A COMPUTER PROGRAM FOR ESTIMATION FROM INCOMPLETE MULTINOMIAL DATA

Karen R. Credeur

May 1978

Because of its significant early commercial potential, this information, which has been developed under a U.S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall be made subject to these limitations. Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part.

Date for general release May 1980.
A COMPUTER PROGRAM FOR ESTIMATION
FROM INCOMPLETE MULTINOMIAL DATA
By
Karen R. Credeur
NASA
LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA

SUMMARY

This paper presents a computer program for maximum likelihood and
Bayesian estimation of the vector p of multinomial cell probabilities
from incomplete data. Also included is coding to calculate exact and
approximate elements of the posterior mean and covariance matrices.
The program is written in FORTRAN IV language for the Control Data
CYBER 170 series digital computer system with network operating system
(NOS) 1.1. The program requires approximately 44000 octal locations
of core storage. A typical case requires from 72 seconds to 92 seconds
on CYBER 175 depending on the value of the prior parameter.
A COMPUTER PROGRAM FOR ESTIMATION FROM INCOMPLETE MULTINOMIAL DATA

By

Karen R. Credeur

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>INDEX OF COMPUTER PROGRAM</td>
<td>5</td>
</tr>
<tr>
<td>LISTING OF COMPUTER PROGRAM</td>
<td>6</td>
</tr>
<tr>
<td>APPENDIX A: URAN</td>
<td>67</td>
</tr>
<tr>
<td>APPENDIX B: URANV</td>
<td>69</td>
</tr>
<tr>
<td>APPENDIX C: MATINV</td>
<td>71</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>73</td>
</tr>
</tbody>
</table>
This paper describes the main computer program used in reference 1 for estimating the vector \(\mathbf{p} \) of multinomial cell probabilities from incomplete data. The data is incomplete in that it contains partially classified observations. Each such partially classified observation is observed to fall in one of two or more selected categories but is not classified further. The estimation criterion is minimization of risk for quadratic loss \(L(\tilde{\mathbf{p}} - \hat{\mathbf{p}}) = (\tilde{\mathbf{p}} - \hat{\mathbf{p}})'(\tilde{\mathbf{p}} - \hat{\mathbf{p}}) \) for \(\hat{\mathbf{p}} \) an estimator of \(\mathbf{p} \).

In addition, elements of the posterior mean and covariance matrices are calculated exactly and approximately. A Taylor-series function is used to approximate the posterior covariance matrix. A Taylor-series function, the maximum-likelihood estimate, and the posterior mode are used to approximate the posterior mean.

Monte-Carlo simulation studies are performed for small- and medium-size samples to assess

1. which of the maximum-likelihood estimate, posterior mode, and Taylor-series approximate posterior mean best minimizes risk for specified values of \(\mathbf{p} \);
2. how well each of these functions approximates the exact posterior mean; and
3. how well a Taylor-series function approximates elements of the posterior covariance matrix.

Samples are of size 25 and 50, percentage of incomplete data varies around 15 and 40, and probabilities range from the center of the probability simplex \(P_2 \) to one of its corners. Probabilities equal the means of the prior distributions for varying parameters or are randomly generated from these distributions. An exploratory robustness study is conducted by using the correct prior, a uniform prior, and a perturbed prior in the Bayesian estimators. The iterative algorithm of Dempster, Laird, and Rubin (ref. 2) is used to evaluate all three estimators.
Other discussion, analysis, and results are given in reference 1. Included in the discussion in reference 1 are descriptions of pseudorandom-number generators for the Dirichlet, uniform, and trinomial distributions. Also given are tree diagrams (figs. 5.1 - 5.3 of ref. 1) that illustrate the flow of the computer program.

The computer used is a Control Data Corporation (CDC) CYBER 170 series digital computer system with network operating system (NOS) 1.1. This computer operates with a 60-bit word and single-precision accuracy of about 14.5 significant figures. The programing language is FORTRAN Extended, Version 4.6. The program requires approximately 44000 octal locations of core storage. A typical case requires from 72 seconds to 92 seconds depending on the prior parameter.

A listing of the main computer program is given in the third section. An index precedes the listing. Symbols are defined in the listing. Note that the program is written for DESIGN 2 of reference 1 but can be modified to be DESIGN 1 of reference 1 by deleting the Dirichlet-generation level and changing the dimensioning of the QLMSIJ matrix. DESIGN 1 has a fixed-effects model constituting full factorials (4×2×3) having four levels* and two replications per cell. DESIGN 2 has a mixed-effects model constituting nested factorials (4-10×2×3) having four levels and two replications per cell within each of four variations of the prior parameter \(\nu \). The ten generations of the Dirichlet probability \(p \) in DESIGN 2 are considered random; the remaining factors are considered fixed.

*level 1: four Dirichlet probabilities \(p \)
level 2: two sample sizes
level 3: two percentages of incomplete data
level 4: three estimators
To run a case, any necessary changes are made to the following lines in MAIN:

\[
\begin{align*}
XNU1 &= \\
XNU2 &= \\
IP &= \\
SEED &=
\end{align*}
\]

In addition, the subroutine GAM, which is a function of the prior parameter \(\nu \) (NU), and the Hollerith labels

\[
\begin{align*}
\text{DATA A}\text{LABEL/10HA. NU} &= (,10\text{HO.1},0.1,9.,10\text{H8}). \\
\text{DATA T}\text{LABEL/10HTABLE 7.1 /}
\end{align*}
\]

are changed as needed. For values of \(y \) that are less than 10, \(\text{GAM}(y+1) \) is calculated from the relationship \(\text{GAM}(y+1) = y \text{GAM}(y) \) and a starting value. For \(y \) an integer, the starting value is \(\text{GAM}(2) = 1 \) and for \(y = x 1/3 \), for \(x \) an integer, the starting value is \(\text{GAM}(3 1/3) = 2.7781584804296 \). For \(y \) greater than or equal to 10, Stirling's formula is used to approximate the gamma function to 11 significant figures of accuracy.

Because a MODIFY system (ref. 3) is used to maintain the program on a permanent file, a new case is easier to make by changing lines of code rather than reading data cards. Outputs consist of printouts and tapes. Some tapes are directly used as tables. Tapes are also usually input to canned programs for calculating analyses of variance and to a program for summing biases or mean squared error over replication, sample size, percentage of incomplete data, and/or generated Dirichlet probability.

Subroutines URAN, URANV, and MATINV shown in the coding are from the NASA, Langley Research Center, mathematics computer library. They are described in Appendices A, B, and C, respectively. Subroutine URAN
gives a single uniform random number according to the algorithm described in Appendix A. Subroutine URANY gives a vector of uniform random numbers from URAN. Subroutine MATINV solves a system of simultaneous linear equations.

In addition, other computer programs not given in the listing have been written. Among these are programs to test the gamma, Dirichlet, trinomial, and uniform pseudorandom-number generators; to calculate analyses of variance; and to sum mean squared errors and biases over one or more of replication, percentage of incomplete data, sample size, and generated Dirichlet probability. The sums have been used for plots in reference 1. Note that a number of subroutines from IMSL (International Mathematical and Statistical Libraries, Inc.; ref. 4) have been used in calculating the analyses of variance.
<table>
<thead>
<tr>
<th>NAME</th>
<th>USAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>main program</td>
<td>6</td>
</tr>
<tr>
<td>GAMMA</td>
<td>subroutine to generate a gamma random variable</td>
<td>35</td>
</tr>
<tr>
<td>GENXZ</td>
<td>subroutine to generate trinomial complete (x) and incomplete (z) data; also calculates complete-data maximum-likelihood estimate</td>
<td>37</td>
</tr>
<tr>
<td>EPM</td>
<td>subroutine to calculate exact posterior mean and covariance matrices</td>
<td>41</td>
</tr>
<tr>
<td>GAM</td>
<td>subroutine to evaluate the Gamma function by exact values or Stirling's approximation; note that this subroutine differs for each of the four different values of the prior parameter (v=\nu) (only the subroutine for (v=(0.1,0.1,9.8)) is shown)</td>
<td>45</td>
</tr>
<tr>
<td>METHODS</td>
<td>subroutine to calculate the Taylor-series approximations APM and APC for the posterior mean and covariance matrices; also calculates the posterior mode PMD and the maximum-likelihood estimate MLE from incomplete data</td>
<td>47</td>
</tr>
<tr>
<td>COUNTS</td>
<td>subroutine for covariance approximations and complete-data maximum-likelihood estimate to count the number of the 200 trinomial simulation trials that have negative, zero, and positive error and that have absolute relative difference less than certain percentages</td>
<td>54</td>
</tr>
<tr>
<td>ESTMSE</td>
<td>subroutine to calculate the usual, control-variate, and regression estimates of mean squared error and their sample variances</td>
<td>56</td>
</tr>
<tr>
<td>KTITER</td>
<td>subroutine to increment counters for averaging the number of iterations an estimator requires and for determining how many of the 200 trinomial simulations an estimator requires a specified number of iterations</td>
<td>58</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>subroutine to calculate Tukey's five-point data summary: median, hinges, and extremes</td>
<td>60</td>
</tr>
<tr>
<td>BESTEST</td>
<td>by two different criteria (summed absolute relative difference and summed squared error), subroutine determines which estimator is best for a given one of the 200 trinomial simulations; also includes a section corresponding to COUNTS for the estimators APM, PMD, and MLE</td>
<td>61</td>
</tr>
</tbody>
</table>
LISTING OF COMPUTER PROGRAM

PROGRAM MAIN(INPUT, OUTPUT, TAPE5, TAPE12)

PROGRAMMED BY KAREN RACKLEY CREDEUR, SPRING 1977, CDC 6600,
FORTRAN EXTENDED VERSION 4.6, NASA, LANGLEY RESEARCH CENTER

INTEGER COVSKIP
REAL MSE(6,7)
DIMENSION BESTQL(4,2,3), BESTQL(3)
DIMENSION R(2,7,2), TUKEY(10), UU(10)
DIMENSION QLMS1(2,2,2), QLMS2(2,2,2), QLMS3(2,2,2), QLMS4(2,2,2)
DIMENSION QLMS5(2,2,2), QLMS6(2,2,2), EBIAIS1(2,2,2), EBIAIS2(2,2,2)
DIMENSION EBIAIS3(2,2,2), EMS1(2,2,2), EMS2(2,2,2), EMS3(2,2,2)
DIMENSION QLMS11(10,2,2), QLMS12(10,2,2), QLMS12(10,2,2)
DIMENSION QLMS31(10,2,2), QLMS32(10,2,2), QLMS21(10,2,2)
DIMENSION QLMS31(10,2,2), QLMS32(10,2,2), QLMS21(10,2,2)
DIMENSION QLMS11(10,2,2), QLMS12(10,2,2), QLMS12(10,2,2)
DIMENSION T11(2,2,1,1), T12(2,2,1,1), T21(2,2,1,1), T22(2,2,1,1)
DIMENSION T31(2,2,1,1), T32(2,2,1,1), T41(2,2,1,1), T42(2,2,1,1)
DIMENSION T51(2,2,1,1), T52(2,2,1,1), T61(2,2,1,1), T62(2,2,1,1)
DIMENSION ALABEL(3), TLABEL(1)
COMMON DEP(3,3), ODL(4,3), E(4,3), IROBUST, NTS, PI, P2, P3, TPI
COMMON/BEST/BESTEP(3,2), CTRDEP, CTRDQL(3), PRDEP(19,3), PRDQL(9,7), SB
1ASEP(3,3), SBISQL(3,7)
COMMON/BIAS/R/ CTBind(3,8), COUNTRO(8,8)
COMMON/CALIEST/ APMIC11, APMIC12, APMIC22, CONVCR1, COVSIP, DMLC1, DMLC2, DML
1C3, DPD, EAPMC11, EAPMC12, EAPMC22, EAPMC11, EAPMC22, ISTOP, N12, N13
2N22, PID, PMLC1, PMLC2, PMLC3, SS, SN, TIMAP, TIMEP, TIM(21), TIM21, TIM31, X
3NUL, XNU2, XNU3, Z1, Z2, Z3, Z12, Z13, Z23, Z1N, Z2N, Z3N
COMMON/ITKT/ AVNUMIT(6), CTNUMIT(6, 10)
EQUIVALENCE (E(1,1), PEPML1), (E(1,2), PEPM2), (E(1,3), PEPM3)
EQUIVALENCE (E(2,1), PMLE1), (E(2,2), PMLE2), (E(2,3), PMLE3)
EQUIVALENCE (E(3,1), PPMD1), (E(3,2), PPMD2), (E(3,3), PPMD3)
EQUIVALENCE (E(4,1), PAPML1), (E(4,2), PAPM2), (E(4,3), PAPM3)
EQUIVALENCE (DEP(1,1), EML1), (DEP(1,2), EML2), (DEP(1,3), EML3)
EQUIVALENCE (DEP(2,1), EPM1), (DEP(2,2), EPM2), (DEP(2,3), EPM3)
EQUIVALENCE (DEP(3,1), EPMN1), (DEP(3,2), EPMN2), (DEP(3,3), EPMN3)
EQUIVALENCE (DQL(1,1), DEPMN1), (DQL(1,2), DEPMN2), (DQL(1,3), DEPMN3)
EQUIVALENCE (DQL(2,1), DML1), (DQL(2,2), DML2), (DQL(2,3), DML3)
EQUIVALENCE (DQL(3,1), DPM1), (DQL(3,2), DPM2), (DQL(3,3), DPM3)
EQUIVALENCE (DQL(4,1), DPMN1), (DQL(4,2), DPMN2), (DQL(4,3), DPMN3)
DATA ALABEL/10HA, NU = (10HO, 10, 10, 10H8)
DATA TLABEL/10HTABLE 7.1 /
RELATIVE-ERROR CONVERGENCE CRITERION (USUALLY 0.0001)

IP denotes, in the following order, one of the expected P's

(.01, .01, .98), (.1, .1, .8), (.2, .3, .5), and (1/3, 1/3, 1/3)

NSS INTEGER SS

NXZ NUMBER OF TRINOMIAL (X AND Z DATA) SIMULATIONS

PAPMI I-TH T.S. APPROXIMATED POSTERIOR MEAN

PEPMI I-TH EXACT POSTERIOR MEAN

PI I-TH GENERATED P

PID PERCENTAGE OF INCOMPLETE DATA

PMCLI I-TH COMPLETE M.L.E.

PMLEI I-TH INCOMPLETE-DATA M.L.E.

PPMDI I-TH POSTERIOR MODE

SS SAMPLE SIZE

SSN SS * SUM OF PRIOR PARAMETERS XNU1

XNU VECTOR OF PRIOR PARAMETERS XNU=(XNU1, XNU2, XNU3)

ZI NUMBER OF OBSERVATIONS FALLING IN CATEGORY I

ZIJ NUMBER OF OBSERVATIONS SUCH THAT EACH OBSERVATION IS

KNOWN TO FALL IN ONE OF CATEGORIES I AND J BUT IS NOT

FURTHER CLASSIFIED

ZIN ZI+XNU1

XNU1=0.1
XNU2=0.1
IP=2
SEED=24158739.
GSEED=SEED+100.

INITIALIZE ONE-DIMENSIONAL FORM OF UNIFORM RANDOM-NUMBER
GENERATOR FOR GENERATING GAMMA RANDOM VARIABLES

UN=URAN(GSEED)
PRINT 4, GSEED, UN
XNU3=10.-XNU1-XNU2
XNU=XNU1+XNU2+XNU3

GENERATE A 3-COMPONENT (2-DIM) VECTOR OF DIRICHLET PROBABILITIES

DO 9910 IGEN=1,10
2 G1=GAMMA(XNU1)
G2=GAMMA(XNU2)
G3=GAMMA(XNU3)
G=G1+G2+G3
P1 = G1/G
P2 = G2/G
P3 = 1.0 - P1 - P2
IF (P3 = 0.) 7, 7, 5
5 PRINT 3, XNU1, XNU2, XNU3, XNU, IP, P1, P2, P3, PID, NSS, NXZ, CONVCRI
PRINT 6
6 FORMAT(* P3 IS NEGATIVE. REGENERATE DIRICHLET.*)/////
GO TO 2
7 PID = 0.15
NSS = 25
NXZ = 200
CONVCRI = 0.0001
KASE = 0
IPID = 1
ISS = 1
IPRINT = 0
1 SEED = SEED + 2.
PRINT 3, XNU1, XNU2, XNU3, XNU, IP, P1, P2, P3, PID, NSS, NXZ, CONVCRI
3 FORMAT(* P1 = F6.4* P2 = F6.4* P3 = F6.4* PID = F4.2* NSS = I3* NXZ = I3* CONVC
2R1 = F7.5*)
C C C INITIALIZE VECTOR FORM OF UNIFORM RANDOM-NUMBER GENERATOR
CALL URANV(SEED, 1, UN)
PRINT 4, SEED, UN
4 FORMAT(* SEED GIVEN URANV IS E23.14* SEED TRANSFORMED BY URAN FRO
1M THIS SEED IS E23.14*/) SS = NSS
SSN = SS*XNU
C C DO 95 NREPLIC = 1, 2
C NUMXZ = NXZRI = NXZR2 = NCOV = NXZ
ISTOP = 0
C0VSKIP = 0
AVTPID = AVDPID = 0.
C C C C INITIALIZE COUNTERS FOR % RELATIVE DIFFERENCE AND SIGN OF BIAS
DO 28 I = 1, 9
DO 27 J = 1, 7
PRDQL(I, J) = 0.
27 CONTINUE
SBIASEP(I) = 0.
28 CONTINUE
 DO 29 I=1,21
 SBIASSL(I)=0.
29 CONTINUE
 DO 30 I=1,27
 PRDEP(I)=0.
30 CONTINUE
 CTRDEP=CTRDEP(1)=CTRDEP(2)=CTRDEP(3)=0.
C
C INITIALIZE COUNTERS FOR NUMBER OF ITERATIONS FOR CONVERGENCE
C
 DO 40 II=1,6
 AVNUMIT(II)=0.
 DO 39 I2=1,7
 CNUMITU(I2)=0.
39 CONTINUE
 CNUMITU(I2)=CNUMITU(I2,8)=CNUMITU(I2,9)=CNUMITU(I2,10)=0.
40 CONTINUE
 TIM(1)=TIM(2)=TIMEP=TIMAP=0.
C
 DO 42 J=1,2
 BESTEP(J)=BESTEP(J,1)=BESTEP(J,2)=BESTEP(J,3)=0.
 BESTOL(J)=BESTOL(J,1)=BESTOL(J,2)=BESTOL(J,3)=0.
 BESTOL(J,4)=BESTOL(J,5)=BESTOL(J,6)=BESTOL(J,7)=0.
42 CONTINUE
C
C INITIALIZE COUNTERS FOR BIAS AND RELATIVE DIFFERENCES
C
 DO 45 K1=1,8
 DO 44 K2=1,8
 COUNTRO(K1,K2)=0.
 IF (K1-3) 43*44
43 COUNTB(K1,K2)=0.
44 CONTINUE
45 CONTINUE
C
C INITIALIZE AVERAGES AND ERROR SUMMARIES TO ZERO
C
C AVERAGE ESTIMATORS AND THEIR STANDARD ERRORS (S.E.)
C
 APMLE1=APEPM1=APAPM1=APPMD1=APMLC1=AP1=0.
 XAPMLE1=XAPEPM1=XAPAPM1=XAPPMD1=XAPMLC1=XAP1=0.
 APMLE2=APEPM2=APAPM2=APPMD2=APMLC2=AP2=0.
 XAPMLE2=XAPEPM2=XAPAPM2=XAPPMD2=XAPMLC2=XAP2=0.
AVPMN1=AVPMN2=AQPMN1=AOQMN2=AQPM1=AOQMD2=0.
APFMN1=APFMN2=GPGMN1=GPGMN2=PGMD1=PGMD2=0.

