
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



NASA
Technical Memorandum 80676

(NASA-T!l-80676) AN AUTOMATED APFNCACH TC: 	 N80-27150
THE DESIGN OF CECISICN TREE C'.ASSI$:XE1tS
(NASA) 19 p HC A02/MF A01	 C$C1r 10

Uncla$
G3/65 22925

AN AUTOMATED APPROACH TO
THE DESIGN OF DECISION
TREE CLASSIFIERS

P. Argentiero, R. Chin and P. Beaudet

MARCH 1980

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

-



AN AUTOMATED APPROACH TO THE

DESIGN OF DECISION TREE CLASSIFIERS

P. Argentiero
Goddard Space Flight Center

R. Chin and P. Beaudet
Business and Technological Systems, Inc.

March 1980



Abstract

The classification of large dimensional data sets arising from the merging of remote sensing data

with more traditional forms of ancillary data causes a significant computational problem. Decision

tree classification is a popular approach to the problem. T is type of classifier is characterized by

the property that samples are subjected to a sequence a': uecision rules before they are assigned to a

unique class. If a decision tree classifier is well designed, the result in many cases is a classification

scheme which is accurate, flexible and computationally efficient.

This paper provides an automated technique for effective decision tree design which relies only

on apriori statistics. This procedure utilizes a set of two dimensional canonical transforms and Bayes

table look-up decision rules. An optimal design at each node is derived based on the associated de-

cision table. A procedure for computing the global probability of correct classification is also

provided.

An example is given in which class statistics obtained from an actual LANDSAT scene are used

as input to the program. The resulting decision tree design has an associated probability of correct

classification of .76 compared to the theoretically optimum .79 probability of correct classification

associated with a full dimensional Bayes classifier.

Recommendations for future research are included.
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1. Introduction

The tendency in remote sensing technology is toward the merging of remote sensing information

with collateral data to form high 4imensional data sets. The classification of such data to produce

conventional thematic maps creates problems of two kinds. First, the computational expense associ-

ated with classification increases steeply with dimension. Second, there is the familiar fact t,2,3 that

for a fixed number of training samples, classification accuracy can actually decline with an increase

in dimension. A conventional solution to these problems is to reduce dimensionality by means of a

feature extraction transformation the coefficients of which are chosen so as to optimize a class separ-

ability measure. 4 A decision rule is then applied to assign the reduced dimensional samples to the

available classes. But the feature extraction represents a compromise since the separability measure

to be optimized must take into account the overlap of each class with each other class. Hence, classi-

fication accuracy is not always satisfactory.

This paper presents an alternative approach to dimensionality reduction and classification which

involves a procedure for the automated design of a decision tree classifier. s This approach to classifi-

cation will be described in more detail in section 2, but basically it is characterized by the fact that

samples are subjected to a sequence of decision rules before they are assigned to a unique class. Each

decision rule can leave ambiguity with regard to the precise class assignment of a sample. If the am-

biguity is unacceptable for a particular application it can be removed by subsequently applied decision

rules. When the stricture is diagrammed to show the heirarchy among the decision rules it exhibits a

characteristic tree-like aspect — thus the rubric "decision tree classifier."

There are numerous advantages to decision tree classification. Most importantly, the decision

rules can be designed to be both inexpensive and effective since each rule is required to take into

account only a smail subset of the original classes and it is riot required to remove all ambiguities.

Also, there is considerable generality and flexibility associated with this type of classification. For

instance, collateral data of a categorical nature such as soil type or political boundaries can be readily

incorporated within the framework of a decision tree classifier. Also, it is easy to avoid situations in



which r nputer time is spent in removing ambiguities which are irrevelant to a particular application

such as distinguishing among confuser crops in an agricultural scene. Of course, for these benefits to

be realized it is important for decision trees to be well designed. This paper presents an automated

towinique fu g desigflifig cffective decision tree classifiers predicated only on apriori class statistics.

The procedure relies on a set of two dimensional feature extractions and $ayes table look-up decision

rules. Associated error matrices are computed and utilized to provide an optimal design of the de-

cision tree at each so-called "node." A byproduct of this procedure is a simple algorithm for com-

puting the global probability of correct classification assuming the statistical independence of the

decision rules.

Section 2 provides a more precise definition of decision tree classification. Section 3 gives mathe-

matical details on the technique for automated decision tree design. Section 4 gives an example of a

simple application of the procedure using class statistics acquired from an actual LANDSAT scene.

