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1.0 INTRODUCTION

This document provides the level B/C mathematical specifications

for the Area Targets and Space Volumes Processor (ATSVP). Pur-

suant to the requirements of reference 1, this processor is de-

signed to compute the acquisition-of-signal (AOS) and loss-of-

signal (LOS) times for the following:

a. Area targets

(1) Earth-referenced circles which are specified by a

latitude, longitude, altitude, and radius.

(2) Celestial circles which are specified by a right

ascension, declination, and angular radius.

(3) Earth-referenced polygons which are an arbitrary

Earth-fixed figure having up to five sides with the

"corner points" defined by latitude, longitude, and

altitude.

(4) Celestial polygons which are an arbitrary, inertially

fixed figure having up to five sides with the corner

points defined by right ascension and declination on

the celestial sphere.

b. Space volumes

(1) Earth-referenced space volumes which are an arbitrary,

Earth-fixed, five-sided polyhedron.. These volumes are

defined by a lower-limit polygon at an altitude, hi,

and the projection of this polygon to an altitude, ha-

The corner points of the polygon will be defined by

latitudes and longitudes and will rotate with the Earth.

(2) Celestial-fixed space volumes which are an arbitrary,

inertially fixed, five-sided polyhedron. These volumes

are defined by a lower-limit polygon at an altitude, hi,

and the projection of this polygon to an altitude, ha.

The corner points of the polygon are defined by right

ascension and declination on the celestial sphere.

1-1



The AOS and LOS times for these targets are defined (ref. 1)

as follows:

a. Ground circles and polygons

AOS - the time corresponding to the first subsatellite point

to be just inside the area.

LOS - the time corresponding to the last subsatellite point

just prior to exiting the area.

b. Celestial circles and polygons

AOS - the time corresponding to the first zenith point to lie

just inside the area.

.LOS - the time corresponding to the last zenith point just

prior to exiting the area,

c. Ground-fixed and celestial-fixed space volumes

AOS - the time at which the spacecraft CS/C] is just entering

the volume.

LOS - the time just prior to the S/C exiting the volume.

Six data tables will contain the information necessary to completely

describe the area targets and space volumes. These tables (ref. 1)

are as follows:

a. Ground targets table containing 10 targets in 1 block of data,

b. Celestial circles table containing 10 targets in 1 block of data.

c. Ground polygons table containing 20 targets in 2 blocks of data.

d. Celestial polygons table containing 10 targets in 1 block of data.

e. Ground-fixed space volumes table containing 10 targets in 1

block of data.

f. Celestial-fixed volumes table containing 10 targets in 1 block

of data.

Section 2 of this report presents the mathematical equations necessary

to determine whether the S/C lies within the area target or space

volume. Section 3 outlines the process required to determine the

AOS and LOS times.
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2.0 MATHEMATICAL EQUATIONS ~ ' ""

The following subsections present the mathematical equations neces--

sary to determine whether the S/C lies within each of the area

targets and space volumes presented in section 1. Two reference

coordinate systems will be used. The inertial Aries-mean-of-1950 :

(M50) coordinate systems (fig. 2-1) will be the reference system :

when dealing with area targets and space volumes which remain

inertially fixed. The rotating geocentric coordinate system (fig.

2-2) will be used when dealing with area targets and space volumes

which rotate with the Earth.

Each of the following six subsections is further subdivided into

three topics:

a. Procedure - a brief description of the steps to be performed.

b. Equations - a statement of the input parameter requirements

and development of the mathematical equations.

c. Assumptions and limitations - description of any simplifying

assumptions and/or mathematical restrictions.

For convenience, section 2.7 summarizes the equations for all of

the area targets and space volumes.
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M

**<*
Mean vernal
equinox of epoch

'Earth's mean rotational
axis of epoch

M

Mean equator
.of epoch

NAME:

ORIGIN:

ORIENTATION:

Aries-mean~of-i950, Cartesian, coordinate system.

The center of the Earth. :

The epoch is the beginning of Besselian year 1950 or Julian
ephemeris date 2433282.423357.

The XM-YM plane is the mean Earth's equator of epoch.

The X,, axis is directed towards the mean vernal equinox of epoch.

The ZM axis is directed along the Earth's mean rotational axis
of epoch and is positive north.

The YM axis completes a right-handed system.

CHARACTERISTICS: Inertial, right-handed, Cartesian system.

.Figure 2-1.- Aries-mean-of-1950, coordinate system.
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Center of Earth

X

True-of-date

equator

Prime (Greenwich)
"meridian

NAME:

ORIGIN:

ORIENTATION:

: Geocentric Coordinate system

Center of the Earth

X

CHARACTERISTICS:

G - YG plane is the Earth's true-of-date equator

XG passes through the Greenwich meridian

Z_ is along the Earth's rotational axis

YG completes the right-handed system

Rotating, right-handed, Earth-fixed

Figure 2-2.- Rotating geocentric coordinate system.
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2.1 EARTH-REFERENCED CIRCLES

Earth-referenced circles are defined to be circular ground target

areas whose centers are defined by geodetic latitude, longitude, ;

and altitude (fig. 2-3) . The S/C lies within- this ground target

area if its subsatellite point lies within the perimeter of the

circular area.

