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1.0 SUMMARY

An improved panel method for the solution of three dimensional flow about wing
and wing-body combinations with leading edge vortex separation is presented.
The method employs a three-dimensional inviscid flow model in which the
configuration, the rolled-up vortex sheets, and the wake are represented by
quadratic doublet and linear source distributions. The strength of the
singularity distribution as well as shape and position of the vortex spirals
are computed in an iterative fashion starting with an assumed initial sheet
geometry. The method calculates forces and moments as well as detail surface
pressure distributions. Improvements include the implementation of improved
panel numerics for the purpose of eliminating the highly non-linear effects of
ring vortices around doublet panel edges, and the development of a least
squares procedure for damping vortex sheet geometry update instabilities.

The documentation is divided up into two parts:
Volume I Theory Document

Volume II User's Guide and Programmer's Document

Volume I contains a complete description of the method. A variety of cases
generated by the computer program implementing the method are presented.
These cases are of two types. The first type consists of numerical studies,
which verify the underlying mathematical assumptions of the method and
moreover show that the results are sirongly invariant with respect to such
user dependent input as wing panel layout, initial sheet shape, sheet rollup,
etc. The second type consists of cases run for the purpose of comparing
computed results with experimental data, and these comparisons verify the
underlying physical assumptions made by the method.

Volume II contains instructions for the proper set up and input of a problem
into the computer code. Program input formats and output are described. A
description of the computer program and its overlay structure is also
presented.



2.0 INTRODUCTION

2.1 Background

The flow at the leading and tip edges of a swept wing with sharp edges
separates at moderate to high angles of attack, the separation producing
vortex sheets that roll up into strong vortices above the upper surface of
the wing. The formation of these vortices is responsible for the
well-known nonlinear aerodynamic characteristics exhibited over the
angle-of-attack range, (Figure 1). Experimental studies (ref. 1) of the
vortex sheet separating from a slender sharp-edged wing revealed that the
rolled-up part of the vortex sheet consists of three regions: an outer,
convection dominated region in which the distance between turns is large
compared to the diffusion distance; and an inner region where the distance
between turns is of the same order of magnitude as the diffusion distance;
and inner, diffusion-dominated, viscous core which is very small,
representing only about 5 percent of the vortex diameter. In addition,
studies (refs. 1, 2) of the principal vortex indicate that its shape and
strength are relatively independent of Reynolds number. The relative lack
of viscosity dependence suggests that the flow may be regarded as
potential, with the free shear layer represented either as a vortex sheet
or, equivalently, a doublet distribution, supporting a discontinuity in
tangential velocity.

Many theoretical methods have exploited this fact to predict various flow
characteristics. The leading-edge-suction analogy described in references
3, 4, and 5 provides a method suitable for calculating the magnitude of
the nonlinear vortex Tift on a rather broad class of wing planforms.
Polhamus (ref. 3) reasoned that the normal force needed for the flow
around a Teading edge to reattach to the wing is equivalent to the leading
edge suction force necessary to force the flow to be attached to the
leading edge in an unseparated condition. The unseparated leading edge
suction force is calculated, and is then rotated normal to the wing to
obtain the 1ift contribution of the leading edge vortex. The total wing
1ift computed by this method agrees well with experimental data, but the
leading-edge-suction analogy does not give flow-field details or detailed
surface pressure distributions. Several attempts had been made in the
past toward the theoretical prediction of detailed pressure distributions
and flow fields about swept wings with leading edge vortex separation.
Most of these past methods are limited to slender configurations, a
considerable simplification because the problem can be reduced to a
solution of Laplace's equation in the cross flow plane, for which
conformal mapping becomes a powerful tool. Smith (ref. 6) developed the
best known method of this type by improving the work done earlier in
collaboration with Mangler (ref. 7). Assuming conical flow, which is
approximately valid near the apex of the wing, he was able to predict
qualitatively the type of pressure distributions that had been observed
experimentally. Those pressure distributions exhibit a vortex-induced
pressure peak at about 70 percent of the local semispan of the wing.
Toward the trailing edge, Smith's method overpredicts the experimental
load distribution by a considerable amount, because the conical theory
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does not satisfy the Kutta condition at the traiiing edge. Conical flow
methods were followed by fully three-dimensional techniques in which the
vortex is represented by single or multiple line vortices (refs. 8-13) or
by a vortex sheet (refs. 14-16), and in which the trailing edge Kutta
condition is enforced. These methods have enjoyed reasonable success in
predicting overall configuration forces and moments and in some cases wing
pressure distributions. A current review of various methods is presented
in reference 17.

The method presented in this report is basically that of reference 15..
This method was originally developed by the Boeing Company under contracts
NAS1-12185 and NAS1-13833 from the Langley Research Center. The method is
capable of predicting forces, moments and detailed surface pressures on
wing and wing/body combinations assuming the separation lines are known.
The wing geometry may be arbitrary in the sense that Teading and trailing
edges may be curved or kinked and the wing may have arbitrary camber and
twist as long as in real flow it produces only a single well developed
vortex system. The method employs an inviscid flow model in which the
configuration surface is represented by source and/or doublet singularity
panels, and the rolled-up vortex sheets and wakes are represented by
doublet panels alone. The Kutta condition is imposed along all wing
edges. Strengths of the singularities as well as shape and position of
the free vortex sheet spirals are computed iteratively starting with an
assumed initial sheet geometry. The original method had been in use for
some time now with generally good results, however certain shortcomings
had become apparent. First the iterations determining sheet shape and
position became unstable in seemingly random cases, making parametric
studies difficult (reference 18). Minor changes in wing paneling, for
example, have sometimes caused a well converged case to diverge.

Secondly, computed 1ift coefficients for wings of large aspect ratio
tended to be higher than those predicted by the suction analogy. and
experiment (reference 18). The effort to solve these problems became the
focus of contracts NAS1-15169 and NAS1-15275 from the Langley Research
Center. A coordinated effort which also included work conducted for the
Boeing Independent Research and Development Program was ultimately
successful in overcoming these deficiencies. The effort to solve these
problems is summarized in the following sections. For purposes of
completeness the independent Boeing work is included in this documentation.

Approach to the Problem

The convergence problem was addressed first in the hope of creating a more
reliable tool for investigating the aspect ratio problem. To improve
confidence in the numerical features of the method a general upgrade of
the numerics was made. The upgrade included such minor things as more
precise calculation of the geometry dand network edge matching
sensitivities, but the major effort was the implementation of parametrized
panels and doublet splines in order to ensure continuity of geometry and
doublet singularity strength across all panel edges, thereby eliminating
the highly non-linear effects of line vortices (discontinuities in doublet
strength). This upgrade did indeed enlarge the class of problems over
which convergence was achieved; nevertheless some rather simple cases



still diverged. It was therefore necessary to look at more fundamental
possibilities. A detailed analysis of divergence indicated that because
of certain paneling anomalies, satisfaction of some of these boundary
conditions required rather substantial kinks in the vortex sheet locally
which, as pointed out by Rubbert, set off a built-in instability in the
vortex sheet updating procedure. A very simple least-squares penalty
technique was developed to damp this instability with the result that
convergence was achieved in all of a wide variety of previously diverged
cases to which the technique was applied.

It has been the author's belief that the T1ift coefficients calculated by
the current method should tend to agree with those of the suction analogy
wherever the assumptions of that theory are valid; hence the attack on the
second problem began with studies designed to check the numerical
jmplementation of the method. These studies included the determination of
the effect of variations in panel density, panel Tayout, sheet roll-up,
initial sheet shape, etc. 1In all cases the studies proved that the
boundary value problem associated with the model was being solved quite
accurately so that the model itself was in error. It was subsequently
discovered that use of the linearized pressure formula in the wing wake
(known to be somewhat inadequate at low aspect ratios) was causing
substantial Toss of the wing trailing edge Kutta condition at high aspect
ratios. The use of a fixed design wake then eliminated the probiem and
produced excellent 1ift coefficient comparisons.

The remainder of this report is organized as follows: Section 4 describes
the general features of the current method as a point of departure for
section 5 where the advances leading to the solution of the aforementioned
problems are detailed. Section 6 gives examples of numerical verification
of the method and Section 7 gives examples verifying the physical
assumptions of the model. An appendix containing further details of some
of the features of the method is also included. A users guide and
programmers document is provided in a separate volume.
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3.0 NOMENCLATURE

tangent basis vector
compressibility matrix
aspect ratio

local span

boundary of fluid domain

~ chord

drag coefficient

rolling moment coefficient
1ift coefficient

normal force coefficient
pitching moment coefficient
pressure coefficient

fluid domain

equations determining singularity parameters

force vector

equations determining vortex geometry parameters

hyperboloidal panel
equations penalizing panel twist

panel width

unit vector along vortex core or network junction
curve on B across which y is discontinuous

number of grid point rows on a network

free stream Mach number
surface unit normal vector

normal vector at panel center
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NOMENCLATURE (CONTINUED)

surface co-normal center

number of grid point columns on a network
pressure

jsentropic pressure

second-order pressure

field point

point on boundary B

nine canonical panel points

panel center

parametric coefficients defining H
compressible magnitude of.E

vector from —Q> to -5

hyperboloidal surface parameters
singularity surface

perturbation velocity

total velocity

average surface value of total velocity
free stream velocity magnitude

free stream velocity

perturbation mass flux vector

total mass flux vector

average surface value of toal mass flux vector
unit vector along x-axis

Cartesian coordinates

angle of attack
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NOMENCLATURE (CONTINUED)

\/I-M 2

delta wing semi apex angle

ratio of specific heats

jump in quantity across singularity surface or line
change in quantity from one iteration to the next
flap angle

surface vorticity vector

span fraction

vortex system orientation angles

all vortex systems geometry parameters

vortex system scale factor

all singularity parameters

doublet strength

doubtet strength at Q

fed sheet scale factor

chord fraction aft of trailing edge

panel point coordinates in local panel
coordinate system

fluid density

Newton iteration step size limiter
free stream fluid density

source strength

perturbation potential

gradient of perturbation potential

gradient operator
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NOMENCLATURE (CONCLUDED)

co-gradient operator
belongs to

vector cross product
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4.0 DESCRIPTION OF THE METHOD

4.1 Theoretical Model

The essential elements of the present flow model, as outlined in Figure 2,

are the configuration surfaces (wing, body, etc.), the trailing sheet

(wake), the sheet emerging from the wing leading edge and tip (free

sheet), and the rolled-up core or spiral region (fed sheet) fed by the

leading-edge and tip-vortex sheets. The following boundary conditions are
imposed on these elements:

o} The configuration surface must be impermeable.

0 The free sheet and wake cannot support a pressure difference and must
be impermeable as well.

0 The fed sheet is an extension of the free sheet and feeds vorticity
to the vortex core (modeled as a simple line vortex). The boundary
condition governing fed sheet size and core orientation is that the
total force induced on the fed sheet and core by the rest of the
configuration be parallel to the core. The size of the fed sheet is
chosen initially by experience or from the conical flow results of
Smith (ref. 6).

0 Kutta conditions are imposed along the appropriate leading, side, and
trailing edges of the wing in the presence of free sheets emanating
from these edges.

4.2 Basic Concepts

The Prandtl-Glauert equation
B2 Gyx T Oyy +6,,=0, B2 =1-Mg, (1)

is assumed to govern the perturbation velocity potential ¢ in the flow
field about the configuration. Here the x-axis is taken as the freestr_%
direction, i.e. v = Voo X, where Vo, 1S the free%;regm ve]oc1ty and
its magnitude. Total velocity V is then defined by V, where V

( (#x, ¥y, ¢z) ) is the perturbation velocity. The definition of
1mpermeab111ty and pressure appropriate to equation (1) is an open
subject. The mathematically natural choice of zero normal mass flux and
the second order pressure formula (reference 19) is preferred. The total
mass flux vector W is defined as

>
W=pooV'oo + W (2)
where w is the perturbation mass flux vector defined by

-\5 = Poo (Bz d’X’ d’y’ ¢Z) (3)
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To first order in perturbation quantities'w is equal to pV (reference
19) hence impermeability can be expressed by

W -f=0 (4)

where n is the surface normal. Equation (1), rewritten as F-i =
éxpresses conservation of mass, and equation (4) then guarantees that even
if the configuration is such that the assumptions used to derive equation
(1) are violated locally there is still no net production of fluid at the
boundary surfaces.

