEASIBILITY IS ACHIEVED IN A GIVEN APPLICATION WHEN A PHOTOVOLTAIC SYSTEM CONCEPT IS FIRST CARRIED THROUGH DESIGN, INSTALLATION AND OPERATION IN AN ACTUAL USER'S ENVIRONMENT</td>
</tr>
<tr>
<td>SYSTEM READINESS (SR)</td>
<td>SYSTEM READINESS IS ACCOMPLISHED WHEN FULLY INTEGRATED SYSTEMS, USING AVAILABLE TECHNOLOGY READY COMPONENTS OR PROTOTYPES THEREOF ARE DESIGN, BUILT AND SUCCESSFULLY OPERATED IN AN ACTUAL USER'S ENVIRONMENT</td>
</tr>
<tr>
<td>COMMERCIAL READINESS (CR)</td>
<td>COMMERCIAL READINESS IN A GIVEN APPLICATION CLASS IS ACCOMPLISHED WHEN PRODUCTS OR SYSTEMS ARE OFFERED FOR SALE AT A GIVEN PRICE</td>
</tr>
</tbody>
</table>
DOE PHOTOVOLTAICS PROGRAM

PROGRAM OVERVIEW

COMMERCIAL READINESS GOAL SETTING

- Conventional electricity costs as function of time, locale, application
- Comparable electricity cost from PV system as function of system price, locale, etc.
- PV system price as function of production volume, time (stage of development)
- Time required to build production volume

COMMERCIAL READINESS GOALS

RSA SYSTEMS $6 - 13/W in 1982
RESIDENTIAL SYSTEMS $1.60 - 2.20/Wp in 1986
INTERMEDIATE SYSTEMS $1.60 - 2.60/Wp in 1986
CENTRAL STATION SYSTEMS $1.10 - 1.30/Wp in 1990

RWE 7
2/12/80
DOE Photovoltaics Program

Program Overview

Commercial Readiness Price Goals (1980 $)

<table>
<thead>
<tr>
<th>Application and Year</th>
<th>Collector Price (FOB) ($/Wp)</th>
<th>System Prices ($/Wp)</th>
<th>Production Scale (MWP/Year)</th>
<th>User Energy Price ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote-Stand Alone 1982</td>
<td>2.80</td>
<td>6 - 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential 1986</td>
<td>0.70</td>
<td>2.20 - 1.60</td>
<td>100 - 1000</td>
<td>3.5 - 10.5</td>
</tr>
<tr>
<td>Intermediate Load Center 1986</td>
<td>0.70</td>
<td>2.60 - 1.60</td>
<td>100 - 1000</td>
<td>5.0 - 13.5</td>
</tr>
<tr>
<td>Central Station 1990</td>
<td>0.15-0.50</td>
<td>1.80 - 1.10</td>
<td>500 - 2500</td>
<td>4.0 - 10.0</td>
</tr>
</tbody>
</table>

* System price correlates with production scale

** User energy price range reflects variations in locale (insolation), system price and utility sellback arrangement
DOE PHOTOVOLTAICS PROGRAM
PROGRAM OVERVIEW
THE PROGRAM MATRIX

REMOTE STAND-ALONE
RESIDENTIAL
INTERMEDIATE LOAD CENTER
CENTRAL STATION

MATERIALS
COMPONENT PRODUCTION
SUBSYSTEM AND SYSTEM PRODUCTION
MARKETING
DISTRIBUTION
INSTALLATION
OPERATION (INCL. BACKUP) AND MAINTENANCE
REGULATION
IMPACT

ADVANCED RESEARCH AND DEVELOPMENT
TECHNOLOGY DEVELOPMENT
SYSTEMS DEVELOPMENT AND ENGINEERING
TESTS AND APPLICATIONS
MARKET DEVELOPMENT

MANAGEMENT
PA & I

RWE 9
2/12/80
DOE PHOTOVOLTAICS PROGRAM

PROGRAM OVERVIEW

RELEVANT PLANS, DOCUMENTS, LEGISLATION

- "THE PV MULTI YEAR PROGRAM PLAN" (JUNE 6, 1979): PUBLICLY RELEASED (DRAFT) DELINEATING PROGRAM STRATEGY, GOALS, APPROACH
- "THE INTERNATIONAL PHOTOVOLTAIC PROGRAM PLAN" (NOV '79): PUBLICLY RELEASED, RECOMMENDING APPROACH FOR INTERNATIONAL ASPECTS OF PROGRAM
- APPLICATION REQUIREMENTS DOCUMENTS (FORMERLY APPLICATION IMPLEMENTATION PLANS): DRAFT PROGRAM DOCUMENTS DETAILING PROGRAM APPROACH TO RESIDENTIAL, INTERMEDIATE, CENTRAL STATION AND REMOTE STAND ALONE APPLICATIONS
- "FEDERAL POLICIES TO PROMOTE THE WIDESPREAD UTILIZATION OF PHOTOVOLTAIC SYSTEMS" (IN PROGRESS): REPORT TO CONGRESS DELINEATING ISSUES AND BARRIERS TO PV UTILIZATION AND DISCUSSING USE OF PURCHASE PROGRAMS OF VARIOUS SCOPE
DOE PHOTOVOLTAICS PROGRAM

PROGRAM OVERVIEW

COMMERCIAL READINESS REQUIREMENTS

COMMERCIAL READINESS

SYSTEM FOR SALE AT PRICES CONSISTENT WITH PROGRAM GOALS
- Goals are relaxed to ensure the ability of PV to compete on a life cycle basis in many locations - assuming lifetime performance requirements are met

IN-PLACE SUPPLY INDUSTRY
- Suppliers of materials, components, subsystems, systems and services (installation, maintenance, etc.) have the ability to make a reasonable profit by providing these products and services at prices consistent with the Program Goals

PRIOR POSITIVE "INVESTMENT" DECISIONS ON THE PART OF THE ELEMENTS OF THE SUPPLY INDUSTRY

SUSTAINED MARKET OR DEMAND
- Market must be of sufficient size to allow scale of operation that captures economies of scale

SUFFICIENT CAPITAL (INEXPENSIVE)

PURCHASE CAPITAL

CONTINUING, CHEAPLY PRICED SUPPLY OF RAW MATERIALS (e.g., MATERIALS FOR COMPONENTS, LABOR, ETC)

PROVEN MANUFACTURING PROCESSES OR PRACTICES AVAILABLE FOR USE

KNOWLEDGEABLE POTENTIAL USERS
- PV System Capabilities
- Life Cycle Economics
- How to specify and order

NO INSTITUTIONAL BARRIERS TO USE
- Appropriate Codes and Standards
- Favorable Legal and Regulatory provisions
- Convenience

RWE 13
2/12/80
DOE PHOTOVOLTAICS PROGRAM

THE ROLE OF THE MULTI YEAR PURCHASE PROGRAM

- Multi year commitment to provide capital for design, installation and operation of PV systems in real applications

- Provides:
 - "Laboratory" for solving technical, institutional and acceptability problems
 - A market that can be counted on by manufacturers deciding whether or not to enlarge or enhance capacity
 - Introduction of potential users to photovoltaic capabilities and economics

RWE 14
2/12/80
SUN RIGHTS. CONCERN EXISTS THAT PEOPLE WILL BE RELUCTANT TO PURCHASE SOLAR SYSTEMS WITHOUT A GUARANTEED RIGHT TO THE SUNLIGHT WHICH CROSSES ADJACENT PROPERTY. FOLIAGE AS WELL AS BUILDINGS ARE MENTIONED.

ZONING. ZONING PLACES CERTAIN AESTHETIC, AND SOMETIMES DESIGN, RESTRICTIONS ON STRUCTURES AND THEIR CONSTRUCTION.

BUILDING CODES. CERTAIN SAFETY RESTRICTIONS WILL APPLY TO SOLAR SYSTEMS. THE PROBLEM IS WORSENED BY DIFFICULTY IN APPLYING OLD CODES TO NEW TECHNOLOGY.

FINANCING. SOME CONCERN EXISTS THAT FINANCIAL INSTITUTIONS WILL BE RELUCTANT TO LEND MONEY TO PURCHASE AN UNPROVEN TECHNOLOGY.

INSURANCE. SIMILAR TO FINANCING; LACK OF EXPERIENCE MAY RESULT IN HIGH RATES.

WARRANTIES, LIABILITY. THE BASIC QUESTION IS BALANCING THE ADDED COSTS TO THE MANUFACTURER AGAINST CONSUMER DEMANDS FOR PROTECTION.

UTILITIES. CONCERN IS WITH THE WILLINGNESS OF UTILITIES TO PROVIDE INTERCONNECTION FACILITIES (AND POSSIBLY EVEN PAY FOR THEM) AND TO PROVIDE BACKUP POWER AT REASONABLE RATES; THE RATE AT WHICH UTILITIES BUY BACK EXCESS POWER IS ALSO HIGHLY IMPORTANT.
PROPERTY TAXES AND CREDITS. THE TAXABILITY OF PV SYSTEMS COULD SERIOUSLY IMPAIR PV ECONOMIC BREAKEVEN; SIMILARLY, CREDITS AND EXEMPTIONS APPLICABLE TO PVs COULD HAVE A NEGATIVE IMPACT ON COMMERCIALIZATION IF THEY ARE APPLIED ImPROPERLY.

INSTALLATION/SERVICE INDUSTRY. LACK OF SUCH AN INDUSTRY COULD SLOW OR STOP PV PENETRATION.

LABOR UNIONS. SQUABBLES BETWEEN UNIONS OVER JURISDICTION TO CONSTRUCT AND INSTALL PV SYSTEMS MAY POSE PROBLEMS.

STANDARDS. PRODUCT STANDARDS CAN EITHER HELP OR HURT. THEY HELP DEFINE THE MARKET IN WHICH PVs COMPETE AND CAN INFLUENCE THE PRODUCT’S COST, THE DEMAND FOR IT, AND THE COMPETITIVE NATURE OF THE INDUSTRY.

ENVIRONMENTAL IMPACT. SINCE SOME OF THE PHOTOVOLTAIC MATERIALS ARE TOXIC (NOTABLY CADMIUM, ARSENIC, AND PHOSPHOROUS) THERE IS A NEED TO ASSESS THE DEGREE OF SEVERITY OF THIS PROBLEM AS A FUNCTION OF PV PENETRATION LEVEL. ALSO, IT SHOULD BE ASSESSED UNDER EXACERBATING CONDITIONS SUCH AS IN A FIRE.
MULTI-YEAR PHOTOVOLTAIC SYSTEM
PURCHASE PROGRAM

Briefing to Residential Applications Program Implementation Workshop
Session I
Caltech
February 11, 1980

Tom W. Hamilton, Manager for Planning, Assessment, and Integration Technology Development and Applications, Photovoltaics Lead Center
PURPOSES OF THIS PRESENTATION

- Describe the residential applications part of the Purchase Program as presently planned
 - January 29, 1980, briefing "Multi-Year Photovoltaic System Purchase Program" is starting point
 - Narrow to residential; new and retrofit
 - Identify unplanned areas, issues, and concerns

- Provide a context for your comments, criticisms, and suggestions
MULTI-YEAR PHOTOVOLTAIC SYSTEM PURCHASE PROGRAM

OBJECTIVES

- Accelerate commercialization of photovoltaic systems
- Encourage investment in low-cost component production facilities

DESIRED CHARACTERISTICS

- Maximum long-term (Yr 2000) domestic energy displacement for given federal investment
- Credible multi-year DOE commitment while retaining flexibility to respond to industry/market changes
 - Adjust timing, scale for maximum impact
 - Encourage timely supply-side private investment
- Market development, resolution of barriers
- Fosters competition in cost-reduction, price, and performance; encourages design maturation
- Supports infrastructure development without interfering in current private market (stress system sizes expected in 1986); encourages small and minority business participation (20% goal)
- Manageable
Purchase Program in Context: Planned Structure

Program Phase

- **System Feasibility**
 - **First-of-a-Kind Experiments (IEEE)**
 - Demonstrate technical feasibility of regionally-appropriate system designs in the user environment

- **System Readiness**
 - **Engineering Field Tests (EFT)**
 - Develop and evaluate cost-reduction approaches and verify system performance
 - Demonstrate that system price goals are likely to be met if factory-produced components meet goals
 - Attack market development barriers

- **Go/No-Go Decision**
 - **Market Tests (MT)**
 - Major test of market acceptance of selected systems
 - Support development of industry infrastructure
 - Verify that systems can meet price goals at specified volume
 - Resolve market development barriers

- **Commercial Readiness**
 - **Volume Building**
 - Support achievement of sales volume needed to justify earlier private investment in low-cost production facilities
 - Achieve commercial readiness price goals

- **Free Market**
 - Provide sufficient incentives for rapid market growth needed to support a competitive private industry