2.1.1 Procedure

The following procedure will be used to determine whether the S/C

lies within the ground target area:

a. The geodetic coordinates of the ground -target area will be

transformed to the geocentric system.

b. The S/C position vector will be transformed from the M50

system to the geocentric system.

c. A test will be performed to determine whether the S/C subsat-

ellite point lies within the perimeter of the ground target area.

2.1.2 Equations

The following parameters are required:

$ and X - geodetic latitude and longitude, respectively, of the

center of the Earth-referenced circle (fig. 2,-4)

h - altitude of the Earth-referenced circle, measured with

respect to the Fischer ellipsoid of 1960 (fig. 2-4)

r - radius of the Earth-referenced circle (fig. 2-3)
_». c
R - S/C position vector in the M50 coordinate system

(fig. 2-3)

time corre

*
[RNPJM50 - Rotation, nutation, and precession (RNP) matrix which

is used to transform vectors from the M50 coordinate

system to the true-of-epoch (TOE) coordinate system

t - epoch time corresponding to the RNP matrix

R - mean equatorial radius for the Fischer ellipsoid of 1960

F - flattening coefficient for the Fischer ellipsoid of 1960

a) - Earth rotation rate • .e

2-4
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s/c

Fischer
ellipsoid

Figure 2-3.- Earth-referenced circle.
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.Prime (Greenwich)
meridian ~'

NAME:

ORIGIN:

ORIENTATION:

CHARACTERISTICS:

Geodetic coordinate system.

.This system consists of a set of parameters rather than
a coordinate system; therefore, no origin is specified.

This system of parameters is based on an ellipsoidal model
of the Earth (e.g., the Fischer ellipse of 1960). For
any point of interest we define a line, known as the geodetic
local, vertical, which is perpendicular to the ellipsoid
and which contains the point of interest.

h, geodetic altitude, is the distance from the point of
interest to the reference ellipsoid, measured along the
geodetic local vertical, and is positive for points out-
side the ellipsoid.

X is the longitude measured in the plane of the Earth's
true equator from the prime (Greenwich) meridian to the
local meridian, measured positive eastward.

$ is the geodetic latitude, measured in the plane of the
local meridian from the Earth's true equator to the geodetic
local vertical, measured positive north from the equator.

MOTE: A detailed explanation of declination, geodetic
latitude, and geocentric latitude is provided
on figure 2-4(b)

Rotating polar coordinate parameters. Only position vectors
are expressed in this coordinate system. Velocity vectors
Should be expressed in the Aries-mean-of-1950, or the Aries
true-of-date, polar for inertial or quasi-inertial repre-
sentations, respectively. The Fischer ellipsoid model
should be used with this system.

(a) Basic definitions.

Figure 2-4.- Geodetic coordinate system
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Plane

NAME:

DEFINITIONS:

Geodetic coordinate system of point P.

h is the altitude of point P. Measured perpendicular
from the surface of the referenced ellipsoid.

</> is the geodetic latitude of point P.

<f>c is the geocentric latitude of point P.

6 is the angle between radius vector and equatorial plane
(declination).

X isjthe longitude of point P. Angle (+ east) between
plane of the figure and the plane formed by the Greenwich
meridian.

(b) Detailed explanation.

Figure 2-4.- Concluded.
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The first step is to transform the ground target .area from the geo-

detic coordinate system to the geocentric system. . The vector from .

the center of the Earth to the center of the ground target area can

be expressed in the rotating geocentric coordinate system by >

where

7h + apj cos X cos 4>

(h + ap\ sin X cos <f>
\ c I

h + (1 - Fj2 aj sisn •

(2-1)

/cos24> - F)2 sin2<J>
(2-2)

The second step is to transform the S/C position vector from the

M50 system to the geocentric system. This is accomplished by

a. Transforming the vector from the M50 system to the TOE system

using the RNP matrix.

b. Transforming the resultant vector from the TOE system to the

geocentric system.

The S/C position vector in the TOE system is given by

2-8



The S/C position vector in the geocentric system (fig. 2-5) is

given by -

sc = <

cos AX sin AX

-sin AX cos AX 0

0 1

>TOE
sc (2-4)

where

AX = a) (2-5)

The final step is to determine if the S/C subsatellite point lies
_̂ ./"i

within the ground target area (fig. 2-3). The angle from C_
D

to the perimeter of the circular ground target area, y , is given

(in degrees) by

{ rc \ 180

«5)~
(2-6)

The angle from (* to the S/C, y , is given by'B

y = cos
RG-I/ sc

IIs'Gsc (2-7)

2-9



JTOE' ZG

Greenwich meridian
at epoch time (t )

Greenwich meridian
at time , t

X,
TOE

U) tt - t 1
e e

Figure 2-5.- Relationship between true-of-epoch and
rotating geocentric coordinate systems.
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The S/C lies within the ground target area if

Ys £ YA - (2-8)

2.1.3 Assumptions and Limitations

The following assumptions are implicit in the equations presented

in section 2.1.2:

a. The S/C geocentric subsatellite point is used to compute entry

into the ground target area.

b. The effects of polar nutation and precession from time t

to time t can be neglected.

2-11



2.2 CELESTIAL CIRCLES

Celestial circles are defined to be inertially fixed circular

areas which extend from the center of the Earth to infinity

(fig. 2-6). The center of this area target is defined by right

ascension and declination on the celestial sphere. The criterion

for a S/C to lie within this area is for the S/C zenith point to

lie within the perimeter of the celestial circle.

