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1.0 INTRODUCTION

- This document provides the level B/C mathematical specifications
for the Area Targets and Space Volumes Processor (ATSVP). Pur-
suant to the requirements of reference 1, this processbr is de-
signed to compute the acquisition-of-signal (A0S) and loss-of-
signal (LOS) times for the foilowing:

a. Area targets

(1) Earth-referenced circles which are specified by a
latitude, longitude, altitude, ana radius.

(2) Celestial circles which are specified by a right
ascension, declination, and angular radius.

(3) Earth-referenced polygons which are an arbitrary
Earth-fixed figure having up to five sides with the
"corner points" defined by latitude, longitude, and
altitude.

(4) Celestial polygons which are an arbitrary, inertially
fixed figure having up to five sides with the corner
points defined by right ascension and declination on
the celestial sphere.

b. Space volumes

(1) Earth-referenced space volumes which'are an arbitrary,
Earth-fixed, five-sided polyhedron“. These volumes are
defined by a lower-limit polygon at an altitude, h;,
and the.projection of this polygon to an altitude, ha.
The corner points of the polygon will be defined by
latitudes and longitudes and will rotate with the Earth.

(2) Celestial-fixed space volumes which are an arbitrary,

~ inertially fixed, five-sided polyhedron. These volumes
are defined by a lower-limit polygon at an altitude, h;,
and the projection of this polygon to an altitude, h,.
The corner poihts of the polygon are defined by right
ascension and declination on the celestial sphere.

1-1
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The AOS and LOS times for these targets are defined (ref. 1)
as follows: '
a. Ground circles and polygons A i
AOS - the time corresponding to the first subsatellite point .
to be just inside the area. _ '
LOS - the time corresponding to the last subsatellite point
just prior to exiting the area.
b. Celestial circles and polygons |
AOS - the time corresponding to the first zenith point to lie
just inside the area. V
.LOS - the time corresponding to the last zenith point just
prior to exiting the area,
c¢. Ground-fixed and_qelestial—fixed space volumes
‘A0S - the time at which the spacecraft (S/C] is just entering
the volume. o '
LOS - the time just prior to the S/C exiting the volume,

Six data tables will contain the information necessary to completely

describe the area targets and space volumes, These tables>(ref. 1)

are as follows: ‘ ,

a. Ground targets table containingllo targetsrin 1 block of'déta.

b. Celestial circles table containing 10 targets in 1 block of data;

c.. Ground polygons table containing 20.targets in 2 blocks of data.

d. Celestial polygons table containing 10 targets in 1 block of data.

e. Ground-fixed space volumes table containing 10 targets in 1 '
block of data. ‘

f. Celestial-fixed volumes table containing 10 targets in 1 block
of data. ‘

Section 2 of this report bresents'the'mathematical equations necessary
to determine whether the S/C lies within the area target or space
volume. Seétion 3 outlines the process required to determine the

‘A0S and LOS times. |



2.0 MATHEMATICAL EQUATIONS

The following subsections preéeht the matheﬁatical~equati0né neces-—-

- . sary to determine whether the S/C lies within each of the area-

targets and space volumes presented in section 1. Two reference
coordinate systems will be used. The inertial Aries-mean-of-1950
(M50) coordinate systems (fig. 2-1) will be the reference system
when dealing with area targets and space'volumes-which remain
inertially fixed. The rotating geocentric coordinate system (fig.
2-2) will be used when dealing with area targets and space volumes

which rotate with the Earth.

Each of the following six subsections is further subdivided into

three topics: ‘

a. Procedure - a brief description of the steps to be performed.

b. Equations - a statement of the input parametef requirements
and_development of the mathematical equations.

c. Assumptions and limitations - description of any simplifying

assumptions and/or mathematical restrictions.

For convenience, section 2.7 summarizes the equations for all of

the area targets and space volumes.
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A ‘Earth's mean rotational
axis of epoch .

—
-
~
7
/
. YM
Center of Earth
Xy &
Mean vernal _ / _
equinox of epoch . ' Mean eguator
o - ’T_ 0f epoch
NAME: ! ' Aries-mean-of-1950, Cartesian, coordinate system.
- ORIGIN: The center of the ‘Earth.
ORIENTATION: . The epoch is the beginning of Besselian year 1950 or Julian

ephemeris date 2433282.423357.

The x YM

The Xy axis is directed towards the mean vernal equinox of epoch.

plane is the mean Earth's equator of epoch.

The 2 axis is directed along the Earth's mean rotational axis
of epoch and is positive north.

M

) " The Y, axis completes a right-handed system.
CHARACTERiST;CS:' ;nertial, right-handed, Cartesian system.

.Fiqure 2-1.- Aries-mean-o0f-1950, coordinate system.

S 2=2.



True-of-date

equator
Prime (Greenwich)
meridian
NAME : © Geocentric Coordinate system
ORIGIN: S Center of the Earth
ORIENTATION: . Xg - Y, plane is the Earth's true-of-date equator
% XG passes through the Greenwich meridian
; Zg is along the Earth's rotational axis
i
i . .
! YG completes the right-handed system

CHARACTERISTICS: Rotating, right-handed, Earth-fixed

Figure 2-2.- Rotating geocentric coordinate system.

2=3



2.1 EARTH-REFERENCED CIRCLES

Earth referenced c1rc1es are deflned to be’ c1rcular ground target
areas whose centers are defined by geodetic latitude, longitude,
and altitude (fig. 2-3). The S/C lies within this ground target
area if its subsatellite point lies within thé perimeter of the

circular area.