The second order pressure formula is

p2 =poo-[poo(voo 'T)+‘/2(V>'—vt)] (5)
and it agrees with the isentropic formula
- poovoo2 7‘1 M z R4 (6)
Pi p°°+7T°.T[[ - K—(IVIZ—V 00?171 —1]

to first order in perturbation quantities. Mathematically the second
order formula is closely associated with equations (1) an (4) in that
equation (1) is simply the Euler-Lagrange equation for the Bateman
variational principle,

f§§ p2 dD = stationary
I} (7)

for which specification of (ﬂ-- ﬁ) is the natural Neumann boundary
condition. Of great importance in this case is that the second order
pressure formula produces consistent force calculations for arbitrary
configurations when force is defined in the usual way, i.e.,

F=—Ss;l\7<\?7-6)+pz A1 ds (8)

>
Equation (1) implies that F is zero when the surface S encloses fluid
only, hence momentum is conserved exactly and the force on a given surface
may be computed on any enclosing surface.

Under rather general assumptions Green's third identify (references 20,
21) shows that any solution of (1) at a field point P may be expressed as
the potentia] induced by a combination of source singularjties of
strength g (%) and doublet singularities of strength (6) on the
boundary Q € B of the fluid domain D:

¢ ()= ffo(ﬁ)( )dSQ+ IS0 h- Q(A#TQC‘SQ (9)

Here 3'15 the position vector 3'3' R is the compress1b1e magnitude of R
defined by




1 0 0
R=/Z A R where A= <0 g o0 ) (10)
0o 0 p?
~ . . . > .
and Vb js the co-gradient with respect to Q defined by
- 2
Jo=8 A" Vg (11)

-
The perturbation velocity V(P) associated with ¢ may be computed by
differentiating (9):

NGE 'UU(.G)VP( )dSQ+ -g w(@®n -, (vp ﬁ)dSQ (12)

whereupon application of Stokes' theorem to the second term on the right

yields
T®= -UO(Q)VP< 'l)dSQ+
LD e %‘Q< )dSQ 13
S au oL\ @ di
Here ?163 is the surface vorticity vector defined by

and L is any curve on B across which p has a discontinuity, say Au.

It is possible to show from equations (8), (9), (12), and (13) that across

any singularity surface S

Ap=u (15)

teav=¢ (16)

@+ AW) = Poo 0 (17)

apz =il - WA H+ Wy R o1/h - ) (18)

and

13
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4.3

-+ > -
AF=—SSS[WA ® I—VAP“ g]dS+ SﬂWA ®EE‘
L

(19)

where A denotes the difference between the value on the side on which A
is defined and the other side, and the subscript A denotes the average of
the two values. Here f is the co-normal defined by

n.=p? AT f

(20)

Mathematical Implementation of the Model

The mathematical implementation of the boundary value problem set forth in
section 4.1 is now described. OQur basic unknowns are the source and
doublet strengths on all surfaces and the position of the free, fed and
wake sheet surfaces. To solve for these unknowns the following equations
are derived.

On a surface bounding the fluid on both sides (i.e., thin sheets such as
the free sheet, wake and possibly wing) it is required that equation (4)
hold on both sides so that from equation (17) it can be seen that such a
surface is source free. Hence, these two boundary conditions can be
replaced by the equivalent conditions that the surface be a doublet
surface and that

> A

(Wp *1)=0 (21)

On the wake and free sheet surfaces we have the additional requirement that

- -
Ap=-To Wa® D/ (R-R)=0 (22)

Although both equations involve doublet strength and surface geometry, the
primary function of equation (22) in conjunction with equation (12) is to
define surface doublet strength whereas the function of equation (21) is
to define the surface normal and hence surface geometry. An approximation
often made by many methods for wake surfaces is that

-

-5

in which case equations (22) and (21) determine wake vorticity and surface
slope prior to solution. Such an approximation is not precisely valid but
can nevertheless be made at least in the far wake because details of the
wake flow there have little effect on wing pressures. However a more
accurate representation is sometimes required in the near wake, primarily
because the spanwise component of vorticity in the near wake (which can be
large in that a portion of the wake is underneath the primary vortex core)
has a strong influence on the Kutta condition at the wing trailing edge.
In this case the solution approach used is to require that equation (22)



P

B

be satisfied on a fixed wake surfaces in the immediate vicinity of the
wing trailing edge, which causes the wake vorticity to seek the correct
lateral alignment there.

The Kutta condition at the junction of a (thin) wing and vortex sheet can
be stated in several ways; e.g., zero pressure jump at the wing edge,
finite flow at the wing edge, no flow through the vortex sheet, etc. All
of these phenomena are supposed to occur once the Kutta condition is
satisfied, and which boundary condition is actually called the Kutta
condition depends on which boundary conditions have previously been
assigned to the wing and vortex sheet. In this case it has already been
assumed that equation (21) holds on the wing and equation (22) on the
sheet, neither of which guarantee finite flow at the wing edge. Infinite
flow can be created only by a discontinuity in doublet strength or surface
vorticity across the wing/sheet junction. A discontinuity in doublet
strength creates a line vortex of strength equal to the discontinuity
(equation 13). The powerful flow singularity induced by such a vortex is
incompatible with wing impermeability and hence a discontinuity in doublet
strength is already prevented by the wing boundary condition equation
(21). However the weak flgw singularity induced by a discontinuity in the
surface vorticity vector ¢ is not. In fact there exist vorticity
distributions creating infinite velocities at the junction, yet no normal
mass flux on the wing, nor pressure jump on the vortex sheet. These
distributions are such that ¢ -f tends to infinity as the junction is
approached from the wing side, where £ is the unit vector along the
junction. Thus the gboice as the Kutta condition (as originally proposed
by Rubbert) is Epat ;-ﬁ be continuous from the wing to the vortex sheet,
i.e., that A¢ ‘Q = 0 where Ag"*= Svortex -¢twing . Other
components of ¢ may be discontinuous; however these discontinuities will
be eliminated by the process of updating the vortex sheet to satisfy

equation (21) (which can only happen if the surface normal n is continuous
across the junction).

Following Smith (reference 6), the purpose of the fed sheet is to condense
the free sheet vorticity into a line vortex core, thereby terminating the
free sheet rollup. Hence the fed sheet is chosen to be a doublet sheet
whose strength is equal to the doublet value at the junction with the free
sheet. Only the size and position of the fed sheet remain to be
determined from boundary conditions. The boundary conditions are chosen
to be consistent with those that would be applicable to the infinitely
rolled up vortex sheet as_well, namely, that the total force normal to the
core be zero, i.e., £®A F = 0 where £ is the unit vector along the line
vortex core and aF is given by equation (19).

On surfaces bounded on one side by a non-fluid domain (e.g., body or thick
wing) it is required that equation (4) hold on the fluid side. While this
boundary condition formally completes the mathematical description of the
boundary value problem set forth in section 4.1, it is not sufficient to
guarantee a unique solution to the problem via equation (12) since both
source and doublet strength on such surfaces cannot be determined by one
boundary condition. However a (nearly) arbitrary boundary condition can
be assigned to the other side (reference 22). In particular assigning

15
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4.4

to ¢ the same value as on the fluid side implies w= 0 in view of
equation (15) and leads to pure source surface modeling. Here, however, a
doublet 1ifting surface is required inside the wing and a doublet 1ift
carry-over surface is required inside the body. (Models using doublet
singularities on the thick wing and body surfaces are also possible
(reference 22) but have not yet been implemented).

Summarizing the mathematical description of the boundary value problem
described in section 4.1, the following equations determine singularity -
strength:

A > .

n-w=0 on wing and body, W= 0 on body, 0 =0 on thin wing

0=0,4p, =0 on free sheet and near wake

> A L (24)
At -0=0 on wing edges (Kutta condition)
0= 0, continuation of u on far wake, fed sheet,
body wake, carry-over sheet
Free and fed sheet geometry are then determined by
A ->
n-W,=0 free sheet
A > (25)
% ® AF=0 fed sheet

Numerical Procedure

Solution of the boundary value problem of section 4.3 via equation (12) is
accomplished with the basic panel method of reference 23. The method
proceeds by dividing the boundary surface into networks. A network is
defined as a smooth portion of the boundary which has subsequently been
divided into panels and on which source and/or doublet splines have been
defined accompanied by properly posed boundary conditions. The networks
are assumed to be Togically independent in that each network contributes
as many equations as unknowns to the overall boundary value problem; hence
networks can be added or dropped without total reformulation of the
rgb]em. Essential features of the computational scheme are summarized
elow,

0 Geometry input for a network consists of a rectangular array of
corner point coordinates. The portion of the surface lying between
four adjacent corner points is approximated by an analytically
defined panel.

0 Discrete values of singularity strength are assigned to certain
standard points on each network. These values are interpolated by
source and doublet splines which on each panel are assumed to be
defined by linear and quadratic distributions respectively.



o Certain standard points on each network are assigned as control
points at which boundary conditions are applied. These points
include panel center points as well as edge abutment points in the
case of doublet networks. The latter serve to impose standard
aerodynamic edge conditions automatically (for example, the Kutta
condition, zero potential jump at thin edges, and continuity of
singularity strength across abutting networks).

0 The induced potential and velocity integrals of equation (12)
" (influence coefficients) are all evaluated in closed form, although
standard far field expansions are employed when the control point is
sufficiently distant from the influencing panel.

Figure 3 displays the location of discrete singularity parameters and
control points for various network types. These locations are selected to
achieve singularity spline stability with respect to the type of boundary
conditions applied at the control points (reference 24). Additional
details may be found in appendix E. Figure 4 shows a typical
thin-wing/body configuration paneling and Figure 5 shows the same
configuration disassembled into networks. Control points located at the
junction of two doublet networks (or at the junction of one network with
empty space) are assigned to match singularity strength across the
Junction. If only one control point exists, doublet value 1is matched. If
there are two opposing control points the component of vorticity along the
Jjunction is also matched. Control points at panel centers have the
boundary conditions prescribed in section 4.3.

In Figure 6 the free and fed sheet kinematics are illustrated. The fed
sheet size and position in each x-cut are changed by varying the scale
parameters A and Vv , the parameter A scaling the whole vortex system.
The free sheet shape is changed by varying the panel orientation

angles 60; , keeping the relative lengths &; fixed. Note that the
vortex system geometry has as many degrees of freedom as constraint
equations (25).

Let all geometry degrees of freedom be denoted by the vector @ and all

singularity parameters be denoted by A . The equation set (24) can now
be denoted by

FA,®)=0 (26)
and the equation set (25) by
G(A,®)=0 (27)

These equations are solved iteratively by Newton's method with controlled
step size, i.e.,

17
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FIGURE 4 PANEL MODEL
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o 3k
0A d® AA <F>

G e — (28)
3 36 A® G

where p represents symbolically the step size scaling parameter )
(see Appendix G). & 1is a positive number less than 1 and is chosen small
enough to ensure a decrease in the norms of F and G. Note that the
Jacobian matrix on the left requires differentiation of the panel
influence coefficients with respect to changes in geometry. Details of
this differentiation will be given in the appendices.



5.1

5.0 RECENT ADVANCES

Improved Panel Numerics

Equation (13) shows that a discontinuity in doublet strength produces a
line vortex of strength equal to the discontinuity. The velocity flow
field induced by such a vortex has a singularity proportional to the
vortex strength and inversely proportional to the distance from the
vortex. Moreover the sensitivity to a change in vortex position
(appearing in the Jacobian of equation (28)) has a singularity inversely
proportional to the square of the distance to the vortex. It is clear
that if a control point is sufficiently close to such a vortex, the
linearization implicit in equation (28) will be valid for small A®
only, prolonging convergence. Fortunately the vortex core in the present
model tends to stay a large (relative to its strength) distance away from
wing and free sheet control points. However, our original panel
discretization introduced unintentional line vortices which were of small
strength, but which could be relatively close to wing and free sheet
control points. These line vortices arose for two reasons. First, flat
panels were generally used for efficiency reasons. These panels were the
plane quadrilaterals formed by projecting the straight Tine segments
joining the four corner points onto the plane passing through the
midpoints of these line segments. This meant that gaps in geometry would
be present at edges of panels belonging to networks where the corner
points did not all lie in a plane, leading to ring vortices around each
panel. Secondly our locally quadratic doublet distribution on each panel
was defined by fitting a quadratic function to singularity parameters in
an immediate neighborhood. Since each panel used different singularity
parameters, continuity of doublet strength across panel edges could not be
enforced, and this again led to line vortices. Even on fixed portions of
the geometry these vortices created problems because the boundary
condition at a panel center control point close to a discontinuity in
doublet strength would occasionally attempt to suppress the singularity
produced by this discontinuity, i.e., interact with the doublet spline to
create greater continuity, rather than control finite flow in the
appropriate manner.

