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Introduction

During this phase of the program the analytical model for the amplifica-
tion of broadband jet noise has been further developed and some numerical
solutions have been performed. These calculations have been published [1]
(attached as Appendix A). The calculations on the stability of compressible
axisymmetric jets, which were described in the first annual report on this
grant, have been documented and submitted for publication [2] (attached as
Appendix B). The facilities, instrumentation and data processing techniques,
required for the experimental part of this program are nearing completion
and some preliminary measurements have been performed. It is expected, as
described below, that much of the flow data, which is required to assist
in the modeling of the flow will be collected during the second part of this
grant. A brief discussion of the analytical qu experimental parts of the

program is given below.

Analysis

The present status of the calculations is described in detail in
references [1] and [2] so detalls are not presented here, However, some
general conclusions can be drawn, The numerical procedure that has been
developed is definitely more flexible than previous formulations. These
previous works have employed an integral analysis which requires assumptions
to be made about the characteristic shapes of the mean velocity profile and
the turbulent kinetic energy dis;ribution, (see Chan [3], for example). The
present work ¢onfirms that these assumptions are reasonable in the case of
a single jet in a stationary ambient medium. The power of the présant

method lies in its ability to examine interactions in flows with more



complicated geometries. For example the present technique is readily
adaptable to the problem of a single jet in a co-flowing stream with a
significant boundary layer on the external surface of the nozzle. Such
calculations were not possible with the integral formulaticn., During the
second half of this year, while awalting experimental results, work will
concentrate on improving the calculation procedure. Specific attention will
be paid to the initial conditions. The present calculations have assumed

a mean velocity profile at the jet exit which is already developed into the
similarity form of the annular mixing region. Calculations will be performed
assuming z turbulent boundary layer at the jet exit. The effect of initial
boundary layer thickness on the pure tone excitation of the jet will then
be examined. The model proposed for the "wave-induced stresses' in the
present calculations involves a scalar eddy v}scosity. Until the experi-
mental results are avallable no further development of this model will be

attempted.

Experimental Program

The nature of the present investigation immediately introduces the
concept of conditional sampling, as a way of evoking the particular portionms
of the flow of most interest., A review of the techniques available, as well
as the specific method to be used in the present experiments is outlined
below. However, it is important that the behavior-of the jet flow in the
mixing and self-preserving regions based on available experimental data, be
investigated; in particular, the fluid dynamic’concepts associated with

the large scale structures. This not only helps in the understanding of



the various mechanisms involved but also places in perspective the problems
that may be encountered.

Speculations about the existence of large scale structures in free shear
layers developed from the two-dimensional experiments of Brown and Roshko [4].
While investigating density effects, they observed an organized coherent
structure, shown on shadowgraphs, persisting downstream of the splitter
phase at a Reynolds number of order 1 x 106. Winant and Browand [5]
earlier showed that the vortex pairing process in a two-dimensional shear
layer was a result of shear layer instability, but the Reynolds number in
their experiments was quite low. Later, Dimotakis and Brown [6] investigated
the existence of large structures at a Reynolds number of 3 x 106. They
verified the existence of the previously observed structures and showed that
there exists a periodicity to the phenomenon{ However, they also showed
the development of three-dimensional eddy structures and concluded that
initial conditions as well as the finite extent of the apparatus play an
important role. Chandrsuda et al. [7] also pointed out the three dimensional
development of these structures and their sensitivity to upstream free stream
turbulence.

The interesting outcome of the above work is the applicability of these
ideas to noise generation in the mixing region of a jet. The question that
has been posed is, whether the large scale structures are direct or indirect
noise generators? In the latter case, how does the excitation of large
structureé in a jet result in increases in broadband jet noise radiation?

The above questions are fundamental, therefore, in guiding the experimental
procedures. Considerable insight, closely associated with our program, is

provided from the experiments of Yule [8]. He studied the structure of the



mixing region at a Reynolds number of 2 x 105 and concluded that the observed
vortex rings are only a transitional phenomenon and also that there are
substantial differences between these vortex structures and the structure

in the fully developed region. He established that the coherent eddies are
dominating components but are far from deterministic. Although a wide range
of data are available on the acoustic characteristics of excited jets, very
little has been repo;ted on the flow chavacteristics. A thorough explana-
tion of the phenomenén will only be provided, however, from measurements
inside the flow itself. Hussain et al. [9,10,11] have reported flow
measurements, but so far they have concentrated on low excitation levels and
Reynolds numbers of up to approximately 2 x 105, while Kibens et al. [12,13,
14] have concentrated on the behavior of the vortex pairing process,

which appears to only occur at very low Reyﬁolds numbers.

In our program, therefore, a major effort is being made to provide
(1) detailed turbulence characteristics under excitation, (ii) a comparison
with unexcited tests and (iii) a comparison with analytical models which
is presently lacking.

As outlined above, a powerful tool for detecting specific flow events
is conditional sampling. The use of this technique presupposes, however,
certain criteria, and the choice of these criteria is a fundamental and
critical process. Yule [8] after obtaining velocity time histories, chose
peaks in the velocity fluctuations as the criterion. Velocity levels were
also used in the experiments of Bruun [15]., 1In excited jets, sampling can
be initiated from the forcing mechanism providing the trigger (phase-

avgraging) or 5 choice of certain level of intensity at the exit of a jet



being a fraction cf the measured non-excited value [9]. A novel and power-
ful pattern recognition technique has been developed by Wallace et al. [16,
17]. It has been primarily applied to boundary layer flows and is a digital
method utilizing a fully computerized system. Short time temporal averages
are selected and criteria are based on sharp gradients of velocity and
acceleration detected from digitized output signal histories. Blackwelder [18)
and Wygnaski [19] also outlined concepts in pattern recognition of coherent
eddies.

In the present program a number of the above ideas will be incorporated
based on an overall philosophy as shown on Figure 1.

The following measurements and processing techniques will be used:

1. Velocity time histo~fes, longitudinal and transverse under no
excitation using hot wire sensors.

2, Same as (1) but under excitation.

3. Pressure signals in the near field.

4, Digitization of signals under (1), (2), and (3).

5. Search for clearly defined events such as peaks or other
repeatable values,

6. Selection of the conditional sampling criteria and comparison with
other established criteria detected under the same procedures ahove,

7. Turbulence characteristics and phase averaging of first and second
order moments of the veloecity.

8. Comparison of excited and unexcited cases enabling deduction of
"wave induced stresseé."

9. Comparison with theory.



The experimental facilities are nearing completion. The circular pipe-
nozzle system has been installed as well as the traversing gear. Automatic
positioning of two coordinate axes is possible, namely transverse and
vertical as shown in Figure 2. For the transverse motion (x) 10,000 step-
motor steps are provided per 1/2 in. and for the vertical (y) direction,
10,000 per in. Accuracy can therefore be obtained within 5 x 10-5 inches
for x and 10-4 inches for the y direction. The motors are driven by SLO-SYN
indexers, and the downstream poeitioning (z) is performed manually.

Manufacture of the exponential horns is complete and the exact
dimensions are shown in Figure 3. Delivery of two of the four loudspeaker
drivers ig still pending and experiments will be conducted using only the
system of two speakers. The processing instrumentation is shown in Figures 4,
5, and 6. During preliminary tests to establish the proper operation of the
installed nozzle system, an exit velocity of 210 ft/séc (64 m/s) maximum
was measured, yielding a flow Reynolds number of approximately 4 x 105.
This value is lower than anticipated and reasons for this can be
attributed to heavy losses in fan efficiency at high speeds. Considerable
interference has also been encountered close to the operating facility due
to other experimental rigs in the vicinity of our own. Heavy vibration
loss dominated the interference resulting in contamination of the hot wire
signals. Recirculating flow has also caused problems. The facility will
be operated during evening hours to eliminate the external influences
mentioned above. A program has been initiated for the comstruction and
establishment of the jet facility proposed and shéwn in Figure 7,

It is expected that flow measurements of turbulence properties of the
jet in unexcited and plane-mode excitation will be completed by September

1980 and that phase averaged measurements for the same excitation conditions

will be available by the end of the grant year.
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Abstract

A model 1is proposed for the change in turbulent
structure of & round jet in the presence of an
acoustic excitation. The excitation is assumed to
trigger instability waves of a known initial
amplitude at the jet exit. As these waves propagate
downstrean they extract ensrgy from the mean flow
and transfer it to the random turbulence., This
results in an increase in the levels of the turbu-
lence and a resulting inctease in the radiated
broadband noise. No calculations are presented
for the noise radiation, however, an examination
is made of the effect of excitation level and
frequency on the jet flow. The numerical procedure
allows for radial as well as axial variations in
the averaged properties of jet to be calculated.
The results indicate that the presence of a finite
amplitude instability wave increases the spreading
of the jet. It does not vary the characteristic
radial shapes of both the axial mean velocity and
the turbulent kinetic energy. An energy budget
for the tandom turbulence shows that it 18 fed
energy from the excited wave predominantly on each
side of the jet lip line., This results in a broader
radial shape for the turbulent kinetic energy.

