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Introduction

During this phase of the program the analytical model for the amplifica-

tion of broadband jet noise has been further developed and some numerical

solutions have been performed. These calculations have been published [1]

(attached as Appendix A). The calculations on the stability of compressible

axisymmetric jets, which were described in the first annual report on this

grant, have been documented and submitted for publication [2] (attached as

Appendix B). The facilities, instrumentation and data processing techniques,

required for the experimental part of this program are nearing completion

and some preliminary measurements have been performed. It is expected, as

described below, that much of the flow data, which is required to assist

in the modeling of the flow will be collected during the second part of this

grant. A brief discussion of the analytical and experimental parts of the

program is given below.

Analysis

The present status of the calculations is described in detail in

references [1] and [2] so details are not presented here. However, some

general conclusions can be drawn. The numerical procedure that has been

developed is definitely more flexible than previous formulations. These

previous works have employed an integral analysis which requires assumptions

to be made about the characteristic shapes of the mean velocity profile and

the turbulent kinetic energy distribution, (see Chan [3], for example). The

present work confirms that these assumptions are reasonable in the case of

a single jet in a stationary ambient medium. The power of the present

method lies in its ability to examine interactions in flows with more
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complicated geometries. For example the present technique is readily

adaptable to the problem of a single jet in a co-flowing stream with a

significant boundary layer on the external surface of the nozzle. Such

calculations were not possible with the integral formulation. During the

second half of this year, while awaiting experimental results, work will

concentrate on improving the calculation procedure. Specific attention will

be paid to the initial conditions. The present calculations have assumed

a mean velocity profile at the Jet exit which is already developed into the

similarity form of the annular mixing region. Calculations will be performed

aseuming v<, turbulent boundary layer at the jet exit. The effect of initial

boundary layer thickness on the pure tone excitation of the Jet will then

be examined. The model proposed for the "wave-induced stresses" in the

present calculations involves a scalar eddy viscosity. Until the experi-

mental results are available no further development of this model will be

attempted.

Experimental Program

The nature of the present investigation immediately introduces the

concept of conditional sampling, as a way of evoking the particular portions

of the flow of most interest. A review of the techniques available, as well

as the specific method to be used in the present experiments is outlined

below. However, it is important that the behavior-of the Jet flow in the

mixing and self-preserving regions based on available experimental data, be

investigated; in particular, the fluid dynamic concepts associated with

the large scale structures. This not only helps in the understanding of



the various mechanisms involved but also places in perspective the problems

that may be encountered.

Speculations about the existence of large scale structures in free shear

layers developed from the two-dimensional experiments of Brown and Roshko [k].

While investigating density effects, they observed an organized coherent

structure, shown on shadowgraphs, persisting downstream of the splitter

phase at a Reynolds number of order 1 x 106 . Winant and Browand [5]

earlier showed that the vortex pairing process in a two-dimensional shear

layer was a result of shear layer instability, but the Reynolds number in

their experiments was quite low. Later, Dimotakis and Brown [6] investigated

the existence of large structures at a Reynolds number of 3 x 106 . They

verified the existence of the previously observed structures and showed that

there exists a periodicity to the phenomenon. However, they also showed

the development of three-dimensional eddy structures and concluded that

initial conditions as well as the finite extent of the apparatus play an

important role. Chandrsuda et al. [7] also pointed out the three dimensional

development of these structures and their sensitivity to upstream free stream

turbulence.

The interesting outcome of the above work is the applicability of these

ideas to noise generation in the mixing region of a jet. The question that

has been posed is, whether the large scale structures are direct or indirect

noise generators? In the latter case, how does the excitation of large

structures in a jet result in increases in broadband jet noise radiation?

The above questions are fundamental, therefore, in guiding the experimental

procedures. Considerable insight ,, closely associated with our program, is

provided from the experiments of Yule [8]. He studied the structure of the
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mixing region at a Reynolds number of 2 x 10" and concluded that the observed

vortex rings are only a transitional phenomenon and also that there are

substantial differences between these vortex structures and the structure

in the fully developed region. He established that the coherent eddies are

dominating components but are far from deterministic. Although a wide range

of data are available on the acoustic characteristics of excited gets, very

little has been reported on the flow characteristics. A thorough explana-

tion of the phenomenon will only be-provided, however, from measurements

inside the flow itself. Hussain et al. [9,10,11] have reported flow

measurements, but so far they have concentrated on low excitation levels and

Reynolds numbers of up to approximately 2 x 10 5 , while Kibens et al. [12,13,

141 have concentrated on the behavior of the vortex pairing process,

which appears to only occur at very law Reynolds numbers.

In our program, therefore, a major effort is being made to provide

(i) detailed turbulence characteristics under excitation, (ii) a comparison

with unexcited tests and (iii) a comparison with analytical models which

is presently lacking.

As outlined above, a powerful tool for detecting specific flow events

is conditional sampling. The use of this technique presupposes, however,

certain criteria, and the choice of these criteria is a fundamental and

critical process. Yule [8] after ootaining velocity time histories, chose

peaks in the velocity fluctuations as the criterion. Velocity levels were

also used in the experiments of Bruun [15]. In excited jets, sampling can

be initiated from the forcing mechanism providing the trigger (phase-

averaging) or -, choice of certain level of intensity at the exit of a jet



being a fraction of the measured non-excited value (9). A novel and power-

ful pattern recognition technique has been developed by Wallace et al. [16,

17). It has been primarily applied to boundary layer flows and is a digital

method utilizing a fully computerized system. Short time temporal averages

are selected and criteria are based on sharp gradients of velocity and

acceleration detected from digitized output signal histories. Blackwelder [18]

and Wygnaski [19] also outlined concepts in pattern recognition of coherent.

p	 eddies.

In the present program a number of the above ideas will be incorporated

based on an overall philosophy as shown on Figure 1.

The following measurements and processing techniques will be used:

j.. Velocity time histol-ies, longitudinal and transverse under no

excitation using hot wire sensors.

2. Same as (1) but under excitation.

3. Pressure signals in the near field.

4. Digitization of signals under '(l), (2), and (3).

5. Search for clearly defined events such as peaks or other

repeatable values.

6. Selection of the conditional sampling criteria and comparison with

other established criteria detected under the same procedures above.

7. Turbulence characteristics and phase averaging of first and second

order moments of the velocity.

8. Comparison of excited and unexcited cases enabling deduction of

"wave induced stresses."

9. Comparison with theory.



The experimental facilities are nearing completion. The circular pipe-

t	 nozzle system has been installed as well as the traversing gear. Automatic

positioning of two coordinate axes is possible, namely transverse and

vertical as shown in Figure 2. For the transverse motion (x) 10,000 step-

motor steps are provided per 1/2 in. and for the vertical (y) direction,

10,000 per in. Accuracy can therefore be obtained within 5 x 10-5 inches

for x and 10-4 inches for the y direction. The motors are driven by SLO-SYN

indexers, and the downstream positioning (z) is performed manually.

Manufacture of the exponential horns is complete and the exact

dimensions are shown in Figure 3. Delivery of two of the four loudspeaker

drivers is still pending and experiments will be conducted using only the

system of two speakers. The processing instrumentation is shown in Figures 4,

5, and 6. During preliminary tests to establish the proper operation of the

installed nozzle system, an exit velocity of 210 ft/see (64 m/s) maximum

was measured, yielding a flow Reynolds number of approximately 4 x 105.

This value is lower than anticipated and reasons for this can be

attributed to heavy losses in fan efficiency at high speeds. Considerable

interference has also been encountered close to the operating facility due

to other experimental rigs in the vicinity of our own. Heavy vibration

Toss dominated the interference resulting in contamination of the hot wire

signals. Recirculating flow has also caused problems. The facility will

be operated during evening hours to eliminate the external influences

mentioned above. A program has been initiated for the construction and

establishment of the jet facility proposed and shown in Figure 7_,

It is expected that flow measurements of turbulence properties of the

jet in unexcited and plane-mode excitation will be completed by September

1980 and that phase averaged measurements for the same excitation conditions

will be available by the end of the grant year.
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A MODEL FOR BROADBAND JET NOISE AMPLIFICATION

Philip J. !orris
Departsent of Aerospace Engineering
The Pennsylvania State University

University Park, Pennsylvania 16802

Abstract	 scale turbulence Which controls subsonic noise
radiation.