In order to alleviate this problem the hyperboloidal panels of Morino
(reference 25) have been implemented along with a continuous doublet,
spline. The hyperboloidal panel H interpolating four corner points Ql’ QZ’
03, Gz is defined as the point set

H = {30 : s = o+ Gis + B + Qgests sel-1,11, tel-1,11} (29)
where
> >
Cr = %(Q1+3r-33-3) st = %(61"6?63_64)

23
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The panel H is depicted in Figure 7.

Ngte*;hat H contains the straight line segments joining the edge midpoints
Qs, Qg» Q7 and Qg, the same as the flat panel, and hence H is also only a
first order accurate approximation to the true surface. Hgwever H,also
contains the straight Tines joining the corner points 61, 8', . 3; and

so it abuts adjacent panels exactly leaving no gaps.

Doublet strength on H is 3§fined parametrically in terms of nine doublet
values u; at the points i by the formula

u(s, t) = py [Vast( 1+s)(1+t) ]+ py [Fast(1-s)(1+0) | + u3 [Yast(1-s)(1-)]  (30)
g [2st(L+)(1-0)] + g [AIHO(17)] + g [Fas(1)( -t*)]

g (-] + ug [As(1+)(1=t7)] +pg [(1-s*)(1-t7)]

Note that along each of the Tine segments displayed in Figure 7 wu(s,t)
is quadratic and is determined solely by the (three) values of doublet
strength at the midpoint and endpoints of the segment. The nine doublet
values wuy of equation (30) are not all independent. On any given
network the set of independent parameters determining the doublet spline
on that network are the doublet values at the locations shown in figure 3,
and in general these values do not include all the w; of all the panels.
Hence the nine doublet values wu; must be expressed in terms of the truly
independent doublet singularity parameters. For this purpose an enriched
set of network grid points (Figure 8) is defined which includes the
original corner poipts, the panel edge midpoints and center points and
therefore all the Q5 of all the panels. At each of these points doublet
strength is obtained by fitting a quadratic function to a sufficient
number of neighboring singularity parameters by the method of weighted
least squares. For stability the closest singularity parameters are
weighted heavily, in particular doublet strength at an enriched grid point
coinciding with a singularity parameter point is simply set equal to the
value of that parameter. For enriched grid points along network edges the
corresponding doublet values are allowed to depend only on singularity
parameters located on that edge, and for this purpose a least squares fit
based on arc-length along the edge is used.

It is clear from the above construction that doublet strength will be
continuous across panel edges in the interior of each network. At network
junctions doublet strength can also be made continuous so long as the
corner points and edge singularity parameter locations coincide. This is
the case in figure 4 except for the wing/free sheet junction.
(Modification of some of the edge singularity parameter locations for both
doublet/design networks could eventually lead to precise continuity
everywhere).
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FIGURE 7 HYPERBOLOIDAL PANEL
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Calculation of the influence coefficients for the above formulation is
accompiished using equation (13), where the last term on the right may now
be discarded entirely except for the fed sheet terminated edge.

Evaluation of the remaining integrals is facilitated by an expansion which
is similar to the curved panel expansion of reference 23, but which does
not require the small curvature assumption. Rewriting the second integral
on the right of equation (13) in terms of the parameters s and t we obtain

1.1
-+ = ~d 1 B2 3 6# ou
{15 TQ Vg asg=E 8 [ oo @ @ Fio- 37 @ @ Ty asde

ot (31)

where B= ﬁ’o_é’ss_é’tt—(')'stst

?so = Ro"gtt
> > =
Ao = Ro—QsS

The term in square brackets on the right is simply a polynomial, but the

integration cannot be performed in closed form since R is a quartic

polynomial in s and t. However R can be approximated as follows. Let

(s*,t*) minimize R on [-1,1]® [-1,1], sojthat Q(s*,t*) is a closest point

ﬁp H to P in the compressible norm. Let R*(s,t) be the quadratic part of
at the point (s*,t*), i.e.,

R*(s, ) = (R~ Q5% — Oyt *— Qs t*)—O(s-s*)—By(-1*) (32)

3
Then g&i? is continuous in s and t and may be approximated to any
accuracy Yy a polynomial T(s,t). Upon substitution of the approximation
1 T(s,t)
A (33)

into the right side of equation (31) the integration may be performed in
closed form.

27



5.2

Evaluation of the surface vortex integral using the above procedure is
quite accurate but rather expensive. Hence a somewhat simpler
approximation was developed for use in the intermediate field, i.e., when
the field point is a modest distance away from the panel but not
sufficiently distant that a far field expansion converges. For this
approximation the flat panel is used again along with the quadratic
doublet distribution (based on surface coordinates ( ¢, 17)):

uE ) = My IJ-EE + Iln‘n + I/ZIJEEEZ + “E"?En + sznnnz (34)

Here the coefficients are obtained by expanding equation (30) in a
Taylor's series about the panel center. (Note that the doublet strength
obtained from equation (34) then agrees identically with that of equation
(30) along the lines s = 0 and t = 0). It was found that this
aﬁproximation agreed well with the more exact calculation above - even for
the field point at the panel center, hence it was decided to use it
exclusively in the near field. While it would then seem that we are back
to the flat panel/quadratic doublet distribution at least for the purpose
of calculating influence coefficients it is important to realize that the
underlying panel shape and doublet distribution are given by equations
(29) and (30) respectively. With the old method it was impossible to
ignore the line vortex term on the right side of equation (13) since the
doublet strength could not be deduced from knowledge of the vorticity
vector alone. Additional details on the hyperboloidal panels can be found
in appendices A, B, C and D.

Least Squares Geometry Update Procedures

28

In Figure 9, a streamwise paneled delta wing with unwrapped free and fed
sheets is shown. The control point on the first wing panel is displayed.
The control points on the first row of panels on the free and fed sheets
are also displayed along with their projection onto the wing. Since the
first wing control point is so far from the apex, flow through the wing
near the apex is not prevented and consequently the free and fed sheet
control points in the first row encounter a somewhat different environment
than those in subsequent rows. To satisfy the boundary condition at these
control points the whole vortex system near the apex is required to move
substantially inboard causing errors in wing pressures at the first wing
control point. Obviously with such a paneling one cannot be too concerned
with flow details at the apex anyway. In the past however, the flow
anomaly there destroyed convergence everywhere even though the flow is
better behaved farther aft on the wing.

The problem was two-fold. First, all eguations of the set (25) were
required to be satisfied exactly. Because huge local anomalies in vortex
sheet shape were required, the singularities themselves got heavily
involved in solving equation (25) with consequential Toss of stability.
Secondly, the update procedure was such that local anomalies in sheet
shape could propagate to other areas of the sheet; in other words the
procedure itself was not fully stable. The basic reason has to do with
the fact that for both the flat and hyperboloidal panels, the surface
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normal at the panel center remains unchanged when the four panel corner
points are alternatingly perturbed equal distances above and below the
average plane. For illustration purposes assume the free sheet lies in a
plane as shown in Figure 10. The average mass flux vectors at the panel
centers are depicted with arrows and are assumed to 1ie in the plane as
well, except for the mass flux vector at the center of the first panel
which because of a flow anomaly is assumed to be substantially out of
plane. Assume that all corner points except for those in the inboard
column (which are attached to the wing) may be perturbed in a direction
norma]l o the surface (i.e., p]ane) and also assume that the mass flux
vector W at each panel q&pter is 1ittle altered by such a perturbation.
The boundary condition = 0 is already satisfied on all panels
except the first, where a perturbat1on of corner point 3 by a 1ar e
distance h is requ1red to modify the panel center normal so that

= 0. A perturbation of corner point 4 by -h is required to ma1nta1n the
boundary condition on panel 2, and so on down the line. Thus the effect
of the flow anomaly on panel 1 is propagated to the whole free sheet with
the consequence that all the quadrilateral panels become considerably
twisted.

Probably the simplest method of damping with instability whenever it
arijses is to limit excessive panel twist. A measure of panel twist is the

function + -

- Q¢
3/4 (35)

<> 2> <> L.
where n = Qs @ Q¢- The condition that all free sheet panels be
is

untwisted (flat)

K(®)=0 (36)

using the notation of equations (26) and (27). Equation (36) combined
with equations (26) and (27) creates an overdetermined system of equations
for A and ® . View equation (26) as an equation which defines A as
function of ®, i.e.,

F(A®)=0= A=f(0) (37)

Substituting equation (37) into equation (27) results in having two
competing equation sets for determining ® , i.e.,

G(f(®), ® )=0 and K(®) =0 (38)

This system is solved in a least square sense after suitable normalization
to account for dimensional differences as well as desired weighting.
Obviously the penalty equation (36) should not be weighted too heavily
since a free sheet made up entirely of untwisted panels cannot in general
be a good approximation to a stream surface. Fortunately a small weight
is all that is required. The instabilities produced by a local flow
anomaly are severe enough that a very small penalty on panel twist forces
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relaxation of the boundary condition causing the local anomaly.

The procedure for solving the overdetermined equation set is iterative as
before. At the beginning of an iteration equation (26) is solved for A
as a function of the current ® using Newton's method with controlled
step size, i.e.,

dF

where P represents symbolically a step size scaling parameter which is a
positive number less than 1 and is chosen small enough to ensure a
decrease in the norm of F (see equations G.9 and G.1l of Appendix G).

Upon obtaining convergence a new estimate for ® 1is calculated by solving
the equation

0G Of . 3G
3A %@ * %8 ) [a@) -_, (€
3K (40)
0@
in a least square sense, where the Jacobian on the left is evaluated at
the point  A=f(®) as determined from (39) and &f is
calculated from 0@
OF of OF

It is assumed here that G and K have been normalized appropriately.
Again, p represents a step size scaling parameter which is a positive
number less than 1 and is chosen small enough to ensure a decrease in the
norms of G and K (see Appendix G).



6.0 NUMERICAL VERIFICATION

In this section cases generated by the computer program implementing the
current method are presented. The purpose of these cases is to display those
numerical characteristics of the method which are important for establishing
confidence in the computed results.

6.1

Effect of Wing Panel Density

6.2

In Figure 11, the effect of wing panel density on vortex system geometry,
wing pressures, and forces and moments is shown. The primary effect is
associated with spanwise density. In Figure 1lla two conically paneled
wings having 6 and 12 panels spanwise are illustrated. In both panelings
the spacing is non-uniform with a concentration of panels where they are
obviously most required, namely outboard under the vortex. The effect of
an increase in density is to move the vortex system slightly outboard as
shown in Figure 11b, and the consequence is somewhat higher pressures on
the upper surface outboard of the vortex core as shown in Figure llc., The
1ift coefficient is correspondingly higher (see also Figure 19b). Greater
spanwise densities have been run but the incremental effect is negligible
compared with that shown in Figure 11.

Effect of Wing Panel Layout

In Figure 12 computed results for the two panel layouts usually employed
on delta wings, i.e., streamwise and conical are compared. Both Tayouts
have 64 panels. The least square procedure described in section 5.2 was
required to obtain convergence for the streamwise paneling. Wing
pressures and force and moment coefficients are displayed in Figure 12b.
Pressures for the streamwise paneling have been interpolated to the
control point locations of the conical paneling for comparison purposes.
The two cases were run about a year apart and in the intevening time a
study on initial sheet shape was made, hence the free sheets have somewhat
different panel spacing. However comparisons of pressure and force data
still show excellent agreement.

