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SUMMARY

This paper discusses a numerical technique and a computer program developed
for the prediction of the noise of propellers with advanced geometry. The
blade upper and lower surfaces are described by a curvilinear coordinate system,
which is also used to divide the blade surfaces into panels. Two different
acoustic formulations in the time domain are used to improve the speed and
efficiency of the noise calculations: an acoustic formulation with the Doppler
factor singularity for panels moving at subsonic speeds and the collapsing
sphere formulation for panels moving at transonic or supersonic speeds. This
second formulation involves a sphere which is centered at the observer position
and whose radius decreases at the speed of sound. The acoustic equation con-
sists of integrals over the curve of intersection for both the sphere and the
panels on the blade. Algorithms used in some parts of the computer program are
discussed briefly. Some comparisons with measured acoustic data for two model
high-speed propellers with advanced geometry are also presented.

INTRODUCTION

Man has used propellers since the early days of flight. In recent years,
however, other propulsion systems such as turbofans have replaced propellers on
large commercial and military aircraft. Many factors, such as cruising speed
limitation, propulsion system weight, noise, and operating cost of propeller-
driven aircraft, have led to their replacement. More recently, the energy
crisis has created a new incentive to look at propellers for use in future
aircraft.

It is well-known that the efficiency of propellers is generally higher
than that of jet-driven propulsors. However, a conventional propeller for an
aircraft flying at Mach 0.8, which is the speed of current subsonic airliners,
may generate an excessive amount of noise. The problem of noise alone is
sufficient to make conventional propellers unattractive for consideration in
future airliners. 1If propellers are to be used in large transports, an advanced
geometry to reduce noise must be considered. Such a step has been taken in
recent years, and model tests have shown the effectiveness of advanced designs
both in reducing the noise and maintaining high efficiency.

Since both model and full-scale tests of propellers are very expensive and
time consuming, considerable effort has been made to predict the noise theoret-
ically to complement the aerodynamic calculations. Advances in the field of the
aeroacoustics of rotating blades have helped in the understanding of the basic
noise generation mechanisms of propellers with advanced geometry. This paper
discusses one of the noise prediction methods developed specifically for these
propellers. First, the formulations, based on linear acoustics, used to calcu-
late the noise are presented. The computing algorithm and a discussion of the
details of some of the subroutines are presented next. Finally, some examples



for which test results are available are given to point out the capabilities
and the weaknesses of the prediction method. On the whole, the method provides
a versatile and useful tool for predicting the noise of both conventional and
advanced propellers.

SYMBOLS AND ABBREVIATIONS

b local chord

c speed of sound in undisturbed medium

Cp pressure coefficient

d distance of observer from x3-axis

f(;,t) =0 equation of blade surface
r

g=T-t+-=20 equation of collapsing sphere centered at observer
c position %

i,] indices of summation

local force (per unit area) on fluid in direction i

K(T) function defined by equation (12)
L.E. leading edge

M Mach number

M Mach number in radiation direction

unit normal vector to surface £ =0

-
p'(x,t) acoustic pressure

PCA pitch change axis

Q fraction of chord as measured from leading edge
R radius

> .. > >

r radiation vector, x -y

. N > >
r length of radiation vector, Ix - y|
>
r unit radiation vector



OASPL

SPL

surface area of blade

observer time

trailing edge

local normal velocity of blade surface
local velocity of blade surface

observer position fixed with respect to undisturbed
med ium

observer position in fixed frame

observer position in moving frame

source position

overall sound pressure level, dB (re 20 UPa)
sound pressure level, dB (re 20 UPa)

blade pitch angle

azimuthal coordinate of observer

curve of intersection of blade surface and collapsing
sphere

Dirac delta function

rotating frame coordinates; 1N 1is radius in polar
coordinates

angle between surface normal and radiation vector
= 3.141592654

density of undisturbed medium

source time

emission time

azimuthal coordinate of source at time T > 0
azimuthal coordinate of source at T =0

rotational speed of blades



Subscripts:

f frame fixed with respect to undisturbed medium
r radiation direction

ref reference

ret evaluated at T = T*

o conditions of undisturbed medium

1,2,3 coordinate directions

Vectors are denoted by *; symbols alone represent magnitude of the
vector.