AV BIAS, MSE, & VAR(MSE) OF ESTIMATORS FROM EXACT POSTERIOR MEAN

XAPMN1=XAPMN2=XAPMN4=XAPMNSQ=0.
XPM01 =XPM02 =XPM04 =XPMDSQ =0.
XML1 =XML2 =XML4 =XMLSQ =0.

AV BIAS, MSE, & VAR(MSE) OF ESTIMATORS FROM GIVEN OR GENERATED P

YEPMN1 =YAPMN1 =YPM01 =YMLC1 =VAPMN1 =QAPMN1 =QPM01 =0.
YEPMN2 =YAPMN2 =YPM02 =YML2 =VAPMN2 =QAPMN2 =QPM02 =0.
YEPMN4 =YAPMN4 =YPM04 =YML4 =VAPMN4 =QAPMN4 =QPM04 =0.
YEPMSQ =YAPMSQ =YPMDSQ =YMLSQ =VAPMSQ =QAPMSQ =QPMDSQ =0.
REGAPMD0 =REGPMDO =REGEMP0 =REGML0 = REGMLC0 =YMLC20 =0.
REGAPMN1 =REGPMN1 =REGMLN1 =YMLC21 =0.
REGAPMN2 = REGPMN2 = REGMLN2 =YMLC22 =0.

INITIALIZE FOR S.E. OF AVERAGE BIAS

WAPMN1=WPM01=WML1 = WAPMN2=WPM02=WML2 =0.
UMLC1=UEPMN1=UAPMN1=UPMD1=UML1=FAPMN1=GAPMN1=GPM01=0.
UMLC2=UEPMN2=UAPMN2=UPMD2=UML2=FAPMN2=GAPMN2=GPM02=0.

EST AVERAGE, BIAS, S.E., AV & REL DIFF, & MSE FOR COV EST FROM EP

AEPMC11=AAEPMC11=BAEPMC11=C11MSE=VC11MSE=AAPROC11=0.
AEPMC12=AAEPMC12=BAEPMC12=C12MSE=VC12MSE=AAPROC12=0.
AEPMC22=AAEPMC22=BAEPMC22=C22MSE=VC22MSE=AAPROC22=0.
A2EPC11=A2EPC12=A2EPC22=VARMSE=0.
A2APC11=A2APC12=A2APC22=VAR4=0.

GENERATE NUMXZ SETS OF TRINOMIAL DATA, CALCULATE ESTIMATORS, AND
COMPARE THEM AS APPROXIMATIONS FOR THE EXACT POSTERIOR MEAN.
ALSO ASSESS HOW WELL THE T.S. APPROXIMATION DOES FOR THE EXACT
POSTERIOR COVARIANCE MATRIX. COMPARE ESTIMATORS WITH GENERATED
P AND DO EXPLORATORY ROBUSTNESS STUDY

DO 65 NT=1,NXZ
NTS=NT
IROBUST=0

GENERATE MULTINOMIAL COMPLETE DATA X AND INCOMPLETE DATA Z
CALCULATE COMPLETE-DATA MAXIMUM LIKELIHOOD ESTIMATE

CALL GENXZ(UU+NSS)
IF (ISTOP-1) 46, 58, 58

CALCULATE EXACT POSTERIOR MEAN

CALL EPM
FOR INCOMPLETE DATA Z, CALCULATE MAXIMUM-LIKELIHOOD ESTIMATE,
POSTERIOR MODE, AND TAYLOR-SERIES APPROXIMATED POSTERIOR MEAN
AND TAYLOR-SERIES APPROXIMATED POSTERIOR COVARIANCE MATRICES

CALL METHODS
IF (ISTOP-1) 49, 58, 58

AVERAGE ESTIMATORS

49 APMLE1=APMLE1+PMLE1
APMLE2=APMLE2+PMLE2
APEPM1=APEPM1+PEPM1
APEPM2=APEPM2+PEPM2
APAPM1=APAPM1+PAPM1
APAPM2=APAPM2+PAPM2
APPMD1=APPMD1+PPMD1
APPMD2=APPMD2+PPMD2
APMLC1=APMLC1+PMLC1
APMLC2=APMLC2+PMLC2
AP1=AP1+P1
AP2=AP2+P2

TO CALCULATE S.E. OF AVERAGE ESTIMATORS (WANT S.E. SMALL RELATIVE
TO DIFFERENCE BETWEEN AVERAGE BIAS)

XAPMLE1=XAPMLE1+PMLE1
XAPMLE2=XAPMLE2+PMLE2
XAPEPM1=XAPEPM1+PEPM1
XAPEPM2=XAPEPM2+PEPM2
XAPAPM1=XAPAPM1+PAPM1
XAPAPM2=XAPAPM2+PAPM2
XAPPMD1=XAPPMD1+PPMD1+PPMD1

ORIGINAL PAGE IS
OF POOR QUALITY!
XAPPMD2 = XAPPMD2 + PPMD2 * PPMD2
XAPMLC1 = XAPMLC1 + PMLC1 * PMLC1
XAPMLC2 = XAPMLC2 + PMLC2 * PMLC2
XAPI = XAPI + P1 * P1
XAP2 = XAP2 + P2 * P2

Differences of estimators from exact posterior mean

Bias of T.S. approx posterior mean from exact posterior mean

XAPMN1 = XAPMN1 + EAPMN1
XAPMN2 = XAPMN2 + EAPMN2
XXAPMN = EAPMN1 * EAPMN1 + EAPMN2 * EAPMN2 + EAPMN3 * EAPMN3

Mean square error of T.S. APM from exact posterior mean

XAPMNSQ = XAPMNSQ + XXAPMN

For variance of mean square error

XAPMN4 = XAPMN4 + XXAPMN * XXAPMN

Bias of posterior mode from exact posterior mean

XPMD1 = XPMD1 + EPMD1
XPMD2 = XPMD2 + EPMD2
XXPMD = EPMD1 * EPMD1 + EPMD2 * EPMD2 + EPMD3 * EPMD3

Mean square error of posterior mode from exact posterior mean

XPMDSQ = XPMDSQ + XXPMD

For variance of mean square error

XPMD4 = XPMD4 + XXPMD * XXPMD

Bias of MLE from exact posterior mean (incomplete data)

XML1 = XML1 + EML1
XML2 = XML2 + EML2
XXXML = EML1 * EML1 + EML2 * EML2 + EML3 * EML3

Mean square error of IC-D MLE from exact posterior mean

XMLSQ = XMLSQ + XXXML
FOR VARIANCE OF MSE

XML4=XML4+XML4+XML

DIFFERENCE OF APPROXIMATED POSTERIOR COVARIANCES FROM EXACT POSTERIOR COVARIANCES

IF (COVSKIP=0) 51,51,50
50 NCOV=NCOV-1
COVSKIP=0
GO TO 53

CUMULATE VALUES TO AVERAGE EXACT POSTERIOR VARIANCES

51 AEPMC11=AEPMC11+EPMC11
AEPMC12=AEPMC12+EPMC12
AEPMC22=AEPMC22+EPMC22

CUMULATE VALUES TO AVERAGE APPROXIMATE POSTERIOR VARIANCES

AAPMC11=AAPMC11+APMC11
AAPMC12=AAPMC12+APMC12
AAPMC22=AAPMC22+APMC22

FOR S.E. OF COVARIANCE AVERAGES

A2EPC11=A2EPC11+EPMC11*EPMC11
A2EPC12=A2EPC12+EPMC12*EPMC12
A2EPC22=A2EPC22+EPMC22*EPMC22
A2APC11=A2APC11+APMC11*APMC11
A2APC12=A2APC12+APMC12*APMC12
A2APC22=A2APC22+APMC22*APMC22

CUMULATE DIFFERENCES BETWEEN EXACT AND APPROXIMATE POSTERIOR VARIANCES

BAPMC11=BAPMC11+EAPMC11
BAPMC12=BAPMC12+EAPMC12
BAPMC22=BAPMC22+EAPMC22

FOR AVERAGE PERCENT RELATIVE DIFFERENCE

PRDC11=ABS(EAPMC11)/EPMC11
PRDC12=ABS(EAPMC12/EPMC12)
PRDC22 = \text{ABS}(EAPMC22) / EPMC22
APRC11 = APRDC11 + PRDC11
APRC12 = APRDC12 + PRDC12
APRC22 = APRDC22 + PRDC22

FOR MEAN OF ELEMENTS OF APPROXIMATED POSTERIOR COVARIANCE MATRIX

EAP2C11 = EAPMC11 * EAPMC11
EAP2C12 = EAPMC12 * EAPMC12
EAP2C22 = EAPMC22 * EAPMC22
C11MSE = C11MSE + EAP2C11
C12MSE = C12MSE + EAP2C12
C22MSE = C22MSE + EAP2C22
VVV = EAP2C11 + EAP2C12 + EAP2C22
VARMSE = VARMSE + VVV

FOR VARIANCE OF MEAN

VC11MSE = VC11MSE + EAP2C11 * EAP2C11
VC12MSE = VC12MSE + EAP2C12 * EAP2C12
VC22MSE = VC22MSE + EAP2C22 * EAP2C22
VAR4 = VAR4 + VVV + VVV

ADD TO BIAS - SIGN AND % - RELATIVE - DIFFERENCE COUNTS

CALL COUNTS(EAPMC11, PROC11, 1)
CALL COUNTS(EAPMC12, PROC12, 2)
CALL COUNTS(EAPMC22, PROC22, 3)

ALSO CHECK DIRECTION OF BIAS OF DEPENDENT COVARIANCES

EC33 = EPMC11 * EPMC22 + 2 * EPMC12
EC13 = EPMC11 - EPMC12
EC23 = EPMC22 - EPMC12
AC33 = APMC11 + APMC22 + 2 * APMC12
AC13 = APMC11 - APMC12
AC23 = APMC22 - APMC12
BC33 = AC33 - EC33
BC13 = AC13 - EC13
BC23 = AC23 - EC23
PRDC13 = ABS(BC13 / EC13)
PRDC23 = ABS(BC23 / EC23)
PRDC33 = ABS(BC33 / EC33)
CALL COUNTS(BC13, PRDC13, 6)
CALL COUNTS(BC23, PRDC23, 7)
CALL COUNTS(BC33,PROC33,8)

DIFFERENCE OF ESTIMATORS FROM GENERATED P

93 YMLC1=YMLC1+DMLC1
YMLC2=YMLC2+DMLC2
YYMLCD=DMLC1*DMLC1+DMLC2*DMLC2+DMLC3*DMLC3
YMLC20=YMLC20+YYMLCD
SQQMLCD=YYMLCD*YYMLCD
REGMLCO=REGMLCO+SQQMLCD

NOTE THAT FOR REMAINING COMPARISONS WITH GENERATED P WE ARE
MAINLY INTERESTED IN MSE BECAUSE MAIN CONCERN IS DETERMINING WHICH
ESTIMATOR BEST MINIMIZES QUADRATIC LOSS. HOWEVER, WE WILL ALSO
CALCULATE BIAS FROM GENERATED (OR GIVEN) P.

BIAS OF EXACT POSTERIOR MEAN FROM GENERATED P

YEPMN1=YEPMN1+DEPMN1
YEPMN2=YEPMN2+DEPMN2
YYEPMN=DEPMN1*DEPMN1+DEPMN2*DEPMN2+DEPMN3*DEPMN3

FOR USUAL MEAN SQUARE ERROR OF EPM FROM GENERATED P

YEPMSQ=YEPMRSQ+YYEPMN

FOR REGRESSION ESTIMATION AND CONTROL VARIATE MSE EPM

REGEMO=REGEMO+YYEPMN*YYMLCD

FOR VARIANCE OF ALL 3 MEAN SQUARE ERRORS

YEPMN4=YEPMN4+YYEPMN*YYEPMN

BIAS OF APPROX POSTERIOR MEAN FROM GENERATED P

YAPMN1=YAPMN1*DAPMN1
YAPMN2=YAPMN2*DAPMN2
YYAPMN=DAPMN1*DAPMN1+DAPMN2*DAPMN2+DAPMN3*DAPMN3

USUAL MEAN SQUARE ERROR FOR APMN FROM GENERATED P

YAPMSQ=YAPMSQ+YYAPMN
FOR REGRESSION ESTIMATION AND CONTROL VARIATE MSE
REGAPMO = REGAPMO + YYAPMN * YYMCD

FOR VARIANCE OF MEAN SQUARE ERRORS
YYAPMN4 = YYAPMN4 + YYAPMN * YYAPMN

FOR BIAS OF POSTERIOR MODE FROM GENERATED P
YPMD1 = YPMD1 + DPM1
YPMD2 = YPMD2 + DPM2
YPMD = DPM1 * DPM1 + DPM2 * DPM2 + DPM3 * DPM3
YPMDSQ = YPMDSQ + YYPM
REGPMDO = REGPMDO + YYPM * YYMCD
YPMD4 = YPMD4 + YYPM * YYPM

BIAS OF MLE FROM GENERATED P
YML1 = YML1 + DML1
YML2 = YML2 + DML2
YYML = DML1 * DML1 + DML2 * DML2 + DML3 * DML3
YMLSQ = YMLSQ + YYML
REGMLO = REGMLO + YYML * YYMCD
YML4 = YML4 + YYML * YYML

BY TWO DIFF CRITERION CALC BEST EST FOR THIS TRINOMIAL TRIAL
CALL BESTEST(BESTOL(1))

FOR S.E. OF AVERAGE BIAS
WAPMN1 = WAPMN1 + EAPMN1 * EAPMN1
WAPMN2 = WAPMN2 + EAPMN2 * EAPMN2
WPMD1 = WPMD1 + EPM1 * EPM1
WPMD2 = WPMD2 + EPM2 * EPM2
WML1 = WML1 + EML1 * EML1
WML2 = WML2 + EML2 * EML2
UMLC1 = UMLC1 + DMLC1 * DMLC1
UMLC2 = UMLC2 + DMLC2 * DMLC2
UEPMN1 = UEPMN1 + DEPM1 * DEPM1
UEPMN2 = UEPMN2 + DEPM2 * DEPM2
UAPMN1 = UAPMN1 + DAPMN1 * DAPMN1
UAPMN2 = UAPMN2 + DAPMN2 * DAPMN2
C CALCULATE ROBUSTNESS ESTIMATORS (FOR QUADRATIC-LOSS COMPARISON ONLY). USE WRONG PRIOR IN ESTIMATES.
C EXCLUDE EPM BECAUSE OF EXPENSE.

C ROBUSTNESS SET 1. UNIFORM PRIOR. RECALCULATE ONLY APPROXIMATE POSTERIOR MEAN BECAUSE FOR A UNIFORM PRIOR THE POSTERIOR MODE WILL EQUAL THE ALREADY CALCULATED M.L.E. (FOR INCOMPLETE DATA)

C
Z1N=Z1+1.
Z2N=Z2+1.
Z3N=Z3+1.
SSN=SS+3.
IROBUST=1
CALL METHODS
IF (ISTOP=1) 55,58,58
55 VAPM1=VAPM1+DAPM1
VAPM2=VAPM2+DAPM2
VAPM3=VAPM3+DAPM3
AVPMN=AVPMN+PAP1
AVPMN2=AVPMN2+PAP1
FAPM1=FAPM1*DAPM1*DAPM1
FAPM2=FAPM2*DAPM2*DAPM2
AFPM1=AFPM1*PAP1*PAP1
AFPM2=AFPM2*PAP2*PAP2
VAPMSQ=VAPMSQ+VAPM
REGAPM1=REGAPM1+VAPM*NYYMLCD
VAPM4=VAPM4+VAPM*NYYVAPMN
YYMLC21=YYMLC21+YYMLCD
REGMLC1=REGMLC1+SYMLCD

C BY TWO DIFF CRITERION CALC BEST EST FOR THIS TRINOMIAL TRIAL
CALL BESTEST(BESTQL(9))

C ROBUSTNESS SET 2. IN BAYESIAN ESTIMATORS APMN AND PMD, USE PRIOR PARAMETERS 10.+(0.09,0.05,-0.14)

56 Z1N=Z1+XNU1+0.9
Z2N=Z2+XNU2+0.5
Z3N=Z3+XNU3-1.4
```
SSM=SS*XNU
IROBUST=2
CALL METHODS
IF (ISTOP-1) 57,58,58
57 QAPMN1=QAPMN1+DAPMN1
QAPMN2=QAPMN2+DAPMN2
AQPMN1=AQPMN1+PAPM1
AQPMN2=AQPMN2+PAPM2
QOAPMN=QAPMN1*DAPMN1*DAPMN2*DAPMN2+DAPMN3*DAPMN3
QAPMSQ=QAPMSQ+QQAPMN
REGAPM2=REGAPM2+QQAPMN*YYMLCD
QAPMN4=QAPMN4+QQAPMN*QQAPMN
YMLC22=YMLC22+YYMLCD
REGMLC2=REGMLC2+SQMLCD
C
QPMD1=QPMD1+DPMD1
QPMD2=QPMD2+DPMD2
AQPM01=AQPM01+PPMD1
AQPM02=AQPM02+PPMD2
QPMD=QPMD1*DPMD1+DPMD2*DPMD2+DPMD3*DPMD3
QPMDSQ=QPMDSQ+QQPMD
REGPMD2=REGPMD2+QQPMD*YYMLCD
QPMD4=QPMD4+QPMD*QPMD
C
GAPM1=GAPM1*DAPMN1*DPMD1
GAPM2=GAPM2*DAPMN2*DPMD2
GPMD1=GPMD1*DPMD1*DPMD1
GPMD2=GPMD2*DPMD2*DPMD2
AGPM1=AGPM1+PAPM1*PAPM1
AGPM2=AGPM2+PAPM2*PAPM2
PGMD1=PGMD1+PAPMD1*PAPMD1
PGMD2=PGMD2+PAPMD2*PAPMD2
C
C BY TWO DIFF CRITERION CALC BEST EST FOR THIS TRINOMIAL TRIAL
C CALL BESTEST(BESTQL(17))
C
GO TO 65
58 ISTOP=0
IF (IROBUST-1) 60,61,62
60 NUMXZ=NUMXZ-1
NCOV=NCOV-1
NXZ1=NXZ1-1
NXZ2=NXZ2-1
GO TO 65
```
AVERAGE OVER NUMXZ TRINOMIAL RESULTS FOR FIXED XNU={XNU1,XNU2,XNU3}
GENERATED P={P1,P2,P3}, PIO, AND SS