2.1.1 Procedure

The following procedure will be used to determine whether the S/C

lies within the ground target area: '

a. The geodetic coordinates of the ground- target area will be
transformed to the geocentric system.

b. The S/C position vector will be transformed from the M50
system to the geocentric system.

c. A test will be performed to determine whether the S/C subsat-

ellite point lies within the perimeter of the ground target area.

2.1}2 Equations

The following parameters are required:

¢ and A - geodetic latitude and longitude, respectively, of ‘the
' center of the Earth-referenced circle (fig. 2-4)
h - altitude of the Earth-referenced circle, measured with
respect to the Fischer ellipsoid of 1960 (fig. 2-4)
r. - radius of the Earth-referenced circle (fig. 2-3)
ﬁsc - S/C position vector in the M50 coordinate system
(fig. 2-3) o
t - time corresponding to ﬁsc
[RNP]Egg - Rotation, nutation, and precession (RNP) matriwihich.
* is used to transform vectors from the M50 coordinate
system to the true-of-epoch (TOE) coordinate system
't, - epoch time corresponding to the RNP matrix '
Rom — WMean equatorial radius for the Fischer ellipsoid of 1960
F - flattening coefficient for the Fischer ellipsoid of 1960
e - Earth rotation rate . . - o

2-4
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Fischer
ellipsoid

Figure 2-3.- Earth—refé;enced circle.
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G True—éf-date

equator

Prime (Greenwich)

meridian

NAME:

ORIGIN:

ORIENTATION:

CHARACTERISTICS:

Geodetic coordinate system.

This system consists of a set of parameters rather than

a coordinate system; therefore, no origin is specified.

This system of parameters is based on an ellipsoidal model
of the Earth (e.g., the Fischer ellipse of 1960). For

any point of interest we define a line, known as the geodetic
local. vertical, which is pervendicular to the ellipsoid

and which contains the point of interest.

h, geodetic altitude, is the distance from the point of
interest to the reference ellipsoid, measured along the
geodetic local vertical, and is p051t1ve for points out-
side the ellipsoid.

A is the longitude measured in the plane of the Earth's
true equator from the prime (Greenwich) meridian to the
local meridian, measured positive eastward.

¢ is the geodetic latitude, measured in the plane of the
local meridian from the Earth's true equator to the geodetic
local vertical,; measured positive north from the equator.

NOTE: A detailed explanation of declination, geodetic
latitude, and geocentric latitude'is provided
on figure 2-4(b)

Rotating polar coordinate parameters. Only position vectors
are expressed in this coordinate system. Velocity vectors
should be expressed in the Aries-mean-o0f~-1950, or the Aries
true-of-date, polar for inertial or quasi-inertial repre- ‘
sentations, respectively. The Fischer ellipsoid model

should be used with this system.

(a) Basic definitions.
Figure 2-4.- Geodetic coordinate system

2-6
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NAME:

DEFINITIONS:

'merldlan.

Plane

Geodetic coordinate system of point P.

h is the altitude of point P. Measured perpendicular‘
from the surface of the referenced ellipsoid.

¢ 1is the geodetic latitude of point ' P.

¢ is the geocentric latitude of point P.

6 1is the angle between radius vector and equatorlal plane
(declination).

~ A is the longitude of point P. Angle (+ east) between

plane of the figure and the plane formed by the Greenwich:

(b) Detailed explanation.

Figure 2-4.- Concluded.

2=7



The first step is to transform the ground target area from the geo-
detic coordinate system to the geocentric system.. The vector from :
the center of the Earth to the center of the ground target area can

be expressed in the rotating geocentric coordinate system by

ﬂh + ap) cos A cos ¢ )
&5 = ((h + a) sin A cos ¢ ? (2-1)
\[h + (1 - Ff aF]sin-q)J
where
a, = ___Tem ' (2-2)

Ycos2¢ + (1 - F)2 sin?¢’

The second step is to transform the S/C position vector from the

M50 system to the geocentric system. This is accomplished by

a. Transforming the vector from the M50 system to the TOE system
using the RNP matrix.

b. Transforming the resultant vector from the TOE system to the

geocentric system.

‘The S/C position vector in the TOE system is given by

+TOE _ TOE = , -
Ro, = [RNP]MSO R | (2-3)



The S/C position vector in thé_geocentric system (fig. 2-5) is

;{ -given by
- o ) ((cos A\ ' sin Ax 0
§Sc = {(-sin AA  cos 41‘ 0 ?ﬁggE
\. 0 7 0 %J
: ‘where

AX = me (t - te)

(2-4)

(2-5)

The final step is to determine if the S/C'subsatéllite point lies
within the ground targét area (fig. 2-3). The angle from 6g~

to the perimeter of the circular ground target area,

{15

The angle from Eg to the S/C,- Ygr is given by

(in degrees) by

>G G

¥ -.cos-l Ree ° Cp
s G =G
|%ee| |C5

2-9
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Greenwich meridian
at time , t

.- 1 - - VA

ToE’ %G
Greenwich meridian <:j{:>

at epoch time (te) “a

TOE G

{@e(t -t

Figure 2-5.- Relationship between true-of-epoch and
rotating geocentric coordinate systems.
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The S/C lies within the ground target area if.

2.1.3 Assumptions and Limitations

The following assumptions are implicit in the equations presented

in section 2.1.2:

a. The S/C geocentric subsatellite point is used to compute entry
into the ground target area. '

. b. The'effects of polar nutation and precession from time te

to time t can be neglected.

Zfll



2.2 CELESTIAL CIRCLES

.. _ Celestial circles are defined to be inertially fixed circular

areas which extend from the center of the Earth to infinity

(fig. 2-6). The center of this area target is defined by right
ascension and declination on the celestial sphere. The criterion
for a S/C to lie within this area is for the S/C zenith point to
lie within the perimeter of the celestial circle.