Introduction

It is now generally acknowledged that turbulent
shear flows, particularly free shear flows, possess
a large scale structure. However, the role that
this structure plays in the generation of sound by
turbulence and even the nature of these large scale
motions such as their orderliness, particularly at
high Reynolds numbers, remains an open question.

It appears that at high subsonic and supersonic
velocities in jets and mixing layers the large scale
motion may be associated with wavelike instabilities
of the primary flow. Since the phase velocity of
these travelling waves is of the order of the speed
of sound in the surrounding medium the instability:
waves radiate sound, of a highly directional nature,
very efficiently. Calculations by Tam and lMorris
and Morris and Tam“ show that successful predictions
of radiated noise from supersonic jets and mixing
layers, at angles in the far field that include the
peak polar noise angle, may be made assuming that
the radiation comes from instability waves. When
the characteristic mean velocity is subsonic the
role of the large scale structure in noise radia-
tion is less clear. At these velocities the phase
velocity of instability waves, 1f such waves are

a reasonable model of the large structure, is much
less than the ambient speed of sound, so that even
allowing for spatial variations in the wave ampli-
tude and phase velocity (see refs. 1 and 2) these
waves are very inefficient radiators of sound. It
appears more likely that it is the degree of
disorderliness of the large structures and the fine

*
Assistant Professor, Member AIAA

scale turbulence which controls subsonic noise
radiation.

However at subsonic. and most likely supersonic,
flow velocities thc large scale structure can effect
noise radiation, in an indirect way. If large scale
motions are excited in the jet by, for example,
acoustic excitation at the jet exit then. the sound
radiation of the jet increases. Surprisingly, even
if the excitation is at a sing)s: freéjuency the
increase in noise radiation mey occur at all
frequencies. This phenomenon has been obleryed by
Bechert and Pfizenmaier?, Moore4 and Schmidt”,
Moore, Schmidt, and Vlasov and Ginevskiy® also observed
that the levels of turbulence in these excited
jets also changed, The variation in the turbulence
levels and the radiated noise was found to be a
function of excitation level, frequency and
azimuthal mode number. At high excitation
frequencies there was some reduction in the broad-
band noise radiation,

In this paper a model is presented for the
mechenisms by which the structure of the turbulence
is modifiel by a pure tone excitation. The basic
formulaticn is similar to those used previously by
this author and others, most closely to Chan’ to
study the characteristics of wave~like disturbances
in turbulint jets. However this paper is concerned
with the variation of the random component of the
flow. The presence of a perlodic component of
finite amplitude is able to modify both the levels
of the random turbulence and the mean flow charac~
teristics. Previous analyses, because of the
obvious simplification introduced, have made use of
integral forms of the momentum and energy equations
for the mean, periodic and random turbulent motion.
Though this has permitted the axial variations in
integral flow properties to be calculated radial
variptions are suppressed. For example the mean
velocity profile is represented by a shape function
which remains independent of the excitation level,
etc., The present formulation permits the radial
variations, if any, to be computed.

Though the analysis of this paper is more general
than previous work there remain closure problems
and, in the absence of the necessary guldance yet
to be provided by experiments, somé simpie schemes
have been adopted. Thus this paper also provides
a framework within which improved closure models
may be tested,

The model to be explored in the present paper
argues that the acoustic excitation stimulates
instability waves on the jet column. The amplitude
of these waves will be det:etminedé initially, by
the level of the excitation. Tam®s’ has developed
an analysis to determine the amplitude of the
excited waves in the linear region, where the
amplitude of the excited wave is linearly propor-

FRECEDING PAGE BLANK NOT FILMED
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tional to the amplitude of the excitation, The
colipling that occurs between the acoustic excita-
tion occurs over the entire region adjacent to the
nmixing layer (all along the potential core in the
Jet flow for internal excitation). However because
of the mismatch in phase velocity between the
inetability and sound waves the coupling is greatest
close to the jet exit. In the present analysis the
full coupling procedure as proposed by Tam will not
be used, rather the level of the instability wave

at the jet exit will be assumed to be known, There -
18 no reason why Tam's analysis could not be incor-
porated;: however, because of the iterative nature

of the present solution and the axial variation in
the shape of the mean velocity profile it would be
computationally time~consuming.

The presence of an instability wave of finite
magnitude performs two roles. Firstly it extracts
energy from the mean flow in the initial region of
the jet though some is returned as the wave decays,
Secondly it interacts with the random turbulence.
This interaction involves both the generation of

additional turbulent energy and its transport. The

increase in the level of the random turbulent kinetic

energy causes a more rapid spreading of the jet flow
through an increase in turbulent 3tresses and, it
can be argued, an increase in the brcadbund noise
radiation, No details are provided in the present
paper of the anticipated increase in the broadband
noise radiation. The paper is more concerned with
changes in the turbulent structure. If the noise
producing volume of the jet is relatively unchanged
by the presence of the excited waves then the
increase in turbulence levels is likely, using
scaling arguments, to yleld increases in the
radiated noise, Once the details of the modifica~-
tion to the flow are known the noise changes may
be calculated. However, if no details of the flow
changes are given then no estimate of the noise
variation is possible.

Mathematical Derivation

Basic Equations

In the formulation of the present analysis several

simplifying assumptions have been made; these are
described at the appropriate point in the text. It
is useful to start using generalized coordinates and
then carry out the simplifications provided by the
geometry and the physical nature of the problem at

a later stage. The incompressible momentum and
continuity equations in tensor form are

i
ou” ji .1 9p 1j ik 4
3t +uu,j P a5 4 +Vg Urjk) (1)
and "
uoi-o 2)
.*here ui is the contravariant velocity tensor, p is

.ne pressure, gtJ is the metric tensor and the
usual notation has been used for covariant differen-

‘tiation, The instantaneous velocity and pressure
are separated into three components
U L . (3a)
and - N
p=p+p+p' (3b)

vhere the Reynolds number is assumed sufficiently
"high for the viscous stresseés te be neglected.
 random disturbance momentum equation is obtained by
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where¢ an overbar denotes a time-independent component,
a prime denotes a random turbulent time-dependent
component and a tilde denotes a periodic component
which 1s related in phase to the acoustic excitation
at the nozzle exit, The time average of a variable
is defined as

1 T
felng [ £(e)de, (4)
T+ ~ 0o
and the phase average is defined by
1 % ‘
<€> = Lim § I £(t + 1) (5)
N+ 7 n=l

where T is the period of the excitation. It is
readily shown that all components of ul satisfy the
same continuity equation,

‘-‘%i - r,{vi -

u:i =0, (6)

Taking the time average of equation 1 and using
equation 6 gives,

4ot

RO T R Pl I
u u,J 5 axj g (u’u ),.1 (u'u )’j ’

)

The

taking the phase average of equation 1 from the full
equation, giving,

i
au' =3 1 =i L 1 43 8pt Ik 4
5E + u u',J +u u,j ) g axj +vgiu 3k
- Gju'fj - u'ji‘xfj -(U'Ju'fj - <u'dU'f3>) (8)

The equation for the turbulent kinetic energy is
obtained by multiplying equation B by gynu'™ and
averaging., After some manipulation the resulting
equation is '

-4 e md = 1 m - (utd
u k,j u' Yt T h (u' p’),m (u' k'>’j
-Ha, - @i, e )

where k' = 1/2 u'ju'_is the fluctuating turbulent
kinetic energy, k = k' and € is the viscous dissipa-
tion term, ¥ 1s the "wave-induced stress" given by,

e wm—

pii - ?ikp{<u'ku'j> - u'ku'J} (10)

It represents the difference between the Reynolds
stresses, pu'*u'J in the presence of the periodic
disturbance and without’ it, since performing a

phase average provides the sum of a time independent
component and a periodic component. The first term
on the right hand side of equation 9 represents the
production of turbulent kinetic energy from the mean
flow, the second and third terms represent turbulent
transport, the fourth term is the interaction
between the random and periodic fields (this is not
a transport term and will be shown to always
represent a net gain in turbulent kinetic energy),
the fifth term is the transport of turbulent kinetic



energy by the periodic field and the last term 1s the
viscous_ disaipation.