ESTIMATOR MEANS (ESTIMATORS AVERAGED OVER NUMXZ TRIALS)

APMLE1=APMLE1/NUMXZ
APMLE2=APMLE2/NUMXZ
APEPM1=APEPM1/NUMXZ
APEPM2=APEPM2/NUMXZ
APAPM1=APAPM1/NUMXZ
APAPM2=APAPM2/NUMXZ
APPMD1=APPMD1/NUMXZ
APPMD2=APPMD2/NUMXZ
APMLC1=APMLC1/NUMXZ
APMLC2=APMLC2/NUMXZ
AP1=AP1/NUMXZ
AP2=AP2/NUMXZ
AVPMN1=AVPMN1/NXZR1
AVPMN2=AVPMN2/NXZR1
AQPMN1=AQPMN1/NXZR1
AQPMN2=AQPMN2/NXZR2
AQPMD1=AQPMD1/NXZR1
AQPMD2=AQPMD2/NXZR2

ND=NUMXZ*(NUMXZ-1)
NC=NCOV*(NCOV-1)
NDR1=NXZR1*(NXZR1-1)
NDR2=NXZR2*(NXZR2-1)

STANDARD ERRORS OF ESTIMATOR MEANS

SE1=SRT((XAPMLE1-APMLE1*APMLE1)/ND)
SE2=SRT((XAPMLE2-APMLE2*APMLE2)/ND)
SE3=SRT((XAPEPM1-APPEPM1*APPEPM1)/ND)
SE4=SRT((XAPEPM2-APPEPM2*APPEPM2)/ND)
SE5=SRT((XAPAPM1-APAPM1*APAPM1)/ND)
SE6=SRT((XAPAPM2-APAPM2*APAPM2)/ND)
SE7=SRT((XAPPMD1-APPMD1*APPMD1)/ND)
SE8=SRT((XAPPMD2-APPMD2*APPMD2)/ND)
SE9 = SQRT((XAPMLC1 - NUMXZ * APMLC1 * APMLC1)/ND)
SE10 = SQRT((XAPMLC2 - NUMXZ * APMLC2 * APMLC2)/ND)
SE11 = SQRT((XAP1 - NUMXZ * AP1 * AP1)/ND)
SE12 = SQRT((XAP2 - NUMXZ * AP2 * AP2)/ND)
SE13 = SQRT((AFPMN1 - NZR1 * AVPMN1 * AVPMN1)/NDR1)
SE14 = SQRT((AFPMN2 - NZR1 * AVPMN2 * AVPMN2)/NDR1)
SE15 = SQRT((AGPMN1 - NZR2 * AQPMN1 * AQPMN1)/NDR2)
SE16 = SQRT((AGPMN2 - NZR2 * AQPMN2 * AQPMN2)/NDR2)
SE17 = SQRT((PGMD1 - NZR2 * AQPMO1 * AQPMO1)/NDR2)
SE18 = SQRT((PGMD2 - NZR2 * AQPMO2 * AQPMO2)/NDR2)
PRINT 1079, NUMXZ
PRINT 1080, APMLE1, SE1, APEPM1, SE3, APAPM1, SE5, APPMD1, SE7, APMLC1, SE9
1, AP1, SE11, APMLE2, SE2, APEPM2, SE4, APAPM2, SE6, APPMD2, SE8, APMLC2, SE10, 2
AP2, SE12
1079 FORMAT(14* AVERAGE ESTIMATORS (MEANS) AND THEIR STANDARD ERRORS OV 1ER*, 14* TRIALS*)

C C AVERAGE BIASES AND COVARIANCE ESTIMATORS
C
XAPMN1 = XAPMN1/NUMXZ
XAPMN2 = XAPMN2/NUMXZ
XPMOD1 = XPMOD1/NUMXZ
XPMOD2 = XPMOD2/NUMXZ
XML1 = XML1/NUMXZ
XML2 = XML2/NUMXZ
APEPMC11 = APEPMC11/NCOV
APEPMC12 = APEPMC12/NCOV
APEPMC21 = APEPMC21/NCOV
APEPMC12 = APEPMC12/NCOV
APEPMC22 = APEPMC22/NCOV
 AAPMC11 = AAPMC11/NCOV
AAPMC12 = AAPMC12/NCOV
AAPMC21 = AAPMC21/NCOV
AAPMC12 = AAPMC12/NCOV
BAPMC11 = BAPMC11/NCOV
BAPMC12 = BAPMC12/NCOV
BAPMC21 = BAPMC21/NCOV
BAPMC22 = BAPMC22/NCOV
YMLC1 = YMLC1/NUMXZ
YMLC2 = YMLC2/NUMXZ
YEPMN1 = YEPMN1/NUMXZ
YEPMN2 = YEPMN2/NUMXZ
YAPMN1 = YAPMN1/NUMXZ
YAPMN2 = YAPMN2/NUMXZ
YPMD1 = YPMOD1/NUMXZ
YPMD2 = YPMOD2/NUMXZ
YML1-YML1/NUMXZ
YML2-YML2/NUMXZ
VAPMN1=VAPMN1/NXZR1
VAPMN2=VAPMN2/NXZR1
QAPMN1=QAPMN1/NXZR1
QAPMN2=QAPMN2/NXZR2
QPM1=QPM1/NXZR1
QPM2=QPM2/NXZR2
EBIAS1(NREPLIC, ISS, IPID)=XAPMN1
EBIAS2(NREPLIC, ISS, IPID)=XPM01
EBIAS3(NREPLIC, ISS, IPID)=XML1

CALCULATE S.E. OF BIAS. WANT THIS TO BE SMALL RELATIVE TO THE
DIFFERENCE BETWEEN THE BIASES

SE21=SQR((WAPMN1-NUMXZ*XAPMN1*XAPMN1)/ND)
SE22=SQR((WAPMN2-NUMXZ*XAPMN2*XAPMN2)/ND)
SE23=SQR((WPM1-NUMXZ*XPM01*XPM01)/ND)
SE24=SQR((WPM2-NUMXZ*XPM02*XPM02)/ND)
SE25=SQR((WML1-NUMXZ*XML1*XML1)/ND)
SE26=SQR((WML2-NUMXZ*XML2*XML2)/ND)
SE27=SQR((A2EPC11-NCOV*AEPMC11*AEPMC11)/NC)
SE28=SQR((A2EPC12-NCOV*AEPMC12*AEPMC12)/NC)
SE29=SQR((A2EPC21-NCOV*AEPMC21*AEPMC21)/NC)
SE30=SQR((A2EPC22-NCOV*AEPMC22*AEPMC22)/NC)
SE31=SQR((A2APC11-NCOV*AAPMC11*AAPMC11)/NC)
SE32=SQR((A2APC12-NCOV*AAPMC12*AAPMC12)/NC)
SE33=SQR((A2APC21-NCOV*AAPMC21*AAPMC21)/NC)
SE34=SQR((A2APC22-NCOV*AAPMC22*AAPMC22)/NC)
SE35=SQR((C11MSE-NCOV*BAPMC11*BAPMC11)/NC)
SE36=SQR((C12MSE-NCOV*BAPMC12*BAPMC12)/NC)
SE37=SQR((C21MSE-NCOV*BAPMC21*BAPMC21)/NC)
SE38=SQR((C22MSE-NCOV*BAPMC22*BAPMC22)/NC)
SE39=SQR((UMLC1-NUMXZ*YMLC1*YMLC1)/ND)
SE40=SQR((UMLC2-NUMXZ*YMLC2*YMLC2)/ND)
SE41=SQR((UEPMN1-NUMXZ*YPEPN1*YPEPN1)/ND)
SE42=SQR((UEPMN2-NUMXZ*YPEPN2*YPEPN2)/ND)
SE43=SQR((UAPMN1-NUMXZ*YAPMN1*YAPMN1)/ND)
SE44=SQR((UAPMN2-NUMXZ*YAPMN2*YAPMN2)/ND)
SE45=SQR((UPMD1-NUMXZ*YPM01*YPM01)/ND)
SE46=SQR((UPMD2-NUMXZ*YPM02*YPM02)/ND)
SE47=SQR((FAPMN1-NXZR1*VAPMN1*VAPMN1)/ND)
SE48=SQR((FAPMN2-NXZR1*VAPMN2*VAPMN2)/ND)
SE49=SQR((QAPMN1-NXZR2*QAPMN1*QAPMN1)/ND)
SE50=SQR((QAPMN2-NXZR2*QAPMN2*QAPMN2)/ND)
SE51=SQR((GPMD1-NXZR2*QPMD1*QPMD1)/ND)
\(SE51 = \sqrt{\text{SORT}((\text{GMMD2-NXZR2*OPMD2*QPMD2})/\text{NDR2})} \)

\[
\begin{align*}
\text{PRINT 1150, NUMXZ, XAPMN1, SE21, XPM1, SE24, XML1, SE26, YEPMN1, SE39, YAPMN1, SE40, YPM2, SE42, YML1, SE44, YML2, SE43, YML2, SE45, YMLC2, SE37} \\
\text{1150 FORMAT}// */ AVERAGE BIASES AND THEIR STANDARD ERRORS OVER * TRI \\
\text{1ALS}// */ FROM EPM*15X*XAPM*16X*S.E.*16X*XPMD*16X*S.E.*17X*XML*16X*S. \\
E.*10X,P1 *10F20.14/10X,P2 *10F20.14 // FROM P*9X*YEPH*8X*S. \\
E.*8X*YAPM*8X*S.E.*8X*YPMD*8X*S.E.*9X*YML*8X*S.E.*9X*YMLC*8X*S.E.* \\
4/10X>*P1 *10F12.10/10X>*P2 *10F12.10) \\
\text{PRINT 1154, AVPMN1, SE13, APMLE1, SE1, AQPMN1, SE15, AQPM2, SE17, AVPMN2,} \\
\text{1SE14, APMLE2, SE2, AQPMN2, SE16, AQPM2, SE18} \\
\text{1154 FORMAT}// /* ROBUST-ESTIMATOR AVERAGES AND S.E.* S. WANT S.E. SMALL} \\
\text{RELATIVE TO DIFFERENCE BETWEEN ESTIMATORS. */9X*APMR1*11X*S.E.*9X*P} \\
\text{2MDR1=MLE*8X*S.E.*11X*APMR2*10X*S.E.*11X*PMDR2*10X*S.E.*// P1 *4(F1} \\
\text{32.8,F18.14)*/ P2 *4(F12.8,F18.14)*/} \\
\text{PRINT 1155, VAPM1, SE46, YML1, SE44, QAPMN1, SE48, QPM2, SE50, VAPMN2,} \\
\text{SE14, YML2, SE45, QAPMN2, SE49, QPM2, SE51} \\
\text{1155 FORMAT}// /* ROBUST-ESTIMATORS BIASES AND STANDARD ERRORS. */10X, * \\
\text{1VAPM*11X*S.E.*9X*VPM2*YML*9X*S.E.*9X*QAPM*11X*S.E.*11X*QPM2*1} \\
\text{21X*S.E.*)/* P1 *4(F12.8,F18.14)*/ P2 *4(F12.8,F18.14)*/} \\
\text{C} \\
\text{C MEAN SQUARE ERRORS AND THEIR STANDARD ERRORS} \\
\text{XAPMNSO=XAPMNSQ/NUMXZ} \\
\text{XPMDSO=XPMDSQ/NUMXZ} \\
\text{XMLSO=XMLSQ/NUMXZ} \\
\text{EMS1(NREP, ISS, IPID)=XAPMNSQ} \\
\text{EMS2(NREP, ISS, IPID)=XPMDSQ} \\
\text{EMS3(NREP, ISS, IPID)=XMLSQ} \\
\text{YMLC20=YMLC20/NUMXZ} \\
\text{YEPMSQ=YEPMSQ/NUMXZ} \\
\text{YAPMSQ=YAPMSQ/NUMXZ} \\
\text{YPMDSO=YPMDSQ/NUMXZ} \\
\text{YMLSQ=YMLSQ/NUMXZ} \\
\text{SD1=SQR((XAPMN4-NUMXZ*XAPMNSQ*XAPMNSQ)/ND) } \\
\text{SD2=SQR((XPMO4-NUMXZ*XPMDSQ*XPMDSQ)/ND) } \\
\text{SD3=SQR((XML4-NUMXZ*XMLSQ*XMLSQ)/ND) } \\
\text{SD4=SQR((REGMLCO-NUMXZ*YMLC20*YMLC20)/ND) } \\
\text{SD5=SQR((YEPMN4-NUMXZ*YEPMSQ*YEPMSQ)/ND) } \\
\text{SD6=SQR((YAPMN4-NUMXZ*YAPMSQ*YAPMSQ)/ND) } \\
\text{SD7=SQR((YPMO4-NUMXZ*YPMDSQ*YPMDSQ)/ND) } \\
\text{SD8=SQR((YML4-NUMXZ*YMLSQ*YMLSQ)/ND) } \\
\text{C} \\
\text{C DIFFERENCES BETWEEN MEAN SQUARE ERRORS}
C

DM1=XAPMNSQ-XPMSO
DM2=XAPMNSQ-XAPMSO
DM3=XPMSO-XMLSQ
DM4=YMCLC20-YPMSO
DM5=YMCLC20-YAPMSO
DM6=YMCLC20-YPMSQ
DM7=YMCLC20-YMLSQ
DM8=YPMSQ-YAPMSO
DM9=YPMSQ-YPMSO
DM10=YPMSQ-YMLSQ
DM11=YAPMSO-YPMSQ
DM12=YAPMSO-YMLSQ
DM13=YPMSQ-YMLSQ

PRINT 1200, NUMXZ, XAPMNSQ, SD1, YPMSQ, SD5, YMCLC20, SD4, XPMSQ, SD2, YAP
1MSQ, SD6, YMLSQ, SD8, XMLSQ, SD3, YPMSQ, SD7

1200 FORMAT('//*[@ AVERAGE MEAN SQUARE ERRORS AND THEIR STANDARD ERRORS QU
ERI*14* TRIALS///* 17X,*MSE*12X*S.E.*25X*MSE*12X*S.E.*25X*MSE*12X*S.E
1.0/2X*APM-EPMD*F14.9*F18.13*7X*APM-P*F14.9*F10.13*7X*APM-EPMD*F14.9*F
10.13*7X*APM-EPMD*F14.9*F18.13*7X*APM-P
1.0/18.13/3X*ML-EMP*F14.9*F18.13*7X*EMP-EPMD*F14.9*F10.13*7X*ML-EMP*F14
3.0*2X*PND-EPM*F18.13*2X*DEP-M-DEPM*F18.13*2X*DEP-M-DEPM*F18.13*2X*DEP

PRINT 1300, DM1, DM8, DM11, DM5, DM2, DM9, DM12, DM6, DM3, DM10, DM13, DM7

1300 FORMAT('//*[@ DIFFERENCE BETWEEN AVERAGE MSE"S, WANT DIFFERENCE LARG
1E RELATIVE TO SE(MSE)*/ //* EAPM-EPMD*F14.9*12X*DEP-M-DEPM*F14.9*12X
2X*DEP-M-DEPM*F14.9*12X*DEP-M-DEPM*F14.9*12X*DEP-M-DEPM*F14.9*12X*DEP

XN=NUMXZ
DO 71 I=1,6
IF (I4) 69,67,68
67 XN=NXZR1
GO TO 69
68 XN=NXZR2
69 AVNUMIT(I)=AVNUMIT(I)/XN
DO 70 J=1,10
70 CTNUMIT(I,J)=CTNUMIT(I,J)/XN
71 CONTINUE

PRINT 2000, IP, PID, SS, NREPLIC, NUMXZ, NXZR1, NXZR2, (AVNUMIT(I), I=1,6)

2000 FORMAT(/** NUMBER OF ITER FOR CONVERGENCE AVERAGED OVER NUMBER OF
1 TRINOMIAL SIMULATIONS. IP=I3.0* PID=*F4.2* SS=*F3.0* NREPLIC=*212/*
UMX=I3.0* NXZR1=I3.0* NXZR2=I3.0* AV NUM ITER FOR MLE=*F7
3.3* PHDR0=*F7.3* APHRO=*F7.3* APHR1=*F7.3* PHDR2=*F7.3* APHR2=*F7
43.0/*

PRINT 2010, ((CTNUMIT(I,J), J=1,10), I=1,4,3), ((CTNUMIT(I,J), J=1,10)
1, I=2,5,3), ((CTNUMIT(I,J), J=1,10), I=3,6,3)
2010 FORMAT(* PROPORTION OF DATA SETS FOR WHICH NUMBER OF ITERATIONS WAS
15 OF SPECIFIED AMOUNTS */10X* 1 2 3 4 5 6 7 8 9 10
11-15 GT 15/* MLE 10F6.3* APMR1 10F6.3* PMDR0 10F6.3* APMR0 10F6.3*/
YEPMSQ*NUMXZ*YEPMSO
YAPMSQ*NUMXZ*YAPMSO
YPMSQ*NUMXZ*YPMDSO
YMLSQ*NUMXZ*YMLSQ
YMLC20*NUMXZ*YMLC20
T=(1-((P1*P1+P2*P2+P3*P3))/SS)
CALL ESTMSE(YEPMSQ,YEPMN4,REGEPMSO,MLC20,REGMCO,T,NUMXZ,MSE(1))
CALL ESTMSE(YAPMSQ,YAPMN4,REGAPMSO,MLC20,REGMCO,T,NUMXZ,MSE(7))
CALL ESTMSE(YPMDSQ,YPM4,REGPMSO,MLC20,REGMCO,T,NUMXZ,MSE(13))
CALL ESTMSE(YMLSQ,YM4,REGMLO,MLC20,REGMCO,T,NUMXZ,MSE(191))
CALL ESTMSE(YAPMSQ,YAPMN4,REGAPMSO,MLC21,REGMCL1,T,NXZR1,MSE(25))
CALL ESTMSE(YPMDSQ,YPM4,REGPMSO,MLC21,REGMCL2,T,NXZR2,MSE(31))
CALL ESTMSE(YMLSQ,YM4,REGMLO,MLC21,REGMCL2,T,NXZR2,MSE(37))
PRINT 2030*, IP,PID, SS,NREPLIC,(*MSE(I,J),J=1,7),I=1,6)
2030 FORMAT(* THREE KINDS OF MSE (AND THEIR VARIANCES) FOR QUADRATIC-
1SS COMPARISONS. IP*12,* PID**F4.2,* SS**F3.0,* NREPLIC**12/18*
2EPM*15X*APM*15X*PMD*15X*MLE*14X*APMR1*13X*APMR2*13X*PMDR2/* REG M
2SE 7E18.77* VAR(MSE) 7E18.77* CV MSE 7E18.77* VAR(MSE) 7E18.77*
4 RE MSE 7E18.77* VAR(MSE) 7E18.77*/
C IF (ISS-1) 2035,2035,2040
2035 QLMS11(IGEN,IPID,NREPLIC) = MSE(5,2)
QLMS21(IGEN,IPID,NREPLIC) = MSE(5,3)
QLMS31(IGEN,IPID,NREPLIC) = MSE(5,4)
QLMS41(IGEN,IPID,NREPLIC) = MSE(5,5)
QLMS51(IGEN,IPID,NREPLIC) = MSE(5,6)
QLMS61(IGEN,IPID,NREPLIC) = MSE(5,7)
GO TO 2045
2040 QLMS12(IGEN,IPID,NREPLIC) = MSE(5,2)
QLMS22(IGEN,IPID,NREPLIC) = MSE(5,3)
QLMS32(IGEN,IPID,NREPLIC) = MSE(5,4)
QLMS42(IGEN,IPID,NREPLIC) = MSE(5,5)
QLMS52(IGEN,IPID,NREPLIC) = MSE(5,6)
QLMS62(IGEN,IPID,NREPLIC) = MSE(5,7)
C PROPORTIONS FOR BEST ESTIMATOR (BEST IN TERMS OF SMALLEST SUMMED
C SQUARED ERROR AND % REL DIFF FOR SUM BEING OVER THE THREE
C COMPONENTS OF AN ESTIMATOR) AND FOR SIGN OF BIAS
C