2.2.1 Procedure

The following procedure will be used to determine if the S/C lies

within the celestial circle: '

a. The unit vector aloﬁg the centerline of the celestial circle
will be computed in the M50 coordinate systenm.

b. The dot product between this vector and the S/C position
vector will be formed to determine if the S/C lies within the

- celestial circle.



Centerline of V .
celestial circle

Figure 2-6.- Containment test for Celestial Circles.
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2.2.2 Equations

The following parameters are reédired: e »_ffg:mﬁ

o and GA - the right ascension and declination, respectively, of

T the centerline of the celestial circle expressed in
tﬁé M50 coordinate system (fig. 2-6) B

~ the celestial circle angular radius (fig. 2-6)

Ya
R - S/C position vector in the M50 coordinate system

R
scC

The unit vector from the center of the Earth to the center of the

is given by

celestiai circle, EB’

CosS a, cos GA

e, = {sin ap oS 8,0 (2-9)

sin § ”
. . A J

The angle between this vector and the s/C, Ygr is

-

] R
g = cos™1 &, % ' (2-10)
| %,

The S/C lies within the celestial circle if
vy < Ya ' _ (2-11)

2.2.3 Assumptions and Limitations

None.



2.3 EARTH-REFERENCED POLYGON

" The Earth-referenced polygon is defined to be an arbitrary planar
- figure having up to five sides (fig. 2-7).: This figure is fixed
 with respect to the rotating Earth. The cornertpoints (i;e.,
vertices) of this polygon are defined by geodetic latitude, longi-
tude, and altitude. The basic criterion for penetration into this
ground target area is to ensure that: ’ |
a. The S/C lies within the proper hemisphere.
~b. The S/C subsatellite point lies within the perimeter of the

ground target area.

2.3.1 Procedure.

The basic procedure for this ground area target is similar to the

"procedure presented in section 2.1.1. ‘It consists of"

a. Transforming the geodetic coordinates of each polygon vertex
to the geocentric coordinate system. '

'b.' Transforming the S/C position vector from the M50 system to

_ the geocentric coordinate system.

c. Testing to ensure that the S/C lies in the proper hemisphere.
If this test is failed, then no further computations are
required. " '

d. Assuming step c. is passed, tests will be made to determine
if the S/C is interior to all planes defining the sides of
the polygon.

2-15



Earth-referenced
‘polygon

. Fischer (1960)
ellipsoid i <:":>

True-of-date
equator '

Greenwich
meridian

.Figure 2-7.- Earth—referehced polygon.
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2,3.2 Equations

The following parameters are required:

b,

n ~ number of sides
i and Ai— geodetic latitude and longitude, respectively, of
each vertex (fig. 2-7)
hi - geodetic altitude of each vertex (fig. 2-7)
ﬁsc - 8/C ppsition vector in the M50 coordinate system
t - time corresponding to ﬁsc
[RNP]E?%}— RNP matrix to transform from M50 to TOE
te - epoch time corresponding to the RNP matrix
Rém - mean equatorial radius for the Fischer ellipsoid of 1960
F - flattening coefficient for the Fischer ellipsoid of 1960
e - Earth rotation rate

The first step is to transform the vectors defining each vertex
of the polygon from the geodetic system to the rotating geocentric

system. These vectors are given by

qhi + aF) cos A; cos ¢.")

ﬁg = '{(hi + aF) sin Ai cos ¢i > i=1,2,3...n (2-12)

.lh., + (1 - F): si .
\[1 ( )zap] n ¢
where

a is defined by equation 2-2 with ¢i'replacing .

F -

oy . . . =G
The S/C position vector in the geocentric coordinate system, Rsc'

is then obtained by using equations 2-3 through 2-5.

The next step in the procedure is to determine if the S/C lies in
the proper hemisphere. Figure 2-8 illustrates the geometry. All

2-17



s/C

Local
"horizon

Fischer
ellipsoid

.Figure 2-8.- Horizon test for Earth-referenced polygons.
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vectors in this figure are with respect to.the geocentric coordi-
‘nate system. The centroid of the ground target area,' Eg, is

defined as follows ’ ) o .

i n
G _
oG - i=1 -13)
¢ = = (2-13)
. -The S/C lies in the proéer hemisphere if
G G _
E R > 0 | (2-14)

Assuming equation 2-14 is satisfied, the final step is to determine
iﬁ the S/C lies interior to all planes defined by the sides of
polygon. Figure 2-9 illustrates the geometry. The unit normal

vectors to each side of the‘polygon are given by.

i=1,2,3,...n-1 (2-15a)

2> .
I

NG =1 n , ' (2-15b)

The perpendicular distance from Eg to each polygon side is

=f%. (86 - &) i'=1,2,3,...n -
a; = & - (% ¢8) ' (2-16)
The S/C must lie interior to the i*P blane if

8¢ - 3¢ <o (2~17a)






. where

26 _ 26 _ a6 T e
on = Ro_ - &3 S | (2-17b)

Assuming equation 2 17a is failed, the S/C may lie between E

and the th plane if the following condition is met.

< d. . (2-18)

. All of the di's will be positive if the vertices of the polygon
are ordered counterclockwise (as viewed from the top of the poly-
gon).. Thus, equation 2-18 provides a single neeessary and suffi-
cient test to determine if the S/C lies interior to each plane.
This test is performed for all sides of the polygon. If the test
is failed for any side, the S/C subsatellite point does not lie
within the perimeter of the polygon.