Primary Objectives

<table>
<thead>
<tr>
<th>Program Phase</th>
<th>Primary Objectives</th>
<th>Description (New Residential Example)</th>
<th>System Development Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Feasibility</td>
<td>Demonstrate technical feasibility of regionally-appropriate system designs in the user environment</td>
<td>One of each kind - Region, Design - Uses available components - Fully instrumented and monitored</td>
<td></td>
</tr>
<tr>
<td>System Readiness</td>
<td>Develop and evaluate cost-reduction approaches and verify system performance - Demonstrate that system price goals are likely to be met if factory-produced components meet goals - Attack market development barriers</td>
<td>225 systems, 45 contractors - Minimum monitoring: full monitoring on a sample basis - Uses prototypes of low-cost components</td>
<td></td>
</tr>
<tr>
<td>Go/No-Go Decision</td>
<td>Major test of market acceptance of selected systems - Support development of industry infrastructure - Verify that systems can meet price goals at specified volume - Resolve market development barriers</td>
<td>370 systems/20 contractors - Firm fixed-price contracts with federal cost-share - Minimum monitoring</td>
<td></td>
</tr>
<tr>
<td>Commercial Readiness</td>
<td>Support achievement of sales volume needed to justify earlier private investment in low-cost production facilities - Achieve commercial readiness price goals</td>
<td>Decreasing subsidy as volume increases - Up to 12,500 units/yr</td>
<td></td>
</tr>
<tr>
<td>Free Market</td>
<td>Provide sufficient incentives for rapid market growth needed to support a competitive private industry</td>
<td>User incentives to accelerate market penetration of cost-effective systems</td>
<td></td>
</tr>
</tbody>
</table>

Also called System Readiness Experiments
PURCHASE PROGRAM SCHEDULE

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>FY</th>
<th>'81</th>
<th>'82</th>
<th>'83</th>
<th>'84</th>
<th>'85</th>
<th>'86</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Stand-Alone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot:</td>
<td></td>
<td>A₁</td>
<td>B₁</td>
<td></td>
<td>C₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New and Retrofit</td>
<td></td>
<td>A₂</td>
<td>B₂</td>
<td>C₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New and Retro</td>
<td></td>
<td>A₂</td>
<td>B₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₁,₂</td>
<td></td>
</tr>
<tr>
<td>Readiness (SR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Intermediate Load Centers</td>
<td></td>
<td>A₁</td>
<td>B₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Central Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td>A₁</td>
<td>B₁/C₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total MWP</td>
<td></td>
<td>0.15</td>
<td>0.20</td>
<td>3.31</td>
<td>4.62</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A = Project and System Detailed Design (Includes B and Preliminary C)
B = Engineering Field Test (EFT) System Installation Phase (Keyed to Technical Readiness of $1.60/Wp Components)
C = Market Test (MT) System Installation Phase
Photovoltaic System Purchase Program

Implementation Details

<table>
<thead>
<tr>
<th></th>
<th>First-of-a-Kind</th>
<th>Engineering Field Tests (EFT)</th>
<th>Market Tests (MT)</th>
<th>Volume Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor Selection</td>
<td>• RFP</td>
<td>• RF:</td>
<td>• RFP</td>
<td>• By End User</td>
</tr>
<tr>
<td>Requirement for Entry</td>
<td>• Equivalent of system test facility experience</td>
<td>• System feasibility established</td>
<td>• Demonstrated competence (EFT or equiv experience)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complements planned experiments</td>
<td>• Complete project plan</td>
<td>• Complete project plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prototypes of low-cost components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Arrangements</td>
<td>• Contractor cost-share encouraged</td>
<td>• Contractor cost-share encouraged</td>
<td>• Firm fixed-price contracts with Federal cost-share based on initial bid</td>
<td>• Decreasing subsidy to user/supplier as volume increases</td>
</tr>
<tr>
<td></td>
<td>• Initial title to Federal</td>
<td>• Title to contractor</td>
<td>• Title to contractor</td>
<td>• User incentives</td>
</tr>
</tbody>
</table>

Purchase Program
SOME PROPOSAL EVALUATION FACTORS

<table>
<thead>
<tr>
<th>PROGRAM PHASE</th>
<th>A = Project Design</th>
<th>B = Engineering Field Test</th>
<th>C = Market Test</th>
</tr>
</thead>
</table>
| A = Project Design | • System meets Entry Requirements
• Acceptance of Phase B and C information requirements
• Contractor’s intent to enter commercial market assuming program goals are met
• Unique approaches to cost reduction, market development
• Budget and extent of cost share or previous effort
• Ability to perform proposed work
• Cross-sectional representation of supplier types, regions and approaches
• Small and minority business participation
• Market potential (1986) | • Project and System meet Entry Requirements
• Acceptance of Phase B and C information requirements
• Potential for meeting goals
• Unique cost reduction approach | • Project, System and Contractor meet Entry Requirements
• Acceptance of Phase C information requirements
• Acceptable Costs in Phase B |
| | • Life-Cycle Cost of system to user (including warranty) for reference case (now, anticipated 1986)
• Initial System Cost (now, anticipated 1986)
• Life Cycle value of energy generated at location (now, reference case 1986)
• Extent of cost sharing
• Market potential (1986)
• Cross-section of regions, suppliers and systems
• Flexibility: Alternate component suppliers, installation schedules |
RESIDENTIAL SYSTEM PRICE BREAKDOWN STRUCTURE*

(1980$)

<table>
<thead>
<tr>
<th>DIRECT COSTS</th>
<th>GOAL</th>
<th>$/Wp**</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. P-V Module FOB ($/Wp)</td>
<td>0.70</td>
<td>0.70</td>
<td>Module $\eta = 0.1</td>
</tr>
<tr>
<td>2. P-V Module M+D (% of 1)</td>
<td>30</td>
<td>0.21</td>
<td>Includes warranty</td>
</tr>
<tr>
<td>3. Structure + Installation ($/m^2)</td>
<td>26</td>
<td>0.26</td>
<td>Includes field wiring, lightning protection</td>
</tr>
<tr>
<td>4. Power Conditioning ($/Wp)</td>
<td>26</td>
<td>0.26</td>
<td>Includes M+D, installation, warranty</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td></td>
<td>1.43</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDIRECT COSTS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of Direct Costs (β)</td>
<td>0.12</td>
<td>0.17</td>
<td>Includes A+E fees, sales fee, interest during construction, spares + misc.</td>
</tr>
<tr>
<td>TOTAL SYSTEM PRICE ($/Wp)</td>
<td>1.60</td>
<td>1.60</td>
<td>Life-cycle excluding O+M</td>
</tr>
</tbody>
</table>

For Preferred Design #1 (Module $\eta = 0.1$, 8 kWp system in southwest)

*Values shown are currently hypothetical
- Prices are assumed to be higher at low sales volumes
 - Power conditioning cost at 1 MWp/yr 3.5x at 100 MWp/yr
 - Structures and installation at 1 MWp/yr 2x cost at 100 MWp/yr
 - Indirects at 1 MWp/yr 2x fraction (β) at 100 MWp/yr
- Module prices depend more on total module sales rate (international, domestic)
- Actual prices depend on system size, actual sales, accuracy of assumptions
OPEN AREAS

- Information dissemination and education
- Training programs
- Who manages MTs?
- Which sections of P-V RD+D Act (PL 95-590) will be used?
 - Section 5, 6
 - Rules
ISSUES

- Should there be a pilot Phase A₁, B₁ and what is appropriate scale?
- How many contractors (teams) to seek in Phase A₂, B₂? Why? Where?
- Development of selection criteria and process
- What kind of warranties should be required and how should cost/risk be shared?
- Program is geared to TR'82; what about systems using components not ready at that time?
- Utility payment for generation beyond user's need strongly affects best system size; case-by-case resolution expected
- How can program aid market development without distorting private markets which would arise without A, B, C?
 - Federal tax credit (40% of first $10,000), 1981-1990, opens small systems market
 - Should A, B, C exclude federal tax credit and encourage larger systems?
 - Should A, B, C exclude solar bank?
ISSUES (Cont’d)

- How should markets be subdivided to identify and encourage most promising market sectors?
 - New, retrofit
 - Region
 - System design
 - Federal, private buyers
 - 1990, 2000 market impact
 - Housing price

- What are appropriate figures of merit?

- What evolution of market sectors and participants is favored by proposed approach?
 Is this appropriate?
 - High-price housing
 - P-V system integrators
 - Builder/developer
 - System size, design
 - P-V manufacturers

- Who will be the central players in A, B, C?

- Have the SHAC experiences appropriately influenced the program?
RESIDENTIAL APPLICATION IMPLEMENTATION PLAN

UNITED STATES DEPARTMENT OF ENERGY

PHOTOVOLTAIC PROGRAM

EDWARD C. KERN, JR.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY
NATIONAL PHOTOVOLTAIC PROGRAM

• SOLAR PHOTOVOLTAIC ENERGY RESEARCH, DEVELOPMENT AND DEMONSTRATION ACT OF 1978.

• TEN YEAR, $1.5 BILLION AUTHORIZATION

• FOUR APPLICATION SECTORS

 REMOTE-STAND ALONE
 RESIDENTIAL
 INTERMEDIATE LOAD CENTER
 CENTRAL STATION
WHY RESIDENTIAL PHOTOVOLTAICS?

- LARGE 1985-2000 MARKET

 75 MILLION EXISTING UNITS
 1.5 MILLION NEW UNITS PER YEAR

- ADEQUATE ROOF AREA

 40 - 80 M² IS MOST ECONOMIC (4-8 KILOWATT PEAK ARRAY)

- TAX LAWS, MORTGAGE RATES AND INFLATION FAVOR INDIVIDUAL OWNERSHIP

- ESCALATING ENERGY COSTS EXPECTED TO CROSS-OVER DECREASING PHOTOVOLTAIC COSTS IN MID-TO-LATE 1980'S
U.S. Dependence on Oil for Electric Power

By regions, electricity generated by oil as a percent of total electricity generated:

- New England: 60%
- Middle Atlantic: 35%
- East North Central: 5%
- West North Central: 3%
- East South Central: 7%
- West South Central: 9%
- Mountain: 6%
- Pacific: 55%
- Alaska and Hawaii: 78%

Source: Energy Information Administration
A RESIDENTIAL PHOTOVOLTAIC SYSTEM

- USES ON-SITE PHOTOVOLTAICS

- IS DESIGNED TO MINIMIZE HOMEOWNER'S COST

- EMPLOYS CONSERVATION, PASSIVE SOLAR HEATING AND PHOTOVOLTAIC/ THERMAL COLLECTORS AS APPROPRIATE
INITIAL RESIDENTIAL PV SYSTEMS

• REQUIRE NO ON-SITE STORAGE

• UTILIZE 2-WAY POWER FLOWS

• 4-8 kWp ARRAY (50-70% of Electricity Needs)
RESIDENTIAL PV PROGRAM

PROTOTYPE DEVELOPMENT

RESIDENTIAL EXPERIMENT STATIONS: 1980-82

LIVED-IN EXPERIMENTS

PRIVATE AND FEDERAL RESIDENCES: 1981-83

LIVED-IN RESIDENCES

CLUSTERED FOR UTILITY IMPACT: 1983-86

MARKET DEVELOPMENT

INCENTIVES, ECONOMICS AND INFRASTRUCTURE:

LATE 1980s
RESIDENTIAL EXPERIMENT STATIONS

- SYSTEM TESTING
- DIRECT SYSTEM-TO-SYSTEM COMPARISON
 (EQUAL SUN, WEATHER AND LOADS)
- REGIONAL FOCAL POINTS
 SOLAR INDUSTRY
 ELECTRIC UTILITIES
 BUILDING CODE ORGANIZATIONS
 HOME BUILDERS
 DEVELOPERS
 INSURANCE COMPANIES
- LOCATED IN
 NORTHEAST (FY-80)
 SOUTHWEST (FY-80)
 SOUTHEAST (FY-81)
PROTOTYPE SYSTEMS

- Industry detail design and build
- Build only roof-array, electric and thermal energy delivery systems
- Lincoln laboratory instruments and conducts experiment
- Emphasis on physical performance
INITIAL SYSTEM EVALUATION EXPERIMENTS

• REFINEMENTS OF SUCCESSFUL PROTOTYPE SYSTEMS

• NEW RESIDENCES WITH BUILDING INTEGRATED PHOTOVOLTAIC SYSTEMS

• OCCUPIED AND NEAR EXPERIMENT STATION

• LINCOLN LABORATORY INSTRUMENTS AND MONITORS SYSTEM PERFORMANCE

• EMPHASIS ON PHYSICAL PERFORMANCE, OCCUPANT AND INSTITUTIONAL RESPONSES
SYSTEM READINESS EXPERIMENTS

- REFINEMENTS OF SUCCESSFUL INITIAL SYSTEM EVALUATION EXPERIMENTS

- CLUSTERS OF ~100 OCCUPIED RESIDENCES TIED TO COMMON UTILITY DISTRIBUTION FEEDER

- SYSTEMS COST EFFECTIVE IF MASS PRODUCED

- EMPHASIS ON UTILITY PENETRATION, INSTITUTIONAL RESPONSES AND PUBLIC ACCEPTANCE

- SEED POINT FOR THE GROWTH OF PRIVATE MARKET
RESIDENTIAL SYSTEM DEVELOPMENT

DOE
- CONCEPTUAL DESIGN
- PROMULGATION

REGIONALLY APPROPRIATE SYSTEM DESIGNS
1980-81

MANUFACTURER
- BASELINE DETAIL DESIGN
- FABRICATE
- INSTALL

PROTOTYPE SYSTEM EXPERIMENTS
1981-85

INDUSTRY

MANUFACTURER
- REFINING DESIGN
- FABRICATE
- INSTALL
- OCCUPY

INITIAL SYSTEM EVALUATION EXPERIMENTS
1982-86

ELECTRIC UTILITY
- PROVIDE FEEDER
- ASSESS IMPACTS

MANUFACTURER
- REFINING DESIGN
- FABRICATE

SYSTEM READINESS EXPERIMENTS
1984-88

CONDUCT EXPERIMENT
- QUALIFY DESIGN
- TECHNICAL ASSISTANCE TO COMMERCIALIZATION PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM

