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ABSTRACT

The energization process of magnetic pumping, a combination

of time-dependent magnetic mirror fields with pitch-angle scatter-

ing, is applied to trapped charged particles ^ X 9 drifting in
corotating, azimuthally nonsymmetric neutron star magnetospheres.

When particle energizati.on is balanced by synchrotron radiation

loss, it is found that protons, rather than electrons, reach con-

siderable kinetic energies and radiate, in the x-ray regime, at

rates up to the 106 McV/proton/sec.

Subject headings: plasma processes -- x-ray binaries

magnetospheres — neutron stars
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1. INTRODUCTION

Several compact x-ray sources are known to be members of

clone binary systems (Gurskey and Schreir 1975). We propose that

the environment of a magnetized neutron star in a close binary sys-

teri is favorable for the energization, by the process of magnetic

pumping, of the magnetospheric charged particles, and that these

particles will be capable of emitting, with considerable power,

synchrotron radiation in the x-ray region of the spectrum.

The magnetic-pumping mechanism for the energization of

charged particles in magnetic-mirror geometries was first proposed

by AlfvSn (1954). In his simple model, described in Alfv4n and

F'Rlthammar (1963, Sect. 2.7.4), cyclic variations of the magnetic

field strength are combined with isotropization of the particle dis-

tribution functions when the field strength reaches a maximum or a

minimum. As the field strength is increased, the mean perpendicular

(to 9) momentum of the distribution increases, conserving the first

adiabatic invariant of each particle ., while the mean parallel momen-

tum remains constant. Isotropization when the field is at a maximum

turns some of the M gh perpendicular momenta of the distribution

into high parallel momenta, which do not decrease with the decreas-

ing of the magnetic field. This leads to an increase in the mean
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momentum of the distribution with time. In the A1fv4nic model, the

momentum after one cycle is given by

1^2
P= Po 1r5 +2k+2/k^

where Po is the initial momentum and k is the magnetic ratio of the

cycle,

k B° MAX/B°MIN	 (^)

the Bo values being the field strength in the magnetic mirror mid-

plane (equatorial region for magnetospheres). Equation (1) results

in a variation in time for the mean momentum, if the magnetic

pumping is not balanced by another mechanism, which is of the form

where T  is defined as an energization time.

More realistic, but not simple to solve, is the case of

pitch-angle (momentum-conserving) scattering of particles occurring

constantly as the magnetic field varies, in contrast to the infinite

pitch-angle diffusion imposed at times of magnetic field maxima and

(1)
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minima in the A1fvdn model. In order to solve this problem, we have

developed formalisms to follow the adiabatic motions of particles in

the magnetic-mirror topology of an asymmetric magnetosphere and to

solve a diffusion equation representing the pitch-angle scattering

of particles.

As the magnetic field varies we numerically follow, in

momentum-pitch-angle phase space, the evolution of n(p,ao ), the num-

ber of particles in a flux tube with momentum p and equatorial (at

the mirror midpl.ane) pitch-angle ao, calculating the new phase-space

coordinates. In our relativistic treatment, particle motion con-

serves the first adiabatic invariant

µ = p2	 ( )

(no longer the magnetic moment), the total energy

E = y mc2 -1 eV	 ,	 (5)

and the second adiabatic invariant

J	 § p 11 ds	 ,	 (6)
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where i and 11 are with respect to the magnetic field, V is an elec-

tric potential, and y is the relativistic factor (1 - V`/c2)-1/2.

In order to simplify the treatment, a special shape for the

magnetic-mirror field is chosen (Goertz 1978; Borovsky et al. 1980),

with the magnetic-pumping results found to be quite insensitive to

the choice of magnetic field topolcy- For a more detailed discus-

sion we refer the reader to the paper by Borovsky et al. (1980)

where a similar mechanism was applied to the case of Jupiter.