The aquation for the wave kinetic enecgy is obtained

by taking the time sverage of equation 1 from its
phase average, multiplying by g kﬁk and time
averaging. The resulting cquat*on 1s,

™ a - :-:E- _l::k. :T; ~J~1 - wln
& -;} -y p(p ),k-(“ q).J+ !1“'_1 (i ri)’J
(11)

3

vhera § = %-ﬁ Gj is the wave kinetic energy, q = % ’
and the viscous terms have been neglected.

Equations 6, 7, 9 and 11 provide the framework for
the present analysis. In the next section the
geometyic simplifications and the turbulence closure
schemes are introduced.

Turbulence Models

Cylindrical polar coordinates are used with the
origin at the center of the circular jet nozzle and
the z axis aligned with the jet centerline. The
physical components of the contravariant tensor ul
are v, w/xr, and u with respect to the r, ¢ and z
coordinates. After several simplifications based on
the assumptions that the time-averaged flow is
axisymmetric and axial variations of time-averaged
values are negligible with respect to radial varia-
tions the following system of equations is )btained.

cB, g, 1 1
vtV T ar r or ° (12)
- 3k -ak-____ Tent 7 - !'._a.g- -
u Vo t eV (p' + k¥)r - u'v 3t € ¢
L WEL
T Ter ' (13a)
where ——
¢ = iiafj . (13b)

The integral form of equation 1l which will be used
in the subsequent analysis is given by

i £ ugrdr = - £ v It rdr + £ ¢ rdr . (14)

In the above equations the velocities have been non-
dimensionalized with respect to the average jet exit
velocity GJ, lengths with respect to the fet radius

Ty and the pressure with respect to pJu§ where Py

is the jet exit density (equal to the &ensity
everywhere in the present formulation).

Examination of the equations above indicate that
several turbulence models are required. In
equation 12 both the random Reynolds stresses and
the averaged wave stresses must be modelled. In
equation 13a the turbulent diffusion, viscous dissi-
pation, wave induced stresses and '"wave transport"
must be modelled. In the present analysis it is the
modelling of the latter two effects which are of most
interest thus a conventional "one-equation model"
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will be used to describe cye random Reynolds

stresscs, Following Chan *, et
bryrvd - .
=y’ = t or (QQ.)
with
e, =0k, (15b)

where £ is taken as the width of the jet wmixing
. layer between radii at which i = 0.9 and 0.]
respectively., A gradient transport hypothesis is
used for the turbulent diffusion,

€
-v(pT ¥ k") --Es-'g%' ’ (16)
k

and dimensional arguments provide the energy dissipa-
tion rate as
$3/2

€=C =T

The coefficiants Cy, Cy and Oy take the values 0,05,
1,50 and 0.7 respectively.. These models would
enable the jet development to be caleulated in the
absence of an excitation. Now consider the "wave-
induced stresses," By analogy with the Reynolds
stress model they could be written

(17)

#--2e8, (18)
where Ei is the periodic rate of strain tensor,
.1 Ik
8 =5y, +8 "1.k) . (19)
The choice of € will be discussed below, Contrac-
tion of equation 18 leads to
~i 'y - o %l
£ 2(<k'> - k) 2 ctsi . (20)

However from the continuity equation, il 0, so that
“the random kinetic energy in the presence of an
.rueitation is equal to its value without excitation,

which 45 in disagreement with observations, Thus
equation 18 should be wgitCQn.

o JEPAR s I T W IR

£y 2 €5 + 3(<k > k)Gi . (21)

Now consider the choice of €. The value of g 1is
glven by equation 15b as C; kK1/2 ¢, This is a®
consequence of the assumption that there is only one
characteristic time scale for the random and mean
flows (see Tennekes and Lumleylo). Letting this
time scale be T the eddy viscosity may be written

€ = C, kt

t 3 (22)

I1f the time scale for the periodic field is denoted
by £ the periodic eddy viscosity could be written as

Et =, kt , (23a)
or -
Cseu/Ek = t/t , (23b)
Now

where C3, C, and Cg are unknown coefficients.
uJE/tJ - ZH?w = 1/f, where w and f are the non-
dimensional radian frequency and frequency of the
periodic excitation, respectively, and T = £/k1/2.
So that



$ S5 (24)

where the Strouhal number, St = f#dy/uy, where f*
. 4w the dimensional excitation frauqency and dy 1s

the jet dismeter, Thus,
Csk
" 75t - (2

Since the value of k varies little with axial
distance the periodic eddy viscosity 4s nearly
copstant for any given frequency, and decresses with
increasing frequency.

In the present paper the 'wave-induced stresses"
are modelled using equation 21. However the 'wave
transport” term in equation 13a is neglected, This
term would have been zero if the model equation 18
had been used. This means that a further wmodel for
-the quantity v<k'> is not required, It should be
noted that Chan’ used equation 18 with the resulting
neglect of wave transport. However in his analysis,
pince he did not distinguish between source and
transport terms, the wave interaction terms in
his analysis contain many terms which would be
eliminated using the continuity equation. 1In the
present paper cnlculations have been performed

assuming that et " €

Fros equations 13b, 18, and 19 an éxpression for
¢ may be obtained. In the present puper only axi-
symmetriec periodic disturbances have been considered,
In this case ¢ simplifies to,

3V) + (&8

2 BV)Z 3v } (26)

% = = g {(3r

Note that ¢ 18 always less than zero so that it
represents a gain of turbulent kinetic energy and
a loss of wave kinetic energy.

In light of the dynamic instability of the jet
mean velocity profile it is reasopable to model the
periodic flow field as large scale instability waves
stimulated by the excitation at the jet exit. These
will be modelled as linear waves whose wavelength
and growth rates are the eigenvalue of a local
inviscid stability calculation. So that a periodic
disturbance is written, for example as,

i = A(z)Re{B(r) expli(az ~ wt)]} ,  (27)

where o is the axial wavenumber and A(z) represents
an axial amplitude variation. This can lead to some
difficulties, particularly when the wave is decaying.
In such cases the inviscid solution is not valid
over the entire real radial axis. (Physically
correct damped inviscid solutions do exist, However
they require a contour deformation into the complex
r-plane; see Tam and Morrisl.) In order to over-
come this difficulty the instability wave character-
istics will be obtained from a local viscous
stability calculation, The Reynolds number used in
the calculations is sufficiently high that the solu~
tions apgtoach the inviscid 1imit. Following Tam
and Chenll the value wias chosen to he 500. Since

it is the intent of this and subsequent analyses to
consider both incompressible and compressible flows
(to examine amplification effects in high Mach
number jets) a technique has been developed to
consider the stability of viscous, compressible

Y e

i B
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axisymmetric jets, Though only results for axi~
symmotric disturbances in the incompressible limit
are given in the main body of the paper, the
complete analysis is given in Lppendix A,

The stability analysis gives all the unknown
quantities in equation 27 with the exception of the
amplitude, A(z). This is obtained from equation 14
which now represents an ordinary differential
equation for A(z).