2.2.1 Procedure

The following procedure will be used to determine if the S/C lies

within the celestial circle:

a. The unit vector along the centerline of the celestial circle

will be computed in the M50 coordinate system.

b. The dot product between this vector and the S/C position

vector will be formed to determine if the S/C lies within the

celestial circle.

2-12



Center-line of
celestial circle

JM

Figure 2-6.- Containment test for Celestial Circles.
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2.2.2 Equations _ " - " • .

The following parameters are required: •-- . ——r

a. and 6A - the right ascension and declination, respectively, of

the centerline of the celestial circle expressed in

the M50 coordinate system (fig. 2-6)

Y- - the celestial circle angular radius (fig.. 2-6)

sc - S/C position vector in the M50 coordinate system

The unit vector from the center of the Earth to the center of the

celestial circle, CB/ is given by

cos a, cos 6.

C_, = \sin a* cos 6,
D

sin 6.

(2-9)

The angle between this vector and the S/C, y , iss

sci

(2-10)

The S/C lies within the celestial circle if

Y < Y*rs — TA (2-11)

2.2.3 Assumptions and Limitations

None.
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2.3 EARTH-REFERENCED POLYGON

The Earth-referenced polygon is defined to.be an arbitrary planar

figure having up to five sides (fig. 2-7).;; This figure is fixed

with respect to the rotating Earth. The corner points (i.e.,

vertices) of this polygon are defined by geodetic latitude, longi-

tude, and altitude. The basic criterion for penetration into this

ground target area is to ensure that:

a. The S/C lies within the proper hemisphere.

b. The S/C subsatellite point lies within the perimeter of the

ground target area.

2.3.1 Procedure

The basic procedure for this ground area target is similar to the

^procedure presented in section 2.1.1. It consists of

a. Transforming the geodetic coordinates of each polygon vertex

to the geocentric coordinate system.

b. Transforming the S/C position vector from the M50 system to

the geocentric coordinate system.

c. Testing to ensure that the S/C lies in the proper hemisphere.

If this test is failed, then no further computations are

required.

d. Assuming step c. is passed, tests will be made to determine

if the S/C is interior to all planes defining the sides of

the polygon.

2-15



Fischer (1960)
ellipsoid

True-of-date
equator

Earth-referenced
polygon

Greenwich
meridian

; Figure 2-7.- Earth-referenced polygon.
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2.3.2 Equations

The following parameters are required:

n - number of sides

<j>. and X.- geodetic latitude and longitude* respectively, of

each vertex (fig. 2-7)

h. - geodetic altitude of each vertex (fig. 2-7)

R - S/C position vector in the M50 coordinate system
SC

t - time corresponding to R :
TOE •

- RNP matrix to transform from M50 to TOE

t - epoch time corresponding to the RNP matrix

R - mean equatorial radius for the Fischer ellipsoid of 1960

F - flattening coefficient for the Fischer ellipsoid of 1960

a) - Earth rotation ratee

The first step is to transform the vectors defining each vertex

of the polygon from the geodetic system to the rotating geocentric

system. These vectors are given by

cos X . cos <p -i i

.r I I
R7 = / (h. + at,} sin X. cos 4>. \ i = 1,2,3...n (2-12)
1 \ \ 1 r / 1 If

[h. + (1 - F)2 a 1 sin <J>.
M. x Fj i-J

where

ap is defined by equation 2-2 with <f>. replacing <j>.

The S/C position vector in the geocentric coordinate system, R__»
S w

is then obtained by using equations 2-3 through 2-5.

The next step in the procedure is to determine if the S/C lies in

the proper hemisphere. Figure 2-8 illustrates the geometry. All

2-17



s/c

Local
horizon

Fischer
ellipsoid

Figure 2-8.- Horizon test for Earth-referenced polygons,
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vectors in this figure are with respect to.the geocentric coordi-

nate system. The centroid of the ground target area, £ , is

defined as follows

n ,,

E *?
n (2-13)

-The S/C lies in the proper hemisphere if

(2-14)

-Assuming equation 2-14 is satisfied, the final step is to determine

if the S/C lies interior to all planes defined by the sides of

polygon. Figure 2-9 illustrates the geometry. The unit normal

vectors to each side of the polygon are given by

NV =
RG X RGRi+l X Ri

vG
X Ri

i = 1,2/3,...n-1 (2-15a)

n
!RG x PGR X R n

(2-15b)

•iG
The perpendicular distance from c_ to each polygon side is

_
D

d. = N? • (59 - CG) i = l,2,3,...n {2-l6)l i \ l t$/

The S/C must lie interior to the i plane if

• P <_ (2-17a)

2-19
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where

- - (2-17b)

Assuming equation 2-17a is failed, the S/C may lie between CR
•fr* V»

and the i plane if the following condition is met.

N? • p£ < d. . (2-18)
1 D — 1

All of the d.'s will be positive if the vertices of the polygon

are ordered counterclockwise (as viewed from the top of the poly-

gon). Thus, equation 2-18 provides a single necessary and suffi-

cient test to determine if the S/C lies interior to each plane.

This test is performed for all sides of the polygon. If the test

is failed for any side, the S/C subsatellite point does not lie

within the perimeter of the polygon.