In order to describe the diffusion, caused by particle

scattering in the distribution, in pitch-angle space, we solve the

"bounce-averaged" Fokker-Planck equation

an
at = as [T(a0

)sin ao cos 
ao 4(ao) as0	 0

x {n(ao )/T(ao )sin ao cos ao))	 ,	 (7)

where T(ao) is the angular dependence of a particle bounce period

and Q(ao) is the "bounce-averaged" diffusion coefficient. Bounce

averaging allows the description of off-equatorial (away from the

midplane) scattering in terms of equatorial parameters. The time

asymptotic solution to the diffusion equation is an isotropic dis-

tribution function f(ao) = constant, where f(ao) and n(ao ) are

related by

_1
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f(ao) - n(ao)/T(a0)sin ao cos ao	 (8)

Combining the adiabatic motion with the pitch-angle scatter-

ing allows us to simulate magnetic-pumpping processes. For the

numerical procedure chosen, it is easily shown that alternately

solving for the adiabatic motion and for the pitch-angle diffusion

is equivalent to solving the Boltzmann equation for particles under-

`	 going the magnetic-pumping process. In conforming our simulption

parameters to the special case of the AlfvSn model, we find very

satisfactory agreement between our results and analytical theory.
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II. THE MAGNETIC FIELD

The model magnetic field chosen is a rotationally aligned

(magnetic moment parallel to angular momentum) dipole with a slight

compression (increase) on one side. The equatorial field strength

on the dipolar (noncompressed) side is given by

BD = r ,	 (9)

where M is the magnetic dipole moment. For the form of the

compressed-dipole side ., we choose

M,
2

Bc= ^
+M2	 (10)

r	 r

A measure of the magnetic field distortion is 
rCOMP, 

the radius

where the compression amounts to a 10% increase in the equatorial

field strongth, i.e.

Bc = 1.1 BD at r = rCOMP
	

(11)
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yielding, from (10),

M 
r	 = 

„I 	
(l2)COMP 10 M

Thus, the values of M and 
rCOMP 

will define a value for M1.

We assume that the potentials in the inner magnetosphere

arise from corotational electric fields (we discuss corotation

below) and we will require that the potentials of both sides be

equal at the stellar surface, r = rs . On the dipolar side we have

(by integrating E = l/c v X D),

"D - cr	 (l )

where St is the angular frequency of stellar rotation, and on the

compressed side we have

r	 itVc = I r + M , log ̀r/]	 '	
(14)

which is equal to VD at r = rs.

The adiabatic motion of charged particles conserves (Equa-

tions (4), N., and (6)) the first adiabatic invariant p, the

second adiabatic invariant J, and the total energy E. For particles
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with much less kinetic energy than potential energy, the drift

orbits will lie almost exactly on equipotential surfaces and the

particles will drift through regions of differing magnetic field

strength. (The violation of t"is will provide a limit for the

energizatia., process ) discussed below.) Since we know the magnetic

fields B(r) and potentials V(r) on both sides of the star, we may

calculate the ratio k = B
°MAX 

/n	 for particles in orbits follow-
oMIN

ing equipotentials. Hence, for choices of diffusion coefficients

(see below), we may calculate the magnetic-pumping energization

times, TN , as functions of radius.

We estimate, for the parameters of our model, the regions of

the magnetosphere in which the model will be plausible. We take the

(neutron) stellar radius to be 10 kilometers (r s = 106 cm). This

will be the inner limit for the validity of the model. We do not

expect corotation of the magnetosphere out to the light cylinder

(radius at which the corotational velocity equals the velocity of

light), which for our rotational. period T ROT = 2 sec, is

rL = 95000 km = 9.55 X 109 cm. Corotation might be expected (Lamb

et al. 1973) to hold out to the distance where the corotational

velocity is equal to the Kepplarian orbital velocity (r > r  a

V
COR > VORBIT). This Kepplarian radius is given by

G m 1/3	 m 1^3

rk =	 2s^	
= 3430 km ^^	 P	 (,15)
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where ms is the stellar mass. For ms x 1 % we find rk . 348a km.

and for ms = .1 m. we find rk is 1615 km. A relativistic plasma

theory for pulsar magnetospheres (Hinta and Jackv= 1974) predicts

the outer limit of corotation to be

rCOR = r0

3/5 (St/2/5 
xt rs/5 r2/5	 (16)

which, for our model, is r=`u`t "g 391 km 
x 3.91 x 107 cm. At these

uniting radii the corotationte velocities are nonrelat vistic

(r = 391 km V'OR = c/250 and r = 300 km *i VCOR c%320), so we may

assume the particle drifts to bo adiabatic, and in particular, may

be confident that the second adiabatic invariant, J	
P 1 

ds, is

conserved.