1 2 [
W“ CA] L) I -1, (28)
where
1% =, 1812
L =3 | 8¢]8]° + [9]%)xar , (29a)
i [¢]
1 % 3
I, ~3 ‘1; Re{ﬁ?*}—ﬁ- rdr , and (29b)
@ - 2 2 2
- 113 ~ _ 39 3]e]
I, = -{en{igf + 1a¢| +[1al - ar' + = }rdr ,
(29¢)

where an asterisk denotes the complex conjugate, 1In
order to provide a conﬁtstent definition of A(z)

the eigensolutions u, ¥ and p are normalized such
that

p]°=1 at z=o0. (30)

Numerical Solution

The sélution of equations 12, 1l3a and 28 has
been obtained numerically using a technique which
employs a standard three-point, variable step-size
finite difference formulation in the radial direc-
tion with the axial dexivative discretized in a
,manner which can either be fully implicit or
explicit. It is hoped that sufficient details of
the numerical scheme aré provided below to enable
the reader to use the technique., (It has been this
author's experience that the distance between a
numerical scheme and a working program is a very
long one.)

Introducing the turbulence models given in the
last section the axial momentum and turbulent
kinetic energy equations may be written,

-85, o, 13, . 0% _ 13
Bt Ve Tyl G TA) roae (D
and . c k3/2
-3k , ~9%k 1 3 9k -3uy 2 2 o
U 9z tv r r or 9 r 8€1+ € ar) s
(32)
Drawing on the work of Spalding and Patankar12 and
Chan’/ new coordinates (;,w) are introduced such
that

z _ A 1/2
t=7 and W ne[fou(z,s)sds] . (33

Ne 15 a measure of the total axial volume flux in
the jet. Due to entrainment this increases with
axial distance and must be computed at each axial



» location. The calculation of d(ng)/dz is described
below. In terms of these new coordinates equations
31 and 32 becone,

o 20900 sn 1 a? . B0 2 3
w2 w s wle S s w2 )
ne n. ne
(34)
(n?) 2 2 5o
B 2w e 3k 2 B.x” g B3k ,ro o uBu?
GRS A T TR T AR
e :3
4c,x3/? 4é
- — - —2 (35)
R

The flow field is divided into lines of conatant
u denoted by the subscript 4, 0 S 1 £ N, and lines
of constant [ denoted by the superscript j. Then
at any point (i,3) the equations may be written,

and | 2%,

()y = {a awz-n»awm}, (36)
and,

gt a2k L, 2k 1

(.;.).c.)i.{.(.;;;;5«“:am»,ek-rf}1 (37)

The definitions of the functions ui

given in Appendix B. The derivatives with respect
to W are written in a finite difference form such
that

through £i are

.@i”_ - 2 (s ~ (1+0)s, +08 )
auz 1 (1'*0)021_1(h1)2 i+l i i-1
(38a)
"and '
98 1 2 2
E2) == (8, + (0" -1)s, - 0%s, )
B’y Q +°)01h1 i+l i i-1
(38b)

where 8 1s either u or k, h, is the stepsize given
by (u)1 - wi-l) and 0 is the step-size ratio hi/hi-l'

which 1s constant, Setting,

&

az:)i-'-' B8y y» 8yr 844p) =8,

the axial derivative is discretized in the usual
finite~difference fashion,

I

where AZ 1s the axial step-size. If ) = 0 this

is an explicit form, A = 1 is an implicit form and
A =1/2 is the Crank-Nicolson form. The last was
used in the present calculations and was found to
give rapid convergence. Substitution of these
forms into equations 36 and 37 enables them to be
written as either a pair of tridiagonal matrices or

+
-8l = - Nage] + Megdt,

as a single 2 x 2 block tridiagonal matrix. The
latter form, used in the present work is,
J+1 J+1 R - _
X Wy v Y Y v Yy mdy s fer £oL N
(40)

‘where the solution vector v, - (uy, ki)T, and the
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remaining matrices ars given in Appendix B. The
boundary conditions are that the axial velocity and
turbulent kinetic energy are symmetric about v = 0
and they both vanish at large r. This leads to values
of Xi, Yi» &4 and d;y for 4 = 0 and N which are also
given in Appendix B,

Equation 40 and the additional equations provided
by the boundary coanditions may be solved by a
standard algorithm for inversion of a block tri-
dt,gontl matrix. However the axial variation of
(nS) and the initial conditions muat first be
specified.

Calculation of d(ngz[dz

At the out+y edge of the jet u/3; + 0 and w + 1.
Thus from equation 34,

2‘
a(no) 2 2 e
-t . 3 9°6/0r” _ 3(uvr)/ar
@ e fae (&) * &r g5y = ou/ :a;;"}

(41)

Following Spalding and Patankarl? the second term is
ignored and the last term will be allowed for by
writing,
2
d(n?)
e . 2 (e
- — x;:: {a+0 5 (c:r)}

(42)

The right hand side 1s approximated by its value

at w = w, .. Then if,
u 1 3k
6w,z) = =1+ 0)e (1 + F 4 13K (43)
Ne
Then,
2
d(n_)
e’ o 1 - el ~§+1
o (A = ey, + M6,y (44)
and,
2,441 _ 243 - el gitl
(ng) (ng)” + 4851 = NGy ) + 4ACAGE Y »
(45)

where the tilde denotes the estimate of G from a
previous iteration.

The Initial Conditions

The mean velocity profile at the jet exit was
t.aken to be the developef mixing layer form given
by Maestrello and McDaid 3,

exp[-15.3825(r - 0.796)%) r > 0.796
t(r,0) =
1.0 r20.79
(46)

Choice of this developed profile for the shape at

z = 0 does ignore the short region of adjustment

at the jet exit from the boundary-layer-like profile
of the jet nozzle., The initial value of £ 1s then
0.304. The turbulent kinetic energy profiles were
estimated using a constant eddy viscosity assumption
which leads to



" k= 0,2277(r =~ 0.796)0 ’ r > 0,796 (47)
In the potantial core region the turbulent kinetic
energy wae set to a constant value of 6 x 104 which
corresponds to a typical exit turbulence intensity
of 2 pexcent.

These initial conditions though readsly specified
are somevwhat idealized particularly in the potential
core and result in a non-realistic behavior of the
jet in the potential core region, From equation 135
it can be seen that 1f both k and U are constant
the turbulence can only decay. This was observed
4n the calculation and resulted in an extension of
the potential core length, However this paper is
concerned with wmodification to a basic undisturbed
flow by an acoustic excitation rather than absolute
Lehavior thus no effort has been made to correct
this behavior. Such a correction will be made in
later calculations.

With U specified the variation of w with r may
be calculated from equation 33. The values of U
at the grid values of & were then determined using
a cubic spline fit for G(w).

Calculation of r from w and u(w)

At each axial location the valu. of radial
position must be calculated from the local valueso

of W and G, Letting £(w) = w/U and using
equation 33
2 2 2 A ,
(), = %)y, + "“e“i{ £(t)de ,  (48a)
where
t= (= )by (48b)

A cubic polynomial spline £it may be obtained for
£(t) on the interval (W, ,,» W ) and finally,

2
(£, 4, ) W]
(x? ) = %, 1“‘“ h, {~-———~—-——-i - gk 4R )
(49)
where
{0, 2
i RN
f, === and kK, = — &1}, . (50)
1 ﬂi 1 au)2 w4

The Computer Program

The numerical method was programmed in FORTRAN
and run on an IBM 3033 processor. A simplified
flow chart is shown in Figure 1. After initializing
the values of u and k at the grid points the eigen~
sdlutions of the Orr-Sommerfeld equation are
obtained for that velocity profile. This gives
the distributions of the periodic flow field, The
integrals in equation 29 may be calculated as well
as the radial distributions of the sguyrce term ¢
and the periodic stress gradient [8(uvr)/3r])/r.