Section 5 summarizes results and discusses directions for future research.



2. A Mathematical Description of Decision Tree Classification

The purpose of this section is to give a rigorous description of decision tree classification.

Consider a classification problem with sample set M to be assigned to K classes indexed by a K

dimensional index set s = {1, 2, ... K ) . Let 
ri 

CM be the set of samples properly associated with

the class indexed by j. Also define n = is t ,19 2 , ... A,, I as a set of nonempty subsets of J which

satisfies conditions YEA 
i 

= Q and 3, 
n S,, = 0 if i * V. A generalized decision rule is defined as a trans-

formation f:M 11 from the sample set M to a set n of disjoint subsets of J. An element xerj CM is

considered to be correctly classified by decision rule f if f(x) = J i and jesi.

It is convenient to express a generalized decision rule as a pair (D, n) where D is a set of param-

eters which define the transformation from M ton and where n is an explicitly expressed set of sub-

sets of A. Since a decision tree classifier will be defined as a set of generalized decision rules which

collectively satisfy certain conditions we shall refer to a pair (D, TI) as a node. Because a sample is

subjected to a given decision rule if and only if another decision rule has mapped the sample into a

certain index subset, it is important to describe the partial ordering that must exist on a set of gen-

eralized decision rules for that set to constitute a decision tree classifier.

Definition: Let T?
i = (D i , n;), Ili = is i.i , Ai.2 ... 3;.Ni} and nj = (Dj , ni ), i1i = {9i.t, 3 i 2 ...

` i Ni } be two nodes. Then i7
i 

is a parent node of nj if there exists a K < Ni such that Q s j Q = `^i K .

In this case i?j will be refered to as an offspring node of i7i

A Set which consists of just one element will be called a unitary set and nodes whose index sub-

sets consist en::rely of unitary sets will be called simple nodes. A node which does not have a parent

will be called a root node. To complete our terminology, a node without offspring will be called a

terminal node.

Definition: Adecision tree classifier is a set of nodes statisfying the following conditions

(a) There is just one root node

(b) Every node which is not a root node has a single parent

In addition to conditions (a) and (b), a complete decision tree classifier satisfies condition (c): ll

(c) For every element i in the original index set A there exists a node n = (D, 11), n 	 i , J 
2	 ^NI

and a K < N such that cl K is a unitary set and ic^ k.

3



There are a variety of intuitively pleasing properties possessed by complete decision tree classi-

fiers. For instance, one can show that all terminal nodes are simple nodes. To complete the defini-

tion we must indicate precisely how a decision tree structure is used to classify samples. Let (10i

be a set of nodes forming a decision tree with reference to a sample set M and a set of classes indexed

by index set i. For every sample xeM there is a unique decision sequenceS(x) composed of an ordered

set of nodes in {77ji with the following properties:

(a) The first node in the sequence S(x) is the root node of {Ilih

(b) If 
qi = 

( Di , Ili ), Ili = {^x i t, `i i 2 .	 1i hiI is the i th element in S(x), then

r1 Q = (DV ,n,),IIQ={Ae t , 14 Q,2I...^e,x2)

is the i + 1 at element of the sequence if tj i maps x onto ,Qi k e 11i and 
k 

;3e.k =`^),k- If no available

node satisfies this condition, the decision sequence terminates at 17i.

In effect, SW is the unique set of generalized decision rules used by the decision tree {rf t } ► to

classify xeM. The index set to which x is assigned is understood to be the image of x under the

mapping defined by the terminating node in S(x). If {ri i } i is a complete decision tree one can show

that each sample is mapped onto a unitary index set. Hcnce, a complete decision tree classifier maps

samples onto unique class indexes.
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3. Decision Tree Design

A complete decision tree can be designed in a natural fashion by first defining a structure for

the root node. Next, for every non unitary index subset associated with the root node it is necessary

to define another node which performs a further decomposition into smaller index subsets. T -ne de-

fining process continues until simple nodes are achieved and no further decomposition is possible.

At each step of the process we are confronted with the problem of decomposing a certain index set

,4 into a set of subsets II = { 3 1' S 2 , ... SO and developing a computationally efficient generalized

decision rule which maps samples into 13 in a way that provides adequate classification accuracy. We

now concentrate on a solution to this problem.