.2.3.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.3.2: '

a. The S/C geocentric subsatellite point is used to determine
entry into the ground target area.

b. The effects of polar nutation and prece551on from tlme t
to t can be neglected. ' _

c. - The vertlces of the polygon are spec1f1ed in a counterclockWLSe
order as viewed from the top.

d. The polygon 1is convex; i.e., the interior angles between the
sides defining the vertices are less than ‘180 degrees.*

e. The angular separation between two consecutive vertices is

‘ | sufficient to permit a nonsingular cross product (eq. 2-15). ;

% ' '
Concave polygons could be accommodated by subdividing them into
two or more convex polygons. The appendix discusses this procedure.

2-21



2.4 CELESTIAL POLYGONS

Celestial polygons are defined to be arbitrary figqures having up -
to five sides with the corner points (i.e., vertices) defined by
right ascension and declination on the celestial sphere. The £
criterion for penetration into this area is to ensure that the

S/C zenith point lies within the confines of the polygon. Figure
2-10 illustrates the celestial polygon. It is noted that this B
polygon also represents a variable area polyhedron which remains

inertially fixed.

2.4.1 Procedure

The basic procedure for this target area is similar to the proce-

dure presented in section 2.3.1, i.e.,:

a. The unit vector alohg the "centroid" of the polyhedron will
be computed in the M50 coordinate system.

b. A test will be made to ensure that the S/C lies above the
apex 6f the polyhédron. If this test is failed, then no
further computations are required. '

. €. Assuming step b. is passed, tests will be made to detefmine if

the S/C is interior to all planes defining the sides of the

polyhedron.

\

2.4.2 Equations

The following parameters are required:
n - number of sides
o, and Gi - right ascension and declination, respectively, of each

i
vertex in the M50 coordinate system_(i =1,2,3,...n)
<>

Roo - S/C position vector in the M50 coordinate system

The first step is to determine the unit vector along the centroid
of the polyhedron. The unit vectors from the center of the Earth

to each vertex in the M50 coordinate system are given by



Center of Earth

Figure 2-10.- Celestial polygon.
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,
cos a. cos §.
i i

B ] Ri = ﬁ sin a; cos 6i> i=12,3,...n (2-19)

sin 6.
g T

The unit vector along the centroid of the polyhedron is

- C (2-20)
12| |
where
_ n ) :
2 Ry (2-21)
- ‘ & = i=1
- n

The next step is to determine if the S/C lies above the apex of
the polyhedron. The S/C lies above the apex if

CeR,20 (2-22)

Assuming equation 2-22 is satisfied, the final step is to determine

if the S/C lies interior to all planes defined by the sides of the

polyhedron. Figure 2-11 illustrates the geometry.

The slant range
from C to the S/C is

°B = ®sc : (2-23)

2-24"
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Equations 2-15 through 2-18 (with ﬁG &6 and Eg replaced by

. cC
i’ B’
-ﬁi, ¢, and BB' respectively) are then used to determine if the

"§/C is interior to all polyhedron planes.

2.4.3 Assumptions and Limitations

The follqwing assumptions and limitations are implicit in the

equations presented in section-2.4.2: »

a. The vertices of the polygon are specified in a counterclockwise

. order as viewed from the top. '

b. The polygon is convex; i.e., the interior angles between the
sides defining the vertices are less than 180 degfees.*

¢. The angular separation between two consecutive vertices is

sufficient to permit a nonsingular cross product (eq. 2-15).

*
Concave polygons could be accommodated by subdividing them into

two or more convex polygons as discussed in the appendix.
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2.5 EARTH-REFERENCED SPACE VOLUMES

The Earth-referenced space volumes are arbitrary five-sided figures
which are defined by a lower-limit polygon at an altitude, h,,

and the projection of this polygon to an altitude, h,, - The
vertices of this polygon are defined by geodetic latitude and
longitude and rotate with the Earth. 'Figure 2-12 jillustrates
-this.type_of space volume. .As shown, the planar cross sectional

area of this polyhedron remains constant with respect to altitude. .

2.5.1 ‘Procedure

_ The following procedure will be‘used to determine whether the S/C

lies within the space volume:

a. The geodetic parameters.defining'each vertex of the lower
boundary will be transformed to geocentric position vectors.

b. The centroid vectors to the iower and upper boundaries will
be computed in the geocentric coordinate system.

¢. The S/C position vector will be transformed from the M50
system to the geocentric system.

d. Tests will be performed to ensure that the S/C lies above the
lower boundary and below the upper boundary. If either of
~these tests is failed, then no further computations are re-

quired. _ ’ |

e. Assuming step d. is passed, tests will -be performed‘to determine
whether the S/C is interior to all planes defining the sides of
the polyhedron. '

2-27
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2.5.2 Equations
The following parameters are required:
_*;m”¢i'and Ai - geodetic'latitude and longitude, respectively, of each
vertex of the lower boundary (i = 1,2,3,...,5)
“h - geodetic altitude.of the lower :boundary
'h - geodetic altitude of the upper boundary
R - S/C position vector in the M50 coordinate system

sc +
t - time corresponding to Rsc
[RNP]ﬁgg - RNP matrix to transform from M50 to TOE
o te - epoch time corresponding to the RNP matrix
Rom - mean equatorial radius for the Fischer ellipsoid of 1960
. F - flattening coefficient for the Fischer ellipsoid of 1960
We - Earth rotation rate |

The first step is to transform the vectors defining each vertex
‘of the lower boundary to the geocentric coordinate system. Equation
2-12 (with hi = 0) provides the necessary transformation.