Effect of Vortex Sheet Rollup

The cornerstone of the current method is, of course, Smith's device for
terminating the free sheet rollup, namely the use of a fed sheet whose
position and size are determined by the same overall force condition that
would be applicable to an infinitely rolled up free sheet. The point at
which the free sheet rollup should be terminated by a fed sheet depends
upon the sensitivity of wing pressures to further rollup. This matter has
been investigated in detail by Smith (ref. 6) under the assumption of
conical flow, and the standard amount of rollup employed by the current
method is based on his results. To verify the application to fully
three-dimensional flow, delta wings of aspect ratio .25, 1.0 and 2.0 have
been analyzed with an additional 1800 of rollup. Results at AR = 0.25
are shown in Figure 13 and indicate a slight increase in 1ift (4 percent)
with increased rollup. The effect of rollup is much Tess at the higher

33



ALISN3Q T3NVd ONIM 40 133443 TT JUNSI4

ONITINVd ONIM e

1

(STINVd 09) ONITINV ISNIA (ST3INVd 0€) ONITINVd ISHVYJS

34



Q4ANTINOD TT 4N914

AYL13IWN0ID WILSAS X3LHOA 9

!
s
=

ONIM J373INVd AT3SHVdS
ONIM A373NVd AT3SN3A

]
|
!
;
]
|

S133IHS XILHOA §0=9/X |

20’0

v0'0

900

80°0

35



q3aMTIN0D  TT NSld

JHNSS3IHd ONIM
oL 80 90 vo A 0 oL 80 9°0 vo A 0

; T T T | 1 I ] .v.Q
! A \
0
v'o
dy
- w.cl
- N- Fo
6'0 = 9/X 50 = 2/X
oy o- = s_o/ ozv'0-=Wo
62L0=1D 00,0 = 12
ONIM 13INVJ-09 ONIM 13INVd-0E
= OOE
Bap gz =D

36



ey Ry

>

1NOAVT T3NVd 9NIM 40 133443 ¢T N9l

ONITINVd TVIINOD

W

i

///:

i

ONIT3INVd ONIM &

SL°L =4V

ONITINVd ISIMAVIHLS

NH1<JM\N\
\ AVl
HANAN W
7/ \/ \\
WY
W

—
~
~

~— =~

37



ONIT3INVd 3SIMWYIHLS
L

ONIT3INVd TVIINOD

@INNIINOD 2T Fun9ld

AHLIWOIO L3IIHS X31HOA 9
A

Y T

60 80 L0 90 50 | 4" 0
0~ e0 9 420

0'L =J/X

38



d3dNTINGY  ¢T N9Id
SIHNSSIHd ONIM 2

NOILOVYHA NVdS ‘ U NOILOVHS NVdS ‘ U NOILOVHS NvdS ‘ &
0'L 80 9'0 ¥'0 20 0 0'L 80 90 ¥0 20 O 0L 80 90 0 20 O
1 1 ) ) o L ) Ll 1 | J< L T - L T l _‘-c
/[ /. 0
— v-Q-
- w.o.
- N.F.
- @-F:
(INVM HYIN ON)\ \ (INVM HVIN ON) ONIT3INVd ISIMWVIHLS
£v80°0- = Wo £v60°0- = Wo WOHd Q31V10dHILNI e

£98°0 = 12 098'0= 1
ONITINVd— ONIT3NVd
VIINOD 3SIMWYIHLS

V

'v

39

e i i a s |



dT104 133HS 3344 TYNOILIQAY

HLIM ONIN V1730 6270 = ¥V ¢T F4N9I4

AH1INO03ID 133HS X3LHOA
A
oL’o 80°0

90°0 v0°0 00
{ ! 1

0

/,

dN110Y
R HV1ND3Y

—
Bap oz = » S~——

G20 =4V
dN1704 1VvNOolLIaav

4 20°0

4900

<1900

4800

oL0

40



@3aNTIN0Y €T FWN91

S3HNSSIHd ONIM 9

q/Ac
ol 80 90 4

q/AC
90 LAY 0

0
T T T

Y — Y o—

N_.o 0 0L m“o

Bep 0z = v .
G20 = YV 60 =9/X

4vino3ay

dn1104

dN17104
TVNOILLIAAY

90 =J/X

lz'0

20

vo-

,w-cl

80

(INVM HYIN ON) 9€20-

(INVM HVIN ON) 74
Wo

B

ZG€'0
69’0
Lk

dN1704 HVINOD3H o
dN1704 TvNOiLIadyvy o

41



o

aspect ratios (1 percent at AR = 1.0 and less than 0.5 percent at
AR = 2.0). Results for AR = 2.0 are shown in Figure 14. The
conclusion is that the standard rollup is generally adequate for all
models. The slight improvements available at low aspect ratios do not
seem to warrant the added complexity and expense of additional rollup.

The current standard vortex system kinematics shown in Figure 6 is, of
course, only one of many possibilities. A good alternative is the
kinematics of Smith (ref. 6) shown in Figure 15. Here, in contrast to the
standard kinematics, angles are fixed and lengths are chosen as free
parameters. Smith's kinematics has also been coded into the computer
program implementing the current method with resulits typified in Figure
16. Comparisons have been made for small and large free sheet rollups,
for core locations inboard and in the vicinity of the leading edge, and
for wings of small and large aspect ratio, all with similarly close
results. If any difference has been noticed, it is that Smith's
kinematics seems to converge somewhat faster than the current standard

6.4 Effect of Vortex System Kinematics
kinematics with corresponding savings in run cost.
6.5. Kutta Condition

42

In section 4.3 the manner in which the current method enforces the Kutta
condition at a wing edge was described. If was pointed out that the
equation formally assigned as the Kutta condition is actually a
restriction on singularity strength rather than the flow, namely that the
component of vorticity parallel to the wing edge be continuous onto the
vortex sheet. This condition when combined with the standard flow
boundary conditions assigned to the interior of the wing and free sheet
then creates those properties at the edge commonly associated with the
Kutta condition, i.e., finite flow, zero pressure jump, etc. It was also
pointed out that finite flow requires continuity of all components of the
vorticity vector across the edge, which can only happen when the wing and
free sheet adjoin smoothly. This fact seems somewhat inconsistent with
our converged vortex system geometry (e.g. Figure 11b) which usually
displays a large discontinuity in surface shape at the wing-sheet
junction. However the discontinuity in surface sliope is qualitatively no
different than any other on the vortex system and can be reduced (and in
the limit eliminated) by dense paneling. 1In Figure 17 the effects of
finer vortex sheet paneling at the wing junction are shown. Note that the
discontinuity in surface slope at the junction is considerably reduced.
To reduce the discontinuity in surface slope in the neighborhood of the
junction to the point where the surface would appear smooth to plotting
accuracy would require extremely fine paneling at enormous expense.
Fortunately such paneling is not required unless precise details of the
flow in the neighborhood of the junction are required for reasons other
than establishing the Kutta condition. This is because the global effects
of the Kutta condition are already accounted for by our particular
implementation. " Note from figure 16b that dense free sheet paneling near
the junction has little effect on 1ift and moment coefficients, vortex
core position and strength, and pressure distributions except at the

junction.
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6.6 Effect of Initial Free and Fed Sheet Shape

Aside from free sheet rollup and panel density the initial guess of sheet
shape and size has Tittle bearing on converged results (assuming, of
course, the boundary value problem has a unique solution) although
convergence itself will be affected. Figure 18 illustrates this point.
In Figure 18b a converged pressure distribution and force and moment
coefficients for an aspect ratio .25 delta wing at 200 angle of attack
and no yaw are displayed. The initial sheet shape is conSiderably
asymmetric, however the converged sheet shape is quite symmetric given the
fact that rollup on left and right sides are slightly different. More
importantly, the pressure distribution and force and moment coefficients
are very nearly symetric. Note the close agreement in values with the
solution employing a plane of symmetry in Figure 13.
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7.0 COMPARISONS WITH EXPERIMENT AND OTHER THEORIES

In this section we present computed results for the purpose of examining the
validity of the theoretical model described in section 2.1. Many such results
have been reported previously in References 15, 18, 26. Results presented
here will be those that are primarily new in nature, although some previously
presented results will be repeated for the sake of completeness. Particular
note should be taken of reference 26 in which the capabilities of the method
in analyzing cambered wings are illustrated.

7.1 Delta Wings

7.1.1 Lift Coefficients as a Function of Aspect Ratio

In section 2.2 the problem associated with the method overpredicting Tift
coefficient at high aspect ratio, and how this problem was eliminated by
use of the more accurate near wake (type 6, Figure 3) at the wing
trailing edge was discussed. Resolution of the problem is shown in Figure
19. The dashed 1ine in Figure 19b shows the 1ift coefficients calculated
using a far wake (type 8) only. (Results using 60 wing panels would be
somewhat higher at the high aspect ratios). Insertion of near wake (shown
in Figure 19a) yields 1ift coefficients which are in substantially better
agreement with the suction analogy and experiment (refs. 2, 27, 28, 29,
30) at the higher aspect ratios. These 1ift coefficients are based on a
near wake of 0.5 root wing chord in length divided into three rows of
panels. (Note that the free/fed sheet vortex system must extend to the
end of the near wake.) In order to study the sensitivity of the wing
pressures to near wake length, two additional near wakes were tested. One
was 1.5 root chords long and made up of 5 rows of panels (Fig. 19a). The
other was 0.1 root chords and made up of 2 rows of panels. Wing pressures
for all three wakes were practically identical indicating, as stated in
section 4.3, that the primary function of this wake is to establish the
proper wing trailing edge Kutta condition.

The question of lack of agreement between the suction analogy, experiment
and the current method at very low (0.5,) or high (.1.5) aspect ratios
still remains. Examination of the results shows that for a very low
(0.25) aspect ratio the experimental data lies nearly half way between the
results of the current method (low) and suction analogy (high). However
analysis of the experimental (reference 29) data reveals that at the 200
angle of attack shown, an asymetrical vortex has developed in the real
flow. This is indicated by the rolling moment at zero yaw that developed
at angles of attack greater than about 160, The theoretical models

assume symmetrical vortices. J. M. Luckring (NASA LRC) has computed
solutions at several angles of attack using the current method. His
results presented in Figure 20 show excellent agreement between the method
and experimental data at the lower angles of attack. Beginning with the
150 angle of attack the results start to deviate from the experimental
data. Since this is approximately where the leading edge vortices become
asymmetrical while the theory vortices remain symmetric, it is conceivable
that this phenomenon could somehow be responsible for the deviation.
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Suction analogy results are also shown in Figure 20. These results also
deviate from experiment at the higher angles of attack but in the opposite
manner. E. C. Polhamus (NASA LRC) has suggested that the suction analogy
may be high for these cases because the analogy assumes complete
reattachment of the leading edge vortex and therefore complete recovery of
the suction force. As previously shown in Fiqure 13 for low aspect ratio
deltas at high angles of attack, the size of the free sheet which
represents the vortex shear surface has become so large that it may be
preventing complete reattachment and therefore complete suction recovery..

At the higher aspect ratios, the current method is in good agreement with
the suction analogy but both methods predict higher 1ift coefficients than
shown by the data. Examination of the experimental results shows a Toss
in 1ift at the higher angles of attack due to vortex bursting. Since
neither the current method nor the suction analogy can account for this
phenonema exact correlation with experimental data is not possible.

7.1.2 Pressure Distributions

One of the most important features of the method is its ability to compute
surface pressure distributions. This capability sets it apart from most
other leading edge vortex methods. A comparison of detailed pressure
distributions are shown in Figures 21 and 22. These results were
calculated with the earlier version of the method (reference 14). Lifting
pressures, shown in Figure 21, on an aspect ratio 1.0 wing are compared
with the experimental data of Peckham (reference 2). Although only 25
wing panels were used on one half of the configuration, the completely
three-dimensional non-conical load distribution was predicted well
including the location of the vortex induced pressure peak and the
decrease of the load toward the trailing edge. Figure 21 illustrates the
method compared to the experiment of Marsden (Reference 32) for an aspect
ratio 1.4559 delta wing at an angle of attack of 140, The general
agreement between the predicted and the measured pressures is quite good.
The experimental results clearly show the effect of the secondary vortex
separation, which takes place on the upper surface just slightly outboard
of the main vortex. The presence of the secondary vortekx raises the
suctions near the leading edge and Towers the suction peak due to the
primary vortex. The theoretical method does not model secondary vortex
separation and, consequently, produces a slightly Jdifferent shape for the
pressure peaks. This type of discrepancy will be found in most
test-theory comparisons.

The method is also capable of calculating pressures on a wing at yaw as
well as at angle of attack. Such calculations require that the complete
wing be paneled and that no symmetry conditions be imposed. Figure 23
shows a comparison of calculated 1ifting pressures with the experimental
data of Harvey (Reference 32} on a delta wing with 80 Tleading edge

sweep. The theoretical results clearly predict the asymmetric character
of the 1ifting pressure distribution. The descrepancy due to the presence
of the secondary vortex is quite evident in this comparison. Additional
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comparisons were made for increasing yaw angles until one of the leading
edges became parallel to the freestream. Agreement with test data
comparable to that seen in Figure 23 was found in every case.