2.3.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.3.2:

a. The S/C geocentric subsatellite point is used to determine

entry into the ground target area.

b. The effects of polar nutation and precession from time t

to t can be neglected.

c. The vertices of the polygon are specified in a counterclockwise

order as viewed from the top.

d. The polygon is convex; i.e., the interior angles between the

sides defining the vertices are less than 180 degrees.*

e. The angular separation between two consecutive vertices is

sufficient to permit a nonsingular cross product (eq. 2-15).

Concave polygons could be accommodated by subdividing them into
two or more convex polygons. The appendix discusses this procedure,

2-21



2.4 CELESTIAL POLYGONS ' • '•

Celestial polygons are defined to be arbitrary figures having.up

to five sides with the corner points (i.e., vertices) defined by

right ascension and declination on the celestial sphere. The

criterion for penetration into this area is to ensure that the

S/C zenith point lies within the confines of the polygon. Figure

2-10 illustrates the celestial polygon. It is noted that this

polygon also represents a variable area polyhedron which remains

inertially fixed.

2.4.1 Procedure

The basic procedure for this target area is similar to the proce-

dure presented in section 2.3.1, i.e.,:

a. The unit vector along the "centroid" of the polyhedron will

be computed in the M50 coordinate system.

b. A test will be made to ensure that the S/C lies above the

apex of the polyhedron. If this test is failed, then no

further computations are required.

c. Assuming step b. is passed, tests will be made to determine if

the S/C is interior to all planes defining the sides of the

polyhedron.

2.4.2 Equations

The following parameters are required:

n - number of sides

a. and 6. - right ascension and declination, respectively, of each

vertex in the M50 coordinate system (i = l,2,3,...n)

R - S/C position vector in the M50 coordinate system

The first step is to determine the unit vector along the centroid

of the polyhedron. The unit vectors from the center of the Earth

to each vertex in the M50 coordinate system are given by

2-22



3 *

Center of Earth

Figure 2-10.- Celestial polygon.
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cos a. cos 6 .

sin a. cos 6.

sn 6.

i = l,2,3,...n (2-19)

The unit vector along the centroid of the polyhedron is

C = (2-20)

where

n

(2-21)

n

The next step is to determine if the S/C lies above the apex of

the polyhedron. The S/C lies above the apex if

C • R > 0sc — (2-22)

Assuming equation 2-22 is satisfied, the final step is to determine

if the S/C lies interior to all planes defined by the sides of the

polyhedron. Figure 2-11 illustrates the geometry. The slant range

from C to the S/C is

(2-23)
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Equations 2-15 through 2-18 (with R. , C_, , and p0 replaced by

£. , C , and p , respectively) are then used to determine if the
2. D

S/C is interior to all polyhedron planes.

2.4.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.4.2:

a. The vertices of the polygon are specified in a counterclockwise

order as viewed from the top. •

b. The polygon is convex; i.e., the interior angles between the

sides defining the vertices are less than 180 degrees.*

c. The angular separation between two consecutive vertices is

sufficient to permit a nonsingular cross product (eq. 2-15).

Concave polygons could be accommodated by subdividing them into
two or more convex polygons as discussed in the appendix.
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2.5 EARTH-REFERENCED SPACE VOLUMES

The Earth-referenced space volumes are arbitrary five-sided figures

which are defined by a lower-limit polygon at an altitude, hi,

and the projection of this polygon to an altitude, ha, The

vertices of this polygon are defined by geodetic latitude and

longitude and rotate with the Earth. Figure 2-12 illustrates

this type of space volume. As shown, the planar cross sectional

area of this polyhedron remains constant with respect to altitude. .

2.5.1 Procedure

The following procedure will be used to determine whether the S/C

lies within the space volume:

a. The geodetic parameters defining each vertex of the lower

boundary will be transformed to geocentric position vectors.

b. The centroid vectors to the lower and upper boundaries will

be computed in the geocentric coordinate system.

c. The S/C position vector will be transformed from the M50

system to the geocentric system.

d. Tests will be performed to ensure that the S/C lies above the

lower boundary and below the upper boundary. If either of

these tests is failed", then no further computations are re-

quired.

e. Assuming step d. is passed, tests will be performed to determine

whether the S/C is interior to all planes defining the sides of

the polyhedron.
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2.5.2 Equations

The following parameters are required:

4> . and X. - geodetic latitude and longitude, respectively, of each

vertex of the lower boundary (i = 1,2, 3,. ..,5)

_.h - geodetic altitude of the lower Iboundary

h - geodetic altitude of the upper boundary
.̂ 2
R - S/C position vector in the M50 coordinate systemsc -*-
t - time corresponding to R
TOP ^

- RNP matrix to transform from M5<0 to TOE

t - epoch time corresponding to the RNP matrix

R - mean equatorial radius for the Fischer ellipsoid of 1960
Ĉ Xll ~"

F - flattening coefficient for the Fischer ellipsoid of 1960

to - Earth rotation ratee

The first step is to transform the vectors defining each vertex

of the lower boundary to the geocentric coordinate system. Equation

2-12 (with h. =0) provides the necessary transformation.

The centroid of these vectors is given by

n

(2-24)

The geocentric vectors to the centroids of .the lower and upper

boundaries (fig. 2-13) are given by

hl ]fr (2-25)

a0
]frr (2-26)
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Next, the S/C position vector in the geocentric coordinate system, •.