The centroid of these vectors is given by

. ‘ 55 RS
: G _ i=1 . _
¢v = — , | (2-24)

->

The geocentric vectors to the centroids of the lower and upper

boundaries (fig. 2-13) are given by

G _ &G

&= +m ] (2-25)
2G &G |

& = &G 4 h, IEGI (2-26)
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Next the S/C position vector in the geocentrlc coordinate system, )

ﬁG c’ is computed using equations 2-3 through 2-5. N i

The fourth step in the procedure is to ensure that the S/C lies .
between the upper and lower boundaries. Figure 2-13 illustrates
the geometry. All vectors in this figuré are with respect to the
geocentric system. The slant range from ég to the S/C, Sg, is
given by

>G _ §G _ EG ) (2-27)

The angle, , between 65 and Bg is computed by

Y

- Yg = cOs (2-28)
The S/C lies above the lower boundary if ‘
Yg < 90° ' (2-29)

Similarly, for ‘the upper boundary

+>G >G >G
Pp = RSc - CT v(2-30)

>G >G
pT ° CT )
Y, = cos (2-31)

T l EIE)



The S/C lies below the upper boundary if

> 90° (2-32)

Assuming that both equations 2-29 and 2-32 are satisfied, the
final step is to determine if the S/C lies interior to the side
planes of the polyhedron. Figure 2-14 illustrates the geometry.
The unit normal vectors from Eg to each side of the polygon

"are given by

(]

9

Ni i=1,2,3,4 (2-33a)

W oOw
x| >
A

t
oy oy

___m‘

o . & x & -°) ‘
G = B 3 1 _
le lég " (ﬁG . ﬁG)I (2-33b)

S 1

Equations 2-16 and 2-18 are then used to determine if the S/C is

contained within the polyhédron.

2.5.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.5.2:

a. The altitude of the lower boundary, h;, is measured with
respect to the centroid of the vertices which lie on the

Fischer ellipsoid.
b. The effects of polar nutation and precession from time te

to ‘t can be neglected. ,
c. The vertices are specified in a counterclockwise order as

viewed from the top.
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d. The planar area of the polyhedron is convex; i.e., the interior
angies between the sides defining the vertices are less than
180 degrees.* '

e. The local horizon for determining if the S/C is between the

upper and lower boundaries is perpendicular to the centroid

vector.
f. The distance between two consecutive vertices is sufficient

to permit a nonsingular cross product (eq. 2-33).

*
Concave polyhedrons could be accommodated by subdividing them
into two or more convex portions as discussed in the appendix.



2.6 CELESTIAL-FIXED SPACE VOLUMES

The celestial-fixed space volumes are arbitrary five—sided.figures%

which are defined by a lower-limit polygon at an altitude, h,,.

and a projection of this polygon to an altitude, h,. The vertices

of the polygon are defined by right ascension and declination and

are inertially fixed. Figure 2-12 can also be used to illustrate

this type of space volume. As mentioned previously, the planar

cross sectional area of this polyhedron remains constant with

_respect to altitude.

2.6.1 Procedure

The basic procedure for this space volume is very similar to the

procedure presented in section 2.5.1. It consists of:

a

b.

* Computing the centrbid vectors to the lower and upper

boundaries in the M50 coordinate system. _
Testing to ensure that the S/C lies above. the lower boundary
and below the upper boundary.  If either of these tests is
failed, then no further computations are required.

Assuming step b. is passed, further tests will be performed to
determine if the S/C is interior to all planes defining the

sides of the polyhedron.

v

2.6.2 Equations

The following parameters are required:.

Q.

1

and Gi

right ascension and declination, respectively, of each
vertex of the lower boundary in the M50 coordinate
system (i =1,2,3,...5)

altitude of the lower boundary

altitude of the upper boundary-

mean equatorial radius
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The unit vector to the centroid of the polyhedron, c, is‘computed
via equations 2-19 through 2-21. The vectors to the centroids of
the lower and upper. boundaries (68 and ET, respectively) are

given by

-> ~
Cp = (Rem + hl) C (2-34)
¢, = (R + h) c (2-35)
T~ \em 2
. . . 2G +G *G
Equations 2-27 through 2-32 (with variables R Cc and C

sc’ B’ T

¢ and ET’ respectively) are then used to

C
sc’ B’
ensure that the S/C lies between the upper and lower boundaries.

replaced by R

Assuming equations 2-29 and 2-32 are both éatisfied, equation 2-33
(with Eg and ﬁ? replaced by EB' and ﬁi’ respectively) is
used to define the unit normal vectors to each side of the poly-
hedron. Finally, equations 2-16 and 2-18 are used to determine

if the S/C lies within the space volume.

2.6.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.6.2:

a. The altitudes of the lower and upper boundaries are measured
with respect to the mean equatorial radius.

b. The vertices are specified in a counterclockwise order as

viewed from the top.
c. The planar area of the polyhedron is convex; i.e., the interior

angles between the sides defining the vertices are less than
180 degrees.* '
d. The distance between two consecutive vertices is sufficient to

permit a nonsingular cross product (eq. 2-33).

*- ) 3 . (3 *
Concave polyhedrons could be accommodated by subdividing them into
two or more convex portions as discussed in the appendix.
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2.7 SUMMARY OF EQUATIONS

This section summarizes all of the equations presented in the

previous sections for the various area targets and space volumes.

The order of presentation and equation numbers correspond to the

computation sequence discussed in the text.