A model is proposed for the change in turbulent
structure of a round jet in the presence of an 	 However at subsonic, and most likely supersonic,
acoustic excitation. The excitation is assumed to 	 flow velocities the large scale structure can effect
trigger instability waves of a known initial 	 noise radiation, in an indirect way. If large scale
amplitude at the jet exit. As theme waves propagate motions are excited in the jet by, for example,
downstream they extract energy from the mean flow 	 acoustic excitation at the jet exit then the sound
and transfer it to the random turbulence. This 	 radiation of the jet increases. Surprisingly, even
results in an increase in the levels of the turbu- 	 if the excitation is at a singl.-s frequency the
lence and a resulting increase in the radiated	 increase in noise radiation acy occur at all
broadband noise. No calculations are presented 	 frequencies. This phenomenon hem been obser ed by
for the noise radiation, however, an examination	 Bechert and Pfisenmaied, Moore 4 and Schmidt.
is made of the effect of excitation leve l and	 Moore, Schmidt, and vlasov and Ginevskiy6 also observed
frequency on the jet flow. The numerical procedure	 that the levels of turbulence in these excited
allows for radial as well as axial variations in 	 jets also changed. The variation in the turbulence
the averaged properties of jet to be calculated. 	 levels and the radiated noise was found to be a
The results indicate that the presence of a finite 	 function of excitation level, frequency and
amplitude instability wave increases the spreading 	 auimuthal mode number. At high excitation
of the jet. It does not vary the characteristic 	 frequencies there was some reduction in the broad-
radial shapes of both the axial mean velocity and 	 band noise radiation.
the turbulent kinetic energy. An energy budget
for the tandom turbulence shows that it is fedIn this paper a model is presented for the
energy from the excited wave predominantly on each	 mechanisms by which the structure of the turbulence
side of the jet lip line. This results in a broader is modiflej by a pure tone excitation. The basic
radial shape for the turbulent kinetic energy. 	 formulation is similar to those used previously by

this author and others, most closely to Chan ? to
study the characteristics of wave-like disturbances

Introduction	 in turbulent jets. Howe ver this paper is concerned
with the variation of the random component of the

It is now generally acknowledged that turbulent 	 flow. The presence of a periodic component of
shear flows, particularly free shear flows, possess	 finite amplitude is able to modify both the levels
a large scale structure. However, the role that 	 of the random turbulence and the mean flow charac- 	 j
this structure plays in the generation of sound by 	 teristics. Previous analyses, because of the 	 1
turbulence and even the nature of these large scale 	 obvious simplification introduced,have made use of
motions such as their orderliness, particularly at 	 integral forms of the momentum and energy equations
high Reynolds numbers, remains an open question.	 for the mean, periodic and random turbulent motion.
It appears that at high subsonic and supersonic	 Though this has permitted the axial variations in
velocities in jets and mixing layers the large scale integral flow properties to be calculated radial
motion may be associated with wavelike instabilities variations 

are suppressed. 
For example the f

ineanof the primary flow. Since the phase velocity of 	 velocity	 p	 by	 p
these travelling waves is of the order of the speed 	 which remains independent of the excitation level, 	 j
of sound in the surrounding medium the instability 	 etc. The present formulation permits the radial
waves radiate sound, of a highly directional nature, variations, if any, to be computed.
very efficiently. Calculations by Tam and 14orrisl
and Morris and Tam2 show that successful predictions	 Though the analysis of this paper is more general
of radiated noise from supersonic jets and mixing 	 than previous work there remain closure problems
layers, at angles in the far field that include the 	 and, in the absence of the necessary guidance yet
peak polar noise angle, may be made assuming that 	 to be provided by experiments, some simple schemes
the radiation comes from instability waves. When 	 have been adopted. Thus this paper also provides
the characteristic mean velocity is subsonic the 	 a framework within which improved closure models
role of the large scale structure in noise radia-, 	 may be tested._
tion is less clear. At these velocities the phase
velocity of instability waves, if such waves are 	 The model to be explored in thepresent paper
a reasonable model of the large structure, is much 	 argues that the acoustic excitation stimulates
less than the ambient speed of sound, so that even 	 instability waves on the jet column. The amplitude
allowing for spatial variations in the wave ampli- 	 of these waves will be determined A initially, by
tude and phase velocity (see refs. 1 and 2) these	 the level of the excitation. Tam + 4 has developed
waves are very inefficient radiators of sound. It 	 an analysis to determine the amplitude of the

^ appears more likely that it is the degree of 	 excited waves in the linear region, where the 	
a

disorderliness of the large structures and the fine amplitude of the excited wave is linearly propor

Assistant Professor, Member AIAA i	
VRIXEDING PAGE 131,AN'K NOT FILMED	 ^



tional to the amplitude of the excitation. The
coupling that occurs between the acoustic excita-
tion occurs over the enti re region adjacent to the
mixing layer (all along the potential core in the
Sat flow for internal excitation). However because
of the mismatch in phase velocity between the
instability and sound waves the coupling to greatest
close to the het exit. In the present analysis the
full coupling procedure an proposed by Tam will not
be used, rather the level of the instability wave
at the Jet exit will be assumed to be known. There
is no reason why Tam ' s analysis could not be incor-
porated; however, because of the iterative nature
of the present solution and the axial variation in
the shapeof the mean velocity profile it would be
computationally time-consuming,

The presence of an instability wave of finite
magnitude performs two roles. Firstly it extracts
energy from the mean flow in the initial region of
the Jet though some is returned as the wave decays,
Secondly it interacts with the random turbulence.
This interaction involves both the generation of
additional turbulent energy and its transport. The
increase in the level of the random turbulent kinetic
energy causes a mure rapid spreading of the jet flow
through an increase in turbulent stresses and, it
can be argued, an increase in the broadband noise
radiation. No details are provided In the present
paper of the anticipated increase in the broadband
noise radiation. The paper is more concerned with
changes in the turbulent structure. If the noise
producing volume of the jet is relatively unchanged
by the presence of the excited waves then the
increase in turbulence levels is likely, using
scaling arguments, to yield increases in the
radiated noise. Once the details of the modifica-
tion to the flow are known the noise changes may
be calculated. However, if no details of the flow
changes are given then no estimate of the noise
variation is possible.

q),101WAL PA.GBJ IS
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where an overbar denotes a t ,,ma-
vf 
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ponent,
a prime denotes a random turbulent time-dependent
component and a tilde denotes a periodic component
which is related in phase to the acoustic excitation
at the nozzle exit. The time average of a variable
is defined as

T
- Lim T 

J f(t)dt ,	 (4)

T	 o

and the phase average is defined by

W

<f> Lim-! Y f(t +nT)	 (S)

Nom+ N n-1

where T is the period of the excitation. it is
readily shown that all components of ui satisfy the

same continuity equation,

u, i 5", - u; - 0	 (6)

Taking the time average of equation 1 and using
equation 6 gives,

	

ului^	 - p p gib - 
(udui)r'	 (u' Ju'i), ^ ►

	

'	 ax
(7)

where the Reynolds number is assumed sufficiently
high for the viscous stresses to be 'neglected. The
'random disturbance momentum equation is obtained by
taking the phase average of equation 1 from the full
equation, giving,

8ati + 
u^u';^ + u' j u;^ _ - A gib	 + v g^ku';'k

ax

- u"j u'	 - u' iu; -
 (

u li l	 _ <u lj u^i >)	 (8)
91 J

Mathematical Derivation

Basic Equations

In the formulation of the present analysis several.
simplifying assumptions have been made; these are
described at the appropriate point in the text. It
is useful to start using generalized coordinates and
then carry out the simplifications provided by the
geometry and the physical nature of the problem at
a later stage. The incompressible momentum and
continuity equations in tensor form are

aui + 
UiUi	

_ P _2Pgi3 + 
u glkn1ik	

(l)
ax

The equation for the turbulent kinetic energy is
obtained by multiplying equation 8 by gimu' m and
averaging. After some manipulation the resulting
equation is

Ali	 u'mu'd 
um,^ - 

P ( Ulm 
p ' ) ^m - 

(ulJk,)

1-(5r j E	 (9)

where k' R 1/2 u' j u' is the fluctuating turbulent
kinetic c r y, k - k' and a is the viscous dissipa
tion term. ì is the "wave-induced stress" given by,

pij - gikp{<u'ku'4 - u' ku' d }	 (10)

and
u;'i ^ 0	 (2)

•,,here ui is the contravariant velocity tensor, p is
:.ne pressure, giJ is the metric tensor and the
usual notation has been used for covariant differen-
tiation. The instantaneous velocity and pressure
are separated into three components

ui . ui + ni + u' i 	(3a)

and

It represents the difference between the Reynolds
stresses, pu' i u' l in the presence of the periodic
disturbance and without'it, since performing a
phase average provides the sum of a time independent
component and a periodic component. The first term
on the right hand side of equation 9 represents the
production of turbulent kinetic energy from the mean
flow, the second and third, terms represent turbulent
transport, the fourth term is the interaction
between the random and periodic fields (this is not
a transport term and will be shown to always

p a p + p + p'	 (3b) represent a net gain in turbulent kinetic energy),
the fifth term is the transport of turbulent kinetic

2

§._ n;
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will be used to describe le random Reynolds
stresses. Following Chan , not

_u	 GL a

with
E t	

(l
. 01 k1/2 R r

7a)

Sb)

energy by the periodic field and the last term is the
vlecous.,dissipation.