IMPLEMENTATION WORKSHOP

ANALYSIS OF THE SOLAR HEATING AND COOLING
DEMONSTRATION PROGRAM

Tom Nutt-Powell
MIT/Energy Laboratory

February 12-13, 1980

PRECEDED PAGE BLANK NOT FILMED

B-53
Copies of the text for Analysis of the Solar Heating and Cooling Demonstration Program are available by request from:

Thomas E. Nutt-Powell
Joint Center for Urban Studies of the Massachusetts Institute of Technology and Harvard University
53 Church Street
Cambridge, Massachusetts 02138
OUTLINE

AN ANALYSIS OF THE SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

INTRODUCTION

SHAC PROGRAM

OUTCOME

FACTORS IN SOLAR ACCEPTANCE IN HOUSING

CONCLUSIONS

LESSONS
OBJECTIVE

PROGRAM DESIGN TO FACILITATE RAPID ACCEPTANCE
OF PV IN THE RESIDENTIAL SECTOR

<table>
<thead>
<tr>
<th>No Intervention</th>
<th>Market Intervention</th>
<th>Institutional Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>T EARLIER</td>
<td>T EARLIER</td>
<td>SLOPE STEEPER</td>
</tr>
</tbody>
</table>
WHAT CONSTITUTES ACCEPTANCE?

... MAKING SOMETHING NEW A ROUTINE
STAGES, ACTORS, CONSTRAINTS

IN THE HOUSING PRODUCTION PROCESS

<table>
<thead>
<tr>
<th>ACTORS</th>
<th>CONSTRAINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING CONCEPT
idea generation and specifications</td>
<td>MARKET CLARIFICATIONS</td>
</tr>
<tr>
<td>BUILDING DESIGN
establishing design specifications</td>
<td>REGULATIONS / FREE</td>
</tr>
<tr>
<td>BUILDING FINANCE
cost estimation and obtaining of funds</td>
<td>REAL ESTATE LAW</td>
</tr>
<tr>
<td>CONSTRUCTION
physical production</td>
<td>BANKING LAW</td>
</tr>
<tr>
<td>SERVICE AND OCCUPANCY
maintenance and management of buildings</td>
<td>RULES OF TRADE AND PROFESSIONAL ASSOCIATIONS</td>
</tr>
<tr>
<td>DISTRIBUTION
sale and payment of units and reimbursements</td>
<td>PROPERTY TAXES</td>
</tr>
<tr>
<td>TEAM SELECTION
a continuous choosing</td>
<td>DEVELOPMENT REGULATIONS / *PRICES</td>
</tr>
</tbody>
</table>

TABLE 1

ORIGINAL PAGE IS OF POOR QUALITY
THE INSTITUTIONAL ANALYSIS OF SHAC WAS A STUDY
OF A COMPARABLE TECHNOLOGY - SOLAR THERMAL
BY CASE STUDY
TO YIELD INSTITUTIONAL DATA FOR PROGRAM DESIGN
TO FACILITATE PV ACCEPTANCE AS ROUTINE
THE SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

+ SOURCES
+ DESIGN
+ IMPLEMENTATION
+ OUTCOME
SHAC CHRONOLOGY

SOURCES
1951-72 - Diverse bills filed; none passed
1952 - Paley Report - on Materials Policy
 need for solar energy research
1971-72 - Task Force on Energy, House Committee
 on Science & Astronautics (S & A)
1972 - Committee Staff Report, S & A

DESIGN
June 7-12 - Hearings on Solar Energy Technologies
 S & A Subcommittee on Energy
 supported expanded federal solar programs
June-Oct. - HR 10952 drafted
 NSF, NBS, NASA, HUD, DOD
 Introduced 10116 by McCormick
1973
1973
1973
1973
1973
1973
1973

Nov. 2, - S.2650 introduced (Cranston - Banking, Housing
 and Urban Affairs)
1973

Nov. 5, - S.2658 (H11864 companion) introduced -
 Moss & Weicker
DESIGN

Nov. 13-15, 1973

Hearings on HR 10952 - Energy Subcommittee

Dec. 10, 1973

HR 11864 (Amended Version of 10952) to Full Committee

Jan. 28, 1974

Reported to House

Feb. 13, 1974

Passed, with amendments, by House

Feb. 19, 1974

HR 11864 - referred to Senate Committee on Aeronautical & Space Sciences

Feb. 25, 1974

Senate Hearings on HR 11864, S.2658

March 11, 1974

Senate Comm (A.S.S.) reports HR 11864 substituting S.2658 language

March 13, 1974

HR 11864/S.2658 referred to 4 Senate Committees Commerce Banking, Housing & Urban Affairs Labor & Public Welfare Interim & Insular Affairs

March 20-21, 1974

BHUA Subcommittee on H & VA Hearings on S.2650 & HR 11864

March 27, 1974

L & PW Subcommittee on NSF Hearing on S.2650 & HR 11864
DESIGN

MARCH 29, 1974 &
C Subcommittee on Science and Technology
APRIL 5, 1974
HEARING ON S.2650 & HR 11864

MAY 21, 1974
HR 11864 passes Senate, with amendments

AUG. 12, 1974
Conference Report
Senate agrees

AUG. 21, 1974
House agrees

SEPT. 3, 1974
President Ford signs PL 93-409

IMPLEMENTATION

SEPT.-DEC. 1974
NASA/HUD with NBS, DOD, NSF prepare program
plan submitted to Congress 12/30/74

SEPT.-DEC. 1974
HUD prepares interim performance criteria for
systems and dwellings to White House/
Congress 1/1/75

JAN. 19, 1975
ERDA established - PL 93-438

MARCH 1975
ERDA 23 - National Plan
<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 1975</td>
<td>1st National Conference on Solar Standards</td>
</tr>
<tr>
<td>Jan. 19, 1976</td>
<td>HUD Cycle 1</td>
</tr>
<tr>
<td>Nov. 1976</td>
<td>ERDA 23A - (76-6) Updated National Plan</td>
</tr>
<tr>
<td>Jan. 1, 1977</td>
<td>HUD Cycle 2</td>
</tr>
<tr>
<td>May 30, 1977</td>
<td>HUD Cycle 3</td>
</tr>
<tr>
<td>Oct. 1977</td>
<td>DOE established</td>
</tr>
<tr>
<td>Mar. 29, 1978</td>
<td>HUD Cycle 4</td>
</tr>
<tr>
<td>July 1978</td>
<td>DOE/CS-0007 National Plan</td>
</tr>
<tr>
<td>Sept. 28, 1978</td>
<td>HUD Cycle 4A - Passive</td>
</tr>
</tbody>
</table>
SOLAR HEATING AND COOLING PROGRAM

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>CALENDAR YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR MILESTONES</td>
<td></td>
</tr>
<tr>
<td>LEGISLATION</td>
<td>♦</td>
</tr>
<tr>
<td>PLAN</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY PLAN</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY READINESS/REVIEW</td>
<td></td>
</tr>
<tr>
<td>HEATING PLAN</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY READINESS/REVIEW</td>
<td></td>
</tr>
<tr>
<td>COMBINED HEATING & COOLING</td>
<td></td>
</tr>
<tr>
<td>RESEARCH AND DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT IN SUPPORT OF DEMONSTRATIONS</td>
<td></td>
</tr>
<tr>
<td>PLAN RFP</td>
<td>♦</td>
</tr>
<tr>
<td>CONTRACT AWARDS</td>
<td></td>
</tr>
<tr>
<td>Prototype Hardware (Heating)</td>
<td></td>
</tr>
<tr>
<td>Prototype Hardware (Cooling)</td>
<td></td>
</tr>
<tr>
<td>RESIDENTIAL DEMONSTRATIONS</td>
<td></td>
</tr>
<tr>
<td>1ST CYCLE</td>
<td></td>
</tr>
<tr>
<td>2ND CYCLE</td>
<td></td>
</tr>
<tr>
<td>3RD CYCLE</td>
<td></td>
</tr>
<tr>
<td>4TH CYCLE</td>
<td></td>
</tr>
<tr>
<td>5TH CYCLE</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL DEMONSTRATIONS</td>
<td></td>
</tr>
<tr>
<td>1ST CYCLE</td>
<td></td>
</tr>
<tr>
<td>2ND CYCLE</td>
<td></td>
</tr>
<tr>
<td>3RD CYCLE</td>
<td></td>
</tr>
<tr>
<td>4TH CYCLE</td>
<td></td>
</tr>
<tr>
<td>DATA COLLECTION, EVALUATION AND DISSEMINATION</td>
<td></td>
</tr>
<tr>
<td>PLAN</td>
<td></td>
</tr>
<tr>
<td>INFORMATION CENTER; CENTRAL DATA PROCESSING</td>
<td></td>
</tr>
<tr>
<td>RESIDENTIAL DEMONSTRATIONS</td>
<td></td>
</tr>
<tr>
<td>1ST CYCLE</td>
<td></td>
</tr>
<tr>
<td>2ND CYCLE</td>
<td></td>
</tr>
<tr>
<td>3RD CYCLE</td>
<td></td>
</tr>
<tr>
<td>4TH CYCLE</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL DEMONSTRATIONS</td>
<td></td>
</tr>
<tr>
<td>1ST CYCLE</td>
<td></td>
</tr>
<tr>
<td>2ND CYCLE</td>
<td></td>
</tr>
<tr>
<td>3RD CYCLE</td>
<td></td>
</tr>
<tr>
<td>4TH CYCLE</td>
<td></td>
</tr>
<tr>
<td>DATA COLLECTION, EVALUATION AND DISSEMINATION</td>
<td></td>
</tr>
<tr>
<td>PLAN</td>
<td></td>
</tr>
<tr>
<td>INFORMATION CENTER; CENTRAL DATA PROCESSING</td>
<td></td>
</tr>
<tr>
<td>STANDARDS AND CRITERIA</td>
<td></td>
</tr>
<tr>
<td>INTERIM CRITERIA</td>
<td></td>
</tr>
<tr>
<td>Update Interim Criteria</td>
<td></td>
</tr>
<tr>
<td>Lab Certification Criteria</td>
<td></td>
</tr>
<tr>
<td>Definitive Criteria and Standards</td>
<td></td>
</tr>
<tr>
<td>MARKET DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td></td>
</tr>
<tr>
<td>Recommend Market Development Activities & Incentives</td>
<td></td>
</tr>
<tr>
<td>Thermal Ratings</td>
<td></td>
</tr>
<tr>
<td>SOLAR IN FEDERAL BUILDINGS*</td>
<td></td>
</tr>
<tr>
<td>Plan</td>
<td></td>
</tr>
<tr>
<td>Rule Making</td>
<td></td>
</tr>
<tr>
<td>Transfer Funds</td>
<td></td>
</tr>
</tbody>
</table>

*A new three year program to be developed in accordance with the NEP.

- ♦ Accomplished Activities
- ▲ Scheduled Activities
PROGRAM PARTICIPATION
NATIONAL HEATING AND COOLING OF BUILDINGS
HUD Residential Demonstration Program

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site System Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated System Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Criteria and Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implementation of the Residential Demonstration Program 5th Cycle is predicated on the Solar Cooling R&D Program, developing technologies which will be beneficial.

- Accomplished Activities
- Scheduled Activities

B-67
SHAC RESIDENTIAL STRATEGY

- Developer/BUILDER MOTIVATED BY THE BOTTOM LINE.
- THE BOTTOM LINE IS $S.
- INDUCE THE DEVELOPER/BUILDER WITH $S.
SHAC IMPLEMENTATION

+ SITE-SYSTEM

+ INTEGRATED SYSTEMS - 5 CYCLES, RFGAs

+ PASSIVE DESIGN COMPETITION

+ INSTRUMENTATION
Figure: HUD Solar Energy Demonstration Program Organization Chart
RESIDENTIAL EMERGENCY DATA

Figure: Residential Emergency Data Flow Chart
SHAC SUMMARIZED

+ THE INTENT -- DEMONSTRATION PROGRAM

+ THE REALITY -- RESEARCH & TECHNOLOGY DEVELOPMENT PROGRAM

+ THE OUTCOME -- A MUDDLED PROGRAM
WHY A MUDDLED PROGRAM?