In order to validate the accuracy of the new code in reflecting
aerodynamic differences due to camber changes, two wings first analyzed by
Kuhlman (Ref. 18) were reanalyzed. These were delta wings of identical
planform tested by Wentz (Ref. 27). The wing had an aspect ratio of 1.15
and 740 syeep. One wing was flat while the other had conical camber.
These wings are illustrated in Figure 24. For the calculations, the wings
were considered to have zero thickness. Calculated and measured pressure
distributions are compared for both wings in Figure 25. While the
differences in the measured pressure distributions due to the camber on
the upper surface is small, the greater differences in the experimental

data between the flat and cambered wing are also reflected in the
theoretical results.

The code must further accurately predict drag increments between different
camber wings. Drag polars are presented for the flat and cambered wings
in Figure 26. Both calculated and measured results are shown. This
comparison shows the drag differences to be predicted reasonably well by
the improved code. At Cp = 1.2 the predicted drag reduction for the
cambered wing is 5.7 percent compared to 7 percent given by Wentz for the
measured data.

7.1.3 Wake Vorticity Rollup

An interesting property of the solution produced by the current method was
discovered with the use of the near wake. 1In real flow over a delta wing
with a leading edge vortex, the wake behind the wing will roll up into a
vortex rotating counter to that of the leading edge vortex. The
phenomenon has been known for some years and was clearly evident in the
experimental measurements presented at a recent AGARD symposium on high
angle of attack flows by Hummel (ref. 33). Examination of the doublet
strength in the near wake and connecting free sheet clearly reflects this
behavior. Doublet strength is plotted versus span fraction on the wake
and unrolled free sheet for several cuts behind the delta wing in Figure
27. Near the trailing edge the doublet strength gradually rises toward
the wing tip indicating an outward spanwise vorticity flow in a direction
counter to that of the vortex core denoted by the sudden drop of doublet
strength. (Note that the vorticity is the gradient of the doublet
strength). Moving away from the trailing edge the variation of doublet
strength becomes flatter except for the jumps behind the tip and vortex
core. This indicates the concentration of vorticity into two counter
rotating vortices just as in the real flow. Presumably it would be
possible to replace the whole wake by such counter rotating vortices at
about 0.5 root chords behind the wing in order to determine the effect on
downstream components of a more complex configuration.
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7.2 Rectangular Wings

In Figure 28a converged geometry for an aspect ratio 0.5 rectangular wing
with separated flow around the side edges is illustrated. Corresponding
pressure distributions ( ACp) are plotted in Figure 28b along with
similar distributions for the same wing in an unseparated condition (which
were generated by simply removing the vortex networks). Force and moment
coefficients for rectangular wings of varying aspect ratio are shown in
Figure 28c and comparisons with the suction analogy and experiment
(reference 35) are good. Convergence for these cases required use of the
least squares technique described in section 5.2.

Spanwise core locations at the trailing edge vary from 84 percent semispan
at AR = 0.2 to 94 percent semispan at AR = 1.0 compared with around 70
percent semispan for delta wings. Core vertical displacements at the
trailing edge vary from 13 percent chord at AR = 0.2 to 18 percent
chord at AR =1.0. This compares with 4 percent root chord at
= 0.2 to 9 percent root chord at AR = 1.0 for delta wings. Trailing
edge vortex core strengths for the rectangular wings are 12 percent higher
at AR = 1.0 and 54 percent higher at AR = 0.2 than those of delta
wings. The net result is that the spanwise flow at the trailing edge is
?ark$g1y lower for rectangular wings, making use of near wake unnecessary
or them.

7.3 Arrow Wings

Solutions for an arrow wing configuration have previously been calculated
using the old code, reference 15. These results which are still
considered valid are shown here for completeness. The experimental data
is for an arrow wing-body configuration by Manro, references 35 and 36.
An attempt with the old code to analyze the complete wing-body showed
unacceptable sTow convergence. Instead the configuration was modeled as a
simple wing as shown in the inset on Figure 29. A near wake (type 6,
Figure 3) was used to insure the proper Kutta condition at the trailing
edge. The comparison with experimental data for the flat wing
configuration shows generally good agreement considering the crudeness of
the theoretical model.

An analysis was also made of the configuration with a trailing edge flap
deflection. The Tifting pressure comparisons are shown in Figure 30 which
also includes results from an attached flow solution. While some
discrepancies do exist, the LEV code results are in substantially better
agreement with the experimental data than are those of the attached flow
theory. Part of the descrepancy is obviously due to the presence of a
secondary vortex. Near the wing tip, the simplification of the wing
planform to a pointed tip instead of the actual clipped tip may also
account for the poor test-theory correlation in that region.
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8.0 CONCLUDING REMARKS

The advances described in this report clearly improve the usefulness of the
current method in the study of separated vortex flow. In addition, the
numerical examples set forth in section 6 give reasonable ‘assurance that the
data computed by the method faithfully reflects the underlying flow model.
For those cases in which the real flow deviates significantly from the single
well-formed vortex assumed in the flow model, the method will generally fail
to converge. Finally, the results accumulated to date show that the flow
model itself is representative of the physics in a wide variety of cases.

However, much work is still needed to improve the method to the point at which
it exhibits reliability comparable to that of an attached potential method.
Despite the advances made, difficulties may still occasionally be encountered
with seemingly well posed problems.

Boeing Aerospace Company
P. 0. Box 3999

Seattle, Washington 98124
July 1979
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Appendix A
Hyperboloidal Panel Geometry
Definition

Let Q 02, Q and Q4 be four panel corner points as shown in Figure
A.l. The hyperbo]o1da1 panel H interpolating these points is defined as the
point set

e > > > -+ -
Qs,t) Q(s,t)_= Q, * Qs + Q;t +_Qst5t ;S e[}l,l], te [—I,i] A1)
where

o =14 @+ + T+ Ty

O =1/ @1 -0z - 83 + )

re > > > >

Q¢ =1/4 (Q1 *+ Q2 - Q3 - Qg)

3;t =1/4 (61 - 3} + 35 - 3h)

General Characteristics

The fact that H interpolates the corner 01nts is easily demonstrated by
noting. that (1,1) = Q7, 8(-1,1) = G, Q(-1,-1) = Q3 and G(1,-1) =

4. Moreover the boundary of H s1mp1y cons1sts of the straight lines

Joining the corner points, a fact that can be checked by noting that for fixed
S = Sg, Q(sgst) is linear in t and hence is a straight line segment.

Similarly for fixed t = t,. It is clear then that there will be no gaps
between panels.

>
80 is the average of the corner points and lies on H since 310,0) =
s 15 the vector from (gy to the midpoint of the line segment joining Qi
4 an%_d} is_the vector from 35 to_the midpgint of the line segment
gining . The line_segments 610,t) = ab +Qr t, t e[-1,1]
%75 0) = Q g + st, s e[-1,1] = belonging to H are then simply the line
segments joining the m1dpo1nts of opposite sides.

-
H is flat if and only if Q¢t ligs in_the plane of QS and Qt, i.e.

,. the
near plane. If_in particular 6;t = then H 1%_a tr1ang]e with G’
Qg. Si 11ar1y Ost = 5},<—5y Q2 03, Qst = s> q =
Q2 and 3" f 3" = 0 then H is a plane

para]]e]ogram and v1ce versa.

Normal

Let us define

a =_3M = -6 + e t =—%— [-6(1"[;) _—6(-1,1:)] (A.Z)
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and

39(5,’6)_ = Et+asts = %—_ [-6(5’1) -—6(5’-1)} (A.3)

¢ = ot
and > -> - -+ - -> -> ->
n = = >
3 ® 3 %,® Q + 0® Qgps + Qg ® Q4
(A.4)
> > > >
= ® + . -
and A 0 + Qs - 1) ® Qi
1®a,
f o St (A.5)
(LA '
Ihen f=n _js the uni upper surface normal to H at (s,t). We note that
n(0,0) = ® Q g ® Q js simply the unit normal to the
near plan e

Area Element

The area element dA on H is given by

dA = [P} dsdt = |a.ea.l d '
la®a,| dsdt (A.6)
Note then that
_ > _ > ->
ndA = ndsdt = as() a dsdt (A.7)

Surface Derivatives

. ->
Let f(s,t) be defined on H, and let V¥ be the gradient operator in giobal
coordinates. Then

A - 1 T of  _ 3 9f
n®yf = EACEAL YO [at 8 "~ 3 3t j\ (A.8)
and
POV FdA =[5’t 3S - 5’5—;‘3:—] dsdt (A.9)
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Variational Properties

In this section we compute derivativegpofqyarious quantities with respect to

panel deformations, i.e., changes in Qj, Qo, 65 or a&. Let Qq be
one of these points.  Then

>
aQ(s.t) _
316‘{ == =1 ( €oi ¥ E€gi S * €yt t estiSt)

where I is the 3x3 identify matrix and

I = 1 |
€o1 ) €2 = 7 €3 = & €04

- 1 - 1 - 1
€s1 3 €2 = -7 €3 = -7 €sa

. 1 - 1 .
€1 ° 1 €2 = 2 €3 ~ ) €4

= L = _.1'_ = 1
€st1 4 €st2 -7 €t3 ~ 1 €sta
Next we have

Bas
7 1 (egy +oegy P
a0,
and
% <1 (e, + )
= € €.4:S
36} ti sti

and

3 N N . -

a; = Qg (g * €6y - Qg (Bgy + Egp3t) + Qgp (655 * €44t

i
where 5 . 6t and 5 ¢ are matrices defined as follows. Let.v be the
vector ?vl, Vo, v3§. Then
A v, |
V = \') 0 -V

76

(A.10)

hha -hhﬂ

-hls—- -P'"—‘

(A.11)

(A.12)

(A.13)

(A.14)
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From other considerations we have

Anl _ AT 3R
30, F1d (A.15)
and so .
A >
Moo 3 [r - mMT]eR (A.16)
aQ; ini aQi
Applications to equations (A.6) and (A.7) are obvious, i.e.
—5-
2 o= AT B (A.17)
301 3Q1'
a = d
—5 (hdA) = 3,’_’, dsdt (A.18)
aQ, aQ

-

Finally we Sgal with equations (A.8) and (A.9) differentiating (A.8) with
15)

respect to Qg using (A.11), (A.12) and (A.15) we get
-
da n
3f 1 t 1 -> AT n
—i“ (ﬁ\@Vf) =[35 < > - SN " P >
36-3 [nj aQ'i In} 1
- N (A.19)
_3_f<~_1r 2% 1z in_”
T Y AT A A
Differentiating (A.9) with respect to.ai we get
9 (3®3fdA) - 1[2f (.. + €_ s) - —a—f(e +e_. . t)dsdt (A.20)
861 35 ti St 9t 'si Tsti sdt ’
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Appendix B
Panel Singularity Distributions

Doublet Distribution

We define 9 canonical panel locations as shown in figure B.l. We assume that
doublet strength at these points is determined by a 9xNy matrix By which
relates these strengths to a Ny vector of neighboring doub]et parameters.