The equation for the wave kinetic energy is obtained
by taking the time average of equation 1 from its
phase average, multiplying by gikuk and time
averaging. The resulting equation is,

where L is taken as the width of the jet mixing

u
J ^3	 _ - k- _ 1 -.k	 3	 -i-i	 i..^	 layer between radii at which u - 0.9 and 0.1,	 u^u uk^l 

P 
(pu )^k - (u q),j + riu, , • (u rI^ respectively. A gradient transport hypothesis is

	

(11)	
used for the turbulent diffusion,

E

where q ^ 3 uj uj is 	 the wave kinetic energy, q - q , 	 -v p + k) ' ok 2c r	 (16)

and the viscous terns have been neglected.

g
gwtions 6, 7, 9 and 11 provide the framework for and dimensional arguments provide the energy dissipa-

the present analysis. in the next section the	
Lion rata as	

/
3 2

geometric simplifications and the turbulence closure	 e - C k
	

(17)
schemes are introduced.	 2 —Z

Turbulence Models

Cylindrical polar coordinate s are used with the
origin at the center of the circular jet nozzle and
the z axis aligned with the jet centerline. The
physical components of the contravariant tensor ui
are v, w/r, and u with respect to the r, ^ and z
coordinates. After several simplifications based on
the assumptions that the time-averaged flow is
axisymmetric and axial variations of time-averaged
values are negligible with respect to radial varis
tionx the following system of equations is ,)btained.

ao + 6 a - _ 1 auTv r_ i anvr	
(12)

2z	 Or	 r at 	 r ar

u 2z +v ar--t2ry (p
_iV)r u1 

ar -e -^

1 av"ri r

r Or	 (13a)

where	

0 -*"i
	

(13b)

The integral form of equation 11 which will be used
in the subsequent analysis is given by

dz

00	 Do

 
j ugrdr - - j N lu rdr + j 0 rdr	 (14)
0	 0	 0

In the above equations the velocities have been non-
dimensionalized with respect to the average jet exit

The coefficients C1, C2 and Ok take the values 0.05,
1.50 and 0.7 respectively.. These models would
enable the jet development to be calculated in the
absence of an excitation. Now consider the "wave-
induced stresses," By analogy with the Reynolds
stress model they could be written

where s-J is the periodic rate of strain tensor,

si	
Y(u^i + gjkui^k)	

(19)

The choice of et will be discussed below. Contrac-
tion of equation 18 leads to

	

=Y 2(<k'> - k) - -2 e t s"i	 (20)

However from the continuity equation, s - 0, so that
'the random kinetic energy in the presence of an
,rs;citation is equal to its value without excitation,
which I s in disagreement with observations. Thus
equation 18 should be written,

	

ri - -2 ets`i + 3(<kI > - k)61	 (21)

Now consider the choice of 'et . The value of a is
given by equation 15b as Cl k1/ 2 R. This is at
consequence of the assumption that there is only one
characteristic time scale for the random and mean
flows ;(see Tennekes and Lumlcy l0). Letting this
time scale be t the eddy viscosity maybe written

et - C3 kc	 (22)
velocity uJ , lengths with respect to the jet radius

rJ , and the pressure with respect to pJu, where p J	 If the time scale for the periodic field is denoted

is the jet exit density (equal to the density	 by "t the periodic eddy viscosity could be written,as

everywhere in the present formulation).
et ' C4 k"t ,	 (23a)

Examination of the equations above indicate that
severgil turbulence models are required. in	

or

equation 12 both the random Reynolds stresses and 	 C5 et/Et - t / t ,	 (23b)

the averaged wave stresses must be modelled. In
equation 13a the turbulent diffusion, viscous dissi- where Cg, Cqq and C5 are unknown coefficients. Now
pation, wave induced stresses and "wave transport" 	 ujt/rj - 27;w - 1 /f, where m and f are the non-
must be modelled. In the present analysis it is the dimensional radian frequency and frequency of the
modelling of the latter two effects which are of most periodic excitation, respectively, and [ R /kl,/2.

interest thus a conventional 'one-equation model" 	 So that

3



t	 kl/2 , St	 (24)

where tits 5trouhal number, St f edd /u^i , where fa
Is the dimensional excitation frsugency and d d is
the ,het diameter. Thus,

t ZSS .	 (25)

Since the value of k varies little with axial
distance the periodic eddy viscosity is nearly
constant for any given frequency, and decreases with
increasing frequency.
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axisymmetric jets. Though only results for axi-
symmetric disturbances in the incompressible limit
are given in the main body of the paper, the
complete analysis is .given in 1ppendix A.

The stability analysis gives all the unknown
quantities in equation 27 with the exception of the
amplitude, A(z). This is obtained from equation 14
which now represents an ordinary differential
equation for A(s).

In the present paper the "wave-Induced stresses"
are modelled using equation 21. However the "wave
transport" term in equation 13a is neglected. This
term would have been zero if the model equation 18
had been used. This means that a further model for
the quantity vvZ7 is not required. It should be
noted that Chan 7 used equation 18 with the resulting
neglect of wave transport. However in his analysia,
since he did not distinguish between source and
transport terms, the wave interaction terms in
his analysis contain many terms which would be
eliminmted using the continuity equation. In the
present paper calculations have been performed
assuming that et 11 et.

Numerical Solution

The adlution of equations 12, 13a and 28 has
been obtained numerically using a technique which
employs a standard three-point, variable step-size
finite difference formulation in the radial direc-
tion with the axial derivative discretized in a
manner which can either be fully implicit or
explicit. It is hoped that sufficient details of
the numerical scheme are provided below to enable
the reader to use the technique. (It has been this
author's experience that the distance between a
numerical scheme and a working program is a very
long one.)

Introducing the turbulence models given in the
last section the axial momentum and turbulent
kinetic energy equations may be written,

- au - au 1 8	 au	 1 atvr" 
8z " 9rr Di	 r Br - r Dr

(3l)

an axial amplitude variation. This can lead to some
difficulties, particularly when the wave is decaying. and
In such cases the inviscid solution is not valid 	

C k3/2
- B14- ak 1 a 4	 ak	 au 2	 2

over the entire real radial axis. (Physically	 u — + v —	 — r -- + e	 -	 -
correct damped inviscid solutions do exist, However 	

az	 Br r ar Cok art	 t ar	 k	 o

they require a contour deformation into the complex 	 (32)
r-plane; see Tam and Morris l . ) In order to over-
come this difficulty the instability wave character- Drawing on the work of Spalding and Patankar12 and
istics will be obtained from a local viscous	 Chan7 new coordinated (4,w) are introduced such
stability * calculation. The Reynolds number used in 	 that
the calculations is suffcietktly high that the solute
tions approach the inviscid limit. Following Tam	 jA	

^e L o

	 ^1/2
and Chenli the value was chosen to he 500. Since 	

^ ` 4 and w = -- u(z,$ ) sds	 (33)

it is the intent of this and subsequent analyses to
consider both incompressible and compressible flows
(to examine amplification effects in high Mach
number jets) a technique has been ¢developed to
consider the stability of viscous, compressible

From equations 13b, 18, and 19 an expression for
0 may be obtained. In the present paper only axi-
symmeetric periodic disturbances have been considered.
In this case 0 simplifies to,

e aU + V-) + au av 2 + 3v200	 (26)' " t {{ar az1	 { az " ar^	 r2}
Note that Q

o 
is always less than zero so that it

represents a gain of turbulent kinetic energy and
a loss of wave kinetic energy.