IN CRISIS, FALL BACK ON ROUTINES

ROUTINES, BY FAMILIARITY, PROVIDE
CONFIDENCE THAT THE PROCESS IS
LEGITIMATE AND THE OUTCOMES ACCEPTABLE
NO MATCH BETWEEN OR AMONG THE ROUTINES OF THESE INSTITUTIONAL ARENAS:

1) FEDERAL POLICY

2) FEDERAL PROGRAM ADMINISTRATION

3) TECHNICAL DEVELOPMENT

4) HOUSING
<table>
<thead>
<tr>
<th>ARENA 1</th>
<th>ARENA 2</th>
<th>ARENA 3</th>
<th>ARENA 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency of Exchange -- Money</td>
<td>Currency of Exchange -- Status</td>
<td>Currency of Exchange -- Quantifiable Data</td>
<td>Currency of Exchange -- Marketability</td>
</tr>
<tr>
<td>Routine -- Congress Enacts, Authorizes, Appropriates</td>
<td>Routine -- Obtaining and Running Programs</td>
<td>Routine -- Instrument</td>
<td>Routine -- Word-of-Mouth</td>
</tr>
</tbody>
</table>
FACTORS IN SOLAR ACCEPTANCE IN HOUSING

+ DEVELOPER MOTIVATIONS
+ INFORMATION EXCHANGES
+ COMPREHENSIBILITY
DEVELOPER MOTIVATIONS

+ FRIENDS -- REALIZATION OF IDEALS
+ INDIANA -- TEAM SPIRIT
+ RESERVOIR HILLS -- ORGANIZATIONAL FOUNDATION
+ AMREP -- CORPORATE EXPANSION

INFORMATION EXCHANGES

+ TYPE -- RESERVOIR HILLS, FINANCIAL
+ SOURCE -- INDIANA, FROM HBAI
+ DENSITY -- AMREP, MITRE CONFERENCE
+ CONTINUITY -- SANTA CLARA, SCIENCE ADVISOR

COMPREHENSIBILITY

VIA THE SUPPORTING INSTITUTIONAL NETWORK
(MARKET RISK MITIGATED BY INTERDEPENDENCIES)

+ LEGITIMATOR HBAI
+ TRANSLATOR REDDING
+ LINKING-PIN AMREP ENVIRONMENTAL CONSULTANT
+ PLUNGER FRIENDS
+ REGULATOR SAN DIEGO COUNTY GOVERNMENT
CONCLUSIONS

1. **The SHAC program is a legislative hybrid of technology development and housing doomed to failure.**

2. **In the housing market neither financial incentives nor technical data are sufficient for a solar innovation to be accepted.**

3. **Innovation acceptance in the housing sector requires mediation through routine at the local market level.**

4. **Recipients of SHAC subsidies had motivations other than conventional market objectives.**

5. **Acceptance of subsidy does not necessarily mean acceptance of the innovation.**

6. **The probability of acceptance of an innovation increases when information comes through routine exchanges.**

7. **Information must be about the innovation, not the subsidy.**
LESSONS

* RESEARCH IS RESEARCH; DEMONSTRATION IS DEMONSTRATION

* DESIGN/ADMINISTER OUTSIDE D.C.

* MATCH ROUTINES OF THE ACCEPTING INSTITUTIONAL ARENA
 -- IN HOUSING
 DISSEMINATION STRATEGY IS THE KEY
 --- AS THE CURRENCY IS WORK-OF-MOUTH
 MULTIPLE ACTORS, MULTIPLE MOTIVATIONS,
 MAXIMUM INTERDEPENDENCIES
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM
IMPLEMENTATION WORKSHOP

THE RESIDENTIAL BUILDING INDUSTRY INFRASTRUCTURE

Richard Rittleman
Burt, Hill, Kosar & Rittleman

February 12-13, 1980
Emphasis in Introducing Solar Heating/Cooling Systems

<table>
<thead>
<tr>
<th>Buildings</th>
<th>Architects for Commerce and Industry Committee</th>
<th>Architects for Education Committee</th>
<th>Architects' Housing Committee</th>
<th>Architects' Design Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Detached Homes</td>
<td>4.38</td>
<td>3.97</td>
<td>4.00</td>
<td>4.23</td>
</tr>
<tr>
<td>Townhouses</td>
<td>4.16</td>
<td>3.83</td>
<td>4.15</td>
<td>4.50</td>
</tr>
<tr>
<td>Low-Rise Apartments</td>
<td>4.23</td>
<td>3.90</td>
<td>4.00</td>
<td>4.38</td>
</tr>
<tr>
<td>Medium-Rise Apartments</td>
<td>4.84</td>
<td>3.78</td>
<td>3.52</td>
<td>4.23</td>
</tr>
<tr>
<td>High-Rise Apartments</td>
<td>3.54</td>
<td>3.72</td>
<td>3.45</td>
<td>4.09</td>
</tr>
<tr>
<td>Schools</td>
<td>4.90</td>
<td>4.47</td>
<td>4.06</td>
<td>4.59</td>
</tr>
<tr>
<td>Office or Professional Buildings</td>
<td>4.40</td>
<td>4.38</td>
<td>3.32</td>
<td>4.36</td>
</tr>
<tr>
<td>Commercial Buildings</td>
<td>4.10</td>
<td>3.82</td>
<td>4.00</td>
<td>4.45</td>
</tr>
<tr>
<td>Condominiums</td>
<td>4.40</td>
<td>4.47</td>
<td>4.06</td>
<td>2.73</td>
</tr>
<tr>
<td>Fitting Systems to Newly Designed Buildings</td>
<td>2.00</td>
<td>3.38</td>
<td>2.42</td>
<td>2.73</td>
</tr>
</tbody>
</table>

B-82
Emphasis in Introducing Solar Heating and Cooling Systems

<table>
<thead>
<tr>
<th>New Construction</th>
<th>Strong %</th>
<th>Some %</th>
<th>Little %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Building</td>
<td>69</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>High Priced, Custom Designed Residence</td>
<td>71</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>Lower Cost Home</td>
<td>31</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>Apartment House</td>
<td>69</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>School Building</td>
<td>50</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Office or Professional Building</td>
<td>69</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>Condominium Apartment</td>
<td>64</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>Large-Scale Developments Such as Malls, 'New Towns'</td>
<td>77</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Small-Scale Developments Such as</td>
<td>31</td>
<td>46</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existing Buildings</th>
<th>Strong %</th>
<th>Some %</th>
<th>Little %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Building</td>
<td>33</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>High Priced, Custom Designed Residence</td>
<td>42</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td>Lower Cost Home</td>
<td>25</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>Apartment House</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>School Building</td>
<td>23</td>
<td>31</td>
<td>46</td>
</tr>
<tr>
<td>Office or Professional Building</td>
<td>17</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Condominium Apartment</td>
<td>25</td>
<td>17</td>
<td>58</td>
</tr>
<tr>
<td>Large-Scale Developments Such as Malls 'New Towns'</td>
<td>33</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Small-Scale Developments Such as Small Subdivisions</td>
<td>17</td>
<td>17</td>
<td>66</td>
</tr>
</tbody>
</table>
GRAPH 1. THE INDICATED AND WEIGHTED RELATIVE DECISION PROCESS BY BUILDERS WHEN CONSIDERING USE OF A COST SAVING INNOVATION BY ORDER AND MAGNITUDE OF CONSTRAINT CATEGORIES

AGGREGATE

PRODUCT INNOVATIONS

GROUP

STRUCTURAL INNOVATIONS

GROUP

METHODS OR TECHNIQUES

INNOVATIONS GROUP

MECHANICAL INNOVATIONS

GROUP

- WILL THE CONSUMER ACCEPT IT?
- WILL THE LENDER ACCEPT IT?
- DOES THE BUILDER REALLY WANT TO USE IT?
- WILL IT BE ACCEPTED BY COMPS, CODE OFFICIALS AND NOT DAMPENED BY LICENSING LAWS?
- WILL THE PRODUCT PERFORM OK AND BE AVAILABLE RELIABILITY
- WILL UNIONS ALLOW AND CAN SUB-CONTRACT INSTALL IT?
<table>
<thead>
<tr>
<th>Rank</th>
<th>Builder</th>
<th>Building Code Official</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not considered using</td>
<td>Building code prohibits</td>
<td>Building code prohibits</td>
</tr>
<tr>
<td>2</td>
<td>Poor performance risk</td>
<td>Not considered using</td>
<td>Union rules prohibit</td>
</tr>
<tr>
<td>3</td>
<td>May damage reputation</td>
<td>Poor performance risk</td>
<td>Requires sub to change</td>
</tr>
<tr>
<td>4</td>
<td>Building code prohibits</td>
<td>May damage reputation</td>
<td>Material not available</td>
</tr>
<tr>
<td>5</td>
<td>Not enough technical information</td>
<td>Costs more</td>
<td>Building officials from</td>
</tr>
<tr>
<td>6</td>
<td>Building officials from</td>
<td>Not applicable to design</td>
<td>Not considered using</td>
</tr>
<tr>
<td>7</td>
<td>Not applicable to design</td>
<td>Unsatisfactory experience</td>
<td>Appraisal penalty</td>
</tr>
<tr>
<td>8</td>
<td>Not marketable</td>
<td>Requires sub to change</td>
<td>Costs more</td>
</tr>
<tr>
<td>9</td>
<td>Expect too many callbacks</td>
<td>Union rules prohibit</td>
<td>Poor performance risk</td>
</tr>
<tr>
<td>10</td>
<td>Costs more</td>
<td>Not enough technical information</td>
<td>Not enough technical information</td>
</tr>
<tr>
<td>11</td>
<td>Appraisal penalty</td>
<td>Building officials from</td>
<td>Licensing system prevents</td>
</tr>
<tr>
<td>12</td>
<td>Lenders from</td>
<td>Expect too many callbacks</td>
<td>May damage reputation</td>
</tr>
<tr>
<td>13</td>
<td>Unsatisfactory experience</td>
<td>Material not available</td>
<td>Lack of Management/supervision</td>
</tr>
<tr>
<td>14</td>
<td>Material not available</td>
<td>Not heard of Item</td>
<td>Expect too many callbacks</td>
</tr>
<tr>
<td>15</td>
<td>Requires sub to change</td>
<td>Not marketable</td>
<td>Lenders from</td>
</tr>
<tr>
<td>16</td>
<td>Not worth extra training</td>
<td>Lenders from</td>
<td>Not worth extra training</td>
</tr>
<tr>
<td>17</td>
<td>Union rules prohibit</td>
<td>Not worth extra training</td>
<td>Not heard of Item</td>
</tr>
<tr>
<td>18</td>
<td>Lack of management/supervision</td>
<td>Licensing system prevents</td>
<td>Unsatisfactory experience</td>
</tr>
<tr>
<td>19</td>
<td>Licensing system prevents</td>
<td>Lack of management/supervision</td>
<td>Not applicable to design</td>
</tr>
<tr>
<td>20</td>
<td>Not heard of item</td>
<td>Appraisal penalty</td>
<td>Not marketable</td>
</tr>
</tbody>
</table>
TABLE 31. Rank order of constraints by aggregate weighted values.