THEORETICAL FORMULATION

Propeller noise generation and prediction have been studied for almost
60 years (ref. 1). Sufficient advances have been made during this period so
that reliable noise prediction can be made in many cases. Almost all the pre-
diction methods available today rely on linear acoustics. Theoretically, the
problem of noise prediction can be reduced to the solution of the wave equation
with a given distribution of sources on a moving boundary (propeller blade sur-
face). There are basically two steps in the prediction problem:

1. The determination of the source distribution on the moving boundary

2., Solving the three-dimensional wave equation with the specified source
distributions on the blade surface

There have been many successful prediction theories in the past such as
those by Gutin (ref. 2), Deming (ref. 3), Garrick and Watkins (ref. 4), and
Lowson (ref. 5). However, all these theories have some limitations which make
them unsuitable for applications to propellers with advanced geametry. Some of
these limitations are the assumptions of compactness of the acoustic sources and
far-field position of the observer. Two unusual features of advanced propellers
which must be considered in the development of a prediction technique are

1. The blades have considerable twist and out-of-plane sweep. Therefore,
sources on the blade surface should not be approximated by sources in the plane
of the propeller.

2. The propeller helical tip speed is supersonic. The formulations used
in calculating the noise must be capable of handling supersonic sources.

These two features of advanced propellers and some other requirements, such
as the need for near-field calculations, led to the selection of a purely numer-



ical approach for noise calculations. The formulations used are two forms of
the solution of the Ffowcs Williams and Hawkings (FW-H) wave equation (ref. 6),
where the quadrupole term has been dropped. Thus, only the surface source terms
have been retained. The effect of neglecting the quadrupole term in the FW-H
equation will be discussed later.

The governing equation for the determination of the acoustic pressure
p'(x,t) |is

1 32p ) )
_—_vz ' = em VEl S (£ - —|1:|VE|l §(£ 1
Rk =[oovalvel 6 ()] axi[1| | §9) 1)

where ¢ and p, are the speed of sound and the density in the undisturbed
medium, respectively, and v, is the local normal velocity on the blade sur-
face, which is described by the equation f(x t) = 0. The local force (per
unit area) on the fluid by the blade surface is denoted by 1;, and S(f) is
the Dirac delta function. Equation (1) is known as the FW-H equation (ref. 6).

The two forms of solution for equation (1) which were derived in refer-
ence 7 and used to calculate propeller noise are

1323 tg PoCVp + 1p

anp' (X,t) = - — _— as
cat =0 rl'l - My ret
lr
+ - ds (2)
£20 |r?|1 - My| [ret
3 PoCVp + lp cl,
41rp(xt)-— —_—-——drdl'-i- —~————e ' AT (3)
dt “g=0 r sin § £=0 r2 sin ©
g=0 g=0

In equations (2) and (3), dS is an element of surface area on the blade
=0, and dI' is an element of length of the curve of intersection for the

surfaces f =0 and g =T - t + (r/c) = 0. The symbol 6 represents the

angle between the normal to the surface f = 0 and the radiation vector

+ e . .
r = ; - ;. In equation (2), M, = 3 * ¥/c, where v is the local velocity on
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the blade surface and T = gyr, the unit vector in the radiation direction.
The collapsing sphere method discussed in this paper refers to application of
equation (3) (see ref. 7).

To apply the above equations, the right sides of both equations are written
in finite difference forms. Each blade is divided into small panels, and
depending on whether M, 1is less than or greater than 0.98, equation (2) or
equation (3), respectively, is used. The observer time differentiation is also
done numerically.

The computer program discussed in this paper can handle cases in which the
observer has the same forward speed as the propeller. This is achieved by let-
ting xm be the position of the observer in the moving frame; then the observer
position in the frame fixed to the undisturbed medium is

t
Xg = Xp + 5ﬁ v(t') at'
0

where z(t') is the forward velocity of ghe propeller. Therefore,_}n the
moving frame, the numerlcal value of p'(xp,t) is the same as p'(Xg t). 1In
this case, f = Xf(xm,t), and this is known if the motion of the propeller is
specified.