Let N -

=B.S
H= B4 (B.1)

where > )
H = (ul’ Hos u3, Hps US’u63U7’\18aU9

Then the distribution of doublet strength u(s,t) on the panel H is defined by
uis,t) = W[ st @] su, [- st (1910w
Lt sy 1et)) (-1 )]
sugfbst (1) (-t)] wm, [ st (es)(1-0)
H

rug [t -]+ e s -
T TR %[t (1-t)(1-52)] + ug —%—[s(l+5)(1-t2)]

+ug [ (1-59)(1-t9)]

From equation (B.2) we obtain

dH(s,t)
a9s

u [ (1+25)t(1+t)] M| (-2s)t(1+t)] + gy —[(1-29)8(1-1)]

+ u4[ (1+25)t(1- t)] + g [ - st(1+t)] + ug -+ (1'25)(1't2)](3
|

1, [st(1-0)] + ug[5- (1+25)(1-1)] + Mg [-25(1-1;2)]



FIGURE B.1 THE 9 CANONICAL PANEL POINTS
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and
dU(s,t) _ 1
_a__(t_:_)_ = “1 [T (1+21‘.)s(1+sﬂ+1-l2 [- —[1‘-— (1+2t)s(1-5)] + p3[_3‘;_ (1-2t)s(1-—s)]
1
Py - [(e2t)sie)] vug [ een)(1-sD)] +ug [ts(1-9)) (8.4)
+U_ - —1’—1—11-2+\!1,c2\~‘ T fi+../u,\-] 4 I arft1 23]
7 7 1 CINETS Hg | TUVITSI T Hg L‘Uﬂ\l'5 )J

-+ . . > .
Let q(s,t) be the vector of coefficients of § in (B.2), then

uis,t) = q(s,t) - (B.5)
oM _3d(s.t >

5= (s:t) = Jés,i'—)_ "H (8.6)
3u _ aq(s,t) .

ae (s:t) = ——95(%—1 U (B.7)

Differentiation of Doublet Distribution

- -> >
Let X be the full vector of singularity parameters. Then Bsd//ék is
simply a matrix containing almost all zeros except for those columns
corresponding to the singularities of 36 which have a 1 in the appropriate
row. Then

(B.8)
dH(s,t 3§§s,t) 32;
3s 3N as  °d I

(B.9)
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du(s,t) . Bﬁls,t) B 339
at ax at d 3% (B.10)

Assume_the variation in 3’has been calculated with respect to any given corner

point Qj. We have

-
oM
Ms,t) - Ys,t)T 25

.y

30, 30y (B.11)

3s 90, 9s 30, (B.12)
2
3—“1%1 I TCR M) (B.13)
t 30, ot >
d j aQ

Source Distribution

We assume that the distribution of source strength on the panel @ (s,t) times

the area Jacobian las C)atl js linear, i.e.
| 7(0,0)]
o(s,t) = = (0, +ags + 0, t) (B.14)
In(s,t)] ©° .

s <>
Let Bg be the matrix which relates the coefficient vector @ = (Ob > Jgs
O¢) to an Ng vector of neighboring source parameters §; so that

-»> >
O= BSSS (B.15)

-5
To obtain Bg we construct a local near plane coordinate system at Qp with
transformation matrix Anp such that

> >
_ Q®Q
Ao = ‘:35, 4, , —=— ] | (8.16)

Y
10 ®0
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Let'?kbe the locations of ne1ghbor1ng source singularity parameters in this local
coordinate system with sNk »8k )» Then the coefficients O >

Os and O are obta1ned by %east squar1ng the distribution o(g,rv =

ob + osg + otn to the points ?’w1th heavy weight on the point™(0,0,0).

In the same manner as for equation {B.11) we have

30(s,t) . [[(0,0)| >, .\T 30
3% (s, t)) ris,t) = (B.17)
where r(s,t) = (1,s,t)
and (A = 95

T %%

Calculation of the Derivative of Doublet Strength with Respect to the Panel

Grid Points

From eguation B.11, we have

U(s,t) - Ys,t) 2N (8.18)
9 Q, 3

1

Where 37(s,t) is the doublet strength at a control point expressed in terms of
the parameters s,t of a hyperbolic paraboloid_element, g(s,t) is the
coefficient vector of T , and T = B4A with H = (H4, 1 Dy ereeess s Hg)
corresponding to values of doublet strength at the 9 canonical points of H-P
panel.

¥

=t

F1n1te difference approximation will be used to evaluate the derivatives

oW /3Q; . For each panel of a doublet/design network with its geometry
perturbed, an outer spline, giving the dependence of the doublet strength at
the 9 canonical points of the panel on the 16 neighboring points with the
specified singularity parameters (see scheme to construct the outer spline for
doublet/design type I), will be constructed. The 9 doublet strength
coefficients (§ = (gq » Hpoeoos pg)) for the panel can be obtained from
either multiplying the matrix B by the vector consistipg of the values of
the 16 singularity parameters or the direct solution A = A (i.e. Bq s
the generalized inverse of A). SThen we perturb the 16 neighboring po1nts one
at a time and calculate a new Jp for each perturbed point. Using T and the
associated u for each perturbed grid point, we compute the finite
difference approximation of 311/3Q1 . For a given panel, the derivatives
of the doublet strength with respect to the network grid points can be
assembled as a 9x16 matrix,

KL S L
TN a0,
u 3_\&2
woom (5.19)
: : B.19
L L
Y 0y



Appendix C
Control Point Locations

Panel Center Control Points

We assume that all panel center control points are located at (s,t) = (0,0).

Network Edge and Corner Control Points

The hypothetical location of all panel edge and corner control points are also
defined in terms of s and t. For a control point located at panel corner %1
for example we have (s,t) = (1,1). For a control point located at edge
midpoint {5 we have (s,t) = (0,1). For edge and corner control points with
real boundary conditions the actual control point location will not coincide
with the hypothetical Tocation but will be withdrawn into the panel slightly.
For example if the hypothetical location is (s,t) = (1,1) the actual location
will be (s,t) = (1 -§ , 1 -8 ). Here § is say 0.1. If the hypothetical
location is (s,t) = (0,1) then the actual location will be (s,t) = (0,1 -§ ),
etc.
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Appendix D

Potential and Velocity Influence Coefficients

Preliminaries

Let C be the compressibility direction unit vector and 82 - 1 - Méo

Define the matrix A by

A = 8%+ (187 &7 (0.1)

and the matrix B by

2 AT 2,-1
= + -1) cc = A
B I+ (B™-1) 8 (0.2)
> >
Let P be a field point and let Q be a point on H. Let
-5
R=PF -1 (0.3)

->
We now define R, the norm of R, by

R V L (D.4)

Next define

. - [ 4 ] Mo <1
2 M >1 (D.5)
The source potential ¢g induced by a source distribution o on H is
defined by
g
b, = vi—ﬁ——ds
S am R Q (D.6)
H
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The doublet potential ¢4 induced by a doublet distribution u on H is defined
by

- ATy L
% = @ ﬂu(n V) &= 95
h
> (D.7)
an R§ Q
H
where
v 3
= B
Q a8
The source velocity —\75 induced by a source distribution O on H is defined
by '
v = > 1 o 1
Vs = vp‘t’s T ICVDT dsq
H
-
_ . A R (D.8)
tam ffoa %
H

-
The doublet velocity V4 induced by a doublet distribution H

on H is
defined by
i d _ - 1 1
Vg = oy = g JI (0 VIV, = dsg
H ~
-> 1 1 1 g
= ﬁ'— .g NAVM® ¥, 95 + 4‘17_{“‘70 *® di
-> -
A > R B
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The line .integral on the right of (D.9) cancels with the corresponding line
integral for adjacent panels and may be ignored except on the panel edge
corresponding to the vortex core. For the purpose of evaluating the remaining
integrals on the right sides of (D.6), (D.7), (D.8), and (D.9) we approximate
H by a flat quadri]ateral‘fane1 L. I lies on 8pe 1ane pass1ng through

having a constant normal © in the direction is obtained by
projecting the corner points of, H onto this p]ane 1n a manner to be described
later. A local compressible (x y,Z) coordinate system may be defined on I in
the following way.

X' X X0
Y = T Y - Y
, 0 (D.10)
z A z
(]

where (x,y,z) are the coordinates of a point in the global coordinate system
and ,zo) are the components of Q.. The transformation T is
def1ne8 the Column vectors comprising 7- , i.e.,

> 5> >
u vV W
l l 1 (0.11)

SO thatTT,'V, and W are the coordinate axes of the local coordinate system.
->" . .
The vector w is defined by

> ~
W =an (D.12)

where
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The vectors U and v lie in the plane of L and are orthogonal. We have

V2 2
ny + nz 0
> 1 , 2 5 > > >

(A7) z
2 2 2 2
-n, n_f\n +n - :
X y z ny/ ny+nz
If (n§ + ni) = 0 then we define ny//Qni + ni =1 and
2 =
n, Ay +n; =0

We now express the integrals of (D.6), (D.7), (D.8) and (D.9) in terms of
local coordinates. We have

ds =|'u’®7| d£dn = adedn’ (D.14)
R = V(E' _x')2+(nl ‘y')2+(C' _Z,)Z (D.15)
Ak =2/8% (D.16)

T @F. =1 B, By 2 (0-17)
('ﬁ®\7u)®vQ T[(ug,un- 0) 5T (0’0’1)(“535,”'“"311’)}
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Hence

ij]ﬂdg’dn’
NT)) R
(D.18)
2

'] _'l
- ——f EE qgan’
NnjJ R (D.19)

vV = TTaf o (B -x'sn'-y',g'-2") dg' dny
s T (D.20)

> R

219H 19 U ,y IH
ff ( > Z a‘r‘]., (&' -x')=— 3E" +n- y );\.)dg' dn' (D.21)

The singularity distributions o and U can be expresses in terms of £ and

n , however since o and U are defined in terms of s and t, and s and t are
not polynomials in £ and n , the resultnt distributions would not be
polynomials in & and n . Therefore we approximate 0 by a linear
distribution and u by a quadratic distribution in £ and n . The
approximation is defined by requiring that the derivatives of these
approximations evaluated at £=n= 0 agree with the exact derivatives of @
and u to the respective order of the approximation. For this purpose we use
the following formulas:

9f _ af af
3 A [nt as s at ]
of _ ot , . f
an' [gt 3s 55 3t ]

2
°F _ 2 of 9f
—,= Ao [(ntnst + TltAn )a—s + (nsnst' ns An )a—t (.22)

2
+ ']2 é_f -2 3 t 2 3
MMt © M +2 }

t,2 + N
ds 3



T

TR

32f - 2 _ of af
agan Mo [ (Etnst+ Ni8e)5s ~ (Nsst -Esn)
3 f of d f
"Bt (BNt MeEs) 3o 55"555’%]
2 2
37{2 - [(€ Est+ 3 AE) (E Est” ESAC)B‘[‘.
2 af 9%f 2 ¢
| + E E E; T + ES 3‘[;2 ]
where
1
Ao =
(Esnt' Etns)
By = A [zntnsgst -(n g + nsgt)nst}
Ag b Ao[thgsﬂst SNy Eg * nsgt) E‘-st:l
> -
(BN, 0) = TQ,  (g,n-0) = TQ  (E£gea Ngp» Q) = TO,

Now note from equation (30) that at s = t = 0,

oM _
B _ _
3% 1/2;15 1/2 u 7
2 {D.23)
o M _
- = u_.+ MU, -2
9
852 6 8
af
———=1/4[1J1-U2+ U3-U4]
9s ot
2
o°f
S— = H_+ M, -2M
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so that upon combining (D.22) and (D.23), WU, sH . H n *Hnn

may be expressed in terms of the nine canomca] %an& d ub]et values My
and the result substituted into (D.19) and (D.21). For the source ,
distribution of equations (D.18) and (D 20) we assumeO(&,n)=g + o + Op n
from the beginning and determine by the process ofEIeast
squares (ref. 14). The resultant 1ntegr 1s are evaluated in the same manner
as for (ref. 14),

The line vortex term of equation (D.9) may be evaluated directly. Without

loss of generality we assume the panel edge corresponds to t = -1 in figure
A.1. Then > -
R = Ro - sRS
where .
<> > > -
Ry =P-0Q » R, =1/2 (Q - Q3)
(D.24)
> =
also dg, = R_ ds
s
Hence
T - B et r, f.f Xs)ds
d an "o¥% ' - 3 (D.25)
] R
To evaluate f we note that
and
_ 2
R(s) =1/a + 2bs + cs
where
_2T 2 2T > >T >
a =R = - =
o A Ro’ b R0 A Rs’ c Rs A Rs
Thus we need to compute H(1,3), H(2,3), H(3,3), where
1
M-1
s .27
H (M,K) = f ds (D.27)
-1 RK



We obtain from integral tables

HO(1,3) = 12 [cE (2,1) + bE (1,1)}

cg
where 1
2 M-1
f=a--2  and  EMK=g
¢ R
-1
Then
H (2,3) = -1_[bH (1,3) + E (1,1)]
[of
and
H (3,3) = —(1; [H(l,l) - aH(1,3) - 2bH(2,3)]
where
R, +4&
1 2 t &,
H(1,1) = — logf—2%_ 2
(1,1) e og T 215 2,>0
1 Y4
Ry -2
SR PYY S St 2452, <0
R, -
Ve 2 "%
1 reg (R1 - 2R+ 8y) .
Ve g2 2
and
2 = (cs +b)
Nl

> 0, 21 <0

(D.28)

(D.29)

(D.30)

(D.31)
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Appendix E

Schemes to Construct the Outer Spline for Doublet
Analysis (2), Doublet Design Type I (4) and
Type II (6), Doublet Wake Type I (8), Type II (14),
Type III (16), Type IV (10)

The outer spline gives the relation between the doublet strength at 9
canonical points on a Hyperbolic Paraboloid element (panel) and the
neighboring singularity parameters. For each canonical point, a local tangent
plane coordinate system (£ ,n) is set up with the given canonical point as
the origin. Then a gquadratic function

1 2 h 2
fF(EN) = a, + a,€ +a N+ —5 ag &% + afn+ —- agn (E.1)

is fitted (least squares) through the projections of some selected neighboring
points where singularity parameters are specified. The coefficients ag,

gives the desired relationship of the doublet strength at the given canonical
point in terms of the neighboring singularity parameters. For the 9 canonical
points on a H-P element, we have 9 such coefficients ay's which define the
outer spline for a given panel.