Rc_, is computed using equations 2-3 through 2-5. s.
*9 C ' * " ' ;

The fourth step in the procedure is to ensure that the S/C lies j

between the upper and lower boundaries. Figure 2-13 illustrates

the geometry. All vectors in this figure are with respect to the
•*G -̂ G

geocentric system. The slant range from CB to the S/C, PB/ is

given by

. /^ . f*

The angle, y , between C and pR is computed by[ TJ r +**-• w.»»^-^-i* ti ctii^A ^Tl

YB = cos
, P •-17 PB

2

PT = RSC - CT

Pm '

2-31

(2-28)

The S/C lies above the lower boundary if

YB 1 90° (2-29)

Similarly, for the upper boundary

YT = cos * < .1,,. ^A.) (2-31)



The S/C lies below the upper boundary if

90' (2-32)

Assuming that both equations 2-29 and 2-32 are satisfied, the

final step is to determine if the S/C lies interior to the side

planes of the polyhedron. Figure 2-14 illustrates the geometry.
•*• /••

The unit normal vectors from C0 to each side of the polygon
D

are given by

* 3 V
'B X

X

RGRi+l i = 1,2,3,4 <2-33a)

B
X

B X

&?-*? (2-33b)

Equations 2-16 and 2-18 are then used to determine if the S/C is

contained within the polyhedron.

2.5.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.5.2:

a. The altitude of the lower boundary, hi, is measured with

respect to the centroid of the vertices which lie on the

Fischer ellipsoid.

b. The effects of polar nutation and precession from time t

to t can be neglected.

c. The vertices are specified in a counterclockwise order as

viewed from the top.
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The planar area of the polyhedron is convex; i.e., the interior

angles between the sides defining the vertices are less than

180 degrees.*

The local horizon for determining if the S/C is between the

upper and lower boundaries is perpendicular to the centroid

vector.

The distance between two consecutive vertices is sufficient

to permit a nonsingular cross product (eq. 2-33).

Concave polyhedrons could be accommodated by subdividing them
into two or more convex portions as discussed in the appendix.
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2 . 6 CELESTIAL-FIXED SPACE VOLUMES - " • _ " -

The celestial-fixed space volumes are arbitrary five-sided figures I

which are defined by a lower-limit polygon at an altitude, hi,.

and a projection of this polygon to an altitude, ha. The vertices-

of the polygon are defined by right ascension and declination and

are inertially fixed. Figure 2-12 can also be used to illustrate

this type of space volume. As mentioned previously, the planar

cross sectional area of this polyhedron remains constant with :

respect to altitude.

2.6.1 Procedure

The basic procedure for this space volume is very similar to the

procedure presented in section 2.5.1. It consists of:

a. Computing the centroid vectors to the lower and upper

boundaries in the M50 coordinate system.

b. Testing to ensure that the S/C lies above the lower boundary

and below the upper boundary. If either of these tests is

failed, then no further computations are required.

c. Assuming step b". is passed, further tests will be performed to

determine if the S/C is interior to all planes defining the

sides of the polyhedron.

2.6.2 Equations

The following parameters are required:

a. and 8. - right ascension and declination, respectively, of each

vertex of the lower boundary in the M50 coordinate

system (i = 1,2,3,...5)

hi - altitude of the lower boundary

h2 - altitude of the upper boundary

R - mean equatorial radiusem
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The unit vector to the centroid of the polyhedron, C, is computed

via equations 2-19 through 2-21. The vectors to the centroids of

the lower and upper, boundaries (CD and (*, respectively) are
" J-

given by

' (Rem +

- (Rem + h2)

Equations 2-27 through 2-32 (with variables R , C^, and C^
+ - » . - * . s c B T

replaced by R__/ C_, and €„,, respectively) are then used to
S C D J.

ensure that the S/C lies between the upper and lower boundaries.

Assuming equations 2-29 and 2-32 are both satisfied, equation 2-33

(with Cg and R^ replaced by CB and R., respectively) is

used to define the unit normal vectors to each side of the poly-

hedron. Finally, equations 2-16 and 2-18 are used to determine

if the S/C lies within the space volume.

2.6.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.6.2:

a. The altitudes of the lower and upper boundaries are measured

with respect to the mean equatorial radius.

b. The vertices are specified in a counterclockwise order as

viewed from the top.

c. The planar area of the polyhedron is convex; i.e., the interior

angles between the sides defining the vertices are less than

180 degrees.*

d. The distance between two consecutive vertices is sufficient to

permit a nonsingular cross product (eq. 2-33).

Concave polyhedrons could be accommodated by subdividing them into
two or more convex portions as discussed in the appendix.
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2.7 SUMMARY OF EQUATIONS

This section summarizes all of the equations presented in the

previous sections for the various area targets and space volumes.

The order of presentation and equation numbers correspond to the

computation sequence discussed in the text.