<table>
<thead>
<tr>
<th>Rank Order</th>
<th>Constraint</th>
<th>Aggregate Weighted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not considered using</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>Poor performance risk</td>
<td>0.44</td>
</tr>
<tr>
<td>3</td>
<td>May damage reputation</td>
<td>0.39</td>
</tr>
<tr>
<td>4</td>
<td>Building code prohibits</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>Not enough technical information</td>
<td>0.32</td>
</tr>
<tr>
<td>6</td>
<td>Building officials frown</td>
<td>0.30</td>
</tr>
<tr>
<td>7</td>
<td>Not applicable to design</td>
<td>0.30</td>
</tr>
<tr>
<td>8</td>
<td>Not marketable</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>Expect too many callbacks</td>
<td>0.26</td>
</tr>
<tr>
<td>10</td>
<td>Appraisal penalty</td>
<td>0.21</td>
</tr>
<tr>
<td>11</td>
<td>Costs more</td>
<td>0.21</td>
</tr>
<tr>
<td>12</td>
<td>Lenders frown</td>
<td>0.21</td>
</tr>
<tr>
<td>13</td>
<td>Unsatisfactory experience</td>
<td>0.19</td>
</tr>
<tr>
<td>14</td>
<td>Material not available</td>
<td>0.17</td>
</tr>
<tr>
<td>15</td>
<td>Requires sub to change</td>
<td>0.16</td>
</tr>
<tr>
<td>16</td>
<td>Not worth extra training</td>
<td>0.13</td>
</tr>
<tr>
<td>17</td>
<td>Union rules prohibit</td>
<td>0.11</td>
</tr>
<tr>
<td>18</td>
<td>Licensing system prevents</td>
<td>0.09</td>
</tr>
<tr>
<td>19</td>
<td>Lack of management/supervision</td>
<td>0.09</td>
</tr>
<tr>
<td>20</td>
<td>Not heard of item</td>
<td>0.00</td>
</tr>
</tbody>
</table>
PV Market Analogy

$0.50/W, PV\text{ }\approx\text{ }$0.50/lb. Catfish

<table>
<thead>
<tr>
<th>PV</th>
<th>Catfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfies strong basic need</td>
<td>Energy</td>
</tr>
<tr>
<td>Satisfies strong specific need</td>
<td>Electricity</td>
</tr>
<tr>
<td>Economically competitive</td>
<td>Competitive with many power sources</td>
</tr>
<tr>
<td>Recent strong technology development</td>
<td>LSA</td>
</tr>
<tr>
<td>Environmental acceptability</td>
<td>Environmentally benign</td>
</tr>
<tr>
<td>Malleable technology</td>
<td>FLAT PLATE</td>
</tr>
<tr>
<td></td>
<td>CONCENTRATOR</td>
</tr>
<tr>
<td></td>
<td>REMOTE SITE</td>
</tr>
<tr>
<td></td>
<td>CENT. POWER</td>
</tr>
<tr>
<td></td>
<td>THERMAL/PV</td>
</tr>
</tbody>
</table>

B-87
<table>
<thead>
<tr>
<th>P/V</th>
<th>CATFISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL AVAILABILITY</td>
<td>SUPPLY CAPABILITY EXCEEDS DEMANDS</td>
</tr>
<tr>
<td>PUBLIC ACCEPTANCE</td>
<td>BOTH COMMAND A SMALL BUT DEDICATED GROUP OF DEVOTEES,</td>
</tr>
<tr>
<td>MARKET DEPENDENCY</td>
<td>IF YOU LOOK HARD ENOUGH YOU CAN FIND A PRIVATE PURCHASE OUTSIDE OF THE GOVERNMENT PROGRAM,</td>
</tr>
<tr>
<td>RESOURCE IMPACT</td>
<td>RAPID INCREASE IN P/V MARKET GROWTH COULD CAUSE S1 SHORTFALL.</td>
</tr>
</tbody>
</table>

SO WHY HASN'T CATFISH PENETRATED THE MARKET?
PARTICIPATION IN COLLECTIVE DECISION MAKING IN THE LOCAL BUILDING DEPARTMENT BY ACTOR AND ROLE

FIGURE 2
DOE PHOTOVOLTAICS PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM IMPLEMENATION WORKSHOP PROGRAM

- PROGRAM OBJECTIVE
 MAXIMIZE DEPLOYMENT OF PHOTOVOLTAIC SYSTEMS WITHIN RESOURCE AND OTHER CONSTRAINTS IMPOSED

- PROGRAM TOOLS
 - RESEARCH
 - TECHNOLOGY DEVELOPMENT
 - SYSTEM TESTS AND DEMONSTRATIONS

- USE OF TESTS AND DEMONSTRATIONS TOOL
 - TRIAL AND ERROR
 - EXPERIMENT DESIGN

- CONSTRAINTS ON TESTS AND DEMONSTRATIONS
 - TIME
 - MONEY/SIZE
 - REQUEST FOR PROPOSAL

JLS
2/13/80
DOE PHOTOVOLTAICS PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM
IMPLEMENTATION WORKSHOP
INTERMEDIATE OBJECTIVES, TESTS
AND DEMONSTRATIONS

DESIGNED TO SERVE:

- POLITICAL MANDATE
 - TIMING
 - GEOGRAPHICAL DISPERSION
 - SYSTEM TYPE

- INFORMATION DISSEMINATION ——> DEMONSTRATION
 - DESIGN DIFFUSION STRATEGIES
 - INCLUDE APPROPRIATE PLANNERS
DOE PHOTOVOLTAICS PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM
IMPLEMENTATION WORKSHOP
INTERMEDIATE OBJECTIVES, TESTS
AND DEMONSTRATIONS (contd)

- INFORMATION PRODUCTION ➔ EXPERIMENTS (TESTS)
 - IDENTIFY UNCERTAINTIES
 - FORMULATE HYPOTHESES
 - DESIGN EXPERIMENT
 - SAMPLE SIZE
 - EXPERIMENT DURATION
 - ESTABLISH CONTROL
 - DESIGN DATA COLLECTION
DOE PHOTOVOLTAICS PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM
IMPLEMENTATION WORKSHOP
SAMPLE EXPERIMENTS

- SYSTEM PERFORMANCE
 - CONFIGURATION
 - INTEGRATION
 - TILT ANGLES
 - DISPLAY INSTRUMENTATION
 - PREDICT FUTURE PERFORMANCE

- SYSTEM COST
 - MEASUREMENT
 - PREDICTIONS

- MARKET DEFINITION
 - HOMEOWNER PROFILE
 - GEOGRAPHIC LOCATION
 - HOUSING STOCK (RETROFIT)
 - UTILITY CHARACTERISTICS

- "OPTIMAL"/APPROPRIATE RATE STRUCTURES
 - LOAD SHIFTING

- TEST OPTIMAL DIFFUSION HYPOTHESES
 - INSTALLATION TRAINING
 - DEMONSTRATION DESIGN
DOE PHOTOVOLTAICS PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM
IMPLEMENTATION WORKSHOP

SAMPLE EXPERIMENTS (contd)

- INFRASTRUCTURE ARRANGEMENTS
 - INSTALLATION
 - BUILDER/DEVELOPER/PHOTOVOLTAIC SYSTEM SUPPLY

- EFFECTS OF PHOTOVOLTAIC DEPLOYMENT ON UTILITIES

- COMPLEMENTARY APPLIANCE AND CONSERVATION TECHNIQUE DETERMINATION

- EFFECTS OF STANDARDS

- EFFECTS OF CONTRACTING ARRANGEMENTS
MULTI-YEAR PHOTOVOLTAIC SYSTEM
PURCHASE PROGRAM
EXPERIMENTAL DESIGN

Residential Applications Program Implementation Workshop
Session III
Caltech
February 12, 1980

Tom W. Hamilton, Manager for Planning, Assessment, and Integration Technology Development and Applications, Photovoltaics Lead Center
PRIMARY EXPERIMENTAL OBJECTIVES

<table>
<thead>
<tr>
<th>First-of-a Kind Experiments (1SEE)</th>
<th>Engineering Field Tests (EFT)</th>
<th>Market Tests (MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Demonstrate technical feasibility of regionally appropriate system designs in the user environment</td>
<td>- Demonstrate that system price goals are likely to be met if factory-made components meet goals</td>
<td>- Test market acceptance of selected systems</td>
</tr>
<tr>
<td>- Evaluate alternative cost-reduction approaches, verify system performance</td>
<td>- Start infrastructure development</td>
<td>- Verify that systems can meet price goals (at a specified volume)</td>
</tr>
<tr>
<td>- Attack market development barriers</td>
<td></td>
<td>- Support infrastructure development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Resolve market development barriers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Determine major utility impact at sub-station level</td>
</tr>
</tbody>
</table>
DEVELOPMENT OF BASELINE EXPERIMENT PLANS

- Overall guidance from top-level documents
 - Multi-year Program Plan
 - Residential Applications Requirements
 - Guidelines for specific program phases

- MIT-LL leads development of Baseline Experiment Implementation Plans for ISEE, EFT
 - Detailed objectives
 - Selection criteria and process
 - Planned instrumentation, monitoring, and reporting
 - Basic experiment design
EXPERIMENT (OR MISSION) TEAM CONCEPT

Description
- Competitively selected contractors (hardware exclusion clause) funded to design and perform specific subexperiments they propose to complement the Baseline Experiment Plans in support of the EFT/MT objectives
- One team for all residential applications

Purposes
- Augment EFT/MT plans and measurements to enable a more rigorous and complete evaluation of the degree to which objectives are met
- To generate original ideas which can enhance the value of the experiment
- To assist selected contractors in resolving market and institutional barriers

Output
- Subexperiment plans including requirements on EFT/MT
- Documented results, recommendations
 - Measurement of market acceptance
 - Regulatory and institutional intervention (e.g., rate structure experimentation)
 - Institutional issues from various viewpoints
 - Evaluation of cost-reduction, learning experience

/
SCHEDULE

- White papers on selected topics: mid-March

- Workshop Proceedings: April

- Decision on Experiment (or Mission) Team: Concept: May

- Utility Interface Meeting: June

- Pilot Residential Phase A,
 - RFP issued October-December
 - Awards April-May, 1981
PHOTOVOLTAIC RESIDENTIAL IMPLEMENTATION WORKSHOP

NON-HARDWARE EXPERIMENT DESIGN:
SOME ANALYTICAL SOLUTIONS TO WICKED PROBLEMS

FRANK CAMM
THE RAND CORPORATION

FEBRUARY 16, 1980
This presentation illustrates the potential for collecting data to examine residential photovoltaics with three possible subexperiments. It emphasizes that, before any data collection begins, you must ask what it is you want to know. The data you collect and the experiments you design will serve you better if they are specifically targeted early in your planning. It then looks at what experiments can tell you about the basic questions you ask. And it suggest three experiments you may wish to consider. These are illustrative and meant more to spark your thinking than to specify your plans in any way.

The fact that soft tissues, or "wicked problems" as they have come to be known during this conference, are often difficult to address in a rigorous way does not mean that they cannot be addressed rigorously. We are fortunate that soft problems associated with consumer demand, pricing policy, and consumer response to policy changes are well understood and can, if properly approached, be analyzed in a precise and productive way. Analysis of such problems, however, requires data collection that is at least as demanding as the collection of data on hardware issues like system performance. In this sense, these soft issues are every bit as hard as the hardware issues and require an equally hard-headed approach. The hardware experiments being proposed here offer the opportunity to collect data on issues important to eventual consumer acceptance of photovoltaics.
OUTLINE

- WHAT YOU WANT TO KNOW
- WHAT EXPERIMENTS CAN TELL YOU ABOUT THAT
- THREE SUGGESTIONS FOR EXPERIMENTS

B-105
When one starts to think of all the questions one might ask about nonhardware issues associated with photovoltaics, it quickly becomes clear that many are possible. The presentations this morning emphasized the range of institutional questions we can ask. They tend to have a relatively short term, tactical emphasis. I'd like to suggest some issues of a more long term, strategic nature--questions which are likely to generate information more useful to the development of the market for photovoltaics over the long run. Since we are concentrating on new construction and the housing stock turns over at a rate of only about 2 percent a year, I would expect the long run to receive special attention in questions addressed to nonhardware issues.

The issues I raise all relate to the question of how consumers will react to the availability of residential photovoltaic technology. I have broken out what may appear to be sequential decisions--purchase, sizing, and use--but in fact they are joint decisions. While we may wish to look at one at a time, we should never forget the relationships among them. As a result, the same factors are likely to be important determinants of all of them.

The determinants listed are factors typically considered in studies of housing-related investments. One, the terms of purchase, may be of particular interest because of the persisting puzzle that consumers typically do not invest in energy saving options even when engineers and economists think they should. Careful attention to the terms of purchase may tell us why household investment behavior differs from that one would predict for "rational" households. This is a key factor--perhaps the key factor--of importance to the eventual acceptability of photovoltaics in the residential market.
WHAT IS IT YOU WANT TO KNOW?

DETERMINANTS OF:

PURCHASE
SIZING OF COLLECTORS AND STORAGE
PATTERN OF ELECTRICITY USE FOLLOWING PURCHASE

POSSIBLE DETERMINANTS INCLUDE:

TYPE OF HOUSING
TYPE OF HOUSEHOLD
PATTERN OF INSOLATION, DEGREE-DAYS
TERMS OF TARIFF
TERMS OF PURCHASE
What an experiment can tell you about these issues is limited by the expense and productivity of the data an experiment produces. For a given cost, the quality of information one can generate falls with the number of parameters which must be estimated (unless they can be shown or assumed to be dependent), falls with the number of locations which must be studied (unless the underlying structure of one's model can be shown or assumed to be stable across locations), and falls as the length of the time horizon of decisionmaking rises. What that means is that, within a given budget, one faces an unavoidable tradeoff between the quantity and quality of information. In a moment we will see that the tradeoff can be demanding. High quality information is available only if an experiment is designed to define the value of a very limited set of policy-relevant parameters.

Anything that can "loosen up" the terms of this tradeoff, then, should be exploited. Fortunately, careful foresight and planning can wring much better and much more information out of the data collected for a given cost than might first be evident. Reference to earlier housing studies, for example, can help pin down what parameters are important and what functional forms to expect. Though no demand studies of photovoltaics are available, photovoltaics display a striking similarity to housing insulation in the way they affect a consumer's demand for external power. Hence studies of the demand for insulation may prove quite helpful. Similarly, the importance of the power grid/household interface to photovoltaics makes previous experiments on electricity rates helpful. They not only provide information on the potential relationship between rate structure and demand for photovoltaics; they may also provide valuable empirical baselines for data collection aimed at photovoltaics. And, of course, most important of all, the theory of consumer response will be invaluable in imposing structure on questions about consumer acceptance of photovoltaics. It is this theory that makes a potentially soft area not only manageable but potentially invaluable to policy formation and market development.
WHAT CAN AN EXPERIMENT TELL YOU?