In the following, we will discuss schemes to construct the outer spline for
various types of doublet singularity networks.

For a given panel of a network, the 9 canonical points consists of panel
corner points, midpoint of panel edges, center of panel. We will show how the
doublet strength at each of these locations depends on the neighboring
singularity parameters

NW N NE
We C $F
SW S SE

Figure E.1 The 9 Canonical Panel Points



Doublet/Analysis (NT = 2)

For doublet/analysis network, the singularity parameters A's are specified
at the locations as illustrated below.

M
. A
w1 At A3 A1 Y1 o1 A1
Ay A3z Aap N
A, X X X X SN
0,
A3 A33 A3 I
ALt X X X X X )3
033 N
A A3y Xag Asq
X25 S X
A X X X X X X
15 Aas 75
A N
Al X X X X S W
Xy, —* X X % X -
Ay A3 Az Agy A7

Figure E.2 Doublet/Analysis (2) Network
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(E2-1)

(€2-2)

(E2-3)

(E2-4)

94

For network edge grid points, the associated doublet strength is
assumed to depend only on the network edge singularity parameters.
The network edges are parametrized by arc length t. A least squares
fit of the function f(t) = a + bt + ct? through the four
neighboring singularity parameters locations with two on each side of
a given edge grid point yields the dependence of the doublet strength
at the given point on the neighboring singularity parameters.
Constraints are to be set on the two close singularity parameter
locations.

For network edge midpoints, the value of the specified singularity
parameter defines the doublet strength at each midpoint.

For each interior grid point, the quadratic function f (§ ,n) is
fitted (least squares) through the 12 neighboring points (its
projections on the tangent plane with the grid point as origin) where
singularity parameters are specified. A constrained least squares

fit will be performed with constraints set at the 4 center points of
these panels having the given grid point as their common corner

point. It means that 4 equations corresponding to those 4 center
points will be satisifed exactly in solving the least squares problem.

e.g., Q9o shown in Fig. E.2, a quadratic function will be
fitted %%east squares) through the 12 neighboring points
where  Ao1, Asis Aips Agps A3z Agp,
13 X 3 A 3s 4> 4, are
specified with constraints at the 4 Center points having Ao,
32, 03, A33, as the associated singularity
parameters.

For each interior edge midpoint, the quadratic function f(&,n) is
fitted through the 12 immediate neighboring points where the
singularity parameters are specified. Again, a constrained least
squares fit will be performed with constraints set at the center
points of the two panels sharing an edge on which the given midpoints
is Tlocated.

e.g., N shown in Fig. E.2, a least squares quadratic function
will be fitted thru 12 neighboring points where  A3p,
22, Asz, A3z, Ag3. Asy, Az, A,
54 355 45 g5 are specified with
constraints at the 2 center points with the associated
singularity parameters A3, Agq also for W shown in Fig.
E.2, the 12 neighboring points are locations where X»3,
233, A3, As3. Aoas Aga,  Aag, Asg,
25, A3g, 45, 55, are specified. The points
where A3p and  Xaq are specified will be the locations for
setting the constraints.



= |

(E2-5) For panel center points, the value of the specified singularity
parameters defines the double strength at each center points.

The following table gives the dependence of each canonical point of a
given panel on the 21 neighboring singularity parameter (see the
panel marked with C, N, S, W, £ in Fig. E.2).

A2l Mzl 25212030 X33 Mgl As3l A6l Mol A3a) Paa| 2] Aea] 225 |A35] Mas|*ss| Aes| a6 6| P56
NW| X | X X [®®] x X | ®I®] x X | X
swl | | x| | [x|®I® x| x |®@®]x X | X
SE X | x X [®OI®D] X X {[®O®] x X | X
NE x| x x [ ®I®! « X QIO x X | X
W X | x| x| x x |®©|®] X [ x| x][x
s X | x| x X [®] x X |®] x X | x| x
E X[ x| X|X X O] x X | X | x|x
N x| x| x X (@] X X |®] x X | X |X
c ® B

(X indicates the constraints
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Doublet/Design Type I (NT = 4)

For each Doublet/Design network (Type I), the singularity parameters
specified at the locations as illustrated below.

M
vl MM e M A Aay As1 N5 Agy
w E
wtCue | Core ot
A22 A32 X13,2 >‘52
A A2
w +
12
A23 A3l N ,
A3 . 263
c
W4 . 1t
\ . A
14 . 6
A5 %65
M6
A6 A36 Aag Ase M66

Fig. E.3 Doublet/Design Type I (4) Network

A's are



(E4-1)

(E4-2)

(E4-3)

(E4-4)

(E4-5)

For network edge grid points, the value of the specified singularity
parameters defines the doublet strength at each grid point.

For network edge midpoints, the associated doublet strength is
assumed to depend only on the network edge singularity parameters.
The network edges are parametrized by the length t. A least squares
fit of the function f(t) = a + bt + ct? through the four

neighboring singularity parameters locations with two on each side of
a given midpoint yields the dependence of the doublet strength at the
given point in the neighboring singularity parameters. Constraints
are to be set on the two close singularity parameters.

e.g., for Npy in Fig. E.3, the four grid points where

X1, Ap1s A3zp.  Agp, are specified will be used
in the least squares fit with constraints set at grid points
where  Xp; and A3 are specified.

For special case such as N shown in Fig. E.3, the corner point
where X171 is specified w1%1 be treated as two separate but
identical points. Likewise for the midpoint Ngj, the corner point
where A‘61 is specified will be treated as two separate but
identical points.

For interior grid points, the value of the specified singularity
parameters defines the doublet strength at each grid point.

For each interior edge midpoint, the quadratic function f(& ,n ) is
fitted through the 12 immediate neighboring grid points where the
singularity parameters are specified. A constrained least squares
fit will be performed with constraints set at the two grid points
which are vertices of the edge containing the given midpoint.

e.g., forXN in Fig. E.%i the grid points Xoo, Az,
42, 52 23> 33 > ’ 4
X34, Ay, Ay are Specified will°Bé used in the
34 44 54
least squares fit with constraints set at grid points where
A33 and  Ag3 are specified.

Again for special cases such as Wpy shown in Fig. E.3, each of
those three grid points where A1, Azq, k31 are specified
will be treated as two separate but identical points.

For each panel center point, the quadratic function (g ,n) is fitted

through the 16 neighboring grid points where the singularity
parameters are specified. A constrained least squares fit will be
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performed with constraints set at the four corner points of the panel
of which the given center point belongs.

e.g., for C in Fig. E.3, the 16 neighboring grid points where

A2z, §32’ ’i42’ ds2> s &33’ Aa3»
53 24> 34> 744>  ABL» >, ES’
14 . 55 are specified will be used in the least squares

fit with constraints setting at four corner points where
A33, A43, A3g,  Agg are specified.

For special case such as Cyq shown in Fig. E.3, each of those grid
points where Xp1, A3y, 12> Ay3 are specified will be
treated as two separate %ut identical points and the corner point
where A1 is specified will be treated as two separate but
identical points. Similarly for Cpy shown in Fig. E.3, each of
those grid points where Al A1, A3ps  Agp are

specified will be treated as two separate but identical points.

The following table gives the dependence of each canonical point of a
given panel on the 16 neighboring singularity parameters (see the panel
marked with C, N, S, W, E in Fig. E.3).

NE ®

WlXx|Xx|x X 1 ®! X X {®]| X X | X |X
S X[ x| X xﬂxﬂ®®x X | X|X|X
E x| x| x x| ® x| | x|®] x X | x| x
Nxxxxx®®xxx' X | X

CIX x| x| x| X[®® x| x|®OI®O] x| x|x|x]|x

(:)1nd1cates the constraints
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Doublet/Design Type II (NT = 6)

The singularity parameters A 's of a doublet/design Type II network are
specified at the locations as illustrated on the this page.

LI A2l A31 Azl As1 A61
11 1
Y Cll Y C12 Y J L
)\12  § ® A L] A [ AF 3 l62
I
M3t X # X X S
Q33 N
c .
g} X WY e XE X S
s
A ¥ X X X X X Ags
AgX X X X X S
A7
A7 A37 Ag7 As7 67

Figure E.4 Doublet/Design Type II (6) Network
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(E6-1)

(£6-2)

(E6-3)

(E6-4)
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For network edge grid points lying on the edge with singularity
parameters specified at grid points, the doublet strength are simply
the values of singularity parameters as for network edge grid points
Tying on the edge with singularity parameters specified at edge
midpoints and two extreme corner points, the doublet strength are to
be found by using the Doublet/Analysis approach (see (E2-1).

For network edge midpoints 1ying on the edge with singularity
parameters specified at grid points, the doublet strengths are to be
found by using the Doublet/Design Type I approach (see (E4-2).

For network edge midpoints lying on the edge with singularity
parameters specified at edge midpoints and two extreme corner points,
the doublet strengths ar simply the value of singularity parameters.

For each interior grid point, the quadratic function (£ ,n) is
fitted through the 12 neighboring points where singularity parameters
are specified. A constrained least squares fit will be performed
with constraints setting at the two edge midpoints which are on the
two edges having the given grid point as their common vortex,

e. f for 033 shown in Fig. E.4, the locations where
220 Azps hazs Aazs A33s Mgz, 24>
A34, A44, }‘25, A35, 45 are spec1f1e will
be used in the least squares fit with constraints set at edge
midpoints where X33, A3gq are specified.

For these interior grid points lying on the columns next to the first
or last column, those network edge grid points will be used in the
Teast squares fit.

e.g., for Qpp shown in F1g E.4, the edge grid points
where  A11, App are spec1f1ed will be used in
con3unct1on w1th those eége midpoints where AIZ’

A22, 25 Aoz, Aszs A Apgs

A3g are spec1f1eg

For the interior midpoints lying on rows of the network, the doublet
strengths are simply the values of the specified singularity
parameters.

For an interior midpoint lying on columns of the network the
quadratic function f(E, n) is fitted through the 16 neighboring
locations where the singularity parameters are specified. A
constrained least squares fit will be performed with constraints
setting at the four edge midpoints belonging to the two panels both
having the given point as their common edge midpoints.



I
%
v

(E6-5)

e.g., for N shown in Figure E.4, the locations where
Aoz, Az, Agp, Asp, gz, Az, Mg,
A5z, Aogs - A Aé Asq, Ag A35,
Aas, X55 are specified will be used in the least squares
fit with constraints set at the four edge midpoints where
A33, Aa3.  A3g.  Agg are specified.

For those edge midpoints lying on the columns next to the first or
last columns, the network edge grid points will be used in the least
squares fit, e.q., for Noo shown in Figure E.4, the four edge grid
points, where lz , Ay are spec1f1ed will
be used in conJunct1on w1€% those edge midpoints where A2,

Aazs A32s Mgze d13s Aozs Agn, Mg,

Aa, Aog, A3, Agg are specified. In this case, the
constraints will be set at the four edge midpoints where A22a

A32, X3, A3z are specified.

Special case such as the interior midpoints lying on the corner

panels, each of the locations along the network edge where the
singularity parameters are specified will be treated as two separate
but identical points.

e.g., for N12 shown in Figure E.4, the locations where
11> A, Ay, Ay are specified will be
counted as twice in the formulation of the least squares problem.

For each panel center point, the quadratic function f(g,n) is
fitted through the 12 immediate neighboring locations where the
singularity parameters are specified. A constrained least squares
fit will be performed with constraints set on the two edge midpoints
on the same panel that the given center point belongs to.

e.g., for C in Figure E.4, the locations where Ao3,

33, da3. Ass, J‘24, A3a, Aag,  Agy, .

Az?, s Ags, are specified will be used in

the least squares fit w1%g constraints setting at the two edge
midponts where A3q, X4 are specified.