Let f : M -+ A be a decision rule which unambiguously assigns samples xeM to elements in index

set &. Associated with f is an error matrix FJ defined as

F1 (i,j) -► conditional probability that a sample from a class indexed by i is assigned by

decision rule f to the class indexed by j

Let n = (s, i' ^ 2 0 - - - A N) be a decomposition of & into disjoint subsets. The decision rule f

uniquely defines a generalized decision rule f':M - n in the following natural way. Assume that

Ax) = i and let 3 i(i) be the element of R which contains i. Then f`(x) g 
Q,(i). 

Furthermore, given

error matrix F  one can readily compute the probability of correct classification for f' which is

Pl , =	 ai	 FIG, 0	 (1)

ie	 eeJj(i)

where ai is the apriori class probability associated with the class indexed by i. The right side of

equation one represents a very simple and efficient algorithm for computing classification accuracy.

Hence, even for relatively large index sets it is possible to investigate every generalized decision rule

generated by f and to choose the one associated wit' maximum classification accuracy. In this

fashion it is possible to generate from a decision rule f with mediocre classification accuracy a gen-

eralized decision rule f' with very high classification accuracy.
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For the procedure outlined above to be a feasible approach to decision tree design, two require-

ments must be satisfied:

(a) a decision rule f must be available which affords a satisfactory compromise between accu-

racy and computational efficiency.

(b) the error matrix -' f must be computable.

These conditions can be met with a two dimensional linear feature extraction matched with

Bayesian table look-up decision rule.as suggested by Mobasseri and McCillem.' The feature extrac-

tion is performed by means of a canonical analysis approach as suggested by Merembeck and

Turner.' That is, if m is the dimension of the sample set M, we first seek an m dimensional row

vector A ., which maximizes the F-ratio

FA
ABAT

AWAT

where B is the between class covariance matrix as defined from class mean vectors and W is the pooled

within class ccva;Once matrix. The required A t is the eigenvector associated with the largest eigen-

value oi' W' t B. Having determined A t we seek a row vector A, in the orthogonal compliment of At

which maximizes the F-ratio delined by equation 2. It, in turn, the eigenvector associated with the

second largest eigcnvalue of W- t B. Our required two dimensional transformation matrix has A t as

the first row and A 2 as the second row.

The first step in designing the associated table look-up classifier is to specify a location and

dimensions of a rectangle in the transformed two dimensional feature space such that the rectangle

contains at least WZ( of the probability associated with each class density function under the usual

normality assumption. Next the rectangle is divided into 256 equal area grid elements. Each element

is associated with a class index according to the maximum likelihood classification of its midpoint.

The resulting decision rule simply aFsigns to each transformed samplc the class index of the grid ele-

ment in which it is contained S !unples which fall outside of the rectano, c are assigned to the nearest

grid element.

(2)



It remains to define how the error matrix E of the above defined table look-up decision Wile is

computed. A given element F(i j) of F can be obtained by summing the integral$ of the transformed

normal density function associated with the P h class over each grid element indexed by J. We have

found that a good approximation can be obtained if the density functions are first represented ir.

each grid by a two dimensional second order Taylor series expanded about the grid midpoint. The

Taylor series representations rather than the density functions are then integrated over the appropri-

ate grid elements.

An important byproduct of this approach to decision tree design is a convenient method for

computing the associated global probability of correct classification under the assumption that the

decision rules employed at each node are statistically independent. To see how the computation is

performed, we first determine the conditional probability Pi that it sample from a class indexed by

i is correctly classified by a complete decision tree {nj} j . Let {n, ),,,t i be a set of nodes

na = (De , Ile ). RR - {S j'4 , 3 2,11 ... SNIse)

such that for some j e Np , ie ^ j Q . The probability that a sample from the class indexed by i is

properly classified at node nQ is

Pi,Q - 21 F e(i, k)	 (3)

kA j a

where ieA c and F, is the error matrix of the table look-up decision rule employed at node %. As

usual, let be the class index set and let {aj ie^ be a set of apriori clap.: probabilities. Then assum-

ing the statistical independence of decision rules, the global probability of correct classification is

P-1:a.TTPi.Q
	

(4)

its	 ItRi
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4. An Example

The procedure outlined in section 3 for automated decision tree design was incorporated into a

FORTRAN program which now resides on an IBM 360/91 computer at the Goddard Space Flight

Center. The input is a set of class mean vectors and covariance matrices. The output is a description

of each node of a decision tree design. Each node description consists of a decomposition of an index

set into index subsets, the coefficients of the two dimensional linear feature extraction, a decision

table for the table look-up classifier and its associated confusion matrix. The output also includes a

computation of the global probability of correct classification as obtained from equations 3 and 4.