THE NUMERICAL APPROACH TO NOISE CALCULATIONS

In this section the method of implementing equations (2) and (3) on a
computer for propeller noise calculations is presented. Each blade is first
divided into panels in a manner discussed in the next subsection. The con-
tribution of ith panel to the acoustic pressure, denoted by pi', from equa-
tions (2) and (3), may be written as

. 1 A |[PoCVn t+ Iy lr
4mpPi (x,t) = - — || —— As; + || ———— As; (4)
c At|\ |1 - M| 21 - M|
il ret il ret
> A PoCvp + Ip cly
4amp;i' (X,t) = =— zg - AF(Tj) At + 25 —_— AF(Tj) AT (5)
At r sin 6 r2 sin 0
J i J i

The contributions of all the panels are added together to obtain the acoustic
pressure signature. (x t). The numerical differentiations in equations (4)
and (5) are performed after the summations on all panels are performed.



Although the concept behind the application of these equations is simple,
considerable care must be exercised in selection of an algorithm for computer
programming for several reasons. First, past experience has indicated that
acoustic calculations based on the above equations are sensitive to errors.
Both the specification of blade geometry and the emission time calculation must
be done as precisely as possible. Second, since noncompact source calculations
are generally time consuming, the speed of execution for subroutine algorithms
becomes an important consideration.

Figure 1 shows the flow chart for the computer code developed at Langley
Research Center. Each blade is divided into panels in a manner that is
discussed in the next section. The observer position and time are prescribed
next. Depending on the value of the helical tip Mach number of each panel cen-
ter, one of the two schemes for the calculation of the emission time is used.
Once the emission time (or times) of a panel is known, the value of M,, the
relative Mach number in the observer direction, is calculated. If this M, is
less than a prescribed value (usually taken here as 0.98), then equation (4) is
used for that panel. Otherwise, equation (5) is used. Therefore, for a given
observer position and time, equation (4) is used for some panels on the blade
surface, and equaE}on (5) is used for the remaining panels to obtain the acous-
tic pressure p'(x,t). The combination of the two formulas improves the speed
and efficiency of the acoustic calculations. 1In general, the implementation of
equation (4) on a computer is simpler and faster than that of equation (5). On
the other hand, equation (4) cannot be used when M, is close to 1, and thus
equation (5) must be used.

In the following subsections, further details of important parts of the
computer program are presented.

Blade Coordinate Frame and Subdivision

The blades of advanced propellers can have substantial amounts of twist and
sweep. Thus, blade sources should not be assumed to be in a plane. For this
reason, a coordinate frame as shown in figure 2 is used to account for the
three-dimensional character of the blades. This frame, called the n—frame, is
fixed to each blade. The center of this frame is on the propeller axis, and the
No-axis coincides with the pitch change axis (PCA) of the propeller.

To describe the blade, the leading-edge curve of the blade is given as a
function of distance along the pitch change axis nN3. Then the chord, airfoil
section, twist, and thickness ratio of the blade are specified as functions of
Ny. The specification of these parameters is sufficient to describe the blade
completely.

To subdivide the blades into panels, each blade is cut in the radial direc-
tion by planes perpendicular to the pitch change axis. In the chordwise
direction, a new nondimensional variable @ is introduced. This variable is
the distance from the leading edge along the local chord divided by the local
chord b. The upper and lower surfaces of the blade are now mathematically
described as functions of the variables TNy and Q. Figure 2 shows this cur-
vilinear coordinate system for blade description.



The blade is subdivided into panels by specifying the number of spanwise
and chordwise divisions. This division gives the increments Anj; and AQ for
each panel. If n 1is the position vector of a point on the blade surface, the
surface area of the panel is approximated by the following relation:

am  on
As = [— x —| An, AQ (6)
anz 39

The unit normal to the blade surface as used in the acoustic calculations is
given by

om  an
— X
> 8n2 aQ
n= (7)
am
— X —
anz aQ

For thickness noise calculations, the upper and lower blade surfaces were
divided into panels. For loading noise calculations, the mean surface com-
prised of local chord lines is divided into panels. Different blade sub-
divisions were used for calculation of loading noise because details of the
surface pressure distributions are not generally available.