For these center points lying on the first or last column panels, the
network edge grid points will be used in the least squares fit.

e.g., Cpy in Figure 4, the network edge grid points, where
11, 21, 31, Ag] are specified will be used in
conjunction with the edge midpoints, where 112, Xo2o,

A32,  Aa2, A1z, Ag3, Asg, A3 are
specified.

Again special case such as those center points lying on the corner
panels, each of the locations along the network edge where the
singularity parameters are specified will be treated as two separate
but identical points.
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e.g., for Cyq in Figure E.4, the locations where  Ajq,
X12, A13, Ajg are specified will be counted as twice
in the formulat1on of the least squares problem.

The following table gives the dependence of each canonical point of a
given panel on the 20 neighboring singularity parameters (see the
panel marked with C,N,W,S,E in Figure E.4).

A221232| M| 52 223| A 33| Aa3|A53| A2 X34 44| M54 Azs| 35| Aas| 55 A 26| A 36 M ag| Ase
NW| X-| X | X X || x X [®] X X | X|X
SW X 1 X | X X [®] X X [®] x X|X|X
SE I x| x| x X ] x X |®| X X | X| X
NE X[ X | X X Q@] X X @ X X | X | X
W ® N
S X[ x| x|x|{x |®® x x@@X—gxxxT
c ®
v x x x| x [ x (@] x [l x x| x] x| x]x N
C XX | XX [®O®O[ X[ x| X|[x]x]X

(:) indicates the constraints
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Doublet /Wake Type I (8)

The singularity parameters are specified at the locations as illustrated below.

|
T

Figure E.5 Doublet/Wake Type I (8) Network
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First one computes the values of doublet strength at network edge grid points
using Doublet/Analysis approach (see (E2-1). With the assumption of constant
singularity strength along the streamwise direction, we define '

HNw = Wy = Hgy =  W(Qj1)s Hy= He= Hg = Uj+
and H =w HE =sw MSE = 1&01+1) uhere CU(Qil)sand i+l

M(Qi+1,1§ are values o% doublet strength at edge grid points Qj; and
Qi+1,1- The exceptions to the above definition are Ly, = uy

= Ugy = Aq for the first panel and Hpyy = Hp = U =
7 for the last panel as illustrated in Figure E.5.

Doublet /Wake Type II (14)

The singularity parameters are specified at the locations as illustrated below.

M
N
M
N
A, =
c
Wt e FE
A3 ;
M

Figure E.6 Doublet/Wake Type II (14) Network
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This type of network is used for fed sheet. Similar to Doublet/Design
network, the values of the specified singularity parameters define the doublet
strength at edge grid points. The values of doublet strength at edge mid
points are computed using Doublet/Design approach (see (E4-2). With the
assumption of constant singularity strength along the chordwise direction,

(row M), we define HNW = HN = UNE = Ajs Hy = UC =
ME = u(Mi) and Mgy = pg = Mg = é where Ai, Aj+] are
values of singularity parameters spec1f1e at grid point. Qi, Qij+1 and

M;i are edge midpoint on the edge joining Qj and Qj+1.
Again using the assumptibn of the constant doublet strength along chordwise

direction, the singularity distributions on the panel at 2nd row will be same
as those on the panel at 1lst row.

Doublet /Wake Type III (16)

The singularity parameters are specified at the locations as illustrated below

M
3 M Ao A3 Ay A
c
Wt e +E
s

Figure E.7 Doublet/Wake III (16} Network

105



This type df network is identical to Doublet/Wake Type II (14) and is used
mainly for wake network attached to Doublet/Design Network.

Same as Type II (14) network, the values of the specified singularity
parameters define the doublet strength at edge grid points. The values of
doublet strength at edge midpoints are computed using Doublet/Design approach
(see (E4-2). MWith the assumption of constant singularity strength along the
streamwise direction (row M), we define MNW = Hy = usy =

Ai’ u&= uC = us = u(M-') and “NE = ]JE =

£ = j+1 where X5 ,  Xj4p are valués of singularity

parameters specified at grid point. Qj, Qj+1 and M; are edge midpoint
on the edge joining Q; and Qi+l.

Doublet /Wake Type IV (10)

There is only one singu]arity parameter specified at the location shown below.

=|

Figure E.8 Doublet/Wake Type (IV) (10) Network
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The doublet strength is assumed to be constant over the whole network. The
values of doublet strength at the 9 canonical points are all equal to the
value of the specified singularity parameter A
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Appendix F
Function Evaluation and Jacobian Formulation

Function Evaluation

The boundary conditions can be expressed symbolically in terms of the
following equations:

wn = Q wing and body
F(A,0,0,v) = $Ac =0 Free sheet and wake (F.1)
AT-L= 0

Kutta condition
G(A,8,A,v) = W =0 Free sheet (F.2)

HA.B,A,v) = f=0 Fed sheet (F.3)

Where A denotes the singularity (doublet and source) strength parameters, @
represents the angle of inclination of panel edges in transverse cuts defining
the spatial location of free sheet, and A v are free geometry
parameters controlling the shape of free and fed sheets.

The function F symbolizes the impermeability condition of wing and body, zero
pressure jump of free sheet and wake, Kutta condition. The function G is the
jmpermeability condition of free sheet. Finally the function H represents the
global boundary condition of zero net force acting on the fed sheet and the
line vortex. Each of these functions is evaluated in the following manner.

1. W =0, (V, + BVA)-Q at a given control point (doublet network)

where iﬁn is the free stream velocity V is the average perturbation
velocity at the control point induced by all panels, and fi is the unit
normal at the control point on the HP surface. The matrix B is defined by

B=1+ (8% -1)2¢ =gl (F.4)
where B2 =1 - & . & is the compress1b111ty direction unit
vector and A = 21 + (1 - Bz)e 2T. For a control point that



lies on a source network to satisfy the upper surface impermeability, we
have instead the following expression

= v 1
Wy =0, (Voo + BV) R + S0P, (F.5)

where g is the source singularity strength.

2. 8C, = -2(Vp + BYp) (R ®TH) @R (F.6)
+
where V_ , Vp and B are defined as before, and ﬁ@Au is evaluated as
follows: :
A 1 — OH = OM
n@yu = ——— ( t 3s s——f)
lag ®a,] (F.7)

The unit upper surface normal on the HP surface is given by

3. The force across the fed sheet is calculated from equation (19) with
o = 0. We require that the two components normal to the core be zero.
In each column of fed sheet panels to be specified we require that

A -> > -»> nd
fu, = uleve.[_ffwA@) 2 ds +f“ W, ®d2|= 0
L -
5

1 A C—> > > ] (F-8)
f, = e waA@; Zds +fLu Wy x| =0
S

e

where S is the panel column surface, L is the line segment comprising the edge
of the panel column (corresponding to the core) ang the subscript e/:\denotes
quantitjes evaluated at the midpoint of L. Here is given by ¢ ®ﬁ -

where e = 2,0 R,eis the vector line segment L. Fromeequation (18) wé haves

(wym) (T x )

(A-™)

- (wy xT) = apf + (F.9)

A ~
For modest Mach numbers n_&n = 0.; moreover by construction of the fed
sP}\eet qgub1et spline E is” approximately perpendicular to the core so that

Vo® & =0
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Hence

and A A (F.10)
A - ->
'ne (WA®C)zAp ne'n

Thus (F.8) is approximated by
fu, = L3 Z:AP n e
Ve ~ ueVe 1A1n1+“ewA®R'e =0

Fed Sheet
Panel Column (F.11)

1 A A > -
M "W e E:Api Apng *Hgwp®Le|=0
Fed Sheet

Panel Column
Here p; is evaluated at center of the ith panel of the panel column and A

is the area of the 1ith panel.

Jacobian Calculation

Taking the partial derivatives of the functions F, G and H with respect to the
variables A , © , A and Vv we have the Jacobian matrix

W oW oM M \
ah a0 ERN Vv
3c, ac, i, ac,
A 50 swx 3V F12)
M M nk nk
A L) d av
3f 5f 5f 5f )
3 56 3 v

This gives the variations of the boundary conditions due to the perturbation
of singularity strength and geometry parameters

(1)

> > A >
My LBV + BVA)N Wy (F.13)
oA oA oA
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For body-source network, oW 3[(v + BVA) N+ 1/2(5]
3N ah
> (F.14)
= B BVA 'ﬁ + l._g.o_
(2) P 2 oA
> > . A
* BV,)-
Bwn -B(V A) n . o= 9-,)\’\)
36 (F.15)
aV > 200
-Bge— n +(Vm+ BVA)'_a—é-
For body-source network,
oV A
oW A AL Dasy. 90 .1 30 (F.16)
3@ B _‘—ae -n + (V+BVA) = 30 + 2 T
(3)
36 Cp o -2(Vet 81y (A @miD M)
A ] ah (F.17)
9 Vp 7 ( ) ® 1)
> 3 (n ®vu ®n
- 28 SR (R@W @) -2 (u+ B V)0
] a"A
= -2B A : (C®H)+2(V +BV)(n®.aaI(\|:)
(4)
94 Cp 8_{.?_(__\1 +B VA) ((n ®VH)®n)] 0 =6,A,v
30 a@ (F.18)
s 2 (G QT N Gk L)
28— (R @TW@ ) - 2(Vy, + B
90 U A 30

BV

_23_56~ TR - 2(V,, + 8, A) ( ®n +c®ae
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(5) of . 3
+
T AT
= . +
where oA T € € i L C
F.2
1 Ng for f (F.20)
> He n
V =
e
1 v for fv
e
A
f, = AP_‘A_in1-
-> -> (F.21)
= W
f He Ae®2'e
(6) and g js a summation overall fed sheet network panels.
i
-
V- (ZF + 7
af . ¢ 14 € 0=0,AV
90 a0
(F.22)
av af of
e - > -> 1' e
=5 .(§f1+fe)+ve(§; 26 =5 )

where \7 . fi and fg are defined as above.
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Appendix G
Quasi-Newton Scheme
Denote all geometry degrees of freedom by the vector © and all the

singularity parameters by A . The boundary conditions determining the
singularity strength are given by equation set F.1l. Denote the set by

F(A,0) = 0 (6.1)

Equations F.2 and F.3 determine the geometric degrees of freedom. Denote this
set by

G(A.0) = 0 (6.2)

Small perturbation of equations G.1 and G.2 from the initial "starting
solution" result in a set of linear equations governing the perturbation
variables A, 0.

oF aF

N 20 AA F o)
3G 3G T .
E ) 40 §

The perturbation quantities in equation G.3 are denoted symbolically as AX,
the coefficient matrix (Jacobian) as J, and the right-hand side as -f .
Equation (G.3) becomes

JAX = -f (G.4)

The set of equation G.1l and G.2 is solved iteratively with a Quasi-Newton
scheme. Represent the ith iteration by superscript i. The scheme proceeds to
find the corrections AX(1) from the equation

() px () o (D) (6.5)

and forms the new approximate solution (termed the next iterate)

W+ 1) o (1) 4 g(1) ox(9) (6.6)
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where J(i) = J(x(i), f(i) = £(x(i)), and ~ &6(i) is a scaling
parameter to limit the step size of the correction vector. The Jacobian at
x(1*1) is obtained by using the following update formula (reference 38)

s+ = 400 () (6.7)

where

) (FFD) () (0 (I () T
Ax(1T ax ()

(6.8)

In this way, there is no need to reevaluate the partial derivatives comprising
the elements of the Jacobian at each iteration. The superscript T denote the
transpose of a vector. The aerodynamic influence coefficients which are
changed by the geometry update are recalculated every iteration.

The scaling parameter & (1) is introduced to alleviate the problem of
overshoot in the classical Newton scheme. F?r each iteration cycle, the
following criteria are used to determine § i),

0¢ &l1) <1
- (G6.9)

and
s a0t 1 <y
(G.10)

where Y is a predetermined quantity chosen to 1limit the maximum correction
for the panel orientation angles (10 degrees in the code). In addition, a
halving process of the scaling parameter §(1) s applied to ensure the
inequality

‘t .
nely <y £y (6.11)

where I I is the Euclidean norm representing the length of a vector.

This halving process is performed repeatedly until either the criterion in

equation G.11 is satisfied or three cycles of the step size reduction (i.e.,

three halvings) are completed. The quality of the solution is monitored by
examination of the sum of squares of residuals defined by
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R2 = JEN2 + 62 (6.12)

To initiate the solution process, an initial geometry is required. The size
of the fed sheet and the initial free sheet geometry are taken from Smith's

conical flow solutions or, as experience allows, by assuming an initial
geometry.
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