CTSEQ(1)=NUMXZ
CTSEQ(2)=NXZI
CTSEQ(3)=NXZ2
DO 75 I=1,4
DO 72 IR=1,3
BESTQL(1,IR)=BESTQL(1,IR)/CTSEQ(IR)
BESTQL(2,IR)=BESTQL(2,IR)/CTRDLQ(IR)
SBIASQL(IR,1)=SBIASQL(IR,1)/NUMXZ
72 CONTINUE
IF (I-4) 73,75,75
73 BESTEP(I,1)=BESTEP(I,1)/NUMXZ
BESTEP(I,2)=BESTEP(I,2)/CTRDEP
DO 74 K=1,3
SBIASEP(K,1)=SBIASEP(K,1)/NUMXZ
74 CONTINUE
75 CONTINUE
DO 76 K=1,3
SBIASQL(K,5)=SBIASQL(K,5)/NXZI
SBIASQL(K,6)=SBIASQL(K,6)/NXZ2
SBIASQL(K,7)=SBIASQL(K,7)/NXZ2
76 CONTINUE

C

CALCULATE % ABS REL DIFF LESS THAN (INSTEAD OF BETWEEN) SPECIFIED
AMOUNTS

DO 80 I=1,7
DO 79 II=2,8
PRDQL(II,I)=PRDQL(II,I)+PRDQL(II-1,I)
IF (I-4) 78,79,79
78 PRDEP(II,I)=PRDEP(II,I)+PRDEP(II-1,I)
79 CONTINUE
80 CONTINUE
IR=1
DO 85 I=1,7
IF (I-5) 83,81,82
81 IR=2
GO TO 83
82 IR=3
83 DO 84 II=1,8
PRDQL(II,I)=PRDQL(II,I)/CTRDLQ(IR)
84 CONTINUE
85 CONTINUE
DO 88 I=1,3
DO 88 II=1,8
PRDEP(II, I) = PRDEP(II, I) / CTRDEP

88 CONTINUE
PRINT 2050, ((BESTEP(I, J), I=1,3), ((BESTOL(I, J, K), I=2,4), K=1,3), J= 11,2)

2050 FORMAT(* PROPORTION OF CASES THAT AN ESTIMATOR IS BEST. FIRST 3 C
10LLNS ARE RESULTS FOR ESTIMATING EPM. REMAINING COLNS, FOR MIN QUA
2D LOSS. */43X*ORIG.-PRIOR ROBUST SET */UNIFORM-PRIOR ROBUST SET
3 PERTURB-PRIOI ROBUST SET */20X*MLE PMD APM*11X* *MLE PM
4D APM*14X*MLE = PMD APM*13X*MLE PMD APM/* SQD ERR CRIT
5 *3F6.2*8X3F6.2,2X*2(9X,3F6.2)/* REL DIFF CRIT *3F6.2*8X3F6.2,2,3
6X*9X,3F6.2,2)/*
PRINT 2070, ((SBIASEP(I, J, J=1,3), (SBIASQL(I, K), K=1,7), I=1,3)

2070 FORMAT(* PROPORTION OF CASES IN WHICH DIFFERENCE BETWEEN FIRST COM
PONENT OF ESTIMATOR AND THAT OF ESTIMATED IS OF A CERTAIN SIGN//1
25X*EMLE*6X*EPMD*6X*EAPM*16X*QEMP*6X*QMLE*5X*QMDRO*4X*QAPMR*QX*QA
3PMR*9X*QPMDR*4X*QAPMR*6X*NEG *3F10.4,10X*4F10.4,5X*F10.4,5X,2F
410.X*5X*IERD*3F10.4,10X*4F10.4,5X*F10.4,5X,2F10.4/6X*POS *3F10.4,
510.X*4F10.4,5X*F10.4,5X,2F10.4)/*
PRINT 2080, ((PRDEP(II, I), I=1,3), (PROQL(I, K), K=1,7), II=1,8)

2080 FORMAT(* PROPORTION OF CASES FOR WHICH % ABSOLUTE RELATIVE DIFFERE
1NCE FOR EACH OF THE THREE ESTIMATOR COMPONENTS IS LESS THAN SPECIF
2IED AMOUNTS//15X*EMLE*6X*EPMD*6X*EAPM*16X*QEMP*6X*QMLE*5X*QMDRO*4
3X*QAPMR*9X*QPMDR*4X*QAPMR*6X*QEMP*6X*QMLE*5X*QMDRO*4
510.0 *3F10.4,10X*4F10.4,5X*F10.4,5X,2F10.4/5X* 5.0 *3F10.4,10X*4F
610.X*5X*F10.4,5X*2F10.4/5X*10.0 *3F10.4,10X*4F10.4,5X*F10.4,5X,2F
710.4/5X*15.0 *3F10.4,10X*4F10.4,5X*F10.4,5X,2F10.4/5X*20.0 *3F10.
84,10X*4F10.4,5X*F10.4,5X*2F10.4/5X*25.0 *3F10.4,10X*4F10.4,5X*F10
9.4,5X*2F10.4)/*

C C C PERCENT AVERAGE RELATIVE DIFFERENCE FOR COVARIANCE ESTIMATES
C PARDC11=100.*(AEPMC11-AAPMC11)/AEPMC11
PARDC12=100.*(AEPMC12-AAPMC12)/AEPMC12
PARDC22=100.*(AEPMC22-AAPMC22)/AEPMC22
C C C AVERAGE PERCENT RELATIVE DIFFERENCE
C APREDC11=100.*APREDC11/NCOV
APREDC12=100.*APREDC12/NCOV
APREDC22=100.*APREDC22/NCOV
C C C SQUARE ROOT MSE DIVIDED BY AVERAGE EPV
C C11MSE=C11MSE/NCOV
C12MSE=C12MSE/NCOV
C22MSE=C22MSE/NCOV
C11RT1=SQRT(C11MSE)/AEPMC11
C12RT1=SQRT(C12MSE)/AEPMC12
C22RT1=SQRT(C22MSE)/AEPMC22

C
SE1MSE/MSE

C
SE11MSE=SQRT((VC11MSE- NCOV*C11MSE*C11MSE)/NC)
SE12MSE=SQRT((VC12MSE- NCOV*C12MSE*C12MSE)/NC)
SE22MSE=SQRT((VC22MSE- NCOV*C22MSE*C22MSE)/NC)
C11RT2=SE11MSE/C11MSE
C12RT2=SE12MSE/C12MSE
C22RT2=SE22MSE/C22MSE
DO 91 I=1,8
DO 90 J=1,8
COUNTRD(I,J)=COUNTRD(I,J)/NCOV
IF (I-3) 89,89,90
89 COUNTB(I,J)=COUNTB(I,J)/NCOV
90 CONTINUE
91 CONTINUE

C
PRINT 3000, AEPMC11, SE27, AAPMC11, SE30, PARDC11, APRDC11, C11RT1, C11RT2, AEPMC12, SE28, AAPMC12, SE31, PARDC12, APRDC12, C12RT1, C12RT2, AEPMC22, SE29, AAPMC22, SE32, PARDC22, APRDC22, C22RT1, C22RT2
3000 FORMAT(///12X,*AVERAGE EPV*8X*S.E.*9X*AVERAGE APV*8X*S.E.*7X*Z_AV
1 REL DIFF AV % REL DIFF SORT(MSE)/(11 SE(MSE)/MSE*///3X*C11
2*8E16.7/3X*C12 *8E16.7/3X*C22 *8E16.7)
PRINT 3005, NCOV, IP, PID, SS, NREPLI, (COUNTRD(I,1), I=1,6), (COUNTRD(I,3), I=1,6), (COUNTRD(I,8), I=1,6), (COUNTRD(I,2), I=1,6), (COUNTRD(I,6), I=1,6)
3005 FORMAT(///12X*PROPORTION OF*U*CASES IN WHICH PERCENT REL DIFF WAS
1LESS THAN VARYING AMOUNTS. IP*12* PID*F4.2* SS*F4.0* NREPLI
2C*12//8X*0.01 0.1 1.0 5.0 10.0 15.0 21X*0.01 0.1 1.0
35.0 10. 15.*12X*0.01 0.1 1.0 5.0 10.0 15.0/** C11*6F6.
43,6*X*C22*6F6.3,6*X*C33*6F6.3/* C12*6F6.3,6*X*C13*6F6.3,6*X*C23*6F6.3
5//)
PRINT 3010, NCOV, (COUNTB(I,1), I=1,3), (COUNTB(I,3), I=1,3), (COUNTB(I,8), I=1,3), (COUNTB(I,2), I=1,3), (COUNTB(I,6), I=1,3), (COUNTB(I,7), I=21,3)
3010 FORMAT(///12X*PROPORTN OF*U*CASES IN WHICH BIAS IS OF A CERTAIN SIGN*
1//7X*NEG ZERO POS*7X*NEG ZERO POS*7X*NEG ZERO POS*7X*NEG ZERO POS
2 ZERO POS*7X*NEG ZERO POS*7X*NEG ZERO POS/** C11*3F6.3* C2
32*3F6.3* C33*3F6.3 C12*3F6.3* C13*3F6.3* C23*3F6.3)
AVTPID = AVTPID + TPID
AVDPID = AVDPID + DPID
PRINT 3070: PID, NUMXZ, AVTPID, AVDPID
3070 FORMAT(* GIVEN PID IS *F4.2* AVERAGE OVER NUMXZ = I3* TRIALS OF TRUE
1 PID IS *F6.2* AV DIFF BETWEEN TRUE AND GIVEN PID OVER THESE TRIALS
2 IS *F6.2//****)

99 CONTINUE
KASE = KASE + 1
GO TO (9902, 9903, 9904, 9905) KASE
9902 PID = 0.40
IPID = 2
IPRINT = 1
GO TO 1
9903 PID = 0.15
NSS = 50
ISS = 2
GO TO 1
9904 PID = 0.40
IPID = 2
ISS = 2
GO TO 1
9905 CONTINUE
WRITE(12,8000) TLabel(1), (ALABEL(I), I = 1, 3)
8000 FORMAT(63X, A10, /* REGRESSION-ESTIMATE MSE DATA OVER 200 TRINOMIAL
SIMULATIONS. TWO REPLICATIONS PER CELL. DESIGN 2. */ A10, A2)
WRITE(12,8001)
8001 FORMAT(47X, /* ORIGINAL PRIOR IN BAYESIAN ESTIMATORS. */ A10)
WRITE(12,8010)
8010 FORMAT(12X, 27H ******************************
1****************, 2H SS = 25, 2H ***********
1********************, 4X, 2H SS = 50, 2H ***********
2****************, 2H ESTI- DIR. *, 2H SS = 40, 2H ***********
3********************, 5X, 2H PID = 15, 2H ***********
4********************, 5X, 2H PID = 40, 2H ***********
5****************, 2H PID = 40, 2H ***********
6****************, 2H PID = 40, 2H ***********
7****************, 2H PID = 40, 2H ***********
8************, 2H PID = 40, 2H ***********
9************, 2H PID = 40, 2H ***********, 2H M
5ATOR GEN. REPLICATION1 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION1 REPLICATION1 REPLICATION2 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION2 REPLICATION1 REPLICATION2 REPLICATION1
8011 FORMAT(* APRO *I2, 4(2E15.6, 2X) / (9X, 4(2E15.6, 2X))
WRITE(12,8012) (I,(QLMS21(I,J,K),K=1,2),J=1,2),((QLMS22(I,J,K),K
1=1,2),J=1,2),I=1,10)
8012 FORMAT(* PMDRO *I2,4(2E15.6,2X)/(9X,4(2E15.6,2X)))
WRITE(12,8013) (I,(QLMS31(I,J,K),K=1,2),J=1,2),((QLMS32(I,J,K),K
1=1,2),J=1,2),I=1,10)
8013 FORMAT(* MLE *I2,4(2E15.6,2X)/(9X,4(2E15.6,2X)))
WRITE(12,4997)
WRITE(12,8000) TLABEL(1),(ALABEL(I),I=1,3)
WRITE(12,8020)
8020 FORMAT(* 40X*B. UNIFORM AND PERTURBED PRIOR IN BAYESIAN ESTIMATORS.*
1/*///)
WRITE(12,8010)
WRITE(12,8021) (I,(QLMS41(I,J,K),K=1,2),J=1,2),((QLMS42(I,J,K),K
1=1,2),J=1,2),I=1,10)
8021 FORMAT(* APR1 *I2,4(2E15.6,2X)/(9X,4(2E15.6,2X)))
WRITE(12,8022) (I,(QLMS51(I,J,K),K=1,2),J=1,2),((QLMS52(I,J,K),K
1=1,2),J=1,2),I=1,10)
8022 FORMAT(* APR2 *I2,4(2E15.6,2X)/(9X,4(2E15.6,2X)))
WRITE(12,8023) (I,(QLMS61(I,J,K),K=1,2),J=1,2),((QLMS62(I,J,K),K
1=1,2),J=1,2),I=1,10)
8023 FORMAT(* PMDR2 *I2,4(2E15.6,2X)/(9X,4(2E15.6,2X)))

C
9910 CONTINUE
C
CALCULATE TUKEY DATA SUMMARIES, MEAN, AND STANDARD ERROR (S.E.)
C
DO 9925 IPID=1,2
DO 9925 NREPLIC=1,2
SUM=0.
SOSM=0.
DO 9911 I=1,10
SUM = SUM+QLMS11(I,IPID,NREPLIC)
SOSM=SOSM+QLMS11(I,IPID,NREPLIC)*QLMS11(I,IPID,NREPLIC)
9911 TUKEY(I)=QLMS11(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T11(IPID,NREPLIC,1),T11(IPID,NREPLIC,2),T11(IPID,NREPLIC,3),T11(IPID,NREPLIC,4),T11(IPID,NREPLIC,5))
T11(IPID,NREPLIC,6)=SUM/10.
T11(IPID,NREPLIC,7)=SQR(T((SOSM-10.*T11(IPID,NREPLIC,6)*T11(IPID,NREPLIC,6))/90.))
T11(IPID,NREPLIC,8)=T11(IPID,NREPLIC,3)
T11(IPID,NREPLIC,9)=T11(IPID,NREPLIC,2)+2.*T11(IPID,NREPLIC,3)+T11(IPID,NREPLIC,4))
T11(IPID,NREPLIC,10)=T11(IPID,NREPLIC,4)-T11(IPID,NREPLIC,2)
T11(IPID,NREPLIC,11)=T11(IPID,NREPLIC,5)-T11(IPID,NREPLIC,1)
SUM=0.
DO 9912 I=1,10

SUM = SUM+QLMS12(I,IPID,NREPLIC)
SOSM=SOSM+QLMS12(I,IPID,NREPLIC)*QLMS12(I,IPID,NREPLIC)

9912 TUKEY(I)=QLMS12(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T12(IPID,NREPLIC,1),T12(IPID,NREPLIC,2),T12(IPID,NREPLIC,3),T12(IPID,NREPLIC,4),T12(IPID,NREPLIC,5))
T12(IPID,NREPLIC,6)=SUM/10.
T12(IPID,NREPLIC,7)=SORT((SOSM-10.*T12(IPID,NREPLIC,6)*T12(IPID,NREPLIC,7))/90.)
T12(IPID,NREPLIC,8)=T12(IPID,NREPLIC,3)
T12(IPID,NREPLIC,9)=(T12(IPID,NREPLIC,2)+2.*T12(IPID,NREPLIC,3)+T12(IPID,NREPLIC,4))/4.
T12(IPID,NREPLIC,10)=T12(IPID,NREPLIC,4)-T12(IPID,NREPLIC,2)
T12(IPID,NREPLIC,11)=T12(IPID,NREPLIC,5)-T12(IPID,NREPLIC,1)

SOSM=0.
DO 9913 I=1,10

SUM = SUM+QLMS21(I,IPID,NREPLIC)
SOSM=SOSM+QLMS21(I,IPID,NREPLIC)*QLMS21(I,IPID,NREPLIC)

9913 TUKEY(I)=QLMS21(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T21(IPID,NREPLIC,1),T21(IPID,NREPLIC,2),T21(IPID,NREPLIC,3),T21(IPID,NREPLIC,4),T21(IPID,NREPLIC,5))
T21(IPID,NREPLIC,6)=SUM/10.
T21(IPID,NREPLIC,7)=SORT((SOSM-10.*T21(IPID,NREPLIC,6)*T21(IPID,NREPLIC,7))/90.)
T21(IPID,NREPLIC,8)=T21(IPID,NREPLIC,3)
T21(IPID,NREPLIC,9)=(T21(IPID,NREPLIC,2)+2.*T21(IPID,NREPLIC,3)+T21(IPID,NREPLIC,4))/4.
T21(IPID,NREPLIC,10)=T21(IPID,NREPLIC,4)-T21(IPID,NREPLIC,2)
T21(IPID,NREPLIC,11)=T21(IPID,NREPLIC,5)-T21(IPID,NREPLIC,1)

SOSM=0.
DO 9914 I=1,10

SUM = SUM+QLMS22(I,IPID,NREPLIC)
SOSM=SOSM+QLMS22(I,IPID,NREPLIC)*QLMS22(I,IPID,NREPLIC)

9914 TUKEY(I)=QLMS22(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T22(IPID,NREPLIC,1),T22(IPID,NREPLIC,2),T22(IPID,NREPLIC,3),T22(IPID,NREPLIC,4),T22(IPID,NREPLIC,5))
T22(IPID,NREPLIC,6)=SUM/10.
T22(IPID,NREPLIC,7)=SORT((SOSM-10.*T22(IPID,NREPLIC,6)*T22(IPID,NREPLIC,7))/90.)
T22(IPID,NREPLIC,8)=T22(IPID,NREPLIC,3)
T22(IPID,NREPLIC,9)=(T22(IPID,NREPLIC,2)+2.*T22(IPID,NREPLIC,3)+T22(IPID,NREPLIC,4))/4.
T22(IPID,NREPLIC,10)-T22(IPID,NREPLIC,4)-T22(IPID,NREPLIC,2)
T22(IPID,NREPLIC,11)-T22(IPID,NREPLIC,5)-T22(IPID,NREPLIC,1)
SUM=0.