2.7.1 Earth-Referenced Circles

where

(h +

3 - < ch +
cos X cos

sin X cos

Jh + (l - F) 2aJ sin ^

(2-1)

where

aF =
em

cos2<}> - F)

(2-2)

r n g-
Rsc LRNPJM50 sc (2-3)

RG =Rsc

cos AX sin AX o"

-sin AX cos AX 0

0 0 1

SC
(2-4)

AX = (2-5)
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180 . (2-6)
IT

-1 / sc B \ /o -?\Ys = cos < l-vr i ,^, > (2-7)
O

• CGB

sc| I B|

Ys 1 YA (2-8)

2.7.2 Celestial Circles

'cos a, cos 6A

CB = 1 sin aA cos <S^ \ (2-9)

sin

Rsc

(2-10)

Ys <-YA (2-1D
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2.7.3 Earth-Referenced Polygons

= <

where

cos X cos <j>

^ + ap\ sin X. .̂ cos Q

sin

> i = l ,2,3,. . .n (2-12)

em

/cos2 < { > . ' + (1 - F) 2 sin2 4>. (2-2)

sc *M50- sc (2-3)

where

sc

cos AX sin AX 0

-sin AX sin AX 0

0 0 1

3TOE
SC

A X - tte (t - te)

(2-4)

(2-5)

n

(2-13)
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(2-14)

X RG
X Ri -l (2-15a)

(2-15b)

d. =
1 1

i = 1,2, 3, ...n (2-16)

_ :>G
sc CB

(2-17b)

i = 1,2,3,...n (2-18)
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2.7.4 Celestial Polygons

cos a. cos 6.

sin a cos 6 i = 1,2,3,...n (2-19)

sin 6.

C = (2-20)

where

n
R.

n
(2-21)

Rsc >_ 0 (2-22)

2-41

(2-23)

Ri+1X R±

.^T X R.
1+1 l

i = l,2,3,...n-l (2-15a)

XV A,

R« X lx
1 n

s<* /\

Rl X Rn
(2-15b)

d. = (2-16)

Ni ' PB 1 di i = 1,2,3,...n (2-18)



2.7.5 Earth-Referenced Soace Volumes

where

fâ . cos X . cos <J>r i i

!„ sin X . cos <J>.
r 1 1

[(1 - F)2 aF sin 4...

i = 1,2,3,...5 (2-12)

em

(/cos2(Ji + (1 -

(2-2)

n

n
(2-24)

B (2-25)

= aG (2-26)

sc
_ r -.~ LRNPJ TOE gM50 sc (2-3)

RG =sc

cos AX sin AX 0

•sin AX cos AX . 0

0 0 1.
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where

AX = - te) (2-5)

oG - RG
PB ~ Rsc - CCB

(2-27)

YB = cos

B

(2-28)

Yfi < 90< (2-29)

(2-30)

YT = cos'1 (2-31)

YT > (2-32)

i = 1,2,3,4 (2-33a)
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^ X"G - B ' ~ •' (2-33b)

di = *i • R - £ = 1'2,3,...5 (2-16)

B - di i = 1/2,3,...5 (2-18)

2.7.6 Celestial-Fixed Space Volumes

^

:os a . cos 6 .

sin a. cos 6. \ i = 1,2,3,...n (2-19)

sin 6..

where

6 = -4r (2-20)

E
(2-21)

= (Rem + h>) e (2'34)
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(2-35)

2-45

(2-27)

YB = cos
-i

(2-28)

(2-29)

(2-30)

YT - cos
-1 (2-31)

90 (2-32)



N4 = •i+1/ i = 1,2,3,4 (2-33a)

N

(«. - g

(2-33b)

d . = N . i = 1,2,3,...5 (2-16)

N. « pn < d. • i = 1,2,3,. . .5 (2-18)
i B — i
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3.0 LOGIC FOR COMPUTING AOS AND LOS TIMES

Section 2.0 presented the equations necessary to determine whether .

the S/C lies within the various area targets or space volumes. This
section outlines the method by which these .equations will be used

to compute the AOS and LOS times. The basic procedure consists of

performing a sequential time search between user specified start

and end times. Tests will be performed at each time point to deter-

mine whether the S/C lies within the area target or space volume.

The AOS times are defined to be the time point at which the S/C

first enters the area target or space volume. If the S/C lies

within the area target or space volume at the beginning of the

search, the first AOS time will be set equal to the start time.

LOS times are defined to be the last time point prior to the S/C

exiting the area target or space volume. If the S/C lies within

the area target or space volume at the end of the time search,

then the last LOS time will be set equal to the end time. It

should be noted that the time increment used to perform the

sequential time search will limit the accuracy and resolution

of the AOS and LOS times (e.g., if the time increment is 1

minute, this implies that the AOS and LOS times will be determined

to the nearest minute and that visibility periods of less than 1

minute may be skipped).

The area targets and space volumes defined in section 1.0 fall into

two general categories:

a. Earth-fixed which include

(1) Earth-referenced circles.

(2) Earth-referenced polygons.

(3) Earth-referenced space volumes.

b. Celestial-fixed which include

(1) celestial circles.

(2) celestial polygons.

(3) celestial-fixed space volumes.

The logic for computing the AOS and LOS times for each of these

categories is presented in the following subsections. •
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3.1 EARTH-FIXED AREA TARGETS AND SPACE VOLUMES

Figure 3-1 provides a functional flowchart for the Earth-fixed

area targets and space volumes. The required inputs are

a. Target table (either the ground target table, ground polygon

table, or ground-fixed space volume table).

b. Target ID.

c. Start and end times and time increment ( 3
At, respectively) for the sequential time search .

d. S/C ephemeris and ephemeris ID.

e. RNP matrix and associated epoch time.

A brief description of the process is provided below. The heading

numbers correspond to the numbered blocks on figure 3-1.