In light of the dynamic instability of the jet
mean velocity profile it is reasonable to model the
periodic flow field as large scale instability waves
stimulated by the excitation at the jet exit. These
will be modelled as linear waves whose wavelength
and growth rates are the eigenvalue of a local
inviscid stability calculation. So that a periodic
disturbance is written, for example as,

u - A(z)Re { G(r) exp{i (az	 wt )J} ,	 (27)

where a is the axial wavenumber and A ( z) represents

(11,12 
I1 )	 - I2 - I3	 (28)IAI2 dZ 

whore

11 - z 
j u(^G^ 2 + 1G(2)rdr	 (29a)
0

	

1 2	 j Re{GO*).Lu rdr , and	 (29b)
Br0

	

I3 ^{^	 + 1aG 2 +Ii.a"u - 
ar l 2

+ 3 r 2}rdr

(29c)

where an asterisk denotes the complex conjugate. In
order to provide a conntatent definition of A(z)
the eigensolutions u, y and p are normalized ouch
that

1612 ' l	 at	 c n 0	 (30)

ne is a measure of the total axial volume flux in
the jet. Due to entrainment this increases with
axial distance and must be computed at each axial

4
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location. The calculation of d(ne) /dz is described	 remaining matrices or* given in Appendix B. The
below. In terms of these new coordinates equations	 boundary conditions are that the extol velocity and
31 and 32 become,	 turbulent kinetic energy are symmetric about r a 0

and they both vanish at large r. This leads to values

as 2w d(ne) as 1 a r2	u au	 2 a	 of Xi, Xi , ;i and di for i a 0 and N which are also

+ --'--{ c --- 4A) --^-(uvr) ,	 given in Appendix D.
ac ' 2 dz aw w aw w t 4 aw 2 aw

ne	
ne	 ne	

(34)	 Equation 40 and the additional equation4 provided
by the boundary condition3 my be solved by a

d(n2)	 2	 2	 standard algorithm for inversion of a block tri-
ck 2w	 e ak1 a r	 u ak r	 u au

#	 -- -f-ti - 4 --} +	 (--)	 di gonai matrix. However the axial variation of
a^ n2 d: aw w aw{ w Qk nee aw w 

n4a 
aw	 (q) and the initial conditions suet first be

4C2k	 4$0
e	 3/2	 specified.

	p k	 p	
(35) 

Calculation of d(11,2)/dz

The flow field is divided into lines of constant 	 At the outer edge of th .c jet 8_u/94 + 0 and w - I.

W denoted by the subscript 1, 0 S 1 .1 N, and lines 	 Thus from equation 34,

of constant 4 denoted by the superscript J. Then 	 2
at any point (ij) the equations may be written, 	 d (ne) 	 a	 a2W ar e _ a(u i arLim	 ( e r) + e r

	

2	 j	 - dz	 ^, } ar t	 t au ar	 a0 ar -}

	

`^ }i (a Z + b 
aw + c

}i	 (36)	 (4l)

and,	 following Spalding and PatankarI2 the second term is

ak 1	 a a2k	 9k	 j	 ignored and the last term will be allowed for by

	

(8^^i (^ 22 + d Z + ek + f} i	(37) writing,

k aw	 d(ne)	 a
J 	 ^	 -	 . Lim ( (l + 0) — (e r)}	 (42)

The definitions of the functions a  through f i are	 dz	
r_KO	 ar t

given in Appendix B. The derivatives with respect
to w are written in a finite difference form such 	 The right hand side is approximated by its value

that	 at w st wN-3' Then if,

2

(aio	 U-1	 2 (s1+l - (l +a)si +asi-1)	 G(w,z) -(1 + 0) a {1 + r u 1 ak}	 (43)aw 1 (1+0)0	 (h )	 t	 4 2 k aw

	

1	 (38a)	 he

Then,
and	 2
(ae}	 1i (s + (a2 -1)s - a 2a	 d(ne) (1 - ,1)G j + 1G

j+1	
(44)

aw i	 (1 +o )a hl	
i+1	 i	 i-1-	 dz	 N-1	 N-1

(38b)

and,

where a is either u or k, h is the stepsize given 	 2 j+l	 2 j	 3+l
by (wi wi_1) and a is the step -size ratio hi/hi-1,	

(n e )	 (ne) + 44 (1 - a)GN-1 + 4^ iGN-1

which is constant. Setting,	 (45)

	

^ar } ! g(si l' Sit s +l) 8	 '	
where the tilde denotes the estimate of G from a

. i	 previous iteration.

the axial derivative is discretized in the usual 	 The Initial Conditions

finite-difference fashion,
The mean velocity profile at the het exit was

	

9J+1 .. sl . (1 - X)Q4gj + 1ACg
1+1	(39) taken to be the develope^ mixing layer form given

by Maestrello and McAaid 3,

where dC is the axial step-size. If X . 0 this
is an explicit form, A - 1 is an implicit form and

2X - 1/2 is the Crank-Nicolson form. The last was exp[-15.3625(r 0.796)	 r > 0.796
used in the present calculations and was found to 	 r,0) -	

-	 J
u

give rapid convergence. Substitution of these 	 (	 1.0	 r ^ 0.796
forms into equations 36 and 37 enables them to be
written as either a pair oftridiagonal matrices or	 (46)

as a single 2 x 2 block tridiagonal matrix. The
Tatter form s used in the present work is, 	 Choice of this developed profile for the shape at

z - 0 does ignore the short region of adjustment

j+1+1	
of the

at the jet exit from the boundary-layer-like profile
X V	 + X V	 + Z V	 d , for i 1, N- 1
-i -1-1 -i -1

	

	 jet  nozzle. The initial value of R is then
(40) 0.304. The turbulent kinetic energy profiles were

estimated using a constant eddy v_scosity assumption
Twhich leads to

where the solution vector V i - {ui, ki) , and the

5
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k a 0.2277(r - 0.796)u	 ,	 r > 0.796 (47)

In the potontial core region the turbulent kinetic
energy was met to a constant value of 6 x 10- 4 which
corresponds to a typical exit turbulence intensity
of 2 percent.

Theme initial conditions though readi ly specified
are somewhat Idealised particularly in the potential
core and result in a non-realistic behavior of the
jet in the potential core region. Yvon equation 35
it can be mean that if both k and 0 are constant
the turbulence can only decay. This was observed
in the calculation and resulted in an extension of
the potential core length. However this paper is
concerned with modification to a basic undisturbed
flow by an acoustic excitation rather than absolute
behavior thus no effort has been made to correct
this behavior. Such a correction will be wade in
later calculations.

With u specified the variation of w with r may
be calculated from equation 33. The values of u
at the grid values of w were titan determined using
a cubic spline fit for n(w).

Calculation of r from w and u(w,),

At each axial location the valt., of radial
position must be calculated from the local valued
of w and U. Letting f(w) - W/O and using
equation 33

1

(r2) i 	 (r2)i-1 + 4t1eh
i j f(t)dt ,	 (48a)
0

where

t n 
(w - wi-I) /iti	 (48b)

A cubic polynomial spline fit may be obtained for
f(t) on the interval (wi-I , wi) and finally,

(f +f ) h2

(r2) i 	(r2) i-1 +4n2h:. { i 
z i-i - 24 (K +K +Ki-I) t

(49)

tiun using the estimated downstream velocity
irofilu. Revised estimates of the wave amplitude
n4y also be made► and new estimates of the values
of the matrix alksonts in equation 40 are wade.
The procedure is rmpeated until the mean velocity
profile at the downstream location is unchanged by
further iterations. This requirement was met in
the present calculations when the sum of the root
mean square diffireneao between the new and old
motivates of 0 + at all the grid points was less
then 0,011, Thin was found to ensure three decimal
places of accuracy at each grid point.

The numerical method ensures that alterations
in the mean flow properties due to the presence of
a finite amplitude periodic structure can be
observed in both the axial and radial directions,
and that the "shape" of the mean velocity and
turbulent kinetic energy profiles may alter. The
grid constants and coefficients used in the present
calculations are shown in Table 1 where

A4 J+1 n az gi .

Table I Constants used in computer program.

^'
9 A0

0 

0.90 015 012 0.0436 1.1

Calculate initial "rid and u (w), k(w)

Calculate initial wave shapes GJ (r) etc.

Calculate I1` , :j, Ia, ¢o and*
(d ùvr /dr)

J
	 I

I calculate 
(IA 12)j

+1 	 1

Set up elements of block tridiagonal ma
where

fi n 	 and	 Ki{	 2 ^^^} i	 (50) Solve for ui+] r	
ki+l

The Computer Program Calculate radial position [r(w)]J+I

The numerical method was programmed in FORTRAN
and run on an IBM 3033 processor.	 A simplified Calculate u^(r) etc.

flow chart is shown in Figure 1.	 After initializing
the values of a and k at the grid points the eigen-
sdlutions of the Orr -Sommerfeld equation are

j+i	 J+1	 J+1	 ^J+1Calculate I11	 I 2	 I 3
,	 .	 o	 ,

obtained for that velocity profile.	 This gives (duvr/dr)J+1
the distributions of the periodic flow field. 	 The
integrals in equation 29 may be calculated as well
as the radial distributions of the s2gree term 	 NO

Test for convergence
and the periodic stress gradient [ 2(uvr)/9r]/r.
The wave amplitude at the next location is then YES
computed from equation 28.	 Estimates of the
coefficients of the matrices in eqguation 40 may Proceed to next ^ location

now be made and the values of u0+i and kj+l f-calculated using the matrix solver.	 The wave
sba}§ler and integrals at the downstream location 	 Fig. 1 Flow chart for computer program
a-e- then calculated from the Orr-Sommerfeld equa-

6
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I.•	
^^,^ Results and Discussion

Some preliminary calculations have been performed
using the model described in the previous section.