As descrihed in section 3, the program designs the decision tree from the top down starting from the

root node. The design terminates when each of the ori, final class indexes appears in a unitary index

subset. A simple flow chart for the program is included in figure 1.

To provide an example of the application of the program, class statistics were obtained from a

LANDSAT 2 scene taken over Finney County, Kansas during May of 1975. 5 The five classes consisted

of two types of winter wheat and three confuser crops. The class statistics were obtained from well

known sites in Finney County. The four channels are those of the Multispectral Scanner on board

the LANDSAT 2. The sizes of the training sample sets range from about one hundred to about three

hundred. The ..ass statistics are shown in Table 1. The information in Table 1 was used as input to

the program and the resulting decision tree design is shown as a tree diagram in figure 2. Table

shows the part of the program output which describes the root node. Similar information about the

other nodes is also made available. Table 3 :fists all passible designs for the root node and the associ-

ated probabilities of correct classification. Design number 5 is seen to have the optimal probability

of correct classification and is employed in the tree design as shown in figure 2.

The global probability of CQITet t classification for the : ecision tree shown in figure 2 was com-

puted to he .76. from the results of a previous study" it is known that the theoretically optimal 4

dimensional Bayes decision rile proOde: an accuracy on 716(; when appli.d to this problem. hence,

for this application the morrc effick r:t and anon- flexible decision tree approach provides a classifica-

tion which is nearly optimum.

CS
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( 1) 184 Pixels of Non-Wheat

Covariance Matrix

1 2 3 4Channel	 Mean	 Std. Dev.

1	 27.7
2	 24.5

3.6
8.0

12.7
25.0 63.4 iQY*f3TR1^

3	 75.1 20.4 -51.4 -144.7 41S.S
4	 37.4 12.0 -30.8 -84.2 242.1 143.4

2) 333 Pixels of Non-Wheat

1	 34.7 3.6 12.7
2	 40.4 5.5 17.2 300
3	 47.0 5.2 8.8 9.9 27.3
4	 19.7 2.5 0.6 -1.2 10.4 6.0

3) 324 Pixels of Non-Wheat

l	 33.3 1.6 2.6
2	 38.5 2.7 2.6 7.2
3	 44.1 6.4 4.3 2.5 41.2
4	 18.7 3.3 1.9 0.3 19.9 11.1

4) 106 Pixels of Winter Wheat

1	 28.5 2.4 5.8
2	 27.5 4.0 7.4 16.2
3	 51.2 5.2 -6.0 -14.4 26.7
4	 24.0 3.0 -4.3 -8.9 14.1 9.0

5) 127 Pixels of Winter Wheat

1	 21.5 2.7 7.3
2	 16.7 4.2 10.3 18.0
3	 54.9 5.1 4.1 4.9 26.0
4	 29.1 2.8 -1.0 -2.8 11.4 8.1



Table 2
Information mated with the hoot Node

of Decision Tree Shown in Figure 2

Transformation Matrix-+ ,48 	 .71	 -.38	 -.35

1.02	 -.06	 .58	 -.81

Error Matrix

.983	 .011	 .056	 .045	 .005

0	 .473	 .512	 .015	 0

0	 .192	 .808	 0	 0

.012	 .042	 .178	 .758	 .009

.005	 0	 0	 0.004 0.991

Decision Table

5555551111111!11

5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1

5555555111111111

5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1

5555555511111111

5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1

5 5 5 5 5 5 4 1 1 1 1 1 1 1 1 1

5 5 5 4 4 4 4 4 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 2 3 3 3 3 3 3 3 3

4 2 2 2 2 3 3 3 3 3 3 3 3 3 3 2

?333333332'-?221-1

3 3 3 3 3 32 2 2 2 2 2 2 2 2 2

3333222222222222
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true" NO& ftlliO6 Frey "`

2 (2) (	 AA 0.77264
3 (3)	 (1,2,4,5) 0.75595
4 (4): (1".5) O9(m
3 (5)	 (1	 .4) 0
6 (1	 (2AS) 0.75 65
7 (0)	 (2A.5) O.41

(1A)- (2,34
9 O.S WA) 0

11 ^) {l.3 0
12 (2,5)	 (1,3,4) 0.76986
13 (3,4)	 (1.2,5) O7S467
14 (3,S	 (1.,4) 0.75317
15 (4,5)	 (1,2,3) 096343
16 (1)	 (2)	 (3,4,5) 0.75278
17 (1)	 (3)	 (2.4.5) 0.74382
is (1)	 (4)	 (2.3.5) 035058