IT IS LIMITED BY:

NUMBER OF PARAMETERS
NUMBER OF LOCATIONS
TIME HORIZON

BUT IT IS GREATLY ENHANCED IF COMBINED WITH

EARLIER HOUSING STUDIES
EARLIER RATE EXPERIMENTS
THEORY OF CONSUMER RESPONSE
With these simple guidelines in mind, let us consider three potential subexperiments. The first two exploit econometric techniques and demand theory to exploit a potential data source in a precise and controlled way. The third is more speculative and is probably not appropriate with the current state of knowledge. It is, however, an experiment which will be conducted in the future; cognizance of it now should speed the date when it can be conducted.
THREE TYPES OF EXPERIMENTS

- DETERMINANTS OF HOUSEHOLD PURCHASE
- HOUSEHOLD RESPONSE TO OWNERSHIP
- RESPONSE TO RATE DEREGULATION
The first subexperiment we will consider is one designed to collect data on what factors are important to the decision to purchase residential photovoltaics. Reviewing a similar study of household insulation briefly will help raise the problems and potential one should expect from such a subexperiment. Robert Smiley's analysis of the determinants of household insulation is based on a random sample of 1049 observations from a survey database about ten times as large. The survey collected unaudited, qualitative data on households in New York State. Smiley posited a logistic model for each of the three dependent variables and used various subsets of 21 demographic, housing, and weather variables to "explain" the behavior of each of these dependent variables.
PURCHASE DETERMINANTS: AN EXAMPLE
SMILEY'S "DETERMINANTS OF HOUSEHOLD INSULATION"

MODEL: \[E(p) = \frac{e^{\beta x}}{1 + e^{\beta x}} \]

DEP VAR:
- a) LEVEL OF INSULATION
- b) ADDITIONS OF INSULATION
- c) INTENTIONS TO ADD INSULATION

IND VAR:
- a) DEMOGRAPHIC
- b) HOUSING \[k = 21 \]
- c) WEATHER

SAMPLE: \[n = 1049 \]

PROBLEMS:
- a) SURVEY BIAS
- b) RESPONSE BIAS
- c) LACK OF CONTROL OVER DATA COLLECTED
- d) COLLINEARITY
His first equation suggests the kind of results he got. Two general observations are important. First, given that the variables are all dummies, the coefficients are small relative to the constant term. Second, for a sample of 1046, the t-values are rather small.

These results can be explained at least in part by considering some of the problems Smiley had. First, unaudited survey data are known to be undesirable; they lead to measurement errors that bias coefficient estimates toward zero. Second, response bias—the bias introduced by using data only from households who respond to a survey—can push the coefficient estimates in any direction. Smiley believes he has avoided response bias but cannot test for survey bias. Third, and most serious, Smiley has no control over the survey or sample design. The use of qualitative data as crude as those illustrated in Slide 7 is bound to lead to measurement error. Poor phrasing of questions and choice of variables also lead to (a) the need to use crude proxies and (b) dependencies among variables that induced collinearity. Had Smiley been able to collect these data in an experiment and to choose precisely the data he wanted to collect, he could have avoided all of these problems.
SMILEY'S 1st EQUATION

DEP VAR: PR [INSULATION > 6 INCHES]

<table>
<thead>
<tr>
<th>IND VAR</th>
<th>β</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 , K \leq y < 15 , K$</td>
<td>0.35</td>
<td>1.27</td>
</tr>
<tr>
<td>$15 , K \leq y < 20 , K$</td>
<td>0.34</td>
<td>1.23</td>
</tr>
<tr>
<td>$20 , K \leq y < 30 , K$</td>
<td>0.51</td>
<td>1.84*</td>
</tr>
<tr>
<td>$30 , K \leq y$</td>
<td>0.74</td>
<td>2.60**</td>
</tr>
<tr>
<td>ELECT. SPACE HEAT?</td>
<td>2.88</td>
<td>7.25**</td>
</tr>
<tr>
<td>GAS SPACE HEAT?</td>
<td>-0.22</td>
<td>1.19</td>
</tr>
<tr>
<td>CENTRAL AIR COND?</td>
<td>0.74</td>
<td>3.11**</td>
</tr>
<tr>
<td>$30 < \text{age} \leq 50$</td>
<td>-0.15</td>
<td>0.45</td>
</tr>
<tr>
<td>$50 < \text{age} \leq 64$</td>
<td>-0.59</td>
<td>1.72*</td>
</tr>
<tr>
<td>$65 \leq \text{age}$</td>
<td>-0.56</td>
<td>1.47</td>
</tr>
<tr>
<td>PRICE/MM BTU</td>
<td>-0.18</td>
<td>3.66**</td>
</tr>
<tr>
<td>HEATING DEGREE DAYS</td>
<td>0.21</td>
<td>2.66**</td>
</tr>
<tr>
<td>HOUSE AGE</td>
<td>-0.09</td>
<td>0.45</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-1.74</td>
<td></td>
</tr>
</tbody>
</table>

$n = 1046$
I would suggest that you consider a model that jointly determines (a) purchase and (b) sizing. Purchase could be modelled by a logistic function and sizing by a simple linear relationship. You should anticipate an intercorrelated error structure. Data on the household, house, tariff, and terms of purchase would be collected to estimate these two relationships. To the extent that you must focus your interest, I would focus on the tariff and terms of purchase. This immediately raises a difficult problem. If a purchaser expects a tariff to last only for the length of the experiment, the tariff imposed during the experiment is unlikely to be representative of the one he uses in his life cycle investment decision. Hence, I would focus on response to alternative experimental tariffs only if you get the local utility to cooperate and maintain that tariff indefinitely.

Other key issues also arise. First, should the household or the builder/contractor be the focus of the analysis? On the one hand, demand for photovoltaics ultimately lies with the household that purchases a house; on the other, the household is unlikely to be well enough informed to choose a system and size it without the builder's assistance. My inclination is to treat the builder's decision as a veil on household behavior. Second, where should the experiment be conducted? I would recommend limiting the experimental sites to no more than two or three cities. Each additional city requires control of weather and (unless experimental tariffs are used) utility nuisance variables that can be avoided if the number of sites is limited. Third, can sampling design make a difference within a site? The answer is a resounding "yes!" but that is best discussed with reference to our second experiment. Let me just note here that explicit determination of the data to be collected and the model to be estimated as early as possible opens the way for a variety of nonrandom sampling designs that significantly enhance the information available within a given budget. The last issue is perhaps the most fundamental: is the information from an experiment representative of the behavior we would expect from consumers once photovoltaics are actually introduced? No, but demand theory allows us to make inferences about future behavior on the basis of experimental behavior. How much one trusts those inferences or how much they are worth will obviously have a fundamental effect on how desirable this kind of experiment is.
EXPERIMENT 1
DETERMINANTS OF HOUSEHOLD PURCHASE

QUESTION: WHAT AFFECTS A HOUSEHOLD'S DECISION TO PURCHASE?

MODEL: a) $E(p) = e^{x_1 \beta_1} / (1 + e^{x_1 \beta_1})$
 b) $E(s) = X_2 \beta_2$

X_1, X_2 INCLUDE DATA ON HOUSEHOLD

KEY ISSUES: a) UNIT OF OBSERVATION
 b) BREADTH OF EXPERIMENT
 c) SAMPLING STRATEGY
 d) EXTENT OF KNOWLEDGE, ROUTINE
The second type of experiment looks at the way a household responds to electricity rates if it owns photovoltaic capacity. To get an idea of what such an experiment might look like, consider the Rand Corporation electricity pricing experiment in Los Angeles. That experiment posited a linear regression of per period consumption on a fairly general functional form of prices in various rate periods and on demographic, housing, and appliance data. It collected detailed consumption data on 1800 Los Angeles households over a 30 month period.

The most important feature of this experiment is its use of nonrandom sampling devices to enhance the information one could infer from the data collected. Two are especially important. It used an "Allocation Model" to choose the experimental tariff treatments that should be used in the experiment and the number of households that should face each treatment in the experiment. A "Finite Selection Model" was then used to assign specific households to specific treatments in order to assure balance and orthogonality across plans. Both of these models minimize a loss function based on the precision of estimates of the effects of a set of predetermined policy changes. To specify such a loss function, one must know both (a) very specifically what policy questions are important, and (b) what the functional form of the response surface will be. Both must be known before sample selection even begins! But the payoff is: worth the trouble.
HOUSEHOLD RESPONSE: AN EXAMPLE
RAND ELECTRICITY PRICING EXPERIMENT

MODEL: \[\text{KWH}_i = a_{i0} + \sum \alpha_{ij} P_{ij} + \sum \beta_{ij} P_{ij}^2 + \sum \gamma_k Z_k + u_i, \quad i = 1 \ldots 5 \]

DEP VAR: CONSUMPTION IN TARIFF PERIOD \(i \)

IND VAR: PRICES IN 5 TARIFF PERIODS
- DEMOGRAPHIC
- HOUSING
- APPLIANCES

SAMPLE: \(n = 1800 \)
DESIGN: ALLOCATION & FINITE SELECTION

LENGTH: 30 MONTHS

PROBLEMS:
- a) ROBUSTNESS
- b) EFFECT OF HORIZON ON LEARNING
- c) EFFECT OF HORIZON ON STOCK ADJUSTMENT
- d) HAWTHORNE EFFECTS
Slide 10 shows the relative variances of predictions of the effects of a number of different treatments. $\frac{\sigma^2_{FSM}}{\sigma^2_{Random}}$ is the theoretical ratio of the variances from Finite Selection and Random Samples; $\frac{\sigma^2_{Actual}}{\sigma^2_{Random}}$ is the actual ratio observed. The ratios differ because the Finite Selection Model could not be perfectly implemented. Even in the imperfect implementation, however, nonrandom sampling reduced the variance about estimates of (increased the quality of information about) the effects of important policy actions on average by 28 percent. More complete implementation could have reduced that variance by up to 40 percent. These are equivalent approximately to 28 and 40 percent increases in sample size. The Allocation Model enhanced the sample in similar ways. In the Rand experiment, where observations cost about $100 to $400 each, the savings easily outweighed the additional cost associated with nonrandom sample design. The savings would be even more dramatic in a photovoltaic experiment where observation costs two orders of magnitude larger are anticipated.

The Rand experiment is not without its problems. First, the validity of the sampling techniques depends on the model assumed; significant changes in the model after the experiment starts both reduce the advantages of the sample design and introduce potential biases which must be corrected before the coefficient estimates can be accepted. The Rand experiment uses a relatively robust model in the key pricing variables to avoid these problems.

Second, the experimental horizon limited the amount of learning and stock adjustment we can expect in households. The Rand experiment is designed to be long enough to allow experience over at least two summers and winters; to the extent that learning is important, it can probably be measured over the course of the experiment and the extent of convergence on some final pattern of behavior can be detected. Little stock adjustment is expected; the experiment is meant to measure response only in the short run before such adjustment occurs.

Finally, any experiment must cope with Hawthorne or placebo effects—behavioral changes induced by the simple fact that an experiment is on. The Rand experiment attempts to detect these effects in a number of ways, but cannot be certain that all are recognizable.
EFFECT OF FSM AND ACTUAL ALLOCATIONS ON "POLICY VARIANCES"

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>P_{sum}</th>
<th>P_{win}</th>
<th>SAMPLE SIZE</th>
<th>σ^2_{FSM}</th>
<th>σ^2_{RANDOM}</th>
<th>σ^2_{ACTUAL}</th>
<th>σ^2_{RANDOM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CONTROL-</td>
<td>39</td>
<td></td>
<td></td>
<td>0.73</td>
<td>0.57</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>41</td>
<td>0.86</td>
<td>0.74</td>
<td>1.11</td>
<td>0.95</td>
<td>1.11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>43</td>
<td></td>
<td>0.74</td>
<td>0.95</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>54</td>
<td></td>
<td>0.89</td>
<td>0.95</td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>21</td>
<td></td>
<td>0.76</td>
<td>0.93</td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>59</td>
<td></td>
<td>0.97</td>
<td>1.47</td>
<td></td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td></td>
<td>0.54</td>
<td>0.65</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>MEAN</td>
<td>-</td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.72</td>
<td></td>
<td>0.72</td>
</tr>
</tbody>
</table>
The photovoltaic rate experiment could be quite similar to the Rand rate experiment. The principal difference would be inclusion of a sellback price to supplement the purchase rate structure. Economic theory tells us that if purchase and sellback prices are equal in all periods, consumers will be unaffected by ownership of photovoltaic capacity (except for a minor income effect). That suggests that data from the Rand experiment or one of the other FEA-sponsored experiments might provide a useful baseline for the photovoltaic experiment. Experiments conducted to meet the requirements of the Public Utilities Regulatory Policy Act of 1978 (PURPA) might also be available. It also suggests that the photovoltaic experiments should concentrate more on differences between purchase and sellback prices than on other rate structure questions. It does not rule out, however, that the economic theory itself should be tested. This experiment offers an ideal opportunity to do that.