1.4 These calculations are viewed as an initial test of
the method to provide guidance as to improved models,

The axial variation of the jet thickness for; an
1,Z unexcited jet is shown in Fig. 2.The variation

approaches a linear increase with axial distance
with a virtual origin of x - -2.0.	 This a room with

1.0 Ithe measurements of Maestrello and McDaid l 	 whose
data were used as the initial velocity profile.
A collapse of the computed wean velocity and turbu-
lent kinetic energy profiles to obtained by using

9.0 1 stretched radial coordinate, (r- 1)/(x+2).
These are shown in Figs. 3 and 4 respectively.	 Thus
the unexcited jet behaves in agreement,with experi-

1.6 ment, though the spreading rate shown in Fig. 2
is somewhat low due to the idealized nature of the
potential core mean velocity and turbulent kinetic
energy profiles.

•.4 1
Most of the calculations have , been performed for

an excitation Strouhal number of 0.25.	 However in
Fig. 5 the effect of Strouhal number of the jet

^.Z spreading is shown.	 The spreading is greatest
for St --0.5 and least for 5t w 0.25.	 However the
excitation level of JA1 0 n 1 x 10-4 was the minimum
level at which modifications to the jet structure

0 1	 2	 9	 4	 5	 •	 7 •	 9	 10 were observed.	 In all cases the jets read rate

Axial distance	 x/r
increased.	 Fig. 6 shows the effect of increasing
the excitation level by a factor of 14.	 The jet

- spreads initially more rapidly and then grown

Fig, 2	 Variation of jet thickness with
axial distance linearly for an excitation 5trouhnl number of 0.25.
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1,4

1.2

1.e

ne	 g n 	7. g sa	 . .
The absolute levels of excitation needed to produce
these effects are discussed below,

When there is no interaction between*the wave
and the flow field the local rate of growth is
that predicted by inviscid linear stability theory.
However, when the wave is of sufficient amplitude
to generate significant "wave-induced stresses" the
wave loses energy to the random turbulence. This
can be seen in Fig. 7 where the ratio of the wave
amplitude to its initial amplitude is shown. From
the definition givinglA( 2 using the normalization
of equation 30 it can be associated with the mean
square pressure fluctuation on the Jet axis. As
the wave amplitude increases its rate of growth
falls below that of the linearprediction. For
an int).al amplitude of 1 x 10- 3 for x/rd greater
than 4.0 the wave transfers ciore energy to the
random turbulence than it gains from the mean flow
and it begins to decay. There is also some decrease
in the growth rate due to changed in the shape of
the mean velocity profile and the jet width, How-
ever for (A( 2 - 1 x 10-3 linear stability predicts
wave growth up to x/rd . 5,,,5.

The amount and distribution of the energy trans-
ferred to the turbulence is seen by performing a
radial energy budget. This is shown in Fig, g for
the unexcited case, for a jet width of 0.447 which

8	 1	 2 9	 4	 5	 B	 7	 9 9 10	 occurs at x/rj - 1.66. Fig. 9 shows the energy
budget in the excited case at a similar jet width,

	

Axial distance xjr3	 0,446, which occurs closer to the jet exit, x/rj - 1.07,
in this case. The additional term in the turbulent

Fig. 6 Effect of excitation amplitude on jet 	 kinetic energy equation which describes the wave

thi kness. St -0 , 25 , IA1 - 1 x 10-4, ____ 1 interaction effect is seen to peak on eachside of

(A(4 1 x 10-3 , ----, °No excitation, 	 the jet lip line at r/rj - 0.8 and 1.2. Its peak
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value is an order of m&;0PtFudd` 9'09 "t1►VQaj'rY
direct production from the mean flaw, however since
the other effects are almost in equilibrium, most
of the production balanced by 'viscous dissipation,
this hae a significant effect.

The mean velocity profile* in the excited case
are shown in Viy, 10. The abspe of the wave proftier
is such that in the potential core the wave transfers
'momentum to themean flow, This results in a slight
increase in the jet crntorline velocity. The data
All collapse using the sane atratched coordinate,
(r - 1)/(x + 2), as used for the unexcited sat, with
the exception of the profile at x/rj P 2,0 ,  How-
ever, this in to be anticipsted since in this
region the jet growth rate is sore rapid, An
Initial look at the velocity shape: in comparison
to Fig. 3 shows a broadening of the profile at the
outer edge of the jet in agreement with the measure-
ments of Schmidt. 5 However if a new virtual origin
is chosen at x/rj - 3,7$ the calculations from bath
excited and unexcited j ets are virtually identical.
The same applies to the profiles of the turbulent
kinetic energy which are shown in Fig. 11 as a
function of (r - 1)/(x + 3.75). The shape of the
profile is unchanged from that of the unexcited ,)et
except at the frrthant downstream stations,
x/ri - 7.96 and 10.0. In there locations there is
a rapid increase in tha turbulent kinetic energy
inside the lip line. At x/ri w10.0 there is a
sudden increase in the peak evel to 0.033 peaking
at a radial location of r/rd - 0.66. An initial
look at the energy budget for this station indicates

sudden loss of energy b y the wave which is also
evidenced by its rapid decay shown in Fig, 7.
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Fig, 10 Collapse of axial mean velocity with
(r1)/(x+2) for excited jet. St - 0.25,
1A10 - L x 10" 3 . For legend see Fig, 3.
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The offset of excitation also increases the
integrstea turbulent kinetic ent.rgy given by,

f krdr .
ea

Thin is shown in Fig, 12 where it can alvo be soon
that at the loular excitation level there in a
slight decrease in the irstegrati.d levels.

The choice of excitation level in there calculs-
tions has been determined by whatever value gave
appreciable changes. As noted above the normalica-
tion used for the eigansolutions of the Orr-
Sommerfeld equation means that JA1a is the mean
square ressure fluctuation at the jet exit, Thus
for IA14 of 1 x 10"4

0 the lower excitation level,
the pressure fluctuation at the jet exit is 2 per-
coq of the dynamic head at the Jet exit (tnkon as
R uj/2). This to much Aarger than thee minimum
level observed by Moore of 0.08 percent, in
order to achieve comparable effects with reduced
excitation levels it would be necessary to increase
the value of I t .

.8126	
N	

Conc lusions

,gam X	 X 0,	 results
	 excita	

predict
excitation. However

-i.i6 -1,1(1 -Y.i5 g.li	 ^,r6 •.1•	 R,16 the absolute level,# required do not witch experiments.
(r-l)/(4c+3.75)	 This may be attributed to the choice of model for the

waver-induced stresses particularly its multiplicative

	

Fig. Ll_ Colla pse of turbulent kinetic energy with 	 constant. The results point to the need for a

	

f
r • 1)/ (x+ 3.73I for oxcited jet. St =0.25,

	

	 knowledge of the following.
A(o n 1 x 10` . For Legend"oec Fig. 3.
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Fig, 12 Effect of excitation on radially integrated
turbulent kinetic energy. For legend see
Fig. 6.
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urtoar a ec s o	 aqu ­ ,7 n xc 	 o
amplitude,

2. the effect of choice of coefficient in 41
3. the effect of permitting k to be frequency

dopandant, and
4, the effect of inclusion of "wave-transport"

terms in the turbulent kinetic energy equation.

There also exists a clear need for further
expert.—ntal docuhantation of the changes in
turbul ; otructvra. Without thin guidance,
development of appropriate modals, for wave-
induced stresses W particular, is made difficult.
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Appendix A

w'l	 „	 2,5 (a; -w)w + im _ — {A +	 -Ga +
(m2+1 JQ +1 Lm

Solution of the Viscous, Compressible, .Linearized r	 R	 r	 r2	 r2

Stability Equations for an Axisymmetric Jet
(A.10)

In the analysis it is assumed, fallowing Dunn
and Lin1G that the viscous dissipation terms in the

_^,	 I	 „	 u 	 2	 m2 . 1
ip(au - w)u + pu v + iap	 R{u + _ - [a +	

uJr2]energy equation may be neglected.	 Assuming that "
the mean velocity and density are functions of (A.11)

radius only the non-dimensional equations of motion
may be written, ORIGINAL PAGE IS

11 OF POOR QUALITY



*nd

iMJ(au -w)p + {4' + i + ienS + aao) - 0

This expression reduces to the known solutions in
the inviscid, and incompressible cases, that-is, for

M  n 0 0 Pol0 (ar) ,	 (A.18)
(A.12)

and for
Primes denote differentiation with respect to r.
For M  - 0 and P n 1 theme equations reduce to the 	 R 1	 p Poi0 (

/
^^- (	 r) (A.19)

Incompressible equations. For v- 0 or R - - the
equations reduce to their inviscid form. A solution Inspection of the continuity equations then suggests
for the former case for the axisymetric jet was 	 the associated forms for u and 0 and substitution
obtained by Morrie 15, and for the inviscid case by 	 of. these forms into the equations of motion yields,
Michalke lh . The boundary conditions to be satisfied
sre17 	a [ R + iMJ(a -w))

(i	 P	 1 (1*r)	 (A.20)
0 . 0, 0, G . U	 as r + m

u(0)• (0)^ (0)	 0	 n f 0
v(0)a w(0) - 0	 n 1
3(0) + iw(A) - 0	 nt- 1 .	 (A.13)

As in the case of incompressible flow this sixth-
order system of equations reduces into one fourth-
order system and one second-order system form - 0.