As an agent for the pitch-angle scattering of the charged

particles we assume the presence of plasma waves, excited by

anisotropic particle distributions produced by the adiabatic motion.

In calculating the energization times as functions of the equatorial

distance from the star (k(r)known), we use the continuous diffusion

model and assume that the mechanism runs at its optimum diffusion

rate (TDIF/TROT - 1 -1
	 TDIF is the diffusion time and TROT is

the rotation period, see Borovsky ) Chap. V; Borovsky et al. 1980).

This choice is not critical since diffusion rates an order of magni-

tude above or below this value give energization times differing by

at most, a factor of three.

4

$	
3
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III. RESULTS OF THE MODEL

We now have the information necessary for the construction of

a model which energizes particles in the asymmetric magnetosphere.

Without additional processes we would expect the energy of particles

to increase indefinitely. There are, however, two phenomena which

limit particle energy. The first is the condition that a particle

have less kinetic energy than potential energy. If this requirement

is met, a particle's drift orbit will approximate an electrical

equipotenti l and the drift will carry the particle through regions

of differing magnetic field strength, essential for the success of

the energization process. If, instead, a particle's kinetic energy

exceeds its potential energy, then the drift path will follow con-

tours of equal magnetic field strength and no energization will

occur (k -► 1). To estimate this kinetic-energy upper-limit, we

calculate the difference in electrical potential, AV, along a con-

tour of equal equatorial magnetic-field strength and require parti-

cle kinetic energies to be less than a V. Thus our limit appears

as

(YL - 1)me2 = e AV	 (17)

a .
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where y is the relativistic factor (1 v /c`) -1/2 and the L sub-

script pertains to the value at the limit. This limiting kinetic

energy appears (in terms of yL) in Figures 2 6 as the hollow

circles.

But even when 7 < y8 the energy does not necessarily increase

because energy is lost through synchrotron radiation, the power

radiated being approximately proportional to the square of the par-

ticle energy (P o: Cy2 - 1]), The Fact that, in the synchrotr ^n

mode, the power radiated by a particle of set energy is proportional

to the inverse-four power of the particle mass, and thus more effec-

tive for electrons than protonsr leads to an important prediction of

our model.; that protons, not electrons, gain the energy and radiate

it away. To find the limiting kinetic energy we will equate the

energizati,on time, T E , with the radiative lifetime for relativistic

particles (Alfv4n and YAlthammar 1963)

3 c5 m3 1	 1
TR	 22 e--•B21.+y8

Equating this to TB yields the relativistic factor y as a function

of the radius r (on the compressed side),

c5 m3 1 1
yR = 2 —4- B

2 
Tr - ] ,

(18)

(19)

t
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where B and r  are functions of r. This value appears as the solid

circles in Figures 2 - 6. If, at a particular radius, the yR value

obtained by balancing energization with radiative loss is lower than

the yz value of the mechanism limit (kinetic less than potential),

then yR will be the relativistic factor of the particle there, that

is ) particles are energized up to and maintained at the energy

EyR me . If the value ;I^ is lower than the value yR, the parti-

ales are energized to and maintained at the energy E = y mc2L	
. The

variation of y is shown as the solid line in Figures 2 - 6, where y

is always the smaller of the two values, yR and yb.