The wave amplitude at the next location is then
"computed from equation 28, Estimates of the
coefficients of the matrices in eiuation 40 may
now be made and the values of u and ki

-ealculated using the matrix solver. The wave
shaper, and integrals at the downstream location
ave then calculated from the Orr-Sommerfeld equa-
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tiop using the estimated downatream velocity
srofile, Revisnd estimates of the wave amplitude
ray alwo be wado and new estimates of the values
of the matrix elkments in equation 40 are made,
The procedure 1s repsated unti) the mean velocity
profile at the downstream location is unchanged by
further iterations. This requirement was mat in
the present calculations when the sum of the root
mean squaye diffiranccu between the new and old
estimates of U at all the grid points was less
than 0,011, Thic was found to ensure three decimal
places of accuracy at each grid point,

The numerical method ensures that alterations
in the mean flow properties due to the presence of
a finite amplitude periodic structure can be
obgerved in both the axial and radial directions,
and that the "shape" of the mean velocity and
turbulent kinetic energy profiles may alter. The
grid constants and coefficients used in the present
calculations are shown in Table 1 where

a3 m o, agt
Table 1 Constants used in computer program.
0
o A 6 AL o,
0,90 0.5 0,2 0.0436 1.1

Calculate initial w-grid and U(w), k(w)
|

Calculate initial wave shapes OJ (r) etc.
|

) 3, ¢5 ond’

calculate 1§, 2,

(d uvx'/dr):1

Calculate (IA[2)3+1
|
Set up elements of block tridiagonal mnttixl

|
341
ky

Solve for Ei+l ,

" §
yvadial position [r(w)]jﬂ
|

(r) etc.
) §

j+1

A Calculate

Calculate Gj

j+1 j+1

Calculate I i+

I
1 4
(duv::/dr)J"'i

» 95

1

-t Test for convergence

NO

IYES
Proceed to next [ location

'

Flow chart for computer program

Fig. 1
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Results and Discussion

Some preliminary calculations have bean performed
using the wodel described in the previous section.
These calculations are viewad as an initial test of
the method to provide guidance as to improvad wmodels,

The axial variation of the jet thickness for an
unexcitad jet is shown in Pig. 2, The variation
approaches a linear increase with axial distance
with a virtusl origin of x = ~2,0, This agrees with
the measurements of Maestrello and McDaidld whose
data were used as the initial velocity:profile,

A collapse of the computed mean velocity and turbuy-
lent kinetic energy profiles is obtained by using

& stretched radial coordinate, (r -1)/(x+2),
These are shown in Figs, 3 and 4 respectively. Thus
the unexcited jet behaves in agreement with experi-
ment, though the spreading rate shown in Fig. 2

is somewhat low due to the idealized nature of the
potential core mean velocity and turbulent kinetic
energy profiles,

Most of the calculations hav- been performed for
an excitation Strouhal number of 0,25, However ipn
Fig. 5 the effect of Strouhal number of the jet
spreading is shown. The spreading is greatest
for St = 0.5 and leaat for St = 0,25, However the
excitation level of |A|Z = 1 x 104 vas the minimum
level at which modifications to the jet structure
were observed, In all cases the jet zpread rate
increased, Fig. 6 shows the effect of increasing
the excitation level by a factor of 10, The jet
spreads inltially more rapidly and then grows
linearly for an excitation Strouhal number of 0.25,

, 0276
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Fig. 4 Collapse of turbulent kinetic energy with
(r-1)/(x+2). For legend see Fig. 3
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1.6 The new virtual origin of mixing is at x = «3,75,

The absolute levela of excitation needed to produce
these effects are discussed below,
1.4 When there is no interaction between ‘the wave
and the flow field the local rate of growth is
that predicted by inviscid linear stability theory.
However, when the wave is of sufficient amplitude
to generate significant "wave-~induced stresses" the
wave loses epergy to the random turbulence, This
can be seéep in Fig. 7 where the ratio of the wiave
amplitude to its initial amplitude is shown. From
*  the definition giving |A|2 using the normalization
of equation 30 it can be associated with the mean
square pressure fluctuation on the jet axis., As
the wave amplitude increases its rate of growth
falls below that of the linear grediction. For
an initaal amplitude of 1 x 10-2 for x/r, greater
than 4.0 the wave transfers more energy to the
random turbulence than it gains from the mean flow
and it begins to decay,: There is also some decrease
in the growth rate duec to changes in the shape of
the mean yelocity profile and the jet width, How-
ever for [A|Z = 1 x 1073 linear stability predicts
vave growth up to x/ry = 5,5.

. Jet thickness
= o - -
o P @ 'Yy

. J
L 3

The amount ond distribution of the eénergy trans-
ferred to the turbulence is seen by performing a
radial energy budget, This is shown in Fig, 8 for
8.8 4 4 . . 1 A . 4 1 the unexcited zase, for a jet width of 0.447 which

e | 2 8 4 5 6 7 8 § |{e occurs at x/ry = 1.66, Fig. 9 shows the energy
budget in the excited case at a similar jet width,

Axial distance “/‘J 0,446, which occurs closer to the jet exit, x/ry=1,07,
in this case, The additional term in the turbulent
Fig. 6 Effect of excitation am 11§ude on jet kinetic energy equation which describes the wave
thickness., St =0.25, $A| -] x 10-4' —— interaction effect is seen to peak on ench side of
]Alg = 1 x10°3, ——nm—, %No excitation, the jet lip line at r/ry = 0.8 and 1.2, Tts peak

i
.
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direct production from the mean flow, however mince
the other effects are aimodt in equilibrium, most
of the production balanced by viscous diseipation,
this has a significent effuct,

The mean velocity profiles in the excited case
ara shown in Yip, 10, The shupe of the vave profiies
is such that in the potential core the vave transfers

‘momentum to the mean flow, This results in a slight
increasa 1in the jet canterline velocity. The data
all collapse using the same stretched coordinate,
(r=1)/(x+2), as used for the unexzited jet, with
the exception of the profile at x/ry=2.0. How-
evar, this is to be anticipated since in this
region the jet growth rate is more rapid, An
inicial look at the velocity shape, in comparison
to Fig., J shows a broadening of the profile at the
outer edga of the jet in agreement with the measure~
ments of Schmidt,” However if a new virtual origin
in chosen at x/ry = 3,75 the calculations from both
excited and unexcited jets are virtually identical.
The same applies to the profiles of the turbulent
kinetic energy which are shown in Fig. 11 as &
function of (r=-1)/(x+3.75). The shape of the
profile is unchanged from that of thia unexcited jet
except at the farchest downstream stations,

*/ey= 7,96 and 10.0. In these locations there is
& rapid increase in the turbulent kinetic energy
inside the lip line. At x/ry=10.0 there is a
sudden increase in the peak ,{evel to 0.033 peaking
at a radial location of r/ry = 0.66. An initisl
look at the energy budget for this station indicates
a sudden loks of energy by the wave which 1s also
evidenced by its rapid decay shown in Fig, 7.
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Fig, 10 Collaps¢ of axial mean velocity with
(r -,-zl)/(x +2) for excited jet. St 0,25,
|A|o = 1 x 10~3, ¥or legend see Fig. 3.
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The effect of excitation alec increases the
integrated turbulent kinetic entrgy given by,

w
| wrdr .
°

*

This is shown in Fig, )2 where it can also be sean
that at the lower axcitation level there is &
slight decrense in the integrat:d lévels,

The choice of excitation level in thewe calcula~
tions has been datermined by whatever value gave
appreciable changen, As noted above the nirmaliza-
tion used for the eigensolutions of the Orr~
Sommerfeld equation means that [A[Z is the mean
aquare gralnurn fluctuation at the jet exit, Thus
for |A]& of 1 x 1074, the lower excitation levul,
the pressure fluctuation at the jet exit is 2 per-
gent of the dynamic head at the jet exit (tnken as
P u3/2). This is much sargar than the minimum
level observad by Moore of 0,08 percent. In
order to achiave comparable effacts with reducded
excitation levels it would be necewsary to increasa
the value nf T,

»

Conclusions

The results indicate that the model can predict
obuerved cffects of acoustic excitation. MNowever
the absolute levels required do not miteh experiments.
This may be attributed to the cholca of model for the
wave~-induced stressas particularly its multiplicative
constant, The results point to the need for o
knowledge of the following:

1. further effects of frequency and excitation
amplitude,

2, the effect of cholce of coefficient in Ty,

3, the effect of permitting ¥ to be frequency
dapendent, and

4, the effect of inclusion of "wave-transport"
terms in the turbulent kinetic encrgy equation.