9915
I=1,10
SUM=SUM+QLMS31(I,IPID,NREPLIC)
SOSM=SOSM+QLMS31(I,IPID,NREPLIC)*QLMS31(I,IPID,NREPLIC)

9915
TUKEY(I)=QLMS31(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T31(IPID,NREPLIC,1),T31(IPID,NREPLIC,2),T31(IPID,NREPLIC,3),T31(IPID,NREPLIC,4),T31(IPID,NREPLIC,5))
T31(IPID,NREPLIC,6)=SUM/10.
T31(IPID,NREPLIC,7)=SORT((SOSM-10.*T31(IPID,NREPLIC,6)*T31(IPID,NREPLIC,6))/90.)
T31(IPID,NREPLIC,8)=(T31(IPID,NREPLIC,2)+2.*T31(IPID,NREPLIC,3)+T31(IPID,NREPLIC,4))/4.
T31(IPID,NREPLIC,9)=T31(IPID,NREPLIC,10)-T31(IPID,NREPLIC,2)
T31(IPID,NREPLIC,11)=T31(IPID,NREPLIC,5)-T31(IPID,NREPLIC,1)
SUM=0.
SOSM=0.

9916
I=1,10
SUM=SUM+QLMS32(I,IPID,NREPLIC)
SOSM=SOSM+QLMS32(I,IPID,NREPLIC)*QLMS32(I,IPID,NREPLIC)

9916
TUKEY(I)=QLMS32(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T32(IPID,NREPLIC,1),T32(IPID,NREPLIC,2),T32(IPID,NREPLIC,3),T32(IPID,NREPLIC,4),T32(IPID,NREPLIC,5))
T32(IPID,NREPLIC,6)=SUM/10.
T32(IPID,NREPLIC,7)=SORT((SOSM-10.*T32(IPID,NREPLIC,6)*T32(IPID,NREPLIC,6))/90.)
T32(IPID,NREPLIC,8)=T32(IPID,NREPLIC,9)
T32(IPID,NREPLIC,9)=(T32(IPID,NREPLIC,2)+2.*T32(IPID,NREPLIC,3)+T32(IPID,NREPLIC,4))/4.
T32(IPID,NREPLIC,10)=T32(IPID,NREPLIC,4)-T32(IPID,NREPLIC,2)
T32(IPID,NREPLIC,11)=T32(IPID,NREPLIC,5)-T32(IPID,NREPLIC,1)
SUM=0.
SOSM=0.

9917
I=1,10
SUM=SUM+QLMS41(I,IPID,NREPLIC)
SOSM=SOSM+QLMS41(I,IPID,NREPLIC)*QLMS41(I,IPID,NREPLIC)

9917
TUKEY(I)=QLMS41(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T41(IPID,NREPLIC,1),T41(IPID,NREPLIC,2),T41(IPID,NREPLIC,3),T41(IPID,NREPLIC,4),T41(IPID,NREPLIC,5))
T41(IPID,NREPLIC,6)=SUM/10.
T41(IPID,NREPLIC,7)=SORT((SOSM-10.*T41(IPID,NREPLIC,6)*T41(IPID,NREPLIC,6))/90.)
T41(IPID,NREPLIC,6) = T41(IPID,NREPLIC,3)
T41(IPID,NREPLIC,9) = (T41(IPID,NREPLIC,2) + 2 * T41(IPID,NREPLIC,3) + T41(IPID,NREPLIC,4)) / 4.
T41(IPID,NREPLIC,10) = T41(IPID,NREPLIC,4) - T41(IPID,NREPLIC,2)
T41(IPID,NREPLIC,11) = T41(IPID,NREPLIC,5) - T41(IPID,NREPLIC,1)
SUM = 0.
SOSM = 0.
DO 9918 I = 1, 10
SUM = SUM + QLMS42(I, IPID, NREPLIC)
SOSM = SOSM + QLMS42(I, IPID, NREPLIC) * QLMS42(I, IPID, NREPLIC)
9918 TUKEY(I) = QLMS42(I, IPID, NREPLIC)
CALL SUMMARY(TUKEY, 10, T42(IPID,NREPLIC,1), T42(IPID,NREPLIC,2), T42(IPID,NREPLIC,3), T42(IPID,NREPLIC,4), T42(IPID,NREPLIC,5))
T42(IPID,NREPLIC,6) = SUM / 10.
T42(IPID,NREPLIC,7) = SQRT((SOSM - 10 * T42(IPID,NREPLIC,6) * T42(IPID,NREPLIC,6)) / 90.)
T42(IPID,NREPLIC,8) = T42(IPID,NREPLIC,3)
T42(IPID,NREPLIC,9) = (T42(IPID,NREPLIC,2) + 2 * T42(IPID,NREPLIC,3) + T42(IPID,NREPLIC,4)) / 4.
T42(IPID,NREPLIC,10) = T42(IPID,NREPLIC,4) - T42(IPID,NREPLIC,2)
T42(IPID,NREPLIC,11) = T42(IPID,NREPLIC,5) - T42(IPID,NREPLIC,1)
SUM = 0.
SOSM = 0.
DO 9919 I = 1, 10
SUM = SUM + QLMS51(I, IPID, NREPLIC)
SOSM = SOSM + QLMS51(I, IPID, NREPLIC) * QLMS51(I, IPID, NREPLIC)
9919 TUKEY(I) = QLMS51(I, IPID, NREPLIC)
CALL SUMMARY(TUKEY, 10, T51(IPID,NREPLIC,1), T51(IPID,NREPLIC,2), T51(IPID,NREPLIC,3), T51(IPID,NREPLIC,4), T51(IPID,NREPLIC,5))
T51(IPID,NREPLIC,6) = SUM / 10.
T51(IPID,NREPLIC,7) = SQRT((SOSM - 10 * T51(IPID,NREPLIC,6) * T51(IPID,NREPLIC,6)) / 90.)
T51(IPID,NREPLIC,8) = T51(IPID,NREPLIC,3)
T51(IPID,NREPLIC,9) = (T51(IPID,NREPLIC,2) + 2 * T51(IPID,NREPLIC,3) + T51(IPID,NREPLIC,4)) / 4.
T51(IPID,NREPLIC,10) = T51(IPID,NREPLIC,4) - T51(IPID,NREPLIC,2)
T51(IPID,NREPLIC,11) = T51(IPID,NREPLIC,5) - T51(IPID,NREPLIC,1)
SUM = 0.
SOSM = 0.
DO 9920 I = 1, 10
SUM = SUM + QLMS52(I, IPID, NREPLIC)
SOSM = SOSM + QLMS52(I, IPID, NREPLIC) * QLMS52(I, IPID, NREPLIC)
9920 TUKEY(I) = QLMS52(I, IPID, NREPLIC)
CALL SUMMARY(TUKEY, 10, T52(IPID,NREPLIC,1), T52(IPID,NREPLIC,2), T52(IPID,NREPLIC,3), T52(IPID,NREPLIC,4), T52(IPID,NREPLIC,5))
T52(IPID,NREPLIC,6)=SUM/10.
T52(IPID,NREPLIC,7)=SORT((SOSM-10.*T52(IPID,NREPLIC,6)*T52(IPID,NREPLIC,6))/90.)
T52(IPID,NREPLIC,8)=T52(IPID,NREPLIC,3)
T52(IPID,NREPLIC,9)=(T52(IPID,NREPLIC,2)+2.*T52(IPID,NREPLIC,3)+T52(IPID,NREPLIC,4))/4.
T52(IPID,NREPLIC,10)=T52(IPID,NREPLIC,4)-T52(IPID,NREPLIC,2)
T52(IPID,NREPLIC,11)=T52(IPID,NREPLIC,5)-T52(IPID,NREPLIC,1)
SUM=0.
SOSM=0.

DO 9921 I=1,10
SUM = SUM+QLMS61(I,IPID,NREPLIC)
SOSM=SOSM+QLMS61(I,IPID,NREPLIC)*QLMS61(I,IPID,NREPLIC)
9921 TUKEY(I)=QLMS61(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T61(IPID,NREPLIC,1),T61(IPID,NREPLIC,2),T61(IPID,NREPLIC,3),T61(IPID,NREPLIC,4),T61(IPID,NREPLIC,5))
T61(IPID,NREPLIC,6)=SUM/10.
T61(IPID,NREPLIC,7)=SORT((SOSM-10.*T61(IPID,NREPLIC,6)*T61(IPID,NREPLIC,6))/90.)
T61(IPID,NREPLIC,8)=T61(IPID,NREPLIC,3)
T61(IPID,NREPLIC,9)=(T61(IPID,NREPLIC,2)+2.*T61(IPID,NREPLIC,3)+T61(IPID,NREPLIC,4))/4.
T61(IPID,NREPLIC,10)=T61(IPID,NREPLIC,4)-T61(IPID,NREPLIC,2)
T61(IPID,NREPLIC,11)=T61(IPID,NREPLIC,5)-T61(IPID,NREPLIC,1)
SUM=0.
SOSM=0.

DO 9922 I=1,10
SUM = SUM+QLMS62(I,IPID,NREPLIC)
SOSM=SOSM+QLMS62(I,IPID,NREPLIC)*QLMS62(I,IPID,NREPLIC)
9922 TUKEY(I)=QLMS62(I,IPID,NREPLIC)
CALL SUMMARY(TUKEY,10,T62(IPID,NREPLIC,1),T62(IPID,NREPLIC,2),T62(IPID,NREPLIC,3),T62(IPID,NREPLIC,4),T62(IPID,NREPLIC,5))
T62(IPID,NREPLIC,6)=SUM/10.
T62(IPID,NREPLIC,7)=SORT((SOSM-10.*T62(IPID,NREPLIC,6)*T62(IPID,NREPLIC,6))/90.)
T62(IPID,NREPLIC,8)=T62(IPID,NREPLIC,3)
T62(IPID,NREPLIC,9)=(T62(IPID,NREPLIC,2)+2.*T62(IPID,NREPLIC,3)+T62(IPID,NREPLIC,4))/4.
T62(IPID,NREPLIC,10)=T62(IPID,NREPLIC,4)-T62(IPID,NREPLIC,2)
T62(IPID,NREPLIC,11)=T62(IPID,NREPLIC,5)-T62(IPID,NREPLIC,1)
9925 CONTINUE
NREPL=1
WRITE(3,5100) (ALABEL(I),I=1,3)
5100 FORMAT(63X*TABLE 7.5*///* DATA SUMMARIES, CENTRAL VALUES, AND SPREADS, MULT. BY 10, OVER 10 DIRICHLET SIMULATIONS FOR Q.L. REG-EST M
2SE. FIRST REPLIC. DESIGN 2.///57X3A10///}

4990 NSS=25
PID=0.15
ITABLE=0
WRITE(5,5105)

5105 FORMAT(19X,53H*****************DATA SUMMARY******************
1X,5X,36H********CENTRAL VALUES************X17H*****SPREADS*****
2* ESTIMATOR SS PID L EXTREME L HINGE MEDIAN U HINGE U
3 EXTREME*7X*MEAN (S.E.) MEDIAN TRIMEAN MIDSPREAD RANGE*
4/

4991 WRITE(5,5510) NSS,PID,(T11(IPID,NREPLIC,K),K=1,11),(T21(IPID,NREP
1LIC,K),K=1,11),(T31(IPID,NREPLIC,K),K=1,11),(T41(IPID,NREPLIC,K),K
2=1,11),(T51(IPID,NREPLIC,K),K=1,11),(T61(IPID,NREPLIC,K),K=1,11)

5510 FORMAT(3X*A1MRO*3X*I2,F4.2,F11.7,F9.6,(*F9.7)*2F9.6,3X*2F9.6,3X
1X*AMDR0*9X,F11.7,3X,F9.6,(*F9.7)*2F9.6,3X*AMDR1*9X,F11.7,3X*F9.6,(*F9
27,3X,F9.6,(*F9.7)*2F9.6,3X*2F9.6,3X*AMDR1*9X,F11.7,3X*F9.6,(*F9
3.7)*2F9.6,3X*2F9.6,3X*AMDR2*9X,F11.7,3X*F9.6,(*F9.7)*2F9.6,3X
42F9.6,3X*PMRD2*9X,F11.7,3X*F9.6,(*F9.7)*2F9.6,3X*2F9.6/)
ITABLE=ITABLE+1
GO TO (4992,4993,4994,4995) ITABLE

4992 PID=0.40
GO TO 4991

4993 NSS=50
PID=0.15
GO TO 4991

4994 PID=0.40
GO TO 4991

4995 WRITE(5,5112)

5112 FORMAT(///3X* NOTE THAT A ZERO BEFORE A DECIMAL DENOTES AN EXACT Z
1ERO, OTHERWISE, THE ZERO IS ROUNDED.*)
IF (NREPLIC-1) 4996,4996,4998

4996 NREPLIC=2
WRITE(5,4997)

4997 FORMAT(///)
WRITE(5,5115) (ALABEL(I),I=1,3)

5115 FORMAT(63X*TABLE 7.6///* DATA SUMMARIES, CENTRAL VALUES, AND SPRE
1ADS, MULT. BY 10, OVER 10 DIRICHLET SIMULATIONS FOR Q.L. REG-EST M
2SE. SECOND REPLIC. DESIGN 2.///57X3A10///)
GO TO 4990

4998 CONTINUE
END
FUNCTION GAMMA(GG)

GENERATE A GAMMA RANDOM VARIABLE
TO DO SO USE ALGORITHM GT FROM AHRENS AND DIETER (1974) "COMPUTER
METHODS FOR SAMPLING FROM GAMMA, BETA, POISSON, AND BINOMIAL
DISTRIBUTIONS", P229, COMPUTING. VOL. 12

NOTE THAT FOR 1/77 SIMULATION STUDY, GG RANGES FROM 0.1 TO 9.8

OBTAIN INTEGER PART OF GG
K=GG

OBTAIN FRACTIONAL PART OF GG
F=GG-K

OBTAIN INTEGER PART OF GAMMA
GI=0.
IF (K-0) 14,14,8
8 I=0
GP=1.
10 I=I+1
UU=URAN(0.)
GP=GP*UU
IF (I-K) 10,12,12
12 GI=-ALOG(GP)

OBTAIN FRACTIONAL PART OF GAMMA
GF=0.
IF (F-0.) 40,40,15
15 B=(2.7182818284590*F)/2.7182818284590
DF=1./F
FMIN1=F-1.
16 UU=URAN(0.)
GP=B*UU

GENERATE NEW UNIFORM RANDOM NUMBER FOR TESTS IN FOLLOWING STEPS
10 AND 30
UU=URAN(0.)
IF (GP-1.) 18,18,30

GF IS LESS THAN OR EQUAL TO 1.

10 GF=GP**OF
 TEST=EXP(-GF)
 IF (UU-TEST) 40,40,16

GF IS GREATER THAN 1.

30 GF=-ALOG((B-GP)**OF)
 TEST=GF**FMN1
 IF (UU-TEST) 40,40,16
40 GAMMA=GI+GF
 RETURN
 END
SUBROUTINE GENXZ(UU,NSS)

GENERATE MULTINOMIAL COMPLETE (X) AND INCOMPLETE (Z) DATA
ALSO CALCULATE MAXIMUM-LIKELIHOOD-ESTIMATES FROM COMPLETE DATA

COMMON DEP(3,3),DOL(4,3),E(4,3),IROBUST,NTS,P1,P2,P3,TPID
COMMON/CALEST/APMC11,APMC12,APMC22,CONVCR,COVSKIP,DMC1,DMC2,DM
1C3,DP1,DAPMC11,EAPMC12,EAPMC22,EAPMC11,EAPMC12,EAPMC22,ISTOP,NI2,N13
22,N23,PI,PMC1,PMC2,PMC3,SS,SN,TIMAP,TIMEP,TIM(2),TIM21,TIM31,X
3NU1,XNU2,XNU3,Z1,Z2,Z3,Z12,Z13,Z23,Z1N,Z2N,Z3N
COMMON/DATA/XDATA(2),ZDATA(6)
DIMENSION UU(NSS)
INTEGER Y1,Y2,HI,PI,VI,COVSKIP
EQUIVALENCE (E1,1),PEPM1),(E(1,2),PEPM2),(E1,3),PEPM3)
EQUIVALENCE (E(2,1),PMLE1),(E(2,2),PMLE2),(E(2,3),PMLE3)
EQUIVALENCE (E3,1),PPMD1),(E3,2),PPMD2),(E3,3),PPMD3)
EQUIVALENCE (E(4,1),PAPM1),(E(4,2),PAPM2),(E(4,3),PAPM3)
EQUIVALENCE (DEP(1,1),EML1),(DEP(1,2),EML2),(DEP(1,3),EML3)
EQUIVALENCE (DEP(2,1),EPM1),(DEP(2,2),EPM2),(DEP(2,3),EPM3)
EQUIVALENCE (DEP(3,1),EAPMN1),(DEP(3,2),EAPMN2),(DEP(3,3),EAPMN3)
EQUIVALENCE (DOL(1,1),DEPM1),(DOL(1,2),DEPM2),(DOL(1,3),DEPM3)
EQUIVALENCE (DOL(2,1),DML1),(DOL(2,2),DML2),(DOL(2,3),DML3)
EQUIVALENCE (DOL(3,1),DPM1),(DOL(3,2),DPM2),(DOL(3,3),DPM3)
EQUIVALENCE (DOL(4,1),DAPMN1),(DOL(4,2),DAPMN2),(DOL(4,3),DAPMN3)

RECALL THAT NSS IS THE INTEGER FORM OF THE SAMPLE SIZE SS
CALCULATE APPROX AMOUNT OF DATA GOING INTO EACH OF THE 4 GROUPS