19 (1)	 (S)	 (2,3;4) 0.97689
20 (2)	 (3)	 (1.4,5) 0.74541
21 (2)	 (4)	 (1.3,5) 0.74476
22 (2)	 (S)	 (1,3#1) 0.76996
23 (3)	 (4)	 (1,2,5) 0.73703
24 (3)	 (S)	 (1,2,4) 0.75317
2S (4)	 (5)	 (1 ,2,3) 0.96205
26 (1)	 (2,3)	 (4.S) 0.95197
27 (1)	 (2,4)	 (3,S) 0.74243
28 (1)	 (2.S)	 (3,4) 0.75140
29 (1)	 (2,3)	 (4.S) 0.74474

31 (2)
	 (2,4)

(1,S)	 (3.4 0.75280
32 (3)	 (1,2)	 (4,S) 0.73701
33 (4)	 (1,2)	 (3.5) 0.73563
34 (5)	 (1,2)	 (3,4) 0.75327
35 (3)	 (1,4)	 (2,S) 0.74263
36 (3)	 (1,S)	 (2.4) 0.74393
37 (4)	 (1,3)	 (2.5) 0.74336
38 (5)	 (1,3)	 (2,4) 0.75203
39 (4)	 (1,5)	 (2,3) 0.95199
40 (5)	 (1.4)	 (2,3) 0.95945
41 (1)	 (2)	 (3)	 (4,5) 0.73514
42 (1)	 (2)	 (4)	 (3,5) 0.73376
43 (1)	 (2)	 (S)	 (3A) 0.7SI40
44 (1)	 (3)	 (4)	 (2,S) 0.73376
45 (1)	 (3)	 (5)	 (2.4) 0.74243
46 (1)	 (4)	 (S)	 (2,3) 0.95059
47 (2)	 (3)	 (4)	 (1,5) 0.73516
48 (2)	 (3)	 (S)	 (1.4) 0.74263
49 (2)	 (4)	 (S)	 (1,3) 0.74336
SO (3)	 (4)	 (S)	 (1,2) 0.73563
SI	 1 (1)	 (2)	 (3)	 (4)	 (5)	 1 0.73376
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5. Summary and Recommendation for Future Research

The classification of large dimensional data sets arising from the merging of remote sensing data

with more traditional forms of ancillary data causes a significant computational problem. Decision

tree classification is an increasingly popular approach to the problem. This type of classifier is char-

acterized by the property that samples are subjected to a sequence of decision rules before they are

assigned to a unique class. If a decision tree classifier is well designed, the result in many cases, is a

classification scheme which is accurate, flexible, and computationally efficient.

It is useful to have available an.automted pr9ced, urc for effective decision tree design which

relies only on apribri class statistics. The procedure described in this paper utilizes a set of two

dimensional feature extractions and Hayes table look-up decision rules. An optimal design at each

node is derived based on the associated error matrix. A procedure for ce- nputing the global prob-

ability of correct classification is also provided.

An example is provided in which class statistics obtained from an actual LANDSAT scene are

used as input to the program. The resulting decision tree design shown in figure 2 has an associated

probability of correct classification of .76 which compares reasonably to the theoretically optimum

.79 probability of cover classification associated with a full dimensional Bayes classifier.

The work documented in this report represents a promising depiction in the exploitation of

decision tree classification. An obvious next step is to test the procedure on large dimensional merged

data sets with results compared to ground truth information. Also, monte Carlo studies are in order

to validate the computational procedure for determining the global probability of correct classifica-

tion as given in equations 3 and 4. Thus is particularly important for rather deep decision tree struc-

tures where samples can be subjected to many decision rules before being finally classified. It is pos-

sible in this situation that the independence assumption can lead to error.

It is also clear that the automated procedure described in section 3 should be modified to include

greater flexibility. For instance, it should be possible to permit a user to employ collateral data of a

catagorical nature in defining certain mode structures of decision tree. Also, it should be possible to

insure that a decision tree design reflect the fact that for a certain application, certain ambiguities

among classes are irrevelcnt. As an example, for the case presented in section 4, classes 1, 2, and 3

are conNser crops in an agricultural scene. Hence, node D as represented in figure 2 can he deleted

from the tree structure with no loss of useful information.
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