The very high cost of observations in the photovoltaic experiment suggests that a great deal of attention should be given to the experimental design. The sample size is the key constraint; its effect can be ameliorated to some extent by special attention to sample design and by an extended experimental horizon which reduces the potential importance of Hawthorne effects. Note, however, that the more important the sample design associated with this experiment, the harder it will be to use the sample for other experiments. In general, nonrandom sample designs reduce the number of experiments that can be performed with a sample of given size. And, of course, they put a premium on the robustness of the model used in association with each experiment.
EXPERIMENT 2
HOUSEHOLD RESPONSE TO OWNERSHIP

QUESTION: HOW DOES OWNERSHIP CHANGE BEHAVIOR?

MODEL:
 a) \(\text{kwh} = f(P_{\text{purchase}}, P_{\text{sell back}}; Z) \)
 b) POSSIBILITY OF \(f_{\text{with}}, f_{\text{without}} \)

KEY ISSUES:
 a) SAMPLE SIZE
 b) SAMPLE DESIGN
 c) COMPATIBILITY OF EXPERIMENTS
 d) HORIZON
Unlike the first two, the third experiment is not built around econometric estimation of a clearly specified model. It looks forward to the time when electricity is provided in something approaching perfect competition and the social experiments that will have to be used to implement this post-regulation era of electricity production. Those experiments will require information about consumer behavior that we can start collecting in less ambitious, near-term experiments of the type suggested above. Understanding the issues that will arise in post-regulation experiments may help frame the issues to be addressed in nearer term efforts.

Interest in deregulated electricity production will grow as officials discover that (a) the accounting-based rates called for under PURPA cannot provide tariffs truly based on marginal cost, particularly tariffs for the new intermittent solar technologies; and (b) new microelectronic technologies now becoming available facilitate networks of information that will allow workable free competition in electricity production. Under free competition, photovoltaic options can compete freely with more traditional utility sources of power and need not suffer from the utilities' dominant position in power production and hence accounting-based rate making. There is significant reason to believe that competitively determined electricity prices will represent the single most important institutional development required to set photovoltaic energy production free.

Such a radical change will not come spontaneously and the body politic cannot be expected to accept it without initial tests. Those tests are most likely to be successful—informative—if they are planned well in advance on the basis of a solid empirical understanding of the supply and demand sides of a free electricity market. A long-term perspective for the experiments now being planned can assure that the empirical data needed for the far more important experiments to come will be there when they are needed.
EXPERIMENT 3
RESPONSE TO RATE Deregulation

QUESTION: WHAT ROLE WILL PV PLAY IN A COMPETITIVE MARKET FOR ELECTRICITY GENERATION?

BASIC ISSUES:

- ACCOUNTING APPROACH IMPLICIT IN PURPA CANNOT EASILY PROVIDE RATES "FAIR" TO PV
- NEW ELECTRONIC TECHNOLOGIES NOW EXIST TO SUPPORT A SPOT MARKET IN ELECTRICITY
- NEAR-TERM NON-HARDWARE EXPERIMENTS CAN PROVIDE INPUTS TO DESIGN OF DeregULATION EXPERIMENT
This brief presentation of principles to consider in experimental design for "soft problems" raises four important points.

First, as much as possible, experiments and the data they are designed to collect should be chosen and refined as early as possible. An evolutionary planning approach which brings actors—vendors, contractors, builders, consumers, and so on—in sequentially as the hardware data of most interest to them emerges will not allow proper consideration of the nonhardware data needs of actors brought in late. By the time they enter the process, sample selection will be well under way and proper experimental design to address their needs will no longer be possible. The information needs for nonhardware issues must be determined early, must be narrowed and refined early, and must be treated with the same respect given to the information needs for hardware issues.

Second, experiments cannot fulfill excessive information needs. Within a given budget, the quantity of information can be increased only by sacrificing its quality. Experiments, particularly properly designed experiments, can provide significant, good quality information within a tight budget, but the budget constraint cannot be dismissed by even the best experimental design and execution. The high anticipated cost of observations dictates very careful attention to the information to be gathered by experiment and careful control on the expectations of those scheduled to receive the experimental results.

Third, an experiment should not proceed in a vacuum. Experience with social experimentation is growing and the photovoltaic experiment should exploit both the available human capital of researchers who have run experiments and their documented experience. The experiment designers should also give careful attention to more general empirical work in housing and demand analysis. Given the high anticipated cost of observations, every effort should be made to integrate the experiment with existing data bases, empirical evidence, and experience in order to maximize the productivity of each observation.

Finally, the experiment should keep its full future potential in mind. Only under the most extraordinary circumstances will residential photovoltaics become a significant factor in the national housing market during the next decade. Data collected today will have their greatest impact on policy and market development in the mid- to long-term. Those who design the experiments should keep that perspective in mind and pursue data that can best affect integration of photovoltaics into the national grid over the long term. Data relevant to deregulation of electricity generation fall into that category and should be given careful consideration.
CONCLUSIONS

- DETERMINE WHAT INFORMATION YOU WANT MOST.
- BE AWARE OF LIMITATIONS OF EXPERIMENTS.
- USE PAST EXPERIENCE WITH EXPERIMENTS.
 - INTEGRATE WITH PREVIOUS FINDINGS
 - EMPHASIZE RESPONSE SURFACES
 - EXPLOIT NONRANDOM SAMPLING TECHNIQUES
 - EXPLOIT ADMINISTRATIVE EXPERIENCE
- KEEP FUTURE OPTIONS IN MIND.
DOE PHOTOVOLTAICS PROGRAM
PHOTOVOLTAIC RESIDENTIAL APPLICATIONS PROGRAM
IMPLEMENTATION WORKSHOP

PHOTOVOLTAIC MARKET DEVELOPMENT ACTIVITIES: ACTORS AND INFORMATION

<table>
<thead>
<tr>
<th>Participants</th>
<th>Resid'L Expt St'n Res</th>
<th>Initial Syst Eval Expts Isee</th>
<th>Eng Field Test Eft</th>
<th>Market Test Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designer</td>
<td>SYST DESIGNER COMP SUPPL</td>
<td>A&E SYST DES UTILITY</td>
<td>A&E BUILDER/DEV SYST (PV) SUPPL UTILITY PUBLIC</td>
<td>BUILDER/DEVEL UTILITY SYST SUPPL FINANCING PUBLIC</td>
</tr>
<tr>
<td>Builder/Dev</td>
<td>A&E UTILITY</td>
<td>BUILDER/DEV FINANCING CODE OFF'LS</td>
<td>COMP SUPPL FINANCING PUBLIC BLDG TRADES</td>
<td>A&E INSURANCE COMP SUPPL BLDG TRADES</td>
</tr>
<tr>
<td>Targeted Info</td>
<td>Code Off'Ls</td>
<td>A&E UTILITY</td>
<td>BUILDER/DEV FINANCING CODE OFF'LS</td>
<td>COMP SUPPL FINANCING PUBLIC BLDG TRADES</td>
</tr>
<tr>
<td>General Info</td>
<td>PUBLIC</td>
<td>PUBLIC BLDG TRADES INSURANCE</td>
<td>INSURANCE</td>
<td></td>
</tr>
</tbody>
</table>

This was a rough attempt to summarize discussions in real-time on information needs and actors which corresponded to stages of photovoltaic technology and market development program.

TWH
2/13/80
March 3, 1980

Rosalyn Barbieri
Jet Propulsion Laboratory
4800 Oak Grove Drive
m/s 506-418
Pasadena, CA 91103

Dear Ros:

I appreciated being included in the Residential Applications Program Implementation Workshop last week, although we did not really get to the point of working out implementation plans, as I had hoped. Probably it was too much to expect, for JPL had to educate half of us to what the program was all about before we could begin to think about specific plans. I had the feeling, however, that we were at the point when we broke up of being able to retire in groups of four or five to hash out specifics on the blackboard.

I have a number of specific observations and recommendations to make, but before I do, let me note some of the major points that became clear to me as I listened to the presentations:

1. The careful design of information presentations about the technology is just as important in the marketing process as the development of the equipment.

Generally a person's decision whether or not to make a purchase, or to adopt some innovation, follows a generalizable pattern. The potential consumer (1) becomes aware of the product, (2) seeks information about it and evaluates it or else is offered information/judgment about it by a friend, and (3) tries it.

One of the most successful commercial marketing strategies today is to distribute promotional samples of the product, thereby truncating the purchase-decision process. The prospective customer becomes aware of the product, gets his/her own information about it, and tries it, all at the same time. This marketing strategy is effective because people tend to be wedded to the tried and if not true, at least well understood products they are accustomed to purchasing.

SRI International
333 Ravenswood Ave. • Menlo Park, CA 94025 • (415) 326-6200 • Cable: SRI INTL MNP • TWX: 910-373-1246
For large purchases, marketers have to substitute information and satisfied customers for the free samples as agents of persuasion. Demonstrations and careful documentation of success stories thus become surrogates for widespread personal experience with the innovation.

2. The selection of the appropriate recipients for information and the timing of the information will be critical.

Jet Propulsion Labs is in the unenviable and perhaps unasked-for position of a firm with a brand-new and desperately desired product. Generally, the newer a product is, the less experience people have with it, and in the case of PV, with anything like it. Information is therefore absolutely crucial—the amount, the timing, the target.

The S-shape of the diffusion curve is determined by people's experience with the innovation. That is, were potential adopters to get their information on a one-by-one basis, from media, the diffusion "curve" would in fact be the straight linear function of media messages affecting individual decisions over time:

However, each person who adopts an innovation passes judgment on it and becomes a positive (or negative) opinion leader for other potential adopters. If he or she influences, let us say, two others, who in turn each influence two others, the diffusion curve "takes off," and adoption of the innovation increases at an algebraic rate.

The S-shaped curve was mentioned at the workshop, and mention was made of the fact that the curve can be steepened, that is, the diffusion accelerated, by various interventions. I am not sure that the workshop participants recognized, however, that: (1) Interpersonal communication is crucial to achieve an S-shaped curve, and 2) that communication must be mostly positive or the curve will be downward, not S-shaped.

Therefore, it is vitally important to know whom to introduce PVs to, at what stage of the technology's development. As Dick Kittleman observed, to show builders an otherwise barren room full of equipment could do more damage than good to the PV program.

The audience for information will grow as the technology matures over the first few years of experimentation, as will the need for widely-available detailed information. The first performance data generated by the experimental systems will be of immediate interest to the PV industry and to inventors working on the technology, although this same data may be important at a later date to architects and builders.

3. There is often a vast difference between information given and information received. People do not make purchase decisions entirely "rationally."
People are not passive, empty receptacles which we can fill with information and then expect appropriate responses from. Potential users of PV will judge the technology by such criteria as:

a. Associations with other technologies. Perhaps consumers will think PV are like active thermal solar systems. Or perhaps the fact that PVs generate electricity will make them seem more like non-solar electric appliances.

b. Compatibility with present practices and values. "Eco-chics" will buy PV because the solar cells on the roof are visible symbols of commitment to a purer environment. Developers may shun PVs because their use requires hiring an entirely different set of sub-contractors.

c. Perceived attributes or characteristics of the technology. These characteristics may bear little resemblance to engineering "reality." People's perceptions are shaped by rumor, by their degree of understanding of the technology, by the state of the national economy, etc. Many products fail on the market because their inventors and promoters make the mistake of believing the public will see the engineering or technical advantage and will therefore quite logically accept the innovation.* In fact very few products sell to the general public on the basis of performance statistics alone.

The following steps seem to be essential in planning the PV program:
Marketing studies should parallel and complement the engineering program. While I believe this need was generally recognized at the workshop, there was no agreement on the mechanism for starting such studies. I would suggest the following:

1. A Pre-experimental (pre-mission) team of 4-5 people should meet to draw up a tentative master marketing plan, which could then be submitted to the mission team for comment and emendation. These 4-5 people would, in essence, fill in Tom Hamilton's handwritten viewgraph plan, deciding tentatively which "actors" should be introduced at each stage of the program design, and what essential social questions need to be answered at which points.

It seems to me that the following skills are needed at such an interim meeting:

* Recently some of my colleagues and I were asked to help advise the inventor of an extremely fuel-efficient (68-100 miles per gallon) three-wheel vehicle which was not being accepted, on how to promote his product. The engineer-inventor chose to ignore the fact that most potential users regarded the design as unsafe, since he could "prove" with figures and statistics that the vehicle was more stable than it appeared and that the probabilities of a crash into the exposed side of the car were very slight. Therefore he dismissed as irrelevant the market perceptions of the car as unsafe.
 wholesome. Hence the need for a Dick Middelman or his equivalent.

c. Solar is an unusual technology on numerous counts, e.g.:
 i. Residential solar equipment does not replace existing equipment but supplements it.
 ii. Because of the energy crisis, solar is an overtly value-laden technology choice.
 iii. Government at all levels is pushing solar with unprecedented vigor.

For these reasons (and others), there are similarities between SHAC and PV commercialization and therefore, as the presentation demonstrated, a person with extensive experience in the commercialization of SHAC would be helpful.