H4=PID/2,
H3=H4
H2=H4
H1=1.*3.*H2
E3=H1+H2

SET END POINTS
P12=P1+P2
E1=P1*E3
E2=P12*E3
E4=E3+P1*H2
E5=E3+P12*H2
E6=H12.*H2
E7 = E6 + P1 * H2
E8 = E6 + P12 * H2

C C
INITIALIZE Z AND DUMMY VARIABLES Y1, W1, AND V1
Z1 = 0.
Z2 = 0.
Z3 = 0.
Y1 = 0
Y2 = 0
W1 = 0
W3 = 0
V2 = 0
V3 = 0

C C
GENERATE X, Z DATA
C C
CALL UNIFORM PSEUDO RANDOM-NUMBER GENERATOR
X(N+1) = (43490275647445 * X(N)) MOD (2EXP(48))
SPECTRAL NUMBERS C(2) = 2.839, C(3) = 2.095, C(4) = 1.819, C(5) = 0.978
C C
CALL URANV(0., NSS, UU)
C
DO 85 I = 1, NSS
 U = UU(I)
 IF (E1 - U) 2, 2, 40
 2 IF (E2 - U) 4, 4, 45
 4 IF (E3 - U) 6, 6, 50
 6 IF (E4 - U) 8, 8, 55
 8 IF (E5 - U) 10, 10, 60
 10 IF (E6 - U) 12, 12, 65
 12 IF (E7 - U) 14, 14, 70
 14 IF (E8 - U) 80, 80, 75
 40 Z1 = Z1 + 1.
 GO TO 85
 45 Z2 = Z2 + 1.
 GO TO 85
 50 Z3 = Z3 + 1.
 GO TO 85
 55 Y1 = Y1 + 1
 GO TO 85
 60 Y2 = Y2 + 1
 GO TO 85
 65 W3 = W3 + 1
GO TO 85
70 W1=W1+1
GO TO 85
75 V2=V2+1
GO TO 85
80 V3=V3+1
85 CONTINUE
N12=Y1+Y2
N13=W1+W3
N23=V2+V3
C
OBTAIN REAL FORM OF SHARED INCOMPLETE DATA
C
Z12=N12
Z13=N13
Z23=N23
C
OBTAIN COMPLETE DATA X
C
X1=Z1+Y1+W1
X2=Z2+Y2+V2
X3=Z3+W3+V3
C
CALCULATE COMPLETE-DATA MAXIMUM-LIKELIHOOD ESTIMATES
C
PMLC1=X1/SS
PMLC2=X2/SS
PMLC3=1.-PMLC1-PMLC2
IF (PMLC3<0.) 90,95,95
90 ISTOP=1
PRINT 92, XNU1,XNU2,XNU3,P1,P2,P3,SS,X1,X2,X3,Z1,Z2,Z3,Z12,Z13
1,Z23,PMLC1,PMLC2,PMLC3,NSS,NTS
92 FORMAT(* GENXZ. COMPLETE-DATA MLE NEGATIVE P. XNU=*3F10.4,* GE
1NERATED P=*3F10.6,* PID=*F6.2,* SS=*F4.0,/ X=*3F6.0,* Z=*6F6.0,* P
2ML=*3F10.6,* NSS=*I3,*4X,*I3* TH TRINOMIAL SIMUL*)
RETURN
95 DMLC1=PMLC1-P1
DMLC2=PMLC2-P2
DMLC3=PMLC3-P3
Z1N=Z1+XNU1
Z2N=Z2+XNU2
Z3N=Z3+XNU3
C
PUT X AND Z DATA INTO SEPARATE BLOCK COMMON BECAUSE PROGRAM WON'T
C CORRECTLY RUN IF BLANK COMMON X,Z DATA IS PUT INTO Kuwait. COUNTS,
C AND BESTEST (PERHAPS PROBLEMS WITH E: EQUIVALENCE STATEMENTS)
C
XDATA(1)=X1
XDATA(2)=X2
ZDATA(1)=Z1
ZDATA(2)=Z2
ZDATA(3)=Z3
ZDATA(4)=Z12
ZDATA(5)=Z13
ZDATA(6)=Z23
C
TRUE PERCENT (PROPORTION) INCOMPLETE DATA
C
TPID=(Z12+Z13+Z23)/SS
DPI0=PIO-TPID
RETURN
END
SUBROUTINE EPM

PROGRAM TO CALCULATE EXACT POSTERIOR MEAN AND COVARIANCE MATRICES

COMMON OEP(3,3),DQL(4,3),E(4,3),IROBUST,NTS,P1,P2,P3,TPID
COMMON/CALEST/APMC11,APMC12,APMC22,CONVCR1,COVSKI1,OMLC11,OMLC12,OMLC21,OMLC22
COMMON/OAPMN1,OAPMN2,OAPMN3
COMMON/EPMD1,EPMD2,EPMD3
COMMON/EAPMC11,EAPMC12,EAPMC22
COMMON/EPMC11,EPMC12,EPMC22,ISTOP,N12,N13
COMMON/PID,PHL1,PHL2,PHL3
COMMON/EAPMC22
COMMON/PEPM1,PEPM2,PEPM3
COMMON/EPMC11,EPMC12,EPMC22,ISTOP,N12,N13

INTEGER COVSKIP
EQUIVALENCE (E(1,1),PEPM1),(E(1,2),PEPM2),(E(1,3),PEPM3)
EQUIVALENCE (E(2,1),PMLE1),(E(2,2),PMLE2),(E(2,3),PMLE3)
EQUIVALENCE (E(3,1),PPMD1),(E(3,2),PPMD2),(E(3,3),PPMD3)
EQUIVALENCE (E(4,1),PAPM1),(E(4,2),PAPM2),(E(4,3),PAPM3)
EQUIVALENCE (DEP(1,1),EML1),(DEP(1,2),EML2),(DEP(1,3),EML3)
EQUIVALENCE (DEP(2,1),EPMD1),(DEP(2,2),EPMD2),(DEP(2,3),EPMD3)
EQUIVALENCE (DEP(3,1),EAPMN1),(DEP(3,2),EAPMN2),(DEP(3,3),EAPMN3)
EQUIVALENCE (DQL(1,1),DEPMD1),(DQL(1,2),DEPMD2),(DQL(1,3),DEPMD3)
EQUIVALENCE (DQL(2,1),DML1),(DQL(2,2),DML2),(DQL(2,3),DML3)
EQUIVALENCE (DQL(3,1),DPM2),(DQL(3,2),DPM2),(DQL(3,3),DPM2)
EQUIVALENCE (DQL(4,1),DAPMN1),(DQL(4,2),DAPMN2),(DQL(4,3),DAPMN3)

N121=N12+1
N131=N13+1
N231=N23+1

3 Y1=Z1N
YY1A=GAM(Y1)
IF (Z12=0.) 4,4,8
4 IF (Z13=0.) 5,5,8
5 IF (Z23=0.) 6,6,8

COMPLETE-DATA CASE, ALL ZIJ=0.

6 SUM12=YY1A*GAM(Z2N)*GAM(Z3N)
S12P1=Z1N*SUM12
S12PSQ=(Z1N+1.)*S12P1
S12P2=Z2N*SUM12
S12P2S=(Z2N+1.)*S12P2
S12P1P2=Z1N*Z2N*SUM12
GO TO 55

8 Z2N12=Z2N+Z12
Z3N1323=Z3N+Z13+Z23

SIJKP DENOTES ZIJK SUM FOR POSTERIOR MEAN P(K) CALCULATIONS.
SIMILARLY, TIJKP DENOTES A TERM OF THIS SUM.
C
S12P1=0.
S12P2=0.
S12P1SQ=0.
S12P2SQ=0.
S12P1P2=0.
SUM12=0.

C
DO 50 IIA=1*N121
IA=IIA-1
IF (IA=0) 9,9,10
9 CON12=1.
Y2=Z2N12
YY2A=GAM(Y2)
GAMMY3=GAM(Z3N1323)
GO TO 16
10 CON12=(Z12-IA+1.)*CON12/IA
YY1A=Y1*YY1A
Y1=Z1N+IA
Y2=Z2N12-IA
YY2A=YY2A/Y2
16 SUM13=0.
S13P1=0.
S13P2=0.
S13P1SQ=0.
S13P2SQ=0.
S13P1P2=0.
Z1NIA=Z1N+IA

C
DO 40 IIIB=1*N131
IB=IIB-1
IF (IB=0) 17,17,20
17 CON13=1.
YY1B=YY1A
Y3=Z3N1323
YY3B=GAMMY3
GO TO 27
20 BI=IB-1
CON13=(Z13-BI)*CON13/IB
Y3=Z3N1323-BI
YY3B=YY3B/Y3
YY1B=YY1B*(Y1+BI)
27 YY2C=YY2A
SUM23=0.
S23P2=0.
S23P2SQ = 0.

C
DO 35 IIC = 1, N231
 IC = IIC - 1
 IF (IC = 0) 30, 35, 31
30 CONTINUE
 YY3C = YY3B
 GO TO 34
31 CI = IC - 1
 CON23 = (T23 - CI) * CON23 / IC
 YY2C = (Y2 + CI) * YY2C
 YY3C = YY3C / (Y3 - IC)
34 T23 = CON23 * YY2C * YY3C
 F = Y2 + IC
 T23P2 = T23 * F
 T23P2SQ = T23P2 * (F + 1.0)
 SUM23 = SUM23 + T23
 S23P2 = S23P2 + T23P2
 S23P2SQ = S23P2SQ + T23P2SQ
35 CONTINUE
C
 G = CON13 * YY1B
 GG = ZIN1A + IB
 T13G = G * SUM23
 T13P1 = T13 * GG
 T13P2 = G * S23P2
 T13P1SO = T13P1 * (GG + 1.0)
 T13P2SQ = G * S23P2SQ
 T13P1P2 = T13P2 * GG
 SUM13 = SUM13 + T13
 S13P1 = S13P1 + T13P1
 S13P2 = S13P2 + T13P2
 S13P1SO = S13P1SO + T13P1SO
 S13P2SQ = S13P2SQ + T13P2SQ
 S13P1P2 = S13P1P2 + T13P1P2
40 CONTINUE
C
 T12 = CON12 * SUM13
 T12P1 = CON12 * S13P1
 T12P2 = CON12 * S13P2
 T12P1SO = CON12 * S13P1SO
 T12P2SQ = CON12 * S13P2SQ
 T12P1P2 = CON12 * S13P1P2
 SUM12 = T12 + SUM12
 S12P1 = S12P1 + T12P1
S12P2=S12P2+T12P2
S12P1SQ=S12P1SQ+T12P1SQ
S12P2SQ=S12P2SQ+T12P2SQ
S12P1P2=S12P1P2+T12P1P2
50 CONTINUE

ELEMENTS OF POSTERIOR MEAN OF P GIVEN Z

59 D1=SUM12*SSN
D2=D1*(SSN+1.)
PEPM1=S12P1/D1
PEPM2=S12P2/D1
PEPM3=1.-PEPM1-PEPM2
IF (PEPM3.0) 230,201,201
201 CALL SECOND(TIM2)

ELEMENTS OF POSTERIOR COVARIANCE MATRIX OF P GIVEN Z

X1X2=S12P1P2/D2
EPMC12=X1X2-PEPM1*PEPM2
X1SQ=S12P1SQ/D2
EPMC11=X1SQ-PEPM1*PEPM1
X2SQ=S12P2SQ/D2
EPMC22=X2SQ-PEPM2*PEPM2
DEPMN1=PEPM1-P1
DEPMN2=PEPM2-P2
DEPMN3=PEPM3-P3
RETURN

230 PRINT 231
231 FORMAT(//,11X, 'EXACT POSTERIOR MEAN. NEGATIVE P.***')
PRINT 240, PEPM1,EPMC11,X1SQ,S12P1,S12P1SQ,EPMC22,X2SQ,S12P2
 ,S12P2SQ,DEPM3,EPMC12,X1X2,SUM12,S12P1P2,NTS
240 FORMAT(///,11X,'PEPM1=E15.8,4X,8H EPMC11=E15.8,4X,9H X1SQ=E15.8,4X,9H S12P1=E15.8,4X,9H S12P1SQ=E15.8,4X,9H PEPM2=E15.8,4X,9H EPMC22=E15.8,4X,9H X1X2=E15.8,4X,9H SUM12=E15.8,4X,9H S12P1P2=E15.8,4X,9H NTS=*13/1)
ISTOP=1
RETURN
END
FUNCTION GAM(X)

EVALUATE GAM(X) FOR CASES FROM PRIOR (0.1,1.9,8)

IF (X=8.1) 8,8,8

ARGUMENT IS LESS THAN OR EQUAL TO 9.1. TO INSURE 11 SIGNIFICANT PLACES OF ACCURACY IN GAMMA, USE 11 SIGNIFICANT-FIGURE VALUE CALCULATED FROM LG(GAM(X)) FROM ABRAMOWITZ AND STEGUN OR DAVIS. CALCULATE GAM(0.1), GAM(1.1), AND GAM(2.1) BY HAND FROM GAM(3.1) AND RELATION GAM(X+1)=X GAM(X)

1 IF (ABS(X-9.1)-1.E-13) 2,2,4

GAM(9.1)
2 GAM=49973.708949629
RETURN
4 IF (ABS(X-8.1)-1.E-13) 6,6,8

GAM(8.1)
6 GAM=6169.5936974851
RETURN
8 IF (ABS(X-7.1)-1.E-13) 10,10,12

GAM(7.1)
10 GAM=868.95685880072
RETURN
12 IF (ABS(X-6.1)-1.E-13) 14,14,16

GAM(6.1)
14 GAM=142.45194406569
RETURN
16 IF (ABS(X-5.1)-1.E-13) 18,18,20

GAM(5.1)
18 GAM=27.93175378371
RETURN
20 IF (ABS(X-4.1)-1.E-13) 22,22,24

GAM(4.1)
22 GAM=6.8126228630175
RETURN
24 IF (ABS(X-3.1)-1.E-13) 26,26,28

GAM(3.1)
26 GAM=2.1976202783927
RETURN
28 IF (ABS(X-2.1)-1.E-13) 30,30,32

GAM(2.1)
30 GAM=1.046485846854
RETURN
32 IF (ABS(X-1.1)-1.E-13) 34, 36
34 GAM=0.95135076987
 RETURN
36 GAM=9.5135076987
 RETURN

C ARGUMENT X IS GREATER THAN OR EQUAL TO 10.
C USE STIRLING'S FORMULA TO OBTAIN AN APPROXIMATION TO GAMMA
C THAT IS ACCURATE TO 11 SIGNIFICANT FIGURES

35 XSQ=X*X
 XCU=XSQ*X
 XFIFTH=XSQ*XCU

C Y IS THE APPROXIMATED NATURAL LOG (BASE E) OF GAMMA(X)

 Y=(X-0.5)*ALOG(X)-X+0.91893853320467+1./(12.+X)+1./(360.*XCU)+1./(11260.*XFIFTH)
 IF (X<22.) 40, 45
40 Y=Y-1./(1680.*XFIFTH*XSQ)
45 GAM=EXP(Y)
 RETURN
END
SUBROUTINE METHODS

FOR INCOMPLETE DATA CALCULATE MY APPROXIMATION, POSTERIOR MODE, AND MAXIMUM-LIKELIHOOD ESTIMATE

INTEGER COVSKIP

DIMENSION A(3,3),B(3,1),PIVOT(3),IWK(6)

COMMON DEP(3,3),DQL(4,3),E(4,3),IROBUST,NTS,PL1,PL2,PMLE1

COMMON/CALEST/APMC11,APMC12,APMC22,APMC21,APMC23,APMC31,APMC32,APMC33,APMC34

COMMON/IMCHK/APMC11,APMC12,APMC21,APMC22,APMC23,APMC31,APMC32,APMC33,APMC34

COMMON/IMCHK(3,3),APMC11,APMC12,APMC21,APMC22,APMC31,APMC32,APMC33,APMC34

C CHECK TO INSURE THAT CONVERGENCE CRITERION IS NOT TOO STRICT

IF (IROBUST-1.1000.50

INCOMPLETE-DATA MAXIMUM-LIKELIHOOD ESTIMATE

1 PL1=PMLE1
2 PL2=PMLE2
3 PL3=PMLE3

K=1

5 PL1=PMLE1
6 PL2=PMLE2
7 PL3=PMLE3

IF (PL1=0) 1
8 TEMP=Z12/PMLE12
9 PMLE1=(Z1+PMLE1*(TEMP+Z13/PMLE13))/SS
PHLE2 = (Z2 + PMLE2 * (TEMP * Z23 / PMLE23)) / SS
PHLE3 = 1 - PMLE1 - PMLE2
IF (PMLE3 = 0) 21, 14, 14

C
14 IF (PMLE1 = 0.1) 15, 15, 16
15 IF (ABS(PMLE1 - PL1) = 0.00001) 17, 20, 20
16 IF (ABS(PMLE1 - PL1) / PMLE1 - CONVCR) 17, 20, 20
17 IF (PMLE2 = 0.1) 18, 18, 19
18 IF (ABS(PMLE2 - PL2) = 0.00001) 25, 20, 20
19 IF (ABS(PMLE2 - PL2) / PMLE2 - CONVCR) 25, 20, 20
20 K = K + 1
IF (K = 1000) 5, 5, 21
21 PRINT 22, K, XNU1, P1, PL1, PL2, CONVCR, IROBUST, NTS, TPI0, PMLE3, XNU2, P2
1, PMLE1, PMLE2
22 FORMAT (* EXCESS NUMBER OF ITERATIONS FOR INCOMPLETE-DATA M.L.E
1. IS*I3,* XNU1***F9.4,* P1***F9.6,* PL1***F11.8,* 3X*PL2***F11.8/* CONV
2(RD)**F7.5,* IROBUST***I2,* NTS***I3,* TPI0***F6.2,* PMLE3***F6.4,* XNU2**F
39.4,* P2***F9.6,* PMLE1***F11.8,* PMLE2***F11.8)
IF (K = 1030) 25, 25, 250

C
CONVERGENCE FOR MAXIMUM-LIKELIHOOD ESTIMATE INCOMPLETE DATA:

25 EML1 = PMLE1 - PEPM1
EML2 = PMLE2 - PEPM2
EML3 = PMLE3 - PEPM3
DML1 = PMLE1 - P1
DML2 = PMLE2 - P2
DML3 = PMLE3 - P3

C
INCREMENT COUNTER FOR NUMBER OF ITERATIONS FOR CONVERGENCE

CALL KTITER(K, 1)