That is, the w equation is net coupled to the
equations for the remaining variables. Since the
solution in this case, m - 0, is most readily
obtained the analysis is described briefly below,
and is then used to infer the general solution
for arbitrary values of m.

In order to obtain a numerical solution to this
problem it is necessary to determine the behavior
of the solutions in the regions of uniform mean
velocity, that is outside the jet flow and in the
potential core region closee to the jet axis.
In the potential core region the non-dimensional
mean velocity and density are unity. A series
solution to the reduced equations is sought close
to the jet axis. Thus the disturbances are written,
making use of the boundary conditions for m - 0,

v" * VIr + V 
2 
r 2 + V 

3 
r 3 + ___

u - Uo + U 
I 
r + U2r 2 + U3r 3 + ---

p - Po + P I r + P 2 r 2 + P3r3 + --- 	(A. 14)

After some algebra it may be shown that,

I [a2R+ia2M2
 
(cc -W)) 2

	

p . Pol+^^	 2	 r
[RT+iM(a-W)]

I [a2R+iA2MJ(a-w)]2 4

	

+ 64	 2	 2 r + --
[R +iMJ (a - W)1

(A.15)

where

o	 (a- W)R	 o

ix* [R + IM2 (a - w)']

	

G 
Po 	 (a - OR	

II(1*r)	 (A.21)

where

ot1R i, ia2M2 (a - w)
^* .	 .J	 (A.22)

[R + im 2 (a w))

It is clear that the disturbance pressure has only
one linear solution which satisfies the boundary
conditions. This is the so-Called inviscid solution
for incompressible viscous analyse¢ Since the
momentum equations, which are the only equations
affected by viscosity are identical for both the
incompressible and compressible analyses the
"viscous solutions" should be identical in both
cases. It is then readily shown that another
independent ,solution of the disturbance equations
is,

- 0

u U0I0(ar)

v - --Uo	 11(Xr)	 (A.23)

The same analysis may be applied to any region
where the flow is uniform. The solutions for any
region in which p . p  and u - B e may be written asp

m . 0:	
1,2 0D - A	 H 

(1),(2) (1A*r)	 (A.24)
= 

u . A	
a(R - iMJS2) H 

(1) ' (2) (iX*r) +A3,4 He 
(1) ► (2)(i7^r)

	

1,2 _ po92R	 o	 _ 
(A. 25)

(R - irt2st)
v - -A1,2 iX* P ORJ H^(1),(2) (i^*r)

O

-A3,4 ^ 11 (1),(2) 
(iar)	 (A.26)

A2 .
 

012 + i(a w)R	 (A.16)

This is the series expansion for the modified Bessel
function of the first kind and zero order, that is,

	

p^ P I	
a2R + iX2MT(a -W). r
	 (A.17)

	

0 
0	

[R + imJ(a - w)]

m	
0: p - 

A	 POOR	
H (1)1(2) (iA*r) (A.27)

I ^ 2 a(R -imi9) m

u - A1,2 Hm(1).(2) (iX*r) + A 3,4 
Hm(1).(2) (i^r)

(A.28)
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-A	
i	 d {}} (1),(2)	 (i e r)}

1,2adr m
A3+1 	 _ 20	 a"J+1 -	 02	 b3+1l^AK

i
	 21-1	 2
	 i
	 1

a	 (1),(2)
(1+ 0)0 	 (h	 (1+0)0 h1 	!.

_A	 (lar)3,4 A H N+j (B.B)

i, m	 (1),(2)^	 -A5'6	 r Hm	 (171r)	 (A.29) gi+l	 {-	 21-1	
2 a^+i +	 Oi 1	 61+1{MS -1.0

o	 (hl)	 hi

 (1) (2)	 is	 (1).(L)0 ` A1,2 at H'	 (iA+'r) tA3,4 a Hm+i	 (iar) (B.9)

.^	 (1).(2)
+A5,6 dr Ha	 (ikr)} j+l ^ ,{	 2	 ai+l+	 1	 ba+l}1L1t;

Ci	 2i2-1 i	 i( 1 +00	 (hi)	 (i +a)oihi(A.30)
(B.10)

where

0 . w - au	 .	 (A.31)o i a2u J	 3 an jpi	 ^{ai(	 2)i +bi { ^i}(1 - k)AS

and
a2R - ia2M211

aw

-{Xci+1 + (1 - a)ci}A4 	- ui	 (B.11)^p2 .
	

(A.32)
(R - im?) a+l

These solutions have been written in s form appro-
far from the	 The

A,'^+l ^	
2a	 ai	 _	 02	

t1
{	 21-1	 2	 0	 i	 dJ	JXA4
(1 +00	 (h1)	 k	 (1 + 0)0 hi	 ipriate to the conditions 	 jet axis.

eloice of the Hsnkel functions of the first or
(B.12)second kind depends on the argument and the satis-

faction of the boundary condition at infinity, A.13. -j+1
Similar forms, in terms of modified Bessel functions 8 ,3+1	 2	 ai	 + (0 - 1) dj+l + e-J+1 lA^ - 1{-	 }may be written for the solutions in the potential
core	 close to theor	 Jet axis.

i	
a2i_1(h 

)2	 Qk	 aih

11	 (B.13)
Appendix B "j+1

In eqpatlons 36 and 37 the definition of the
functions a through f are,

a
C'J+1 n {	 2	 - i +	 1	 V +1}^d;
i	 ) 2i-1	

k	 (1 + a)0i(i + 0 0	
(h1)2	

0 h	 i1
u

12 (B.14)
a ` ? et	 .	 (B.1)

ne

'

D'	 _{8i ^a2k^j + dj{ak^J + eJkJ }(1 - a)A^i
2	 dn2

i	 0k	 W2 1	 1 aw	 i

b . W aw w tt 4^ + ?2 dz '	 (B . 2)
-{afJ

+
l + (1 - X)fJ}A4 - k^ ,	 (B.15)

ne	 tie
i	 i	 i

where a tilde denotes the guessed value from a

c	
2	 —a	 {uvr} ,	 (g^3)
2 aw

previous iteration.

WTI
The boundary conditions on u and k may be wrifeen,

2

_ _ _.d	 1	 8 ^r2 et	 11) + LW 	 (B.4)
W aw w ok	 dzn4 	n 2

uo - ui
	 k° . kl	

{8.16)
-	 0	 k	 0

e	 e uN^	 Ns

1
4C kl/2

0
e	

u	
,	 and	 (B.5) Yo	 YN	 1	 ,	 Zo	-I	 and	 XN 	(B.17)

r2 u	 a-u 2	 4% where I is the identity matrix and 0 is the zero

f ' W2	 4 eCCaw^	 -	 u	 (B.6) matrix,	 -
ne

and	 d° n (0, 0)T	,	 dN 	(0, 0 )T	(B.18)

The matrices in equation 40 may be written,

0 lRi	 0
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Abstract

Calculations of the viscous, spatial stability characteristics of

a compressible axisymmetric jet have been made. The asymptotic solutions to the

stability equations in regions of constant mean flow properties are developed

and used as the boundary conditions for a numerical integration of the

compressible stability equations in cylindrical coordinates. Calculations

are presented for a range of Mach and Reynolds numbers for both the axi-

symmetric and helical modes. Increasing the Mach number is found to

stabilize the flow as is decreasing the Reynolds number. The helical mode

is found to be more unstable than the axisymmetric mode for higher Mach

numbers. The viscous calculations are* found to closely approach the

inviscid limit for local Reynolds numbers greater than 500.
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Introduction

The stability characteristics of free shear flows are of considerable

interest in the field of aerodynamic noise. Instability waves appear to

perform an important role in noise radiation at both subsonic and supersonic

mean flow velocities (Moorel and McLaughlin, et al. 2 ). Analytical studies

of noise radiation by instability waves, such is that by Tam and Morris 

have assumed that because of the dynamic instability of the mean flow

profile in jets and shear ,layers an inviscid analysis may be used. Though

this assumption appears justified by comparison'with experiment and has the

attraction of simplicity it has a disadvantage. For damped waves, though

valid inviscid ,solutions do exist, the solution is not valid over the

entife transverse coordinate. If a more detailed analysis of the interaction

between the instability wave and the other components of the fluid motion

is desired knowledge of the wave properties at all real locations is

required. Such interactions are thought to be responsible for the broadband

jet .noise amplification measured by Bechert and Pfizenmaier4 , Moore 1 , and

1	 others. The analysis of the present paper overcomes this difficulty by

using a viscous analysis. The question of the appropriate choice bf

Reynolds number in a given flow problem, whether the basic flow is laminar

or turbulent, is not addressed. Solutions and calculations are presented

for the viscous compressible stability equations in cylindrical coordinates.