2.7.1 Earth-Referenced Circles

f(h + aF) cos A cos‘¢\
Eg = J (h‘+ aF) sin A cos ¢ >

-\E-. + (1 - F)zaF] sin ¢

where
] o Rom
_ aF =
: 1
V%osz¢ + (1 - F)? sin?y
. 2TOE _ TOE
Rsc - [RNP]MSO R)sc
cos AA sin AX 0
26 _ | __. TOE
Rsc = sin AA cos AA 0 ﬁsc
0 0 1
where

M= w, @.- te)

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)



t
=
Q

O

tw &

>G
R
-1

=
(o]
o

|

2G

*

Y cos T
>
S IRG
SC

Yg £ Y

Celestial Circles

A

sin

15

cos GA

cos GA

- GA

(2-6)

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)



2.7.3 Earth-Referenced Polygons

((hi'+ aF) cos Ai cos ¢£ﬁ

P = < (hi + aF) sin A, cos ¢>i> i=1,2,3,...n (2-12)

\[hi + (1—F)'23F] sin ¢i)V

_ where
Rem
G = .
/cos?¢. + (L - F)2sin¢. (2-2)
i i
- +TOE _ TOE 3 : o
- Bsc - [RNP]MSO-RSC (2-3)
cos AN sin AX O
2G Cad ’ . 2>TOE -
Rsc = sin. AA sin AX O RSc (2-4)
0 0 1
where
; | A = w, (t - te) (2-5)
n
3 ﬁf (2-13)
G _ i=1 :
EB - n



2>
Q)

]

(2-14)

i=1,2,3,...n"1 (2-15a)

(2-15b)

) i=1,2,3,...n (2-16)

(2-17b)

i = 1,2,3,..-1’1 (2-18)



2,7.4 Celestial Polygons | ' : o -

s cos a; cos Gi . e O
/ R, = sin a; cos 8 i=1,2,3,...n (2—19)
T T . ‘sin Gi .- T .
{ 2 )
&= C (2-20)
€|
n
where : ' > Ry
g1zl (2-21)
n _
-
~ >
C+R,2>0 - (2-22)
: |
oy -> A
' Pp = Rgo - € (2-23)
N R. . X R,
+ ; .
N, = 2 i=1,2,3,...n1 (2-15a)
Riy1 X Ry '
. R XR_ :
N, = , (2-15b)
lRl X R '

a; =8, -« (R; - ¢  i=1,2,3,...n (2-16)

A
=
]

N, » p, <d, | i=1,2,3,...n (2-18)



2.7.5 Earth-Referenced Space Volumes

a

p COS Ai cos ¢,

(4

ap sin A; cos ¢i i=1,2,3,...5

F
- F)2 ‘n &
(1 -F) a, sin ¢i

where
o Rem
aF =/ 2 + 1 2 1.2 /
: cos ¢i ( F)“sin ¢i
- . S
n
G
_ B°C M T
G
G _ 2G ¢
ET a + h, e
| &
2TOE TOE
Rsc - [RNP]MSO Rsc
cos AX sin AX 0
>G  _ \ . >TOE
sc — |~sin A cos AA . O Rsc
0 0 1
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(2-2)

(2-24)

(2-25)

(2-26)

(2-3)

(2-4)



+G _ 2G +G
pB Rsc CB
+G e}
_ 1) °B EB
'YB CcoOs '-*G EG
Pg B
g < 90°
G _ 2G _ 2G
Qr sC CT
+>G 232G
_ -1) Pr 6T ‘
YT = COS —+G EG
I"Tl l Tl
(o]
YT > 90
G >G G
AC EB X (Ri §i+1)
i~ TaG - (3G _ 3G
EEIGEEM)
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i=1,2,3,4

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)

(2-33a)



AG _ _
. Ns = EG " (ﬁG §G> (2-33b)
B 5 1 ’
= wG . (3G _ aG .o _
a, = & (Ri cB) i=1,2,3,...5 (2-16)
~G -G ) . .
Ni ° pB i di 1l = 1'2,3'.0.5 (2-18)

2.7.6 Celestial-Fixed Space Volumes

cos a. cos §.
i i

Ri = sin oy cos di _ i=1,2,3,...n (2-19) .
51nléi
A é
& = — (2-20)
| &
where
5 ~
2: R.
AR §
&= (2-21)
EB = (Ryy + M) € | (2-34)
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-> ->
) sc _4EB
->
_ -1 Pg ° EEB
Yg = €O
b ¢
|°B| | B'
Yg < 90°
>
Pp = gsc - ET
Yo = cos™1
T &
l%l | Tl

YT_z 90°
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(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)



ﬁ;,= B i _i=1,2,3,4 - (2-33a)
* ’EB X (ﬁl Ri+1) T 5
) & x (ﬁs - §1)~
N o= 2 — —e— (2-33b)
© |G x (& - R)

d. = N. - <Ri,- EB.) i=1,2,3,...5 (2-16)

d. i=1,2,3,...5 (2-18)

2>
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3.0 LOGIC FOR COMPUTING AOS AND LOS TIMES

Section 2.0 presented the equations necessary to determine whether -
the S/C lies within the various area targets or space volumes. This
section outlines the method by which these -equations will be used
to compute the A0S and LOS times. The basic procedure consists of
performing a sequential time search between user specified start
and end times. Tests will be performed at each time point to deter-
mine whether the S/C lies within the area Earget or space volume.
DThe A0S times are defined to be the time point at which the S/C
first enters the area target or space volume. If the S/C lies
within the area target or space volume at the beginning of the
search, the first AOS time will be set equal to the start time.

LOS times are defined to be the last time point prior to the S/C
exiting the area target or space volume. If the S/C lies within
‘the area target or space volume at the end of the time search,

then the last LOS time will be set equal to the end time. It
should be noted that the time increment used to perform the
sequential time search will limit the accuracy and resolution

of the A0S and LOS times (e.g., if the time increment is 1

minute, this implies that the A0S and LOS times will be determined
to the nearest minute and that visibility periods of less than 1-

minute may be skipped).