Calculation of the Emission Time

If the source and the observer times are T and t, respectively, and
the distance between the observer and the source is r, the emission time
T = T* 1is calculated from the relation

c(T* - t) +r =0 (8)

The emission time is the time when the sources on the panel emit sound which
arrives at the observer at the time t. The source position § is a function
of T, so that r itself is a function of T. Because of the trigonometric
terms in r (see eq. (11)), equation (8) cannot be solved for T* in closed
form. A numerical method must be used. Two schemes are used depending on the
speed of the source.

Scheme 1.- When the observer time and position are fixed, one can show that
for a given source in motion



== - (9)

where g =T - t + (r/c). Equation (8) demonstrates that, viewed as a function

of a single variable T, the emission times of a source in motion are the zeros

of function g. For sources in subsonic motion, one has M, < 1 and therefore
dg

P > 0. This means that the function g 1is a strictly increasing function of
T

T and thus can have only one zero.

These facts suggested the use of Newton's method to develop a fast itera-
tive scheme to find the emission times of each panel on the blade. This scheme
is used for panels with helical Mach numbers below 0.95. To speed up the con-
vergence of iteration, the known emission time of a nearby panel is used as the
initial guess for the emission time of the next panel. The use of this scheme
in the program has resulted in shortened computation time for general aviation
propellers which operate at subsonic tip speeds.

Scheme 2.- This scheme is used when the helical Mach number of a panel is
above 0.95. One may get multiple emission times for panels moving at supersonic
speeds. Because of this fact, scheme 1 will not work without narrowing down
the range of search for each root of equation (8). This new method is called
scheme 2 and is discussed briefly in the following paragraphs.

Assume that the source lies in the xyx;-plane at source time T = 0. The
source position at this time is described by (n,V¥) in polar coordinates as
shown in figure 3. The source rotates around the x3-axis (propeller axis) at
an angular velocity of w and moves forward in the positive direction of this
axis at velocity v3. The X-frame is fixed to the ugdisturbed medium and is
not in motion. The observer position and time are x and t, respectively.
Viewed by the observer in this frame, the source path is a helix. From equa-
tion (8), the following equation may be obtained:

c2(T-¢8)2-r2=0 (10)

With only the solutions T £ t being physically acceptable. The square of the
distance between the source and the observer can be written as follows:

r2 = x32 + d2 + n2 - 24dn cos (¢ - B) + v3212 - 2x3v3T (11)

wvhere ¢ =1 + wT, and d is the distance of the observer from the x3-axis
(see fig. 3). The angle B 1is shown in figure 3. Assuming vi3/c =M <1 and
To = X3/c, equation (10) can now be written as



R(T) = c2(1 - M2)12 - 2c2(t - MT,) T + c2(t2 - 1,2

=d2+n2 -~ 24dn cos (¢ - B) (12)
The graphs of

K(T)

c2(1 - M2)12 - 2c2(t - MTg) + c2(t2 - 142

K(T) =d2 +n2 - 2 dn cos (¢ - B)

are a parabola and a sinusoidal curve in the TK-plane, respectively. Thus, to
find the roots of equation (12), the points of intersection of a parabola and a
sinusoidal curve must be determined. These roots must lie between the points of
intersection of the lines K = (d + N)2 parallel to the T-axis in the TK-plane.
These lines are obtained by setting cos (¢ — B) in equation (12) equal to -1
and 1, respectively.

Not all the roots of equation (12) are emission times because the require-
ment T £ t is not satisfied for all the roots. Only the roots obtained by
the intersection of the parabola and the sinusoidal curve which are to the left
of the axis of the parabola are the emission times. One can graphically demon-
strate that only an odd number of emission times are obtained if multiple roots
are counted by their multiplicity (e.g., two equal roots are counted as two
roots). The method of modified regula falsi discussed in reference 8 is used to
find the roots of equation (12). In the implementation of this method, the
intervals in which each root of the equation lie are found first. An iterative
method is then used in each interval to find the roots. This method is more
time consuming to implement on the computer than that of scheme 1. However, of
the several methods for finding emission time tried in the course of the devel-
opment of the computer program, the scheme based on modified regula falsi was
the most satisfactory, both in precision and speed and in guaranteeing that all
the roots would be found.