1. The geodetic parameters defining the area target or space

volume are obtained from the appropriate target table based

upon the input target ID. Sections 2.1.2, 2.3.2, and 2.5.2

describe the specific parameters which are required.

2. The RNP matrix and its associated epoch time are obtained.

3. The geodetic coordinates of the area target or space volume

are transformed to the rotating geocentric coordinate system

(sees. 2.1.2, 2.3.2, and 2.5.2).

4. The current time, t, is initialized to the start time, tstart
The first AOS time, AOSi, is initialized to zero. The AOS/LOS

counter, i, is initialized to one.

5. A loop is established which will terminate when t exceeds

the end time, t ,.end
6. The S/C position vector (at time t in the M50 coordinate

system) is obtained from the ephemeris file based upon the

ephemeris ID.

7. The S/C position vector is transformed to the rotating geo-

centric coordinate system and computations are performed to deter-

mine whether the S/C lies within the area target or space

volume (sees. 2.1.2, 2.3.2, 2.5.2, and the app.).
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Based upon the results of these tests, the S/C visibility

parameter, V, is set _._

V > 0 if the S/C lies within the area target

or space volume

V < 0 if the S/C lies exterior to the area

target or space volume

A test is performed on V.

If V > 0

8.1 a further test is performed on AOS. to determine whether

the S/C was also visible during one or more of the

previous time steps.

If AOSi > 0

8.1.1 then the S/C was visible during one or more of

the previous time steps. Hence, no transition

. has occurred. The current time is incremented

by At and the search continues

If AOS^^ <_ 0

8.1.2 then a transition into the area target or space

volume has occurred. The current AOS time, AOS.,

is set equal to the current time. The current

time is incremented by At and the search continues

If V < 0

8.2 a further test is performed on AOS. to determine whether

the S/C was visible during the previous time step.

If AOS..̂  > 0

8.2.1 then the S/C was visible during the previous time

step and a transition out of the area target or

space volume has occurred. The current LOS time,

LOS. , is set equal to the time of the previous

time step (t - At). The AOS/LOS counter, i, is

incremented by one. The next AOS time is initial-

ized to zero. The current time is incremented by

At and the search continues.
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8.2.2 the S/C was not visible during the preceding time

step. Thus no transition has occurred. The current

time is incremented by At .and the search continues.

9. At the completion of the sequential time search, a test is made

to determine if the S/C was visible at the end time. If the

test is true, the last LOS time is set equal to t ,.

3.2 CELESTIAL-FIXED AREA TARGETS AND SPACE VOLUMES

Figure 3-2 illustrates the computational logic for the celestial-

fixed area targets and space volumes. This logic is similar to

the approach presented in section 3.1. The required inputs are

a. Target table (either the celestial circles table, celestial

polygons table, or celestial-fixed space volumes table).

b. Target ID.

~c. Start and end times and time increment (t t ,, and At,

respectively),

d. S/C ephemeris and ephemeris ID.

A brief description of the process is provided below. The heading

numbers correspond to the numbered blocks on figure 3-2.

1. The parameters defining the celestial-fixed area target or

space volume are obtained from the appropriate target table

based upon the input target ID. Sections 2.2.2, 2.4.2, and .

2.6.2 describe the specific parameters which are required.

2. The current time, t, is initialized to the start time, t
S uo.JT'C

The first AOS time, AOSi, is initialized to zero. The AOS/LOS

counter, i, is initialized to one.

3. A loop is established which will terminate when t exceeds the

end time, tend.

4. The S/C position vector (at time t in the M50 coordinate

system) is obtained from the ephemeris file based upon

ephemeris ID.
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5. Computations are performed to determine whether the S/C lies

within the area target or space volume (sees. 2.2.2, 2.4.2, 2.6.2,

and the app.). Based upon the results of these tests, the S/C

visibility parameter, V, is set • t . .

V > 0 if the S/C lies within the area target

or space volume

V < 0 if the S/C lies exterior to the area

target or space volume

6. A test is performed on V.

If V > 0

6.1 a further test is performed on AOS. to determine whether

— the S/C was also visible during one or more of the previous

time steps.

If AOS..̂  > 0 -

6.1.1 then the S/C was visible during one or more of

the previous time steps. Hence, no transition

has occurred. The current time is incremented

by At and the search continues

If AOS..̂  1 0

6.1.2 then a transition into the area target or space

volume has occurred. The current AOS time, AOS.,

is set equal to the current time. The current

time is incremented by At and the search continues.

If V < 0

6.2 a further test is performed on AOS. to determine whether

the S/C was visible during the previous step.

If AOSĵ  > 0

6.2.1 then the S/C was visible during the previous time

step and a transition out of the area target or

space volume has occurred. The current LOS time,

LOS., is set equal to the time of the previous

time step (t - At). The AOS/LOS counter, i, is
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incremented by one. The next AOS time is initial-

ized to zero. The current time is incremented by

At and the search continues.

6.2.2 the S/C was not visible during the preceding time

step. Thus, no transition has occurred. The current

time is incremented by At and the search continues.