The area targets and space volumes defined in section 1.0 fall into
two general categories:
a. Earth-fixed which include
(1) Earth-referenced circles.
(2) Earth-referenced polygons.
(3) Earth-referenced space volumes.
b. Celestial-fixed which include
(1) celestial circles.
(2) celestial polygons.
(3) celestial-fixed space volumes. -

The logic for computing the AOS and LOS times for each of these

categories is presented in the following subsections. °*
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3.1 EARTH-FIXED AREA TARGETS AND SPACE VOLUMES

- Figure 3-1 provides a functional flowchart for the Earth-fixed

area targets and space volumes. The required inputs are

a. Target table (either the ground target table, ground polygon
table, or ground-fixed space volume table).

b. Target ID, _

C. Start and end times and time increment (t

t and

start’ end

At, respectively) for the sequential time search.
d. S/C ephemeris and ephemeris ID.
€. RNP matrix and associated epoch time.

A brief description of the process is provided below. The heading

numbers correspond to the numbered blocks on figure 3-1. '

1. The geodetic parameters defining the area target or space
volume are obtained frbm the appropriafe térget table based
upon the input target ID. Sections 2.1.2, 2.3.2, and 2.5.2
describe the specific parameters which are required.

2. The RNP matrix and its associated epoch time are obtained.

3. The geodetic coordinates of the area target or space volume
are transformed to the rotating geocentric coordinate system
(secs. 2.1.2, 2.3.2, and 2.5.2).

4. The current time, t, is initialized toAthe start time, tstart'
The first A0S time, A0S;, is initialized to zero. The AOS/LOS
counter, i, is initialized to one.

5. A loop is established which will terminate when t exceeds
the end time, tend'

6. The S/C position vector (at time t in the M50 coordinate
system) is obtained from the ephemeris file based upon the
ephemeris ID. , '

7. The S/C position vector is transformed to the rotating geo-
centric coordinate system and computations are performed to deter-
mine whether the S/C lies within the area target or space |

volume (secs. 2.1.2, 2.3.2, 2.5.2, and the app.).
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8.

Based upon the results of these tests, the S/C visibility

parameter, V, is set - - L e

V > 0 if the S/C lies within the area taréét

" "or space volume

V < 0 if the S/C lies exterior to the area

target or space volume

A test is performed on V.
If v>0
8.1 a further test is performed on AOSi to determine whether
the S/C was also visible during one or more of the
previous time steps.'
If A0S; > 0 |
8.1.1 then the S/C was visible during one or more of
the previous time steps. -Hence, no transition
‘has occurred. The current time is incremented
by At and the search continues
If ROS; < 0
8.1.2 then a transition into the area target or space
volume_has occurred. The curreht A0S time, AOSi,
is set equal to the current time. The current
time is incremented by At and the search continues.
If V<0 |
8.2 a further test is performed on AOSi-to determine whether
the S/C was visible during the previous time step.
If AOSi >0
8.2.1 then the S/C was visible during the previous time
step and a transition out of the area target or
space volume has occurred. The current LOS time,
LOSi, is set equal to the time of the previous
time step (t - At). The AOS/LOS counter, i, is
incremented by one. The next AOS time is initial-
ized to zero. The current time is incremented by

At and the search continues.
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'8.2.2 the S/C was not visible during the preceding time
step. Thus no transition has occurred. The curreht
o time is incremented by At .and the search continues.
9. At the completion of the sequential time search, a test is made.
~ to determine if the S/C was visible at the end time. If the
test is true, the last LOS time is set equal to tend'

3.2 CELESTIAL-FIXED AREA TARGETS AND SPACE VOLUMES

Figure 3-2 illustrates the computational logic for the celestial-
B ‘fixed area targets and space volumes. This logic is similar to

the approach presented in section 3.1. The required inputs are

a. Target table (either the celestial circles table, celestial

' polygons table, or celestial-fixed space volumes table).

b. Target ID.

c. Start and end times and time increment (t t and  At,

start, end’

respectively).
d. S/C ephemeris and éphemeris ID.

A brief description of the process is provided below. The heading

numbers correspond to the numbered blocks on figure 3-2.

l. The parameters defining the celestial-fixed area target or
space volume are obtained from the appropriate target table
based upon the input target ID. Sections 2.2.2, 2.4.2, and .
2.6.2 describe the specific parameters which are required.

2. The current time, t, isinitialized to the start time, torart:
The first AOS time, A0S;, is initialized to zero. The AOS/LOS
counter, i, is initialized to one. )

3. A loop is established which will terminate when t exceeds the
end time, tend' ‘ _ ' A

4. The S/C position vector (at time t 1in the M50 coordinate
system) is obtained from the ephemeris file based upon

ephemeris ID.
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5. Computations are performed to determine whether the S/C lies

LT within the area target or space volume -(secs. 2.2.2, 2.4.2, 2.6.2,

and the app.). Based upon the results of these tests, the S/C

visibility parameter, V, is set : :

V > 0 if the S/C lies within the area target
or space volume |

V < 0 if the S/C lies exterior to the area

target or space volume

6. A test is performed on V.
If v>0
6.1 a further test is performed on Adsi‘_to determine whether
— - — the S/C was also visible during one or more of the previous
time steps.
If AOSi >0 .
6.1.1 then the S/C was visible during one or more of
the previous time steps. Hence, no transition
has occurred. The current time is incremented
_ by At and the search continues:
- If ROS; < 0 |
6.1.2 then a transition into the area target or space
volume has occurred. The current AOS time, ROS .,
is set equal to the current time. The current
: time is incremented by At and the search continues.
If V<O | |
6.2 a further test is performed on AOSi to determine whether
the S/C was visible during the previous step.
If R0S; > 0 o
6.2.1 then the S/C was visible during the previous time
- step and a transition out of the area target or
space volume has occurred. The current LOS time,
LOSi, is set equal to the time of the previous
time step (t - At). The AOS/LOS counter, i, is
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incremented by one. The next A0S time is initial-
ized to zero. The current time is incremented by
At and the search continues.