Application of the Collapsing Sphere Technique

The collapsing sphere technique based on equation (3) or equation (5) is
time consuming on the computer and should be used for as few panels as possible.
Therefore, this method was used for a panel only if the Mach number in the radi-
ation direction at any of the emission times was greater than a prescribed value
(usually taken as 0.98). To calculate the length AT of the curve of the
intersection of the collapsing sphere and a panel, the edges of the panel were
assumed to be straight lines. The points of intersection were calculated
analytically. At least 10 intersections of the collapsing sphere with each
panel were used in equation (5) when this method was employed. Only intersec-
tions with the mean surface of the blade formed by the chord lines, rather than
the upper and lower surfaces, were taken to save computing time.
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APPLICATIONS OF THE NUMERICAL TECHNIQUE

The present numerical technique has been used successfully for both conven-
tional and advanced propellers. Some acoustic calculations and comparisons with
experimental measurements for a conventional propeller were published in the
paper by Mixson et al. (ref. 9). 1In the present paper, the results of a series
of model tests of advanced propellers are presented. These tests were conducted
in the Acoustic Research Tunnel, an anechoic wind tunnel, of United Technologies
Research Center (ref. 10).

The model propellers were operated inside an air jet. The microphones were
located outside the shear layer of this jet. For this reason, corrections had
to be made for both the measured levels of the acoustic spectra and the micro-
phone positions. These corrections, which were based on Amiet's theory
(ref. 11), were supplied by the manufacturer. 1In this paper, the corrected
microphone positions and the measured acoustic data are reported.

Acoustic calculations for two blade designs, SR-1 and SR-~3, are presented
here. The SR-1 blade was the first design created for studying the effect of
planform sweep on the generation of noise. Figure 4 shows the planform of this
blade design. The SR-3 design, also shown in figure 4, was acoustically opti-
mized to reduce the peak level of the acoustic spectrum at the design condition.
This optimization has had a favorable effect in reducing noise in all
directions.

Table 1 summarizes the operating conditions and some related propeller data
for the two blade designs. Table 2 presents the microphone positions. The
numbering of microphone positions used in reference 10 has been retained to
reduce confusion. Figures 5 and 6 present the blade form curves and the radial
distribution of 1lift coefficient for the two blade designs, respectively.

These data were supplied by the manufacturer. 1In the acoustic calculations,

the chordwise pressure distribution on the blades was assumed to be parabolic.
This assumption was necessary because of a lack of theoretical and experi-

mental data for the range of Mach numbers of interest. Because of the three-
dimensionality of the flow, particularly near the tip of the blades, the validity
of the application of strip theory to obtain the chordwise pressure distribution
is questionable. The chordwise pressure distribution has an effect on the level
of the acoustic spectrum. This effect can influence the shape of the acoustic
spectrum, particularly for advanced high-speed propellers (ref. 12).

Figures 7 to 11 present the theoretical and measured acoustic pressure sig-
natures and spectra for the SR-1 blade at five microphone positions. Figures 12
to 14 present similar results for the SR-3 blade design at three microphone
positions. Symbols on the waveforms mark the position of peak values. These
results are typical of a number of high-speed propeller calculations performed
using the present program. In all these calculations, the blade subdivision was
as follows. 1In the spanwise direction, 20 coarse divisions were selected in
such a way that the smaller An, resulted near the blade tip. 1In the chordwise
direction, 5 divisions in the first 5 percent of the chord and 10 divisions in
the remainder of the chord were selected to define the coarse mesh sizes. For
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panels traveling above a helical Mach number of 0.98, each panel was divided
further into three spanwise divisions and two chordwise divisions. These divi-
sions constituted the fine mesh sizes.

The most striking feature of all these calculations is that the theoretical
waveforms reproduce the basic characteristics of the measured waveforms. Even
some of the details of the measured waveforms, such as the narrow and broad
peaks in the acoustic pressure signatures, also appear in the calculated
signatures. :

The theoretical calculations differ from the measured data in two respects.
First, the level of the lower harmonics of the acoustic spectra are generally
underestimated, particularly for those near the first peak of the spectra.
Second, the width of the main pulse of the acoustic pressure signature is under-
estimated or, equivalently, the first dip in the theoretical spectrum is located
at a higher harmonic number than that for the measured spectrum. Both these
discrepancies between the measured and calculated results are attributed to the
neglect of nonlinearities. Much effort has been spent recently to include the
effect of nonlinearities to improve linear calculations (refs. 13 and 14).