C
POSTERIOR MODE

50 T1 = ZIN - 1.
T2 = ZZN - 1.
K = 1
D = SSHN - 3.
PPMD1 = PEPM1
PPMD2 = PEPM2
PPMD3 = PEPM3
55 PL1 = PPMD1
PL2 = PPMD2
PPMD12 = PPMD1 + PPMD2
PPMD13 = PPMD1 + PPMD3
PPMD23 = PPMD2 + PPMD3
IF (PPMD12 < 1.E-14) 57, 57, 58
57 TEMP = 0.
GO TO 59
58 TEMP = Z12/PPMD12
59 PPMD1 = (T1*PPMD1*(TEMP+Z13/PPMD13))/D
IF (PPMD1 < 0.) PPMD1 = 0.
PPMD2 = (T2*PPMD2*(TEMP+Z23/PPMD23))/D
IF (PPMD2 < 0.) PPMD2 = 0.
PPMD3 = 1.-PPMD1-PPMD2
IF (PPMD3 < 0.) 71, 64, 64
64 IF (PPMD1 < 0.1) 65, 65, 66
65 IF (ABS(PPMD1-P1) < 0.00001) 67, 70, 70
66 IF (ABS(PPMD1-P1)/PPMD1 < CONVR1) 67, 70, 70
67 IF (PPM02 < 0.1) 68, 68, 69
68 IF (ABS(PPM02-P2) < 0.00001) 75, 70, 70
69 IF (ABS(PPM02-P2)/PPM02 < CONVR1) 75, 70, 70
70 K = K + 1
IF (K > 1000) 55, 55, 71
71 PRINT 72, K, XNU1, P1, PL1, PL2, CONVR1, IROBUST, NTS, TPIO, PPM03, XNU2, P2
1, PPM01, PPM02
72 FORMAT(* EXCESS NUMBER OF ITERATIONS FOR INCOMPLETE-DATA PPMD
1. IS*13,* XNU1**F9.4,* P1**F9.6,* 3X*PL1**F11.8,* 3X*PL2**F11.8,** CONVR
2(RD)**F7.5,* IROBUST**I2,* NTS**I3,* TPIO**F6.2,* PPM03**F6.4,* XNU2**F
39.4,* P2**F9.6,* PPM01**F11.8,* PPM02**F11.8)
IF (K > 1030) 75, 75, 250
CONVERGENCE FOR POSTERIOR MODE INCOMPLETE DATA
75 EPMD1 = PPMD1 - PEPM1
EPMD2 = PPMD2 - PEPM2
EPMD3 = PPMD3 - PEPM3
DPMD1 = PPMD1 - P1
DPMD2 = PPMD2 - P2
DPMD3 = PPMD3 - P3
INCREMENT COUNTER FOR NUMBER OF ITERATIONS FOR CONVERGENCE
J = 2
IF (IROBUST.EQ.2) J = 5
CALL KTITER(K, J)
MY TAYLOR-SERIES APPROXIMATED POSTERIOR MEAN AND COVARIANCE

C MATRICES

100 PAPM1=PEPM1
 PAPM2=PEPM2
 PAPM3=PEPM3
 K=1
105 PL1=PAPM1
 PL2=PAPM2
 PL3=PAPM3
 PAPM12=PAPM1+PAPM2
 PAPM13=PAPM1+PAPM3
 PAPM23=PAPM2+PAPM3
 IF (PAPM12-1.E-14) 107,107,108
107 TEMP=0.
 GO TO 109
108 TEMP=Z12/PAPM12
109 PAPM1=(Z1N+PAPM1*(TEMP+Z13/PAPM13))/SSN
 PAPM2=(Z2N+PAPM2*(TEMP+Z23/PAPM23))/SSN
 PAPM3=1.-PAPM1-PAPM2
 IF (PAPM3<0.1) 121,114,114

C

114 IF (PAPM1<0.1) 115,115,116
115 IF (ABS((PAPM1-PL1)-0.000001)) 117,120,120
116 IF (ABS((PAPM1-P11)/PAPM1-CONVCR1)) 117,120,120
117 IF (PAPM2<0.1) 118,118,119
118 IF (ABS((PAPM2-PL2)-0.000001)) 125,120,120
119 IF (ABS((PAPM2-PL2))/PAPM2-CONVCR2)) 125,120,120
120 K=K+1
 IF (K>1000) 105,105,121
121 PRINT 122, K,XNU1,P1,PL1,PL2,CONVCR1,IROBUST,NTS,TPID,PAPM3,XNU2,P
122 FORMAT(15*` EXCESS NUMBER OF ITERATIONS FOR INCOMPLETE-DATA PAPM
1. IS*13* XNU1**F9.4** P1**F9.6,3X*PL1**F9.6,3X*PL2**F11.8)** CONV
2*(ROD**F7.5* IROBUST**I2* NTS**I3* TPID**F10.2* PAPM3**F6.4* XNU2**F
39.4** P2**F9.6* PAPM1**F11.8* PAPM2**F11.8)
 IF (K>1030) 125,125,250

C

CONVERGENCE FOR T.S. APPROX. POSTERIOR MEAN INCOMPLETE DATA

C

125 EAPM1=PAPM1-PEPM1
 EAPM2=PAPM2-PEPM2
 EAPM3=PAPM3-PEPM3
 DAPM1=PAPM1-P1
 DAPM2=PAPM2-P2
DAPM3 = PAPM3 - P3

INCREMENT COUNTER FOR NUMBER OF ITERATIONS FOR CONVERGENCE

IF (IROBUST - 1) 127, 128, 129
127 J = 3
GO TO 130
128 J = 4
GO TO 130
129 J = 6
130 CALL KTITER(K, J)
IF (IROBUST.GT.0) RETURN

APPROXIMATED POSTERIOR VAR/COV MATRIX. NONITERATIVE METHOD.

150 P12 = PAPM1 + PAPM2
P13 = PAPM1 + PAPM3
P23 = PAPM2 + PAPM3

CAUTION. INSURE THAT P12, P13, AND P23 ARE NOT IN COMMON FROM
GENERATED P1, P2, AND P3

R12 = PAPM1/P12
R13 = PAPM1/P13
R21 = PAPM2/P12
R23 = PAPM2/P23

SSN = SUM OF DATA PLUS SUM OF PRIOR PARAMETERS XNU1

T = SSN * (SSN + 1.)
P12SQ = P12 * P12
P13SQ = P13 * P13
P23SQ = P23 * P23
ZRP21 = Z12 * R21/P12
ZRP13 = Z13 * R13/P13
ZRP12 = Z12 * R12/P12
ZRP23 = Z23 * R23/P23
C CALCULATE A(1, 1)
A112 = (ZRP21 + Z13/P13)**2/T
A113 = (ZRP21 * R21)/(P12 * T)
A114 = Z13/(P13SQ * T)
A(1, 1) = -1.0 + A112 + A113 - A114
C CALCULATE A(1, 2)
A121 = (ZRP13 - ZRP12) * (ZRP21 + Z13/P13)
A122 = ZRP12 * R21/P12
A123 = ZRP13/P13
A(1,2) = 2*(A121 + A122 - A123)/T
TEMP = Z12/P1250

C CALCULATE A(1,3)
A131 = (ZRP12 - ZRP13)**2
A132 = ZRP12*R12/P12 + ZRP13*R13/P13
A(1,3) = (A131 - A132)/T

C CALCULATE B(1,1)
B(1,1) = -(SSN*PAPM1*P23 + ZRP12*PAPM2 + ZRP13*PAPH3)/T

C CALCULATE A(2,1)
A211 = (ZRP21 + Z13/P13) + (ZRP23 - ZRP21)
A212 = TEMP*R21**2
A(2,1) = (A211 + A212)/T

C CALCULATE A(2,2)
A221 = TEMP*PAPM1 + Z23*(1 - 2*PAPM1)/P2350
A222 = TEMP*PAPM2 + Z13*(1 - 2*PAPM2)/P1350
A223 = TEMP*(Z12 - 2) + PAPM1*PAPM2/P1250
A224 = Z13*Z23*(P12 - 2*PAPM1*PAPM2) / (P1350*P2350)
A(2,2) = -(T*2 + A222 + A223 + A224)/T

C CALCULATE A(2,3)
A231 = (ZRP12 + Z23/P23)*(ZRP13 - ZRP12)
A232 = TEMP*R12**2
A(2,3) = (A231 + A232)/T

C CALCULATE B(2,1)
B(2,1) = PAPM1*PAPM2*(SSN*TEMP)/T

C CALCULATE A(3,1)
A311 = (ZRP21 - ZRP23)**2
A312 = ZRP21*R21/P12
A313 = ZRP23*R23/P23
A(3,1) = (A311 - A312 - A313)/T

C CALCULATE A(3,2)
A321 = (-ZRP12 - Z23/P23)*(ZRP21 - ZRP23)
A322 = ZRP12*R21/P12
A323 = ZRP23/P23
A(3,2) = 2*(A321 + A322 - A323)/T

C CALCULATE A(3,3)
A332 = (ZRP12 + Z23/P23)**2
A333 = ZRP12*R12/P12
A334 = Z23/P2350
A(3,3) = -(T + A332 - A333 - A334)/T

C CALCULATE B(3,1)
B(3,1) = -(SSN*PAPM2*P13 + ZRP21*PAPM1 + ZRP23*PAPH2)/T
SOLVE SYSTEM A*X=B FOR X. X IS VECTOR OF COVARIANCES C11, C12, C22

CALL MATINV(3,3,A,1,8,1,DETERM,ISCALE,IPIVOT,IWK)
IF (ABS(DETERM)<5.OE-14) 212,212,220
212 PRINT 214, DETERM,K,XNU1,XNU2,P1,P2,PAPM1,PAPM2,((A(I,J)),J=1,3),B(11,1),I=1,3)
33X,*3E20.8,5X,*X2,*3X,*=*E23.8/3E20.8,5X,*X3,*=*E23.8/60 TO 230

DIFFERENCE OF APPROXIMATED POSTERIOR COVARIANCES FROM EXACT POSTERIOR COVARIANCES. C11, C12, AND C22

220 APMC11=B(1,1)
APMC12=B(2,1)
APMC22=B(3,1)
IF (APMC11-0.) 225,225,221
221 IF (APMC22-0.) 225,225,222
222 EAPMC11=APMC11-EPMC11
EAPMC12=APMC12-EPMC12
EAPMC22=APMC22-EPMC22
RETURN
225 PRINT 226, APMC11,APMC12,APMC22,APMC11,APMC12,EPMC11,EPMC12,EPMC22,XNU1,XNU2,PAP1M1,PAPM2,NTS
226 FORMAT('/// APPROXIMATED VARIANCE IS NEGATIVE. APMC11=*E21.14,* AP
1M12=*E18.11,* AP MC12=*E18.11,* EPMC11=*E18.11,* EPMC12=*E18.11,*
2EPMC22=*E20.13,* XNU1=*F4.0,* XNU2=*F4.0,* PAPM1=*F5.3,* PAPM2=*F5
4.3,* NTS=*I3/)
230 COVSKIP=1
RETURN
250 ISTOP=1
RETURN
END
SUBROUTINE COUNTS(BIAS, RELDIFF, J)

COUNT NUMBER OF NUMXZ UNTERMINATED TRIALS THAT HAVE NEGATIVE, ZERO, AND POSITIVE BIAS AND THAT HAVE ABSOLUTE RELATIVE DIFFERENCES LESS THAN CERTAIN PERCENTAGES.

BIAS = (APPROX-EXACT) OR (APPROX-GENERATED P)
RELDIFF = ABS(BIAS/EXACT) OR ABS(BIAS/GENERATED P)
(RECALL THAT COV IS NEG SO WANT DENOMINATOR INCLUDED IN ABS VALUE)

J DENOTES, IN SUBSEQUENT ORDER, ONE OF EAPMC11, EAPMC12, EAPMC22,
(BIAS OF APPROX T.S. EXPANSION FOR EXACT POSTERIOR COV)
DMLC1 AND DMLC2 (COMPLETE-DATA MLE BIAS FROM GENERATED OR GIVEN P)
(THUS, J=3 REFERS TO EAPMC22)

COMMON DEP(3,3), DQL(4,3), E(4,3), IROBUST, NTS, P1, P2, P3, TPID
COMMON/BIASRD/COUNTB(3,8), COUNTRD(8,8)

1 AB = ABS(BIAS)
2 IF (AB-1.E-15) 3,3,1
1 IF (BIAS-0.) 2,2,4

NEGATIVE BIAS
2 COUNTB(1,J)=COUNTB(1,J)+1.
GO TO 5

ZERO BIAS (CDC 6600 COMPUTER ACCURACY IS 14 SIGN FIGURES BUT CONSIDER ONLY 15 DECIMAL PLACES FOR ZERO BIAS
3 COUNTB(2,J)=COUNTB(2,J)+1.
GO TO 5

POSITIVE BIAS
4 COUNTB(3,J)=COUNTB(3,J)+1.

25 PERCENT RELATIVE DIFFERENCE
5 IF (RELDIFF-0.25) 8, 8,30
6 COUNTRD(8,J)=COUNTRD(8,J)+1.

20 PERCENT RELATIVE DIFFERENCE
7 IF (RELDIFF-0.20) 10, 10, 30
10 COUNTRD(7,J)=COUNTRD(7,J)+1.

15 PERCENT RELATIVE DIFFERENCE
8 IF (RELDIFF-0.15) 12, 12, 30
12 COUNTRD(6,J)=COUNTRD(6,J)+1.

10 PERCENT RELATIVE DIFFERENCE
9 IF (RELDIFF-0.10) 14, 14, 30
14 COUNTRD(5,J)=COUNTRD(5,J)+1.

5 PERCENT RELATIVE DIFFERENCE
10 IF (RELDIFF-0.05) 16, 16, 30
16 COUNTRD(4,J)=COUNTRD(4,J)+1.
C 1 PERCENT RELATIVE DIFFERENCE
 IF (RELDIFF-0.01) 10,10,30
 10 COUNTRD(3,J)=COUNTRD(3,J)+1.
C 0.1 PERCENT RELATIVE DIFFERENCE
 IF (RELDIFF-0.001) 20,20,30
 20 COUNTRD(2,J)=COUNTRD(2,J)+1.
C 0.01 PERCENT RELATIVE DIFFERENCE
 IF (RELDIFF-0.0001) 22,22,30
 22 COUNTRD(1,J)=COUNTRD(1,J)+1.
 30 CONTINUE
 IF (RELDIFF-0.15) 40,31,31
 31 IF (J-4) 33,40,32
 32 IF (J-5) 40,40,33
 33 PRINT 35, J,NTS,BIAS,RELDIFF,TPID,IROBUST,E(1,1),E(1,2),E(4,1),E(4,2)
 35 FORMAT(* SUBR COUNTS, J=I2, NTS=I3, BIAS=F9.7, RELDIFF=F5.12, TPID=F6.2, IROBUST=I2, PEPM1,2=F7.4, PAPM1,2=F7.4)
 40 CONTINUE
 RETURN
 END
SUBROUTINE ESTMSEC(Y, Y2, XY, X, X2, TXMSE, MSE)

CALCULATE ESTIMATES OF MSE AND SAMPLE VARIANCE OF THESE ESTIMATES.

REAL MSE(6), MSECV

FOR TERM=(PE1-P1)**2+(PE2-P2)**2+(PE3-P3)**2 AND CONTROL-VARIATE
TERMCV=(PMLECD1-P1)**2+(PMLECD2-P2)**2+(PMLECD3-P3)**2
FOR PE- DENOTING ONE OF ESTIMATORS EPM, APM, PMO, AND MLE AND
PMLECD- DENOTING COMPLETE-DATA MLE

Y = SUM OF N TERM
Y2 = SUM OF N TERM*TERM
XY = SUM OF N TERM*TERMCV
X = SUM OF N TERMCV
X2 = SUM OF N TERMCV*TERMCV
N = NUMBER OF TERMS
TXMSE = TRUE MEAN SQ ERROR OF CONTROL VARIATE
MSECV = USUAL SAMPLE MSE FOR THE CONTROL VARIATE

MSE(1) IS USUAL MSE (B=0 IN MSE REGRESSION ESTIMATE)
MSE(2) IS VAR OF MSE(1)
MSE(3) IS USUAL CONTROL-VARIATE MSE (B=1 IN MSE REGRESSION EST)
MSE(4) IS VAR OF MSE(3)
MSE(5) IS LEAST-SQUARES REGRESSION ESTIMATE MSE (B=LEAST-SQS EST)
MSE(6) IS VAR OF MSE(5)

NOTE THAT MSE(5) SHOULD HAVE SMALLEST VARIANCE. HOWEVER, IT WILL
BE A BIASED ESTIMATE. HENCE, USE IT IN ANALYSES ONLY IF IT
DIFFERS FROM EITHER ONE OF TWO UNBIASED ESTIMATES BY NO MORE
THAN 1%. (IE, IT CAN DIFFER BY MORE THAN 1% FROM EITHER MSE(1) OR
MSE(3) BUT NOT BOTH.)

GENERAL FORM OF ESTIMATED MSE IS

MSE=MSE(1)+B*(TXMSE-MSECV)

USUAL MSE (B=0)

XN=N*(N-1)
MSE(1)=Y/N
MSE(2)=(Y2-N*MSE(1)*MSE(1))/XN

USUAL CONTROL-VARIATE MSE (B=1)
\begin{verbatim}
XN=N*(N-2)
TO=2.*XY
MSECV=X/N
T1=N*MSECV
T2=2.*N*TXMSE
T3=T2*TXMSE/2.
D=TXMSE-MSECV
MSE(3)=MSE(1)+D
MSE(4)=(T2-T0+X2*T2*(MSE(1)-MSECV)+T3-N*MSE(3)*MSE(3))/XN

C LEAST-SQUARES REGRESSION-ESTIMATE MSE (B=LEAST-SQUARES ESTIMATE)
B=(XY-T1*MSE(1))/(X2-T1*MSECV)
B2=B*B
MSE(5)=MSE(1)+B*D
MSE(6)=(T2-B*T0+B2*X2+B*T2*(MSE(1)-B*MSECV)+B2*T3-N*MSE(5)*MSE(5))/XN
RETURN
END
\end{verbatim}
SUBROUTINE KTITER(K, J)

INCREMENT COUNTERS FOR (1) AVERAGING NUMBER OF ITERATIONS AN
ESTIMATOR REQUIRED AND (2) DETERMINING HOW MANY CASES IN A
REPLICATION TOOK A SPECIFIED NUMBER OF ITERATIONS

K IS NUMBER OF ITERATIONS REQUIRED TO MEET CONVERGENCE CRITERION
J DENOTES, IN SUBSEQUENT ORDER, ONE OF ESTIMATORS MLE, PMDRO,
APMRO, APMR1, PMDR2, APMR2 (THUS, J=4 REFERS TO APMR1)

COMMON/DEP(3,3), DQLU, 3), EU, 3), IQBUST (NTS, P1, P2, P3, TPID
COMMON/DATA/XDATA(2), IDATA(6)
COMMON/ITK/AVNUMIT(6), CTNUMIT(6,10)

FOR AVERAGING NUMBER OF ITERATIONS FOR JTH ESTIMATOR

AVNUMIT(J)=AVNUMIT(J)+K

INCREMENT COUNTER FOR NUMBER OF ITERATIONS

I=1
1 IF (K-1) 20, 20, 2
2 I=2
2 IF (K-2) 20, 20, 3
3 I=3
3 IF (K-3) 20, 20, 4
4 I=4
4 IF (K-4) 20, 20, 5
5 I=5
5 IF (K-5) 20, 20, 6
6 I=6
6 IF (K-6) 20, 20, 7
7 I=7
7 IF (K-7) 20, 20, 8
8 I=8
8 IF (K-8) 20, 20, 9
9 I=9
9 IF (K-9) 20, 20, 10
10 I=10
20 CTNUMIT(J,I)=CTNUMIT(J,I)+1
20 IF (K=25) 30, 25, 25
25 PRINT 27, NTS, K, J, TPID, XDATA(1), XDATA(2), IQBUST, (E(II,J), J=1,2
25 II=1,4), (ZDATA(II), II=1,6)
27 FORMAT(* SUBR KITIER, NTS=*I3* NUMBER OF ITER IS=*I4* FOR METHOD
1 J=*I1* (MLE, PMDRO, APMRO, APMR1, PMDR2, APMR2), TPID=*F4.2* X(C,D*)
Z*2F7.2/5X* IROBUST**I1* PEPM1;Z*2F6.4* PMLE1;Z*2F6.4* PPMD1;
32*2F6.4* PAPMI;Z*2F6.4* Z*6F4.01
30 CONTINUE
RETURN
END
SUBROUTINE SUMMARY(X,N,LE,LH,M,UH,UE)

C TUKEY'S FIVE-POINT DATA SUMMARY. ROUTINE sorts input vector X of
C length N and then calculates lower extreme LE, lower hinge LH,
C median M, upper hinge UH, and upper extreme UE.
C Reference "EXPLORATORY DATA ANALYSIS" BY JOHN W. TUKEY
C FORTRAN EXTENDED VERSION 4.6, CDC 6600 COMPUTER (14 SIGN FIG S.P.)
C PROGRAMMER IS KAREN R CREDEUR, NASA, LANGLEY RESEARCH CENTER
C
DIMENSION X(N)
REAL LE,LH,M
C
C SORT DATA IN ASCENDING ORDER
C
CALL ASORT(X,1,N)

C MEDIAN
C
XN=(N+1.)/2.
K=XN*1.E-12
M=X(K)
IF (ABS(XN-K)-1.E-8) 5,5,1
1 M=(M*X(K+1))/2.