6.2.2 the S/C was not visible during the preceding time
step. Thus, no transition has occurred. The current
time is incremented by At and the search continues.

7. At the completion of the sequential time search, a test is made
to determine whether the S/C was visible at the end time. If the

test is true, the last LOS time is set equal to tend'
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APPENDIX

SUBDIVIDING CONCAVE POLYGONS

This appendix discusses the procedure for subdividing complex concave
polygons into two or more simpler convex polygons.! This sub-
division process will permit the equations in section 2.0 of this
report to be easily extended to accommodate any arbitrarily

shaped polygon. For convenience, the equations and figures pre-
sented in this appendix will use a pentagon as an example.? How-
.ever, this approach is easily extended to any n-sided polygon.

Figure A-1 presents three examples of concave pentagons. Figure
A-1(a) illustrates a pentagon having one concave vertex. Figures
A-1(b) and A-1(c) illustrate pentagons having two concave vertices.
These pentagons can always be subdivided into triangles by select-
ing an "appropriate" vertex and connectihg nonadjacent vertices
(fig. A-2). . The maximum number of triangles necessary to completely

subdivide any arbitrarily shaped polygon is

N =n - 2 , (a-1)

where

n = number of sides

1A concave polygon is defined to be a polygon which has one or
more interior vertex angles exceeding 180 degrees. A convex
polygon is defined to be a polygon whlch has all of its interior
angles less than 180 degrees.

2This corresponds to the maximum number of sides specifically
addressed in the requirements defined in reference 1.
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2 4

(a) One concave vertex.

4

1
‘{(¢) Two nonadjacent concave vertices.

Figure A-1l.- Examples of concave pentagons.
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(a) One concave vertex.

4

(c) Two nonadjacent concave vertices.

Figure A-2.- Examples of subdividing concave pentagons. .
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Furthermore, the maximum number of interior angles exceeding 180
| degrees can also be determined by noting that the sum of the
interior angles of the polygon must be equal to the sum of the
interior angles of all triangles into which it can bé subdivided.
Thus, the sum of the interior vertex angles for any arbitrarily

shaped polygon is given by

'3

n
2: Yy = (n - 2) 180 _ (A-2)
i=1 i

where

Yy = interior vertex angles of the polYgon

- Thus, the maximum number of interior vertex angles exceeding 180

~ degrees, Y*, is given by~

N(y#) = (n-3) a3

This equation limits the maximum number of concave vertices for a
pentagon to two. Figures A-1(b) and A-1l(c) illustrate two ex-

amples. In figure A-1(b), the two concave vertices are adjacent -
to each other. 1In figure A-1(c) the two concave vertices are non-

adjacent.

The selection of the "appropriate" vertex to begin the subdivision
process is highly dependent upon the shape of the polygon and the
number and relationship of the concave vertices. Also, it is not
always necessary to subdivide the polygoh into triangles. Figure
A-3 illustrates another method for subdividing the polygon of
figure A-l(a). In this case, the concave pentagon is subdivided.
into a four-sided convex polygon and one triangle. Furthermore,
figure A-1 by no heahs exhausts all of the potentigl peﬁtagon-
shapes which could be constructed. |
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Since the shape of the area targets and space volumes will remain

static during a mission, it is recommended that the subdivision

process be performed manually.* There are two distinct advaﬁtages

to this approach:

a. It eliminates the coding and execution of complex subdivision -
logic.

- b. It can be performed once for each concave area target and

space volume and does not have to be repeated each time A0S

and LOS times are desired.

The treatment of concave polygons will place additional require-

ments on the targets tables other than those specifically mentioned

in reference 1. 1In addition to the number of sides and coordinates

for each vertex, the target tables must also contain the following

for each polygon-shaped target .

Nseé - number of segments into which the target is subdivided
(3>N___>1 for polygons having five or less sides)

_VOi - integers defining the counterclockwise ordering of the
vertices for each segment (i = 1'2"“Nseg)

The use of these additional parameters can best be illustrated by

example. For figure A-3, this pentagon is subdivided into two

segments. The first segment is a four-sided polygon defined by

vertices 1, 2, 3 and 5. The second segment is a triangle defined

by vertices 3, 4, and 5. The corresponding parameters for this

pentagon would be

Neeg =2 . e
VO; = 1235 (or 2351 or 3512 or 5123)
vo, = 343 (or 453 or 534)

T . ' .
'_This can easily be performed by plotting the vertex points on a

Mercator projection.



Similarly,Aﬁm:figures A?Z(b)_and A-2(c):

a. Figure A-2(b) e

seg .

VO, 125 (or 251 or 512)

VO, = 235 (or 352 or 523)

VO3 = 345 (or 453 or 534)

b. Figure A-2(c)

Nseg

VO, 125 (or 251 or 512)

V02 = 245 (or 452 or 524)

VO3 = 234 (or 342 or 423)

For consistency, this approach can also be used for convex polygons.
In this case, *Nseé would be one and VO; would be set to the

counterclockwise vertex sequence.

For computational purposes, the number of sides for each segment,

n,, can be extracted from the vertex ordering integer, VO;, as

follows

: .
'ni = highest values of n; where TRUNC {n f} >0 (A-4)
i
_ 10

where

TRUNC implies integer truncation.



The vertex numbers, Vj’ corresponding to each vertex of the ith
subpolygon can also be extracted from the vertex ordering integer

as follows - - -
10

j-1
i - ni-l
v, E v, 10
=1

TRUNC j =2,3,. .'.ni (A-5b)

<
]

107173

The criterion for the S/C (or S/C subsatellite point) to be con-
tained_in the concave area target or space volume is that it
‘must bé contained in any one of the subpolygons. The équations
preéented in section 2.0 of this report can be used on a segment-

by-segment basis to test for containment.
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