There also exifts a eclear need for further
experimantal docunentation of the changas in
turbul ; structyre. Without this guidance,
development of appropriate models, for wave~
induced stresses in particular, is made difficult,
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Appendix A

Solution of the Viscous, Compressible, Linearized
Stability Equations for an Axisymmetric Jet

In the analysis it is assumed, fnllowing Dunn
and Linl% that the viscous dissipation terme in the
energy equation may be neglected. Assuming that
the mean velocity and density are functions of
radius only the non-dimensional equations of motion
may be written,

11

' . -(Ldv'r , 18w Buy . ,do = %p!
—é—’;-d-p(—-—-——--&-— *az)*" dr+uaz-o'

r or ¢ 3¢
) (A.1)
=dv' = dv'y L 8p' Lle2, ¥ _ 2 %
G i)+ jOY - Z T e
(A.2)
- (3w 'y L 108p' L2, w2 e
A+ i) RV - W)
(A.3)
(e 4 g 2w du L 3p' o1 g2 _
B+ YRV Gt TR Ty W

where the velocity fluctuations in the r, ¢ and 2z
directions are v', w' and u', respectively, and,

R = 2L (A.5)
v
vhere Py Uy and ¥, are the jet exit density,
velocity and radius, respectively. Also
2 2 2
vzs{%-r—l-%l-o-—lf—a—z--r—a—z-} (A.6)
o EOE ¢t a0 9z

. Combining the energy and continuity equations leads
to,

v'r . 1 ow'

love 1

Sty el 700

(A.7)

2,9p' -
”J{.Jl_ +1

"efoul
T TIAL S I

where M§ - ui/li and s, i6 the speed of sound at the

jet exit. In equations (A.l) through (A.6) all

, variables have been non-dimensionalized with
respect to the corresponding jet exit property and
the pressure is non-dimensionalized by the dynamic
head, pJug. at the jet exit. Equations (A.2, 3, 4

and 6) provide four equations for the four
unknown quantities, u', v', vw' and p'.

The disturbances are written in a wave-like
form so that a typical disturbance, q'(r,,z,t),
may be written,

a'(r,0,2,t) = Re{q(r) expli(az -wt +m})]}
(A.8),

where o is the axial wavenumber, w is the radian
frequency and m is the azimuthal mode number.
Substituting expressions of the form (A.8) into
the equations of motion gives,

o 2
v [32+(m;12]6_12%6}’
r T

- . ‘o\ 1 A
ip(au -w)§ +p' = -E{v" + -

(A.9)
B -wo+12 o L fon 4 & (2 +——l‘“‘2*2’1 10 +1 22 o),
) r r
(A.10)
1p(on ~w)d + pu'd + 1op = -Ili{ﬁ"-f- -ﬁr—' [0 + f—;]ﬁ} )

(A.11)
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and
\

M7 2 (as =w)p + {or + 2+

1|lﬁ

+ aafl} =
(A.12)

Primes denote differentiastion with respect to r.
For HJ = 0 and P = 1 these equations reduce to the

incomprassible equations.

For v= 0 or R = w the
cquations reduce to their inviscid form,

A solution

for the former case for the axisymmetric jet was

obtained by Morrisl’

Michalkelf',

arel’
¢, 0,0 f~»0 as
6(0) = $(0) = 0
$(0) = d(0) = 0
$(0) + 14(0) = 0

and for the inviscid case by
The boundary conditions to be satisfied

ree
n*on
ngi,

=1, (A.13)

As in the case of incompressible flow this sixth-
order system of equations reduces into one fourth-
order system and one second-order system for m = 0,

That is, the ¥ equation is not coupled to the

equations for the remaining variables.

Sirice the

solution in this case, m = 0, is most readily
obtained the analysis is described briefly below,
and is then used to infer the general solution

for arbitrary values of m.

In order to obtain a mumerical molutiou to this
problem it is necessary to determine the behavior
of the solutions in the regions of uniform mean
velocity, that is outside the jet flow and in the
potential core region close to the jet axis,

In the potential core region the non-dimensional

mean velocity and density are unity,

A series

solution to the reduced equations is mought close

to the jet axis.

Thus the disturbances are written,

making use of the boundary conditions for m = 0,

A 2

SmvVr+Vr? 4 vrl 4 omm

1 2 3

i= U, +Ur+u r? 4 U3r3 + -

1 2

2 3 -
S-P0+P1r+Pzr + Prd 4 -

(A.14)

After some algebra it may be shown that,

1 la R+4A M (o ~w) ] 2
f o= P 1 4+ = 7
' (n,[uu (o~ w)]

A

T

[a2R1+1A2H2(a w)]2
+ € £ 4 o
[R+1MJ(d-m)]
(A.15)
where
Az -o? + 1(a - W)R , (A.16)

Thig is the series expansion for the modified Bessel,
function of the first kind and zero order, that is,

2

[a R + nznz(a ~w)

p-PI

J [R + 1M, (u - w)]

(A.17)

°r
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This expression reduces t the known solutions in
the inviscid, and incomnressible cascs, that-4is, for

M- 0 f= Pozo(ar) . (A.18)

and for

Reow

p =PI (6T- @-w)ZHI - &) (A.29)

Inspection of the continuity equations then suggests
the associated forms for G and ¢ and substitution
of. these forms into the equations of wmotion yields,

afR + m:‘;(u -w))

G=-F (@ = WR L (M) (A.20)
IR[R + M3 - 0]
o=% @ - oR I, O%r)  (A.21)
where
o’ + 124 (@ - w)
e (A.22)

R + mé(d - w))

It is clear that the disturbance pressure has only
one linear solution which satisfies the boundary
conditions, This is the so-called inviscid solution
for incompressible viscous analys€:s Since the
momentum equations, which are the /,nly equations
effected by viscosity are identicdéd for hoth the
incompressible and compressible analyses the
"viscous solutions’ should be identical in both
cases, It 1s then readily shown that another
independent solution of the disturbance equations
is, v

p=o0
G = Uolo(kr)

ia
Y Il(At)

<

= -UD (A-23)

The same analysis may be applied to any region
where the flow is uniform. The solutions for any
region in which p = P, #nd T = G may be written as:

m = 0 P=h, no(l)'(z) (1A*r) (A.24)
2
. aR-IMD (1),(2) W, (2)
i -Al,ZW Ho (17%r) +A3’4 B (1Ax)
° (A.25)
2
(R ~1M°)
Gom-Ap g A ""E’STR_J" “1(1)'(2> (13#1)
Ay )\ W 1,2 (43r) (A.26)
p_OR
nd 0 peay, —2—— 1 8 @y
== '2 (R - 150)
G=h ,H (l) (2) (1h*r) +Ay (1) @ (55

(A.28)
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These solutions have been written in a form appro- Alj+1 = 14 ::_1(h )2 ;k - (1-+§)cih di+1}XAC
priate to the conditions far from the jet axis. The QA +0)o i B 1
roice of the Hankel functions of the first or (B.12)
second kind depends on the argument and the satis- *
faction of the boundary condition at infinity, A.13. ~3+1
Similar forms, in terms of modified Bessel functions B'j+1 _ { 2 & (o 1) dj+1 j+1}AA; -1
may be written for the solutions in the potential 1 - 21--1(h )2 °k £
core or close to the jet axis. o 1 oh (B.13)
Appendix B ~§41
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In equations 36 and 37 the definition of the Cij+1 - i-l 5 é + 1 J+1}AA;
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Whe The boundary conditions on U and k may be written,
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Abstract

Calculations of the viscous, spatial stability characteristics of
a compressible axisymmetric jet have been made. The asymptotic solutions to the
stability equations in regions of constant mean flow properties are developed
and used as the boundary conditions f;r a numerical integration of the
compressible stability equations in cylindrical coordinates. Calculations
are presented for a range of Mach and Reynolds numbers for both the axi-
symmetric and helical modes. Increasing the Mach number is found to
stabilize’the flow as is decreasing the Reynolds number. The helical mode
is found to be more unstable than the axisymmetric mode for higher Mach
numbers, The viscous calculations are found to closely approach the

invisc¢id limit for local Reynolds numbers greater than 500.