C HINGES
C
5 XN=(K+1)/2.
K=XN*1.E-12
LH=X(K)
UH=X(N+1-K)
IF (ABS(XN-K)-1.E-8) 15,15,10
10 LH=(LH*X(K+1))/2.
UH=(X(N-K)+UH)/2.

C EXTREMES
C
15 LE=X(1)
UE=X(N)
RETURN
END
SUBROUTINE BESTEST(BESTQL)

C
C BY TWO DIFFERENT CRITERION (SUMMED ABSOLUTE RELATIVE DIFFERENCE
C RELO-- AND SUMMED SQUARED ERROR SE-- FOR SUM BEING OVER THE THREE
C COMPONENTS OF AN ESTIMATOR) DETERMINE WHICH ESTIMATOR IS BEST FOR
C A GIVEN ONE OF THE TRINOMIAL SIMULATION TRIALS
C
TIES. SCORE AS BEST EACH ESTIMATOR THAT TIES FOR BEST.

THE FOUR ESTIMATORS IN E SHOULD BE IN THE FOLLOWING ORDER PEPM,
PMLE, PPMD, PAPM. BIASES SHOULD BE IN CORRESPONDING ORDER.

DIMENSION BESTQL(4,2),RDEP(3),RDQL(4),RELDEP(3,3),RELDQL(4,3)
DIMENSION SEEP(3),SEQLU(3),W(4),X(3),Y(3)
COMMON DEP(3,3),DQL(4,3),E(4,3),IROBUST,NTS,P1,P2,P3,TPID
COMMON/BEST/BESTEP(3,2),CTRDEP,CTRDQL(3),PRDEP(9,3),PRDQL(9,7),SBI
IASEP(3,3),SBIASEQL(3,7)
COMMON/DATA/XDATA(2),ZDATA(6)
C
IR=IROBUST+1
IF (IROBUST=1) 1,100,150

C FOR EPM COMPARISONS

1 DO 10 I=1,3
SEEP(I)=0.
DO 2 J=1,3
X(I)=SEEP(I)=SEEP(I)*DEP(I,J)*DEP(I,J).
2 CONTINUE

C INCORPORATE SUBROUTINE COUNTS TWICE (ONCE FOR EACH OF EP AND QL
C COMPARISONS) IN THIS SUBROUTINE TO SAVE PROGRAM EXECUTION COST OF
C MANY SUBROUTINE CALLS AND INDEX RESETTING.

C DETERMINE SIGN OF FIRST COMPONENT OF ESTIMATOR

IF (ABS(DEP(I,1))>1.E-13) 3,5,3
3 IF (DEP(I,1)>0.) 4,4,6
C NEGATIVE BIAS
4 SBIASEP(1,I)=SBIASEP(1,I)+1.
GO TO 10
C ZERO BIAS (CONSIDER ONLY 13 DECIMAL PLACES)
5 SBIASEP(2,I)=SBIASEP(2,I)+1.
GO TO 10
POSITIVE BIAS
6 SBIASEP(3,I)=SBIASEP(3,I)*1.
10 CONTINUE
 CALL ASORT(X,1,3)
 DO 20 I=1,3
 IF (SEEP(I).EQ.X(I)) BESTEP(I,1)=BESTEP(I,1)+1.
20 CONTINUE

DETERMINE WHETHER ANY PEPM COMPONENT IS ZERO
 ICK=0
 IF (E(I,1)-1.E-10) 30,25,25
25 IF (E(I,2)-1.E-10) 30,26,26
26 IF (E(I,3)-1.E-10) 30,32,32
30 ICK=1
32 IF (ICK=0) 33,33,56
33 CTRDEP=CTRDEP+1.
 DO 35 I=1,3
 RDEP(I)=0.
 DO 34 J=1,3
 RELDEP(I,J)=ABS(DEP(I,J))/E(I,J)
 Y(I)=RDEP(I)+RELDEP(I,J)
34 CONTINUE
35 CONTINUE
 CALL ASORT(Y,1,3)
 DO 40 I=1,3
 IF (RDEP(I).EQ.Y(I)) BESTEP(I,2)=BESTEP(I,2)+1.
40 CONTINUE

FOR DETERMINING PROPORTION OF CASES FOR WHICH % ABSOLUTE RELATIVE
DIFFERENCE FOR EACH OF ALL THREE ESTIMATOR COMPONENTS IS LESS THAN
SPECIFIED AMOUNTS (INTEGRATED IN PART FROM SUBROUTINE COUNTS)
 DO 55 I=1,3
 II=1
55 II=1
 DO 53 J=1,3
 GO TO (41,43,45,47,49,51,52,53) II
41 IF (RELDEP(I,J)-0.0001) 53,42,42
42 II=2
43 IF (RELDEP(I,J)-0.001) 53,44,44
44 II=3
45 IF (RELDEP(I,J)-0.01) 53,46,46
46 II=4
47 IF (RELDEP(I,J)-0.05) 53,48,48
48 II=5
49 IF (RELDEP(I,J)-0.10) 53,50,50
50 II=6
51 IF (RELDEP(I,J)-0.15) 53,52,52
52 II=7
520 IF (RELDEP(I,J)-0.20) 53,525,525
525 II=8
528 IF (RELDEP(I,J)-0.25) 53,530,530
530 II=9
53 CONTINUE
PRDEP(I1,I) = PRDEP(I1,I)+1.
55 CONTINUE
IF (RELDEP(3,1)-0.15) 541,543,543
541 IF (RELDEP(3,2)-0.15) 56,543,543
543 PRINT 544, NTS, IROBUST, TPID, RELDEP(3,1), RELDEP(3,2), (E(I,J), J=1,2)
1) I=1,4,3, ((E(I,J), J=1,2), I=2,3), ((DEP(I,J), J=1,2), I=1,3), XDATA(I)
1), XDATA(I), (I=1,6)
544 FORMAT(* SUBR BESTEST, NTS=*13* IROBUST=*11* TPID=*F4.2* RELDE
1P(3,1-2)=*2F5.2* PEPH1,2=*2F6.4* PAPH1,2=*2F6.4* PMLE1,2=*2F5.3
2/15X*PPM01,2=*2F7.4* DEP=*3(2F7.4, 3X1 ,* X,Z=*2F4.0,2X, 6F4.0)

FOR QL COMPARISONS, ROUTINE IS CALLED FOR EACH OF THREE

ROBUSTNESS SETS

ROBUSTNESS SET 0. ORIGINAL PRIOR.

56 II=1
L=2
ICK=0

DETERMINE WHETHER ANY P COMPONENT IS ZERO

IF (P1-1.E-10) 59,57,57
57 IF (P2-1.E-10) 59,58,58
58 IF (P3-1.E-10) 59,61,61
59 ICK=1
61 DO 75 I=II,4
SEQL(I)=0.
DO 610 J=1,3
V(I)*SEQL(I)=SEQL(I)+DQL(I,J)*DQL(I,J)
610 CONTINUE
IF (IR-2) 62,615,64
615 IF (I-3) 75,75,63
62 K=1
GO TO 65
63 K=5
64 K=I+3
65 IF (ABS(DQL(I,1))=1.E-13) 69,69,67
67 IF (DQL(I,1)=0.) 68,68,70
C NEGATIVE BIAS
68 SBIASQL(I,K)-SBIASQL(I,K)+1.
GO TO 75
C ZERO BIAS (CONSIDER ONLY 13 DECIMAL PLACES)
69 SBIASQL(2,K)-SBIASQL(2,K)+1.
GO TO 75
C POSITIVE BIAS
70 SBIASQL(3,K)-SBIASQL(3,K)+1.
75 CONTINUE
76 CALL ASORT(V,L,4)
DO 77 I=L,4
IF (SEQL(I).EQ.V(L)) BESTOL(I,1)=BESTOL(I,1)+1.
77 CONTINUE
C C UNSORT V FOR ROBUSTNESS SETS
C DO 770 I=L,4
V(I)=SEQL(I)
770 CONTINUE
C C IF ANY ESTIMATOR IS ZERO, SKIP DIV FOR RELATIVE DIFF FOR ALL EST.
C IF (ICK.GT.0) RETURN
C TQRDL(I,R)=CTRDQL(IR)+1.
DO 78 I=1,L,4
RELDQL(I,1)=ABS(DQL(I,1))/P1
RELDQL(I,2)=ABS(DQL(I,2))/P2
RELDQL(I,3)=ABS(DQL(I,3))/P3
RDQL(I)=0.
DO 77 J=1,3
W(I)=RDQL(I)=RDQL(I)+RELDQL(I,J)
77 CONTINUE
78 CONTINUE
C CALL ASORT(W,L,4)
DO 79 I=L,4
IF (RDQL(I).EQ.W(L)) BESTOL(I,2)=BESTOL(I,2)+1.
79 CONTINUE
C C UNSORT W FOR ROBUSTNESS SETS
C
DO 790 I=1,4
W(I)=RDQL(I)
790 CONTINUE
IF (IROBUST.EQ.1) I1=4
DO 98 I=I1+1,4
II=1
IF (I-2) 80,81,82
80 K=I
GO TO 83
81 K=5
GO TO 83
82 K=I+3
83 DO 96 J=1,3
GO TO (84,86,88,90,92,94,950,958,96) II
84 IF (RELDOL(I,J)-0.0001) 96,85,85
85 II=2
86 IF (RELDOL(I,J)-0.001) 96,87,87
87 II=3
88 IF (RELDOL(I,J)-0.01) 96,89,89
89 II=4
90 IF (RELDOL(I,J)-0.05) 96,91,91
91 II=5
92 IF (RELDOL(I,J)-0.10) 96,93,93
93 II=6
94 IF (RELDOL(I,J)-0.15) 96,95,95
95 II=7
960 IF (RELDOL(I,J)-0.20) 96,955,955
955 II=8
958 IF (RELDOL(I,J)-0.25) 96,960,960
960 II=9
96 CONTINUE
PRODQL(I,K)=PRODQL(I,K)+1.
98 CONTINUE
RETURN

C
C ROBUSTNESS SET 1. UNIFORM PRIOR.

C
C
DO 102 I=1,3
DQL(3,I)=DQL(2,I)
102 CONTINUE
GO TO 61
C
C ROBUSTNESS SET 2. PERTURBED PRIOR
C
150 I1=3
 GO TO 61
 END
APPENDIX A

LANGLEY LIBRARY FUNCTION URAN

Language: COMPASS

Purpose: URAN generates uniformly distributed random numbers over the interval (0,1).

Use: \(Y = \text{URAN}(X) \)

\(X \) An input real number on which three conditions exist:

\(X = 0 \), The next random number is generated and returned. If no previous call was made, a default seed of 17171274321477413155B is provided.

\(X < 0 \), A random number is not generated but the last previously generated random number (or the seed if no random number has been generated) is returned.

\(X > 0 \), The exponent part of \(X \) is set to 1717B and the low order bit is set to one. This result is returned as the seed of a new sequence, and any additional calls to URAN will be based on a sequence using this seed.

Method: This pseudorandom-number generator is multiplicative with algorithm

\[
X_{i+1} = 43490275647445 \times X_i \mod(2^{48}).
\]

Each random number is generated from the previous one by taking the lower order 48 bits of the 96 bit product produced by \(X_{i+1} = 43490275647445 \times X_i \). The exponent of the product is such that \(X_{i+1} \) is constrained to lie between 0 and 1.

Accuracy: The generator has a full period of \(2^{46} \). Extensive statistical testing for randomness and distribution were performed to establish its validity as a reliable random number generator.

SPECTRAL NUMBERS: \begin{tabular}{cccc}
\(C_2 \) & \(C_3 \) & \(C_4 \) & \(C_5 \) \\
2.839 & 2.095 & 1.819 & 0.978
\end{tabular}

Storage: 13 octal locations

Subroutine date: March 1, 1977
APPENDIX B

LANGLEY LIBRARY SUBROUTINE URANV

Language: COMPASS

Purpose: URANV generates uniformly distributed random numbers over the interval (0,1).

Use: CALL URANV(X,N,V)

- **X** An input real number on which three conditions exist:
 - **X = 0,** A vector of random numbers is generated using the last random number generated on the previous call as a seed. If no previous call was made, a default seed of 17171274321477413155B is provided.
 - **X < 0,** The last random number calculated by the routine, or the default seed if no previous call was made, is returned in V(1). V(2), ..., V(N) are not altered.
 - **X > 0,** The first random number is found by packing an exponent of 1717B and the coefficient part of X into V(1), and setting the low order bit to one. Random numbers V(2), ..., V(N) are then calculated using the algorithm given under METHOD.

- **N** Input integer specifying the number of random numbers to be returned in V.
 - **N £ 1,** V(1) is calculated and returned.
 - **N > 1,** V(1), ..., V(N) are calculated and returned.

- **V** An output one-dimensional real array dimensioned at least N. On output, V will contain the N calculated random numbers.

Method: This pseudorandom-number generator is multiplicative with algorithm

\[X_{i+1} = 43490275647445 \times X_i \mod(2^{48}). \]

Each random number is generated from the previous one by taking the lower order 48 bits of the 96 bit product produced by

\[X_{i+1} = 43490275647445 \times X_i. \] The exponent of the product is such that \(X_{i+1} \) is constrained to lie between 0 and 1.
Accuracy: The generator has a full period of 2^{46}. Extensive statistical testing for randomness and distribution were performed to establish its validity as a reliable random number generator.

\[
\begin{array}{cccc}
C_2 & C_3 & C_4 & C_5 \\
2.839 & 2.095 & 1.819 & 0.978 \\
\end{array}
\]

Storage: 25 octal locations

Subroutine date: March 1, 1977
APPENDIX C

LANGLEY LIBRARY SUBROUTINE MATINV

Language: FORTRAN

Purpose: MATINV solves the matrix equation $AX = B$, where A is a square coefficient matrix and B is a matrix of constant vectors. The solution to a set of simultaneous equations, the matrix inverse, and the determinant may be obtained.

Use: CALL MATINV(MAX,N,A,M,B,IOP,DETERM,ISCALE,IPIVOT,IWK)

MAX The maximum order of A as stated in the DIMENSION statement of the calling program

N The order of A; $1 \leq N \leq MAX$

A A two-dimensional array of coefficients. On return to the calling program, A^{-1} is stored in A.

M The number of column vectors in B. On return to the calling program, X is stored in B if $M > 0$; for $M = 0$, the subroutine is used only for inversion.

B A two-dimensional array of the constant vectors B. On return to the calling program, X is stored in B.

IOP Option to compute the determinant:

0 Compute the determinant.

1 Do not compute the determinant.

DETERM Gives the value of the determinant by the formula

$$\text{Det}(a) = 10(100 \times \text{ISCALE}) \times \text{DETERM}$$

when IOP = 0. For IOP = 1, the determinant is set to 1. For a singular matrix and IOP = 0 or IOP = 1, the determinant is set to zero.

ISCALE A scale factor computed by the subroutine to keep the results of computation within the floating-point word size of the computer

IPIVOT A one-dimensional array of temporary storage used by the subroutine

IWK A two-dimensional array of temporary storage used by the subroutine

Restrictions: Arrays A, B, IPIVOT, and INDEX have variable dimensions in the subroutine. The maximum size of these arrays must be specified in a DIMENSION statement of the calling program as $A(\text{MAX,MAX})$, $B(\text{MAX,M})$, IPIVOT(\text{MAX}), and IWK(\text{MAX,2}). The original matrices A and B are destroyed. They must be saved.
APPENDIX C

by the user if there is further need for them. The determinant is set to zero for a singular matrix.

Method: Jordan's method is used to reduce a matrix A to the identity matrix I through a succession of elementary transformations $l_n, l_{n-1}, \ldots, l_1$. If these transformations are simultaneously applied to I and to a matrix B of constant vectors, the results are A^{-1} and X where $AX = B$. Each transformation is selected so that the largest element is used in the pivotal position. (See ref. (a).)

Accuracy: Total pivotal strategy is used to minimize the rounding errors; however, the accuracy of the final results depends upon how well-conditioned the original matrix is. A return with $\text{DETERM} \neq 0$ does not guarantee accuracy in the solutions of inverse.

Storage: 516 octal locations

Subroutine date: January 1, 1975
REFERENCES

This paper describes and lists the main computer program written for results given in NASA TM 78703. Coding is given for maximum likelihood and Bayesian estimation of the vector \(p \) of multinomial cell probabilities from incomplete data. Also included is coding to calculate and approximate elements of the posterior mean and covariance matrices. The program is written in FORTRAN IV language for the Control Data CYBER 170 series digital computer system with network operating system (NOS) 1.1. The program requires approximately 44000 octal locations of core storage. A typical case requires from 72 seconds to 92 seconds on CYBER 175 depending on the value of the prior parameter.