7. At the completion of the sequential time search, a test is made

to determine whether the S/C was visible at the end time. If the

test is true, the last LOS time is set equal to t ,., end
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APPENDIX

- SUBDIVIDING CONCAVE POLYGONS

This appendix discusses the procedure for subdividing complex concave

polygons into two or more simpler convex polygons.1 This sub-

division process will permit the equations in section 2.0 of this

report to be easily extended to accommodate any arbitrarily

shaped polygon. For convenience, the equations and figures pre-

sented in this appendix will use a pentagon as an example.2 How-

.ever, this approach is easily extended to any n-sided polygon.

Figure A-l presents three examples of concave pentagons. Figure

A-l(a) illustrates a pentagon having one concave vertex. Figures

A-l(b) and A-l(c) illustrate pentagons having two concave vertices.

These pentagons can always be subdivided into triangles by select-

ing an "appropriate" vertex and connecting nonadjacent vertices

(fig. A-2). The maximum number of triangles necessary to completely

subdivide any arbitrarily shaped polygon is

N - n - 2 (A-l)
-max

where

n = number of sides

*A concave polygon is defined to be a polygon which has one or
more interior vertex angles exceeding 180 degrees. A convex
polygon is defined to be a polygon which has all of its interior
angles less than 180 degrees.

2This corresponds to the maximum number of sides specifically
addressed in the requirements defined in reference 1.
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(a) One concave vertex,

(b) Two adjacent concave vertices.

Two nonadjacent concave vertices.

Figure A-l.- Examples of concave pentagons,
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(a) One concave vertex.

(b) Two adjacent concave vertices.

;(c) Two nonadjacent concave vertices.

Figure A-2.- Examples of subdividing concave pentagons.
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Furthermore, the maximum number of interior angles exceeding 180

degrees can also be determined by noting that the sum of the

interior angles of the polygon must be equal to the sum of the

interior angles of all triangles into which it can be subdivided.

Thus, the sum of the interior vertex angles for any arbitrarily

shaped polygon is given by

n
T y. = (n -

where

y . .= interior vertex angles of the polygon

Thus, the maximum number of interior vertex angles exceeding 180

degrees, y*, is given by

(A-3)

This equation limits the maximum number of concave vertices for a

pentagon to two. Figures A-l (b) and A-l(c) illustrate two ex-

amples. In figure A-l (b) , the two concave vertices are adjacent •

to each other. In figure A-l(c) the two concave vertices are non-

adjacent.

The selection of the "appropriate" vertex to begin the subdivision

process is highly dependent upon the shape of the polygon and the

number and relationship of the concave vertices. Also, it is not

always necessary to subdivide the polygon into triangles. Figure

A-3 illustrates another method for subdividing the polygon of

figure A-l (a). In this case, the concave pentagon is subdivided

into a four-sided convex polygon and one triangle. Furthermore,

figure A-l by no means exhausts all of the potential pentagon

shapes which could be constructed.
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Since the shape of the area targets and space volumes will remain

static during a mission, it is recommended that the subdivision

process be performed manually.* There are two distinct advantages

to this approach:

a. It eliminates the coding and execution of complex subdivision

logic.

b. It can be performed once for each concave area target and

space volume and does not have to be repeated each time AOS

and LOS times are desired.

The -treatment of concave polygons will place additional require-

ments on the targets tables other than those specifically mentioned

in reference 1. In addition to the number of sides and coordinates

for each vertex, the target tables must also contain the following

for each polygon- shaped target

N - number of segments into which the target is subdivided

(3 > N > 1 for polygons having five or less sides)— seg —
VO. - integers defining the counterclockwise ordering of the

vertices for each segment (i = 1,2,...N )

The use of these additional parameters can best be illustrated by

example. For figure A-3, this pentagon is subdivided into two

segments. The first segment is a four-sided polygon defined by

vertices 1, 2, 3 and 5. The second segment is a triangle defined

by vertices 3, 4, and 5. The corresponding parameters for this

pentagon would be

Nseg = 2 ' - • • ' ' .-'•••^-^•
VOi = 1235 (or 2351 or 3512 or 5123)

' = 345 (or 453 or 534)
VO2

* • •
This can easily be performed by plotting the vertex points on a

Mercator projection.
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Similarly/ for figures A-2(b) and A-2(c):

a. Figure A-2(b)

" " Nseg= 3

VOi = 125 (or 251 or 512)

V02 = 235 (or 352 or 523)

VOa = 345 (or 453 or 534)

b. Figure A-2(c)

Nseg - 3

VOj = 125 (or 251 or 512)

V02 = 245 (or 452 or 524)

V03 = 234 (or 342 or 423)

For consistency, this approach can also be used for convex polygons,

In this case, .N would be oneseg
counterclockwise vertex sequence.

In this case, .N would be one and VOi would be set to the
SCCf

For computational purposes, the number of sides for each segment,

n., can be extracted from the vertex ordering integer, VO•/ as

follows

fvo.y
n. = highest values of n. where TRUNC / ^A >0 (A-4)

V1^
where

TRUNC implies integer truncation.
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The vertex numbers, V., corresponding to each vertex of the i

subpolygon can also be extracted from the vertex ordering integer

as follows -

V. = TRUNC ( î -V (A-5a)

V. = TRUNC "\ - — - /j = 2,3,...n. (A-5b)
1 - '

The criterion for the S/C (or S/C subsatellite point) to be con-

tained in the concave area target or space volume is that it

must be contained in any one of the subpolygons. The equations

presented in section 2.0 of this report can be used on a segment-

by-segment basis to test for containment.
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