Knowing the particle kinetic energies, (y - 1)mc 2, and mag-

netic field strength, B. as functions of r, we may calculate the

wavelength, Xm, of the maximum synchrotron-radiated power as a func-

tion of r. With the frequency of the peak power being

1 eB 2	 ( )
Vm = 2 n me y	 '	 20

we have (% CM

^`	

2 rr mc2 1 1	 (
21 )

M - e	 B 2 
Y

These wavelengths, for protons, appear in Figures 2 - 6 as solid

squares for the radiation-limited proton energies (%M(YR)) and as
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hollow squares for the mechanism- limited proton energies (xm(yL))O

the solid curve taking the wavelengths pertaining to the charac-

teristic (lesser of yR and yL) value. Electron radiation-limited

wavelengths appear in these graphs as the solid triangles, but, due

to the fact that rapid radiative loss limits them to low kinetic

energies, the emission is strictly through the cyclotron mode.

We examine five cases (Figures 2 - 6), combinations of medium

(M = 5 X 1028 gauss cm3) or weak (M = 5 X 10 27 gauss cm3 ) magnetic

dipole moments with weak (rCOMP = 955 kin) or strong (r COMP=

95 . 5 km) compressions and one of a strong (M = 5 X 10 
29 

gauss cm 3)

magnetic dipole with weak compression. In the weak dipole (meaning,

also, weak corotational potentials) cases (Figures 2 and 5), the

proton energies are more restricted by the (kinetic less than poten-

tial) mechanism limit, while, in the medium dipole cases (Figures 3

and 6), protons are energized at distances further from the star, in

regions in which we are less confident in the application of our

model. In the case of the medium dipole-weak compression (Fig-

ure 3), the energy limit dominates the radiative balance at r =

320 km (still within the Hinata and Jackson corotation limit, rCOR)t

where the characteristic wavelength of the synchrotron emission is

2.8 X 10-7 cm, in the weak x-ray region. For the case of the medium

dipole-strong compression (Figure 6), mechanism-limiting occurs at

a distance of r = 234 km, where the characteristic radiation is in

the strong x-ray regime, %M = 1.1 x 10-9 cm. In a strong
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dipole- (td = 5 x 10 29 gauss cm3; applicable to the Crab Nebula

pulsar) weak compression (again, rCOMP = 955 km) case (Figure 4), we

find a limited wavelength of 2.2 X 10 -9 cm (strong x-ray region) at

a distance r = 730 km, which, however, may not be in the corotating

zone.

As a value for the power radiated per particle, we use the

particle kinetic energy divided by its radiative lifetime,

P	

T 

1 mc2	
(22)

^R

where y is the appropriate relativistic factor, y  or y L, and the

lifetime T  is given by Equation (18) (using y  or y L). The power

radiated per proton is displayed, for the four above cases, in

Figure 7, where the substantial radiated-power prediction

(> 104 Mev/sec/proton) of the model may be seen. It is important to

realize that, in the cases studied, the power radiated by electrons

is less by 10 or more orders of magnitude. This is due to the short

radiative lifetimes of electrons which keep their kinetic energies

(and momenta) low. The energy gain per unit time, and hence the

energy radiated per unit time, is proportional to the particle

kinetic energy (see Equation (3)), so the low-energy electrons gain

little energy from the magnetic pumping, hence radiate little power.
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We note that (for y » 1) as the stellar rotation rate

St = 2rr TRH, increases, the radiation -11tv-b-Ited Y-values, yR (Equa

tion (19)), increase proportional to St, the chwacteristic synchro-

tron wavelengths, X  (Equation (21)), decrease proportional to S2-2,

and the power radiated per particle, P (Equation (22)), increases

proportional to 9 . We also note that, since the corotational elec-

trical potentials (Equation (13)) are proportional to the angular

rotation rate Sl, the mechanism-limiting 7-values, 
7  

(Equation (17)),

increase proportional to 0 as do the radiation-limited values, yR.

Thus, if we increase the rotation rate of our model by a factor of

10 (SZ -1 10 SZ and TROT = 2 sea -o TROT - . 63 sec), the characteris-

tic wavelengths as functions of the radius will all decrease by a

factor of 10 and the radiated power per particle will increase by a

factor of 10.
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IV. DISCUSSION

A numerical modal of the magnetic-pumping process was con-

structed by alternately following the adiabatic motion of particles

trapped in magnetic mirrors and solving a pitch-angle diffusion

equation. The results of simulations suitably agreed with theo-

retical predictions for the special case of the P.lfv4nic model.