2. The mission team should refine the objectives and research issues conceived by this first planning committee into specific research questions, which would then be set into RFPs. In other words, besides the two kinds of RFPs mentioned at the workshop, aimed at equipment developers, there should be several RFPs for the necessary marketing and communication studies. While bidders could be encouraged to evolve their own research designs, the designs would have to be responsive to the questions asked.

While I believe that a pre-mission team committee of 4-5 people could best evolve a marketing plan, let me suggest a few preliminary thoughts I have about such a plan.

It occurs to me that our discussion of when is an experiment an experiment and when is it a demonstration was actually a bit misleading. At different points in the technology development, the equipment serves as a "demonstration" to different groups. At the "experimental" stage, the photovoltaic array is a demonstration to industry and equipment designers, since the intent at that point is to stimulate innovation and solve design problems. At this point, the equipment is by no means a demonstration for potential residential users.
There are, in fact, at least three activities which are occurring simultaneously at each stage of the engineering development plan:

Panels of future "actors" are asked to (1) react to the design as far as it has developed and (2) identify the information needs they foresee from their particular perspective. (Thus, it would be important, as was pointed out in the workshop, for someone to give the architect's viewpoint early in the performance data gathering, so that information about structural needs, for example, is collected.) These small panels representing particular professional or interest groups, would in effect serve as consultants to the marketing/commercialization teams, to ensure that information will be available to bring "on line" as needed in the future.

2. Information-Dissemination

At each point in the technical development, information is being generated which is of immediate concern to some actors. Therefore key opinion leaders for those groups are invited in to see the equipment demonstrated. When the equipment is still behind the fence, homeowners would not be invited en masse, for instance, but engineers would be. Builders might be invited when the equipment was installed in a home. When the home is occupied, then the homeowners would be targeted. In short, the populations targeted to receive information at this time would be those for whom PV systems at that point in their development were of immediate relevance.

3. Awareness-Raising

At the same time that small market panels representing groups of "actors" who will need information later are being questioned about anticipated information needs (#1) and that specially targeted audiences for whom the equipment is a demonstration in its present state are being fed detailed, extensive information relevant to their needs (#2), general information should be given out through the media to arouse interest in residential photovoltaics (#3). For instance, long before the equipment is installed in a house and therefore could be considered a demonstration for architects, articles about the equipment should have appeared in architectural magazines, suggesting this equipment as a coming attraction to be watched.

Generally, people have to be aware of a new idea for a while and then to evaluate it, before they try it themselves. Media is the most efficient way to raise awareness. Personal contact is relatively more important when the time comes for people to consider adopting the innovation.
As an example of the three-tiered approach I am suggesting, I have attached an outline of the kind of framework a pre-mission team might start work with. This is by no means complete; the 4-5 people I mentioned could fill the outline in and determine the relevant research questions as their first task.

Hope these suggestions are of some use to you. I have just returned from D.C. where I testified at hearings on D.O.E. appropriations held by Rep. Ottinger's sub-committee on Energy Development and Applications of the House Science and Technology Committee. I feel the fact that two diffusion scholars were asked to recommend what kinds of "behavioral and motivational" research should be done by D.O.E., evidences growing awareness of the importance of social science theory to the development of energy programs.

Warm regards,

Dorothy Leonard-Barton

DLB:pq
<table>
<thead>
<tr>
<th>Stage in Technology Development:</th>
<th>#1 Panel Indicates Information Needs</th>
<th>#2 Specific Information Targeted to User Groups</th>
<th>#3 General Information Used to Raise Awareness</th>
<th>Possible Research Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Field Tests</td>
<td>Lawyers, Builders (Construction), Consumer Groups, Potential PV Distributors</td>
<td>Architects, Real Estate Industry</td>
<td>Construction Industry, Architects, General Media, Real Estate</td>
<td>Who are the "legitimizers" in the targeted professions? What are the major commercialization barriers foreseen at this point?</td>
</tr>
<tr>
<td>Market Tests</td>
<td>Lawyers, Real Estate Industry Builders (construction), Homeowners, Building Inspectors, Distributors/Supplies</td>
<td></td>
<td>Home Improvement Media, General Media</td>
<td>Information should be targeted to which: • media? • geographic regions? What information sources are credible to the targeted user groups? What is the best way to "multiply" the effect of the demonstrations?</td>
</tr>
</tbody>
</table>
RESIDENTIAL APPLICATIONS WORKSHOP

Session III - Experiment & Sub-Experiment Design

Prepared by: J.L. Smith, JPI

Session Overview

This session introduced the topic of experiment design within the residential applications experiment program. Three presentations were given in the two-hour session. Tom Hamilton, Manager, Planning Assessment and Integration, Photovoltaics Technology Development and Application Lead Center, gave an introductory presentation that reviewed the current status of planning for the experiments and presented contextual information on the photovoltaic program. Dr. Frank Gamm of the Rand Corporation discussed some of the constraints and difficulties involved in designing and implementing social experiments. Given that the program wishes to increase its understanding of non-hardware issues, as well as hardware related issues, during its conduct of the residential experiments, careful attention must be paid to sample design, experiment design, measurement and objectives. Gary Lillian of MIT Energy Laboratory presented approaches to and results of several surveys (experiments) conducted by MIT in conjunction with early photovoltaic experiments. The reactions of potential purchasers to several photovoltaic installations were measured and correlated with the potential purchaser's preconceived attitudes toward solar systems, energy problems, previous innovative behavior, etc.

The session was truncated due to lack of sufficient time to complete all the presentations. No discussion of the presentations was possible within the time constraints.

It was clear, however, that the participants of the workshop did not share a common perception of the purposes and objectives of the residential experiments. Even though the word "experiment" was explicitly adopted to imply that the major intended purpose of the activities is the production of new information, many of the workshop participants apparently believe that issues such as "involving the right players" or "contacting the appropriate people" are dominant considerations in the design of the experiments. In my opinion this confuses "information dissemination" or "demonstrations" with "discovery or production of new information" or "experiments". Obviously, one cannot disseminate something one does not know. Thus, discovery of nonexistent information must precede its dissemination.
The session emphasized the huge gaps in our knowledge with respect to the "barriers" facing deployment of grid-connected photovoltaic systems as well as the inherent difficulty in designing, implementing and conducting experiments* to fill in those gaps. Careful attention must be paid to designing the experiment and selecting the experimental sample.

In summary, the session revealed wide differences in the perceptions of the workshop participants of the purposes and implementation planning requirements of the residential application program.

*Experimentation is the classical scientific method for advancing the state of knowledge.
RESIDENTIAL IMPLEMENTATION WORKSHOP
SOME CLARIFICATIONS, IMPRESSIONS, AND POSSIBLE FUTURE DIRECTIONS

Prepared by: Tom W. Hamilton, JPL

The first day was spent discussing and clarifying the context and terminology being used. Participants began to work on improving the design and the implementation details of the Photovoltaics Residential Program. I concluded that a series of meetings with continuity of participation is necessary to round out the residential plan. The first session introduced a great deal of information to persons not familiar with the program. A better degree of coordination of nomenclature could have made this information easier to digest. In the Session I presentation, a sequence of phases shown in the Figure 1, below, were described. In the following discussion, Ed Kern, of MIT/Lincoln Laboratory described the phases shown below in the dotted boxes. The "Prototype Development" phase is done in the regional Residential Experiment Stations, as necessary, as a precursor to the "SEE" which is the first block. The terms "EFT" and "SRE" can be (and were) used interchangeably.

![Figure 1. Residential Program Phases Reconciled; Top Line: Tom Hamilton's Presentation Bottom Line: Ed Kern's Presentation](image)

The workshop was held before solid content of the EFT, MT phases of the program were developed. This was done with the intent of obtaining help and guidance in rounding out the DOE plans by adding the appropriate market development plans to those already existing. I believe we underestimated the time required to become familiar with photovoltaics and the existing thought and plans for the residential market. The ideas offered by several participants, and well expressed by Dorothy Leonard-Barton's comments earlier in Appendix C, have influenced my thinking about how we should proceed to further develop residential plans. It is
clear to me that we need to establish a temporary two-part team consisting of "plan developers and integrators" and relevant reviewers who can interact on a regular basis over a period of months. Plans along this line are under development as are considerations on how the multi-phase process described in current plans might be accelerated without excessive risk. I believe that the information generating and information dissemination functions of experiments and demonstrations can be overlapped when we carefully consider who needs information in the following stages and what the most credible source is to each party.
BIBLIOGRAPHY

SOLAR HEATING AND COOLING (SHAC) PROGRAM

Davis, E. S. (Ab), and Wen, L. C., Solar Heating and Cooling Systems for Buildings: Technology and Selected Case Studies, JPL Report 5040-9, Rev. 1, November 1975.

Davis, E. S., and Hirshberg, A. S., The Impact of Solar Technology on Land Use, Testimony to the California Senate Committee on Natural Resources and Wildlife, November 1, 1976.

Davis, E. S., Project SAGE Phase 0 Report, Environmental Quality Lab Report No. 11, California Institute of Technology, Pasadena, CA, 1974.

D-4

D-8

Program Plan for MSFC Responsibilities in ERDA Solar Heating and Cooling Commercial Demonstration Program, SHC-1003, June 1, 1976.

Proposed Demonstration Projects Matrix, Commercial Buildings, C00-2683-76/10, April 1976.

Proposed Management Plan, Commercial Buildings, C00-2683-76/8, April 1976.

Proposed Test and Evaluation Plan, Commercial Buildings, C00/2683-76/9, April 1976.

Residential Energy From the Sun, HUD-401.

Stern, B. J., Resistances to the Adoption of Technological Innovations, p. 49, Subcommittee on Technology of the National Resources Committee, Washington; House Document 360, 75th Congress, 1st Session, 1937.

Study for Defining the Number of Residential and Non-Residential Projects, CO0/2683-76, April 1976.

Westinghouse Corporation, Solar Heating and Cooling of Buildings, Phase 0 May 1974; report to the National Science Foundation, Volume I, II, III, Volume I, Chapter 3, 4, Volume II, Appendix A, G.
APPENDIX E

PRECONFERENCE COMMUNICATIONS/LIST OF ATTENDEES
A letter was sent to potential workshop participants. A sample letter follows:

Dear:

Thank you for agreeing to participate in the Photovoltaics Residential Applications Program Implementation Workshop. This workshop is being conducted by the Jet Propulsion Laboratory Photovoltaics Lead Center for the Department of Energy and is being held in the Millikan Board Room of the California Institute of Technology of February 12-13, 1980.

It is the first in a series of workshops designed to assist the photovoltaic program in further developing its program implementation plans. Due to their high priority, we are beginning with a focus on residential applications.

Enclosed is a brief statement of the workshop objectives, an agenda and participant list. Note that we plan to start at 8:30 a.m. on Tuesday morning. The enclosed maps should assist you in locating Caltech and the Millikan room.

You will also find enclosed a copy of the Photovoltaics Program Multi-Year Plan (if you have not been closely involved in the program) and a copy of the slides from a recent presentation I made to representatives of the Photovoltaics industry on current plans for the so-called "Multi-Year photovoltaic System Purchase Program". The Multi-Year Plan should serve as background for aspects of program philosophy and the timing of certain technology-related events. It is currently being revised to include the content of the purchase program. The plans for detailed timing of the residential aspects of the program will be introduced during the first workshop session.

We are looking forward to your participation in a stimulating and constructive workshop.

Sincerely,

Tom W. Hamilton
Manager, Planning, Assessment and Integration
Photovoltaics TD & A Lead Center
ATTENDEES

Rosalyn Barbieri
Dorthy Leonard-Barton
Drew Bottaro
Frank Camm
Paul Carpenter
Dennis Costello
Bob Easter
Francis Gbeen
Tom Hamilton
Charles Hubick
Tom Jaras
Gary Jones
Earle Kennett
Ed Kern
Gary Lilien
Glenn Lovin
Ed Mehalick
Peter Morton
Mary Pope
Tom Nutt-Powell
Lewis Perelman
David Posner
Dick Rittleman
Ted Schlie
Elaine Smith
Jeff L. Smith
Pete Spewek
Richard Tahors
Jet Propulsion Laboratory
Stanford University
MIT Energy Laboratory
The Rand Corporation
Jet Propulsion Laboratory
Solar Energy Research Institute
Jet Propulsion Laboratory
SRI International
Jet Propulsion Laboratory
National Bureau of Standards/ETIP
Science Applications, Inc.
Sandia Laboratory, Albuquerque
AIA Research Corporation
MIT Lincoln Laboratory
MIT Sloan School of Management
Edison Electric Company
General Electric Company
Architects Collaborative, Inc.
MIT Lincoln Laboratory
Harvard-MIT Joint Center for Urban Studies
Jet Propulsion Laboratory
Solar Energy Research Institute
Burt, Hill, Kosar & Rittleman
National Bureau of Standards/ETIP
Department of Energy
Jet Propulsion Laboratory
Regional Solar Energy Centers
MIT Energy Laboratory

E-3