Introduction

The stability characteristics of free shear flows are of considerable
interest in the field of aerodynamic noise. Instability waves appear to
perform an important role in noise radiation at both subsonic and supersonic

1

mean flow velocities (Moore™ and Mclaughlin, et al.z). Analytical studies

of noise radiation by instability waves, such ;s that by Tam and Morr153

have assumed that because of the dynamic instability of the mean flow

profile in jets and shear layers an inviscid analysis may be used. Though

this assumption appears justified by comparison' with experiment and has the

attraction of simplicity it has a disadvantage., For damped waves, though

valid inviscid solutions do exist, the solution is not valid over the

entife transverse coordinate. If a more detailed analysis of the interaction

between the instability wave and the other components of the fluid motion

is desired knowledge of the wave properties at all real locations is

required. Such interactions are thought to be responsible for the broadband

jet noise amplification measured by Bechert and Pfizenmaiera, Moorel, and

others. The analysis of the present paper overcomes this difficulty by

using a viscous analysis. The question of the appropriate choice of

Reynolds number in a given flow problem, whether the basic flow is laminar

or turbulent, is not addressed. Solutions and calculations are presented

for the viscous compressible stability equations in cylindrical coordinates.
The inviscid stability of compressible jet flows has been studied by

many authors including Lessen, Fox and Zien5 and Michalke6. The former

considered a cylindrical vortex sheet and the latter used realistic mean

flow profiles which simulated the i».tial and final stages of the annular



jet mixing region. The viscous stability of incompressible axisymmetric
jet flows with realistic mean velocity profiles has been calculated by

7, Mollendorf and Gebharts, Lessen and Singhg, and Morrislo. All

Burridge
authors considered a jet welocity profile given by u = (1 + 1'2)-2 which is
characteristic ¢f the flow downstream of the annular mixing region.
Morrislo also considered the same mean flow profiles used by Michalke.

The present paper describes the viscous stability of a compressible
axisymmetric jet to disturbances of arbitrary azimuthal mode number. The
asymptotic solutions to the compressible stability equations are developed.
Calculations are‘presented for a range of Mach numbers and Reynolds numbers

10

for a mean velocity profile considered by Micbalke6 and Morris™ which is

characteristic of the end of the annular mixing region of the jet.

\
The Stability Equations and Boundary Conditilons

The full compressible stability equations in Cartesian coordinates
have been developed by Lees and Linll. A simpler set of equations which
neglect viscous effects in the energy equation was introduced by Dunn and
Linlz. A similar simplification is used in the present paper. The dissipa-
tion terms are neglectea in the energy equation and the viscous effects in
the momentum equations are characterized by their incompressible form.
Variations in the moleﬁular properties of the fluid are also neglected.
Though these assumptions restrict the analysis to'moderate Mach numbers and
flows with little variation in the mean static temperature it should be

remembered that the purpose of the analysis is to provide a viscous correc-

tion to the inviscid analysis to enable solutions to be obtained along the



real radial axis. With the further assumption that the mean flow properties
are functions of the radial coordinate alone, the "parallel-flow approxima-

tion,"” the linearized disturbance equations may be written,

W 4 G2 a0 1)

PSRy + B L vy - 2 (2)
a{%m%}@%-%{v%v-f—b%%ﬂ} (3)

P 4 g Rl duy y B0l L g2y 4)

vhere A' = {%_ag;r +-% g;' + g:'} , (5)

The velocity components in the (r, ¢, z) directions are v, w, and u,
respectively, overbars denote the mean flow, and primes denote disturbances.
All quantities have been nondimensionalized with respect to the jet exit
conditions, e.g. v = u*/ﬁJ, r= r*/rJ, p = p*/5JGJ2, where stars denote a
dimensional quantity and the subscript J denotes jet exit conditions. The

Reynolds number and Mach number are given by,
R = pJquJ/uJ and M= uJ/aJ y (6)

where 3 is the local speed of sound. For R -+ « equations (1)-(4) approach
theyinviscid system of equations and for M = 0 they are the viscous
incompressible equations in cylindrical coordinates.

A disturbance is assumed to possess a wavelike form with prescribed

azimuthal periodicity such that, for example,



[}
£

u'(r,¢,z,t) = Re[G(r)exp{i(az - wt + n¢)}] n

vhere a is the complex axial wavenumber, w is the real radian frequency and
n is the azimuthal mode number. Substituting terms of the form (7) for the
velocity and pressure fluctuations in equations (1)-(5) yields a system of

four coupled ordinary differential equations for the four unknown functions,

i(r), ¥(r), 4(r) and P(r). These equations may be written,

an 4 9 2 241) .. 2
w50 + p' =L o+ £ o +-‘-"—rr-)-]v-1-;—’2‘-a}, (8)
..1566 + im = 1 {ﬁ" + !'— - [a —--————(n +1)] + i 2n A} ’ (9)

T R T 2

l an G' 2 n2 ~

-10p8 + pu'd + dap = 2 {8" + - - [« + )6} , (10)
r r2

and —1M° Qp + {¢" + = + inw + agli} = 0, (11)

where primes denote differentiation with respect to r and,

Q=w-oau (12)

The boundary conditions on the fluctuations which are kinematic in origin

at r = 0 were developed by Batcheloxr and Gill13

$(0) +4G(0) =0, n=1. (13)



The numerical solution of equations (8)-(11) depends on a knowledge of
the solutions at the edges of the integration region where the mean flow
properties are taken to he constant. These asymptotic solutions are

developed in the next section.

Asymptotic Solutions

In order to determine the form of the solution in regions of conétant
mean flow properties a series solution is developed for small r. The form
of this solution 1s found to indicate the general solution of the equations.

.For n = 0 equation (9) is uncoupled and equations (8), (10), and (11)
provide a system for {i, ¥, and f. Since this case is algebraically simpler
than that for asymmetric disturbances its solution is given more fully and
the corresponding solution for n # 0 will only be stated.

Consider a region in which u = ﬁo’ p = 50 and Q = QO where the subscript
o indicates a constant mean flow property. Then equations (8), (10),

and (11) reduce to,

1 9! 2 1
— AV = =[O — 2, W
ip 29+ P g [0+ - @+ r2)v] R (14)
A A _1; an ﬁ_'_ 2.
-ip 9,8 + dof = 2 [8" +=— - a"d] , (15)
oy ‘
and ~ng p + L 4 da6 = 0 (16)

From the boundary conditions (13) the form of series expansions, for small r,

for the dependent variables is found to be,
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3 5

V=Vvr+vr + Vgr™ + ---

1 3
- 2 4 —
u Uor + Uzr + U4r +

p=pbr+pr?aprhd o (17)

After considerable algebra it is found that

*2.2 wb ol
Av“r AXSp + } ,

p = 20{1 + S+ T (18}
) (@®R - 1A2M290)
where M = 5 (19)
(R - 1M°Q )
(¢)
2 2
and A =a® -4 QR . (20)
However, equation (18) is the series expansion for the Modified Bessel
function of the first kind, so that,
p =PI (Mr) . (21)
The corresponding forms for i and ¥V are then readily shown to be,
(R - 1M290)
A= . *
1] PO o pogoR IO(A r) (22)
(R - 1470 )
U = = * *
Y Po i poQoR Il(A r) . (23)

.

Now equations (14)-(16) are a fourth order system of equations, thus two
linearly independent solutions which satisfy tlie boundary conditions should
exist. However, the form for § contains only one arbitrary coefficient.

This results from P only satisfying an "inviscid" equation. The "viscous"



solution for § 1s zero. With f » 0 in equations (14)-(16) they are
identical to the incompressible viscous equations. Thus the "viscous"
solutions for the velocity fluctuations are identical to their incompressible
form given by Hortislo. The general solution to the stability equations

may now be written down. Their form is given for large r, outside the jet
flow, where the Modified Bessel functions are replaced by Hankel functions.

The asymptotic solutions are,

n=0
p = am) () , (24)
a(R - 1M Q )
6= A AR (1) (1A*r) + A um (1rr) , (25)
(r - 10 )
¥ = --A1 1A% poﬁoR H (iA*r) - 3 Y 1 (iAr) . (26)
n¢ 0
p(:»QOR (1) »
p=A ——5—H (iA*x) (27)
1o - %) ® ,
6 =a B ey +a, 8 ) (48)
= oa 2L D an) -4, §8) @ - A 2R 1D @ 29
G=a B ey + 4, 20 e+, = (1 @} . Go)



The real parts of A* and A are taken to be positive so as to satisfy the
outer.boundary conditions., Similar forms, in terms of Modified Bessel
functions may be written for the solutions in the potential core or very
close to the jet axis. It should be noted that for M = 0, A% = o and the
viscous incompressible solutions are recovered and for 1/R = 0,

1*2 = 02 - Mzné%), and the compressible, inviscid solutions are found.