Our numerical techniques allowed us to manage the magnetic-

pumping process when patch-angle diffusion occurs simultaneously

with the magnetic field variation. For this case we find that, as

in the Alfv4nic model, the mean momentum of a distribution of

trapped particles, on the average, increased with time t according

to

P(t) = P(t = 0)et/T
	 ,	 (23)

where T is a positive constant. A resonance between the magnetic-

field cycle and the pitch-angle diffusion rate gives a maximum

energization efficiency for the mechanism, that is, for a certain

value of the 4iffusion per magnetic cycle (regulated by a diffusion

coefficient), the constant T will be a minimum.
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Rotating neutron stars with slightly asymmetric magneto-

spheres were modeled. By balancing the energy gain from the

magnetic-pumping process with the energy loss by synchrotron radia-

tion, we determined the energies, synchrotron wavelengths and power

outputs of particles in the inner magnetospheres. We expect syn-

chrotron radiation by protons, rather than by electrons, and for

the parameters of our models, predict energy outputs in the range of

102 - 106 MeV per second per proton.

In order to estimate the luminosity of the neutron star, we

must estimate the particle density in its magnetosphere. For an

upper limit to this density we require that the plasma diamagnetic

field be less than the magnetospheric field 	 1 in plasma

terminology), written

particle pressure s magnetic pressure , 	 (24)

or ., since the electron pressure is negligible,

2
n ( y 1)mc2 s g

where m is the protonic mass and B is the magnetospheric field.

This gives an upper limit for the particle number density of

(25)
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2
B	

(26)n 8 TT(Y - 1)mc2

This limit is used to estimate the magnetospheric luminosity

Interior to the distance r, defined

L(r) = Jr P(r)n(r) 
4
2r2 dr
	

(27)
rs

where the power radiated per particle, P(r), is obtained from Equa-

tion (22), the factor of 1/2 comes from assuming half the spherical

volume contains particles, and the lower limit r  is the neutron-

stellar radius. We display this luminosity L(r) for various field

strengths, etc., in Figure 8. Note that since the plasma diamag-

netic effect density limit (26) is independent of the angular rota-

tion ratio 0, and since this limit for n is several orders of

magnitude smaller than the force balance limit given by (ms = mass

neutron star)

G 

msm 

n - A2 "1 - v(n(y - 1)mc 2 ) = n m 02 r ,	 (28)

r
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an increase in R by a factor of 10 will change P(r) by a factor of

10 without changing n(r), hence will increase the luminosity L(r) by

a factor of 10.

Finally we would like to point out that other losses besides

synchrotron radiation (e.g., outward mass transport, collisional,

losses, precipitation onto the star) have not been considered in our

model. All these losses are only important if the loss times asso-

ciated with the processes are shorter than the energization time or

radiation lifetime. Collision times are certainly much larger than

the times considered here which are of the order of several rotation

periods. Only strong mass transport rates, such that the plasma

radial irelocity is larger than the corotation speed, would reduce

the efficiency of our mechanism. The effect of precipitation is

difficult to estimate but the extreme smallness of the loss cone in

the region where the synchrotrcai radiation is generated should

guarantee a small .loss rate.
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FIGURE CIPTIONS

Figure 1. Time dependence of mean momentum of a distribution in the

continuous-diffusion magnetic-pumping model.

Figure 2. Neutron star magnetospherie model: weak magnetic dipole

moment, weak compression.

Figure 3. Neutron star magnetospherie model: medium magnetic

dipole moment, weak compression.

Figure 4. Neutron star magnetospherie model: strong magnetic

dipole moment (applicable to Crab Pulsar), weak compression.

Figure 5. Neutron star magnetospherie model: weak magnetic dipole

moment, strong compression.

Figure 6. Neutron star magnetospherie model: medium magnetic

dipole moment, strong compression.

Figure 7. Power radiated per proton in the synchrotron mode For

various magnetospherie parameters.

Figure 8. Synchrotron luminosities of magnetospheres interior to

radius r as functions of r.
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