These methods, which are basically numerical in nature, have not yet fully
explained the discrepancies between the measured and the calculated (linear
acoustic) results. However, they have served to strengthen the belief that lin-
ear acoustic calculations must be supplemented or corrected in order to explain
measured data for high-speed rotating blades.

The theoretical acoustic calculations for the SR-3 blade generally agree
better with measured data than those for the SR-1 blade. The reason is believed
to be the reduction of quadrupole noise from the transonic flow region around
the SR-3 blade (ref. 15). The calculations reported here agree well with those
reported by Hanson (ref. 12).

For calculations based on the SR-3 blade design (figs. 13 and 14), the high
frequency oscillations of the theoretical waveforms are attributable to weak
Prandtl-Meyer waves from the blade surfaces. These waves are generated because
the blades are approximated by panels which at their boundary make a small, but
finite, angle to each other. The waves are radiated from the corners where the
edges of two panels meet. These oscillations are more obvious for SR-3 blades,
since their helical tip Mach number is higher than that for SR-1 blades. The
overestimation of levels of high harmonics of the spectra for SR-3 blades is the
manifestation of the same phenomenon in the frequency domain. The strongest
waves originate from the leading and the trailing edges of the blade. The
oscillations observed in the calculated waveforms are most likely induced by the
leading and trailing edges of blade strips located at different distances from
the blade center. This phenomenon will always appear as long as linear acoustic
theory is used with a finite number of panels on the blades for noise calcula-
tions. An acceptable but artificial method of removing these high frequency
oscillations is numerical filtering of the theoretical data.

12



CONCLUDING REMARKS

This paper discusses a method for calculating the noise of advanced propel-
lers. A computer program based on this method is coded so that high-speed
propellers with advanced blades can be easily handled. The propeller may be
assumed to be in forward flight with the observer stationary with respect to the
medium or in motion with forward speed of the propeller. Comparison of theoret-
ical and measured acoustic data for propellers in forward motion has shown
satisfactory agreement for conventional propellers. However, for high-speed
propellers, both the levels of some harmonics (usually near the first peak) and
the width of the main pulse of the pressure signature are somewhat underesti-
mated. These discrepancies between theoretical and measured data are caused by
flow nonlinearities not included in the program discussed here. This program
provides a useful and versatile tool for predicting the noise of propellers at
the design stage, particularly for studying the relative noise levels between
several propeller designs.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

April 21, 1980
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TABLE 1.— OPERATING CONDITIONS AND SOME BLADE DATA FOR

SR-1 AND SR-3 BLADE DESIGNS

Blade data/operating condition SR-1 SR-3
Blade radiuS, M . « ¢« o & o o « s s & o « 0.311 0.324
Number of blades . « ¢« &« « o« o o o o o « & 2 4
Rotational speed, rPM . « « « & o o « & & 10 040 11 250
Flight Mach number . . . . ¢« ¢« + « & « o« &« 0.32 0.32
Helical tip Mach number . . . . . . . . . 1.04 1.17
Ambient temperature, °C . . . . . . . . . 1.7 13.3
Ambient pressure, kPa . « &+ &+ ¢ ¢ & o o & 92.5 94.6
Blade angle at (N3/R)pef = 0.776, deg . . 25.7 25.2

TABLE 2.- CORRECTED MICROPHONE POSITIONS FOR ANECHOIC
WIND TUNNEL TESTS OF SR—-1 AND SR-3 BLADES

[x = distance forward of pitch change axis;
y = distance from propeller axis]

Microphone X ¥y
m m

1 0.351 0.808

2 «162 .808

3 . 040 .808

4 -.091 .808

5 -.247 .808

6 -. 411 .808

7 -.753 .808
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Figure 2.- Curvilinear coordinate system (Q,T5) used to describe blade geometry
of advanced propellers. Blade mean surface is not in a plane.
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Figure 6.~ Theoretical radial distributions of lift coefficients
for SR-1 and SR-3 blade designs.
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