The inviscid stability of compressible jet flows has been studied by

many authors including Lessen, Fox and Zien S and Michalke 6 . The former

considered a cylindrical vortex sheet and the latter used realistic mean

flow profiles which simulated the r-tial and final stages of the annular
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jet mixing region. The viscous stability of incompressible axsymmetric

jet flows with realistic mean velocity profiles has been calculated by

Burridge7, Mollendorf and Gabhart8 , Lessen and Sngh9 , and Morris
10
. All

authors considered a jet -velocity profile given by u . (1 + r2)-2 which is

characteristic ef the flow downstream of the annular mixing region.

Morris 
10 also considered the same mean flow profiles used by Michalke.

The present paper describes the viscous stability of a compressible

axisymmetric jet to disturbances of arbitrary azimuthal mode number. The

asymptotic solutions to the compressible stability equations are developed.

Calculations are presented for a range of Mach numbers and Reynolds numbers

for a mean velocity profile considered by Michalke6 and Morris 
10 

which is

characteristic of the end of the annular mixing region of the jet.

1

The Stability Equations and Boundary Conditions

The full compressible stability equations in Cartesian coordinates

have been developed by Lees and Linll . A simpler set of equations which

neglect viscous effects in the energy equation was introduced by Dunn and

Lin 12. A similar simplification is used in the present paper. The dissipa-

tion terms are neglected in the energy equation and the viscous effects in

the momentum equations are characterized by their incompressible form.

Variations in the molecular properties of the fluid are also neglected.

Though these assumptions restrict the analysis to moderate Mach numbers and

flows with little variation in the mean static temperature it should be

remembered that the purpose of the analysis is to provide a viscous correc-

tion to the inviscid analysis to enable solutions to be obtained along the
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real radial axis. With the further assumption that the mean flow properties

are functions of the radial coordinate alone, the "parallel -flow approxima-

tion," the linearized disturbance equations may be written,

M2 {a _ + "^} + A, . 0	 (1)

p{av' + u aD' } + a ' ` 1 { 2	 v' - 2 aw l }	 ( )
at	 az.	 a	 =2 =2R ° v' -	 aF	 2

P
{aw' + u aw' } + l ^_ • lv2w , - w' + 2 av'}	 (3)
at	 az	 r a^	 R	 x2 r2 a^

D"' + u auf + v- du} + _ate'' _ 1 p2u	
(4)at	 az	 Traz	 R	 '

were	 A' __ 1 av'r + 1 aw' + au'

The velocity components in the (r, ¢, z) directions are v, w, and u,

respectively, overbars denote the mean flow, and primes denote disturbances.

All quantities have been nondimensionalized with respect to the jet exit

conditions, e.g. u = u*/uJ , r = r*/r
J
, p = p*IF uJ2 , where stars denote a

dimensional quantity and the subscript J denotes jet exit conditions. The

Reynolds number and Mach number are given by,

R r pJuJrJ/uJ and M,= uJ/aJ ,	 (6)

where a is the local speed of sound. For R - ► - equations (1)-(4) approach

the .inviscid system of equations and for M = 0 they are the viscous

incompressible equations in cylindrical coordinates.

A disturbance is assumed to possess a wavelike form with prescribed

azimuthal periodicity such that, for example,
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u'(r,^,z , t) = Re[u (r)exp(i (az - wt + nQ))) (7)

where ac is the complex axial wavenumber, w is the real radian frequency and

n is the azimuthal mode number. 	 Substituting terms of the form ( 7) for the

velocity and pressure fluctuations in equations (1)-(5) yields A system of

four coupled ordinary differential equations for the four unknown functions,

u(r), v(r), w(r) and p (r).	 These equations may be written,

-iQPV + p' _ i {v" + v' - [a2 + (n?+ l)]v _ i 2n A} , (8)
R	 r	 r2	 r2

im p
	1
	 „	 (n +1) ^

-mow +	 {	 + w - [a2 + )w + i 22 v} 9( 9)r
	

R	 r	 2
r	 r

 2
-1Stpu + pu'v + iap Q,R {u" + r - [a2 + n2 ) u 1 (10)

r

anc'l	 -im EV + {v' + _ + irW + aual = 0 , (11)

where primes denote differentiation with respect to r and,
i

0—W- au (12)

The boundary conditions on the fluctuations which are kinematic in origin

at r = 0 were developed by Batchelor and Gill 13

v, w, u, p	 } 0	 as	 r -^

u (0) = p ( 0 )	0	 n #	 >

v(0)	 w(0)	 0	 n

v(0) +	 w(0) = 0 ,	 n = 1 (13)
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The numerical solution of equations (8)-(11) depends on a knowledge of

the solutions at the edges of the integration region where the mean flow

properties are taken to be constant. These asymptotic solutions are

developed in the neat section.

Asymptotic Solutions

In moder to determine the form of the solution in regions of constant

mean flow properties a aeries solution is developed for small r. The form

of this solution is found to indicate the general solution of the equations.

,For n - 0 equation (9) is uncoupled and equations (8), (10), and (11)

provide a system for u, 6, and p. Since this case is algebraically simpler

^j	
than that for asymmetric disturbances its solution is given more fully and

J	 the corresponding solution for n 0 will only be stated.

Consider a region in which u uo , p = p o and 0 = E20 where the subscript

o indicates a constant mean flow property. Then equations (8), (10),

i	 and (11) reduce to,

-mo o off' + p^ R [v^^ +	 - (a2 + Z)v] ,	 (14)
r

-ip0S2ou + iap = R u^^ + r a2Ul .	 (15)

and	 im 00p + (v"W + au 0	 (16)

From the boundary conditions (13) the form of series expansions, for small r,

for the dependent variables is found to be,
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V V1r + V3r3 + V5r5 + -

u^ • Uor + U2r2 + U4r4 + ---

A Por + P2r2 + P4r4 + ---	 (17)

After considerable algebra it is found that

a*2=2 X*4r4

	

p++ - fir--- + 64 + ---} ,	 ( 8;

i

(tx2R - iX2M2S2
.where	 ^*2 e	 °) 	 (19)

(R - iM2$1

i
s

and	 a2 at2 - ipo oR	 (20)	 {

However, equation (18) is the series expansion for the Modified Bessel

function of the first kind, so that,

p	 P0To ( a*r)	 (21)

The corresponding forms for u and v are then readily shown to be,

(R - 111 22 )
u P  a 

po 
R 
R ° 1

0
(A*r)	 (22)

^ 	 a

(R - iM2S2
v	 -Po i^*	

Po 
Sl R 

o	 Tl (a*r)	 (23)
0

Now equations (14)-(16) are a fourth order system of equations, thus two

linearly independent solutions which satisfy the boundary conditions should

exist. However, the form for p contains only one arbitrary coefficient.

This results from p only satisfying an "inviscid" equation. The 'viscous"
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solution for is zero. With p p in equations (14)—(16) they are

identical to the incompressible viscous equations. Thus the "viscous"

solutions for the velocity fluctuations are identical to their incompressible

form given by Morris
10 . The general solution to the stability equations

may now be written down. Their form is given for larger, outside the ,jet

flow, where the Modified Bessel functions are replaced by Hankel functions.

e
The asymptotic solutions are,

n - 0

p i A1H(1) (ia*r)	 (24)

^	 (x(R	 i.M2S2o) (1)*	 (1)
u Al	

P	
R	 Ho	 (iX r) + A3Ho	 (ixr) ,	 ( 25)

o' o

"	 (R - iM2S)	 "
A = -Al :LX*	 p S2 R o HI1) W*r) - A3 x H(l) (i r) .	 (26)

0 0

n 0

A = Al

	

	o	 2	 1n1) UX*r)	 (27)
a(R - iM 2)

U = A H 	 + A3 Hnl} (iXr)	 (28)

v = -A i d {H (1) !iX*r) } A 
a 

H(l) ( Xr) A in H(1) WO	 (29)
1 a dr n	 3 a n+l	 5 r n

w = A n H(1) (ia*r) + A 3'0, H 	 WO + A 
d 

{H (1) (iar) }	 ( 30)
1, ar	 5 dr n
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The real parts of X* and X are taken to be positive so as to satisfy the

outer.boundory conditions. Similar forms, in terms of Modified Bessal

functions may be written for the solutions in the potential core or very

close to the jet axis. It should be noted that for M - 0, X* - a and the

viscous incompressible solutions are recovered and for 1/R w 0,

a*2 . a2 - M2S22oo , and the compressible, inviscid solutions are found.