Calculations

Mean Velocity and Temperature Profiles

The mean velocity profile considered in the calculations is representa-
tive of jet profiles towards the end of the potential core. The same profile
has been used by Michalke6 and Mo:rislo, The velocity profile may be

written as,

G =% {1+ tanh [7:% & -1}, (31)

where 6 is the local momentum thickness and its variation was used by
Michalkelo to represent the influence of axisymmetry on the jet stability.
The mean density in the jet is related to the velocity using a Crocco

relationship of the form,

Beak/{l+ (- DE+E (v~ " RA - D), (32)

which is identical to the form used by Michalkelo except that T* is defined
as the jet static temperature ratio,

T* = TJ/To ’ (33)

where 'I‘0 is the ambient temperature,



Numerical Procadure

Calculafiona have beer performed for 6 = 0.16. The numerical solution

is started at r = 4,0848 where u = 6,0 x 10-6

using the linearly independent
solutions given by equations (24)-(30), The stability equations are
integrated numerically using a fixed step-size Runge~Kutta integrator with
the linear independence of the solutions being preserved by an ortho-
normalization procedure. The numerical integration is stopped at r = 0.2448,
where T = 0,99999 and the numerical solutions are matched with the known
form of the solutions in the potential core. This matching procedure leads
to a determinant whose magnitude must be minimized to obtain the eigen-
solution. An iterative technique based on an inverse Lagrangian interpola-
tion procedure is used to deteraine an elgenvalue. Further details of the
numerical procedure are given by Morrislo. The inviscid calculations,

which are shown for comparison were obtained by solving the second order

ordinary differential equation for the pressure on the same integration

contour,

Results

In spite of the large number of parameters that enter the problem in
compressible viscous analyses only a limited number of calculations are
presented. The trends that were previously observed in the limiting cases,
inviscid compressible flow and viscous incompressible flcw,.are also found
in the present results. All calculations have been performed for a jet

static temperature ratio, T* = 1,0,
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Effect .of Mach Number, The variation of the local growth rate, -uie,

for the axisymmetric, n = 0, mode and the asymmetric, n = 1, mode, are
shown in Figures 1 and 2, respectively. Also shown is the inviscid solution
for M = 0. The results are for a local Reynolds number, R6 = 80, 1In both
cases as the Mach number increases so the maximum growth rate decreases and
the range of amplifying frequencies decreases. The more rapid decrease in
amplification rate with Mach number is for the m = 0 mode. This indicates
that for higher Mach numbers the n = 1 mode will be more likely to occur
naturally. This was observed in the measurements of McLaughlin et al.z.
The ffequency for maximum growth rate decreases with increasing Mach number
for both modes but is lower for the n = 1 mode. The variation of the phase
velocity, given by w/ar, is shown in Figures 3 and 4 for the n = 0 and

n = 1 modes, respectively. At low frequencies the phase velocity for the
n = 0 mode is greater than the jet centerline velocity. Increasing the
Mach number results in a decrease in the phase velocity for most of the
amplifying frequencies. At high frequencies where the disturbances are
damped increasing the Mach number resultsina slight increase in phase
velocity. The variation of the phase velocity with Mach number is much
less for the n = 1 mode, the phase velocity being approximately 0.6 times
the jet centerline velocity for all except the lowest frequencies. The
variation of maximum growth rateband phase velocity at the frequency for
maximum growth for the two modes is given in Tableil. In spite of the wide
variation in phase velocity for different frequencies for the n = 0 mode
its phase velocity at the frequency for maximum amplification is virtually

independent of Mach number.
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Effect of Reynolds Number. The variations with Reynolds number and
frequency of the local growth rate, -aie, for the n = 0 and n = 1 modes
are shown in Figures 5 and 6, respectively. The results are for a Mach
number of 1.0. The inviscid result at this Mach number is also shown.
The trends are the same as those .calculated by Morrislo for the incompressible
case, Increasing the Reynolds number increases the growth rate at all
‘frequencies. Calculations have not been performed for damped disturbances
with supersor*c phase velocities. The existence of these modes has been

14

questioned by Lessen et al. and even if they exist physically it appears
that the present formulations of stability theory are inadequate for their
correct treatment, There is little variation with Reynolds number of the
phase velocities for either the n = 0 or n = 1 mode. This is shown in
Figure 7 where the growth rates and phase velocities, relative to the
inviscid values, are shown for both modes as a function of Reynolds number
for a fixed frequency, w6 = 0.14, which is close to the maximum amplifica-

| tion frequency for the n = 0 mode. For wd = 0.14 and M = 1.0, the local
growth rate in the inviscid limit for the n = 0 mode is -aie = 0.0372 and
the phase velocity is 0.7150. For the n = 1 mode -aie = 0.0458 and the
phase velocity is 0,5993., At a local Reynolds number RO = 640 the wviscous
growth rate is 96 percent of the inviscid value for the n = 0 mode and

97 percent of the inviscid value for the n = 1 mode. It is clear that the
inviscid stability characteristics are recovered for any appropriate "local"
Reynolds numhzr greater than, say, 500.0. At lower frequencies the inviscid
limit will be approached more slowly since it is the factor (OR) that enters
the equations. Thus for lower frequencies a higher value of Reynolds

number is required to come close to the inviscid solutions.



12

Conclusions

Calculations have been presented for the viscous stability character-
istics of compressible axisymmetric jets. Asymptotic solutions to the
compressible stability equatious have been obtained and have been used as
boundary conditions for the numerical integration. Increasing the jet Mach
-number is found to be stabilizing as is decreasing the Reynolds number.

The helical, n = 1, ‘mode, is more unstable than the axisymmetric, n = O,
mode at high Mach numbers. The viscous calculations have been found to
approach the inviscid limit for local Reynolds numbers greater than 500.

A number of simplifying assumptions have been made in the development
of the compressible stability equations., Extension of the method presented
here to a system of equations which includes such effects as temperature
dependent molecular properties appears reasonable. However, i1f the Reynolds
number is based on an eddy viscosity the present system of equations appears

adequate.
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Table 1. Variation of maximum amplification rate and phase velocity at the

maximum amplifying frequency with Mach number, R6 = 80.

n=0 n=1
max. max.
amplifying amplifying
u frengncy, ‘“16 w/ar freqxgncy, -aie w/ar

| 0 0.1698 0.0490 0.7226 0.1278 0.0515 0.6051
0.4 0.1638 0.0454 0.7230 0.1236 0.0497 0.6021
0.8 0.1474 0.0351 0.7224 0.1110 0.0447 0.5930
1.0 0.1348 0.0278 0.7228 0.1026 0.0413 0.5862
1.2 0.1201 0.0188 0.7225 0.0928 0.0375 0.5780




Fig. 1

‘Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig, 7
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Figure Captions

Effect of Mach number on the variation of amplification factor

with frequency. n = 0, RO = 80,0, M = 0, = == o= =}

M = o.l"_ — ; M = 0.8,-- ; M = 1.0’o-¢n-o.-o---.

M = 1.2’-_-

+ Inviscid solution, M = (, =——r———

Effect of Mach number on the variation of amplification factor

with frequency. n = 1, RO = 80.0. For legend see Fig. 1.

Effect of Mach number on the variation of phase velocity with

frequency. n = 0, R8 = 80.0. For legend see Fig. 1

Effect of Mach number on the variation of phase velocity with

frequency. n =1, RO = 80,0. For legend see Fig. 1.

Effect of Reynolds number on the variation of amplification

factor with frequency. n =0, M =1.0. RO = 20.0,=-
RO = 40.0, ceseevevecsers s RO = 80.0,~ = = ; RO = 160.0,

= =———— e : RO = 320.,0, = = = = — . Inviscid solution,

Effect of Reynolds number on the variation of amplification

factor with frequency. n =1, M = 1.0. For legend see Fig. 5.

Variation of viscous solutions with Reynolds number

(-ai)/(nai)inviscid’ n=0,-= s n=1,
@)

M=1,0, wt = 0,14,

inviscid/(ar), n=0,——-—'-—;n-_—l’o ----------- eee
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