Calculations

Mean Velocity and Temperature Profiles

The mean velocity profile considered in the calculations is representa -

tive of jet profiles towards the end of the potential cores The same profile

has been used by Michalke (' and Horris
10 , The velocity profile may be

written as,

u ffi ^ 11 + tanh [G6 (r - r)} . 	 (31)

wherxi 6 is the local momentum thickness and its variation was used by

Michalke10 to represent the influence of axisymmetry on the jet stability.

The mean density in the jet is related to the velocity using a Crocco

relationship of the form,

p T*/11 + (T* - 1)u + 2 ('Y 1) M 2 T * u(1 - u)} ► 	 (32)

which is identical to the form used by Michalke 10 except that T* is defined

as the jet static temperature ratio,

T* = TJ
/To	

(33)

where To is the ambient temperature.
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Numerical Procoduze

Calculations have beer performed for 0 . 0.16. The numerical solution

is started at r - 4.0848 where 'u = 6.0 x 10 -6 using the linearly independent

solutions given by equations (24)-(30), The stability equations are

integrated numerically using a fixed step-size Runge-Kutta integrator with

the linear independence of the solutions being preserved by an ortho-

normalization procedure. The numerical integration is stopped at r .. 0.2448,

where u - 0.99999 and the numerical solutions are matched with the known

form of the solutions in the potential core. This matching procedure leads

to a determinant whose magnitude must be minimized to obtain the eigen-

solution. An iterative technique based on an inverse Lagrangian interpola-

tion procedure is used to determine an eigenvalue. Further details of the

numerical procedure are given by Morris 10 . `rhe in'viscid calculations,

which are shown for comparison were obtained by solving the second order

ordinary differential equation for the pressure on the same integration

contour.

Results

In spite of the large number of parameters that enter the problem. in

compressible viscous analyses only a limited number of calculations are

presented. The trends that were previously observed in the limiting cases,

inviscid compressible flow and viscous incompressible flow, are also found

in the present results. All calculations have been performed for a jet

static temperature ratio, T* = 1.0.
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Effect of Mach Number. The variation of the local growth rate, -ai6,

for the axisymmetric, n - 0, mode and the asymmetric, n . 1, mode, are

shown in Figurer, l and 2, respectively. Also shown is the inviscid solution

for M . 0. The results are for a local Reynolds number, R6 - 80. in both

cases as the Mach Number increases so the maximum growth rate decreases and

the range of amplifying frequencies decreases. The more rapid decrease in

amplification rate with Mach number is for the n = 0 mode. This indicates

that for higher Mach numbers the n - l mode will be more likely to occur

naturally. This was observed in the measurements of McLaughlin et al. 2.

The frequency for maximum growth rate decreases with increasing Mach number

for both modes but is lower for the n _ 1 mode. The variation of the phase

velocity, given by w/ar , is shown in Figures 3 and 4 for the n = 0 and

n = 1 modes, respectively. At low frequencies the phase velocity for the

n = 0 mode isreater than the et centerline velocity. Increasing theg	 3	 Y	 g

Mach number results in a decrease in the phase velocity for most of the

amplifying frequencies. At high frequencies where the disturbances are

damped increasing the Mach number resultsin a slight increase in phase

velocity. The variation of the phase velocity with Mach number is much

less for the n = 1 mode, the phase velocity being approximately 0.6 times

the jet centerline velocity for all except the lowest frequencies. The
r

variation of maximum growth rate and phase velocity at the frequency for

maximum growth for the two modes is given in Table 1. In spite of the wide

variation in phase velocity for different frequencies for the n = 0 mode

its phase velocity at the frequency for maximum amplification is virtually

independent of Mach number.

`	 9

s



Effect of Reynolds Number. The variations with Reynolds number and

frequency of the local growth rate, -aie, for the n - 0 and n - 1 modes

are shown in Figures 5 and 6, respectively. The results are for a Mach

number of 1.0. The inviscid result at this Mach number is also shown.

The trends are the same as those calculated by Morris 
10 

for the incompressible

case. Increasing the Reynolds number increases the growth rate at all

'frequencies. Calculations have not been performed for damped disturbances

with superson-1,c phase velocities. The existence of these modes has been
k

questioned by Lessen et al. 14 and even if they exist physically it appears

that the present formulations of stability theory are inadequate for their

correct treatment. There is little variation with Reynolds number of the

phase velocities for either the n = 0 or n = 1 mdde. This is shown in

Figure 7 where the growth rates and phase velocities, relative to the

inviscid values, are shown for both modes as a function of Reynolds number

for a fixed frequency, we - 0.14, which is close to the maximum amplifica-

tion frequency for then - 0 mode. For A = 0.14 and M = 1.0, the local

growth rate in the inviscid limit for the n = 0 anode is -ccie = 0.0372 and

the phase velocity is 0.7150. For the n = 1 mode -aie = 0.0458 and the

phase velocity is 0.5993. At a local Reynolds number Re =-640 the viscous

growth rate is 96 percent of the inviscid value for the n_ = 0 mode and

97 percent of the inviscid value for the n = 1 mode. It is clear that the

inviscid stability characteristics are recovered for any appropriate "local"

Reynolds number greater than, say, 500.0. At lower frequencies the inviscid
o-

limit will be approached more slowly since it is the factor (aR) that enters

E
the equations. Thus for lower frequencies a higher value of Reynolds

number is required to come close to the inviscid solutions.
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Conclusions

Calculations have been presented for the viscous stability character-

istics of compressible axisymmetric jets: Asymptotic solutions to the

compressible stability equations have been obtained and have been used as

boundary conditions for the numerical integration. Increasing the jet Mach

.number is found to be stabilizing as is decreasing the Reynolds number.

The helical, n - 1,-mode, is more unstable than the axisymmetric, n - 0,

mode at high Mach numbers. The viscous calculations have been found to

approach the inviscid limit for local Reynolds numbers greater than 500.

A number of simplifying assumptions have been made in the development

of the compressible stability equations. Extension-of the method presented

here to a system of equations which includes such effects as temperature

dependent molecular properties appears reasonable. However, if the Reynolds

number is based on an eddy viscosity the present system of equations appears

adequate.
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Table 1. Variation of maximum amplification rate and phase velocity at the
maximum amplifying frequency with Mach number, R6 - 80.

n a 0 n	 1

max. max.
amplifying amplifying

frequency, -ai6 W/ar frequency,
-aie W/arM

0 0.1698 _0.0490 0.7226 0.1278 0.0515 0..6051

0.4 0.1638 0.0454 0.7230 0..1236 0.0497 0.6021

0.8 0.1474 0..0351 0.7224 0.1110 0.0447 0.5930

1.0 0.1348 0.0278 0.7228 0.1026 0.0413 0.5862

1.2 0.1201 0.0188 0.7225 0.0928 0.0375 0.5780
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Figure Captions

Fig, 1 Effect of Mach number.on the variation of amplification factor

with frequency.	 n- 0, R6 -80.0.	 M - 0, —

M= 0.4, —	— ; M - 0.8,-- —	 ; M	 1.0,.............

M - 1.2,- -- -	 Inviscid solution, M - 0, ---

, Fig.	 2 Effect of Mach number on the variation of amplification factor

with frequency.	 n - 1, Re - 80.0.	 For legend see Fig. 1.

Fig. 3 Effect of Mach number on the variation of phase velocity with

frequency.	 n - 0, R6 - 80.0.	 For legend see Fig. 1

Fig. 4 Effect of Mach number on the variation of phase velocity with

frequency.	 n = 1, R6 = 80.0.	 For legend see Fig. 1.

Fig. 5 Effect of Reynolds number on the variation of amplification

factor with frequency.	 n = 0, M = 1.0.	 R0 = 20.0,-

R6 = 40.0 . .............. ; R@ = 80.0,--	 ;	 R6 = 160.01,

-	 ; R8 = 320.0, - - - - - 	 Inviscid solution,

M = 1.0,

Fig. 6 Effect of Reynolds number on the variation of amplification

factor with frequency.	 n = 1, M = 1.0. 	 For legend see Fig. 5.

Fig. 7 Variation of viscous solutions with Reynolds number.

(-ai)/(-ai)inviscid' n = 0, - - 	 n = 1,

_	 _ _	 _
(ar)invscid/(ar)'	 n	 0' 

_	
'	 n	

l' ..............•
 .

M = 1.0, w8 = 0.14.
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