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SUM_KY

Three-dimensional characteristics of the mean velocity and turbu-

lence structure in the near-wake of a moderately loaded compressor rotor

is reported in this thesis. The experimental investigation was carried

• out using the rotating hot-wire technique. "To discern the effect of

annulus- and hub-wall boundary layer, secondary flow and tip-leakage on

the wake structure, measurements were also taken inside the end-wall

boundary layer. Static pressure gradients across the wake were measured

using a static-stagnation pressure probe insensitive to flow direction

changes.

The set of wake data presented in this thesis is probably the first

set of comprehensive measurements taken in the trailing-edge and near-

wake regions and reflects the highly complex and three-dimensional nature

of the rotor-wake. The axial and the tangential velocity defects, the

radial component of velocity and turbulence intensities were found to be

very large as compared to the near- and far-wake regions. The radial

velocities in the trailing-edge region exhibited Characteristics pre-

valent in a trailing-vortex system. Flow near the blade tips was found

to be highly complex due to interaction of the end-wall boundary layers,

secondary flows, and tip-leakage-flow with the wake. The streamwise

curvature was found to be appreciable near the blade trailing-edge. This

• investigation did reveal that flow properties in the trailing-edge region

are quite different compared to that in the near- and far-wake regions

with respect to their decay characteristics, similarity, etc. Fourier

decomposition of the rotor-wake revealed that for a normalized wake only

the first three coefficients are dominant. The derived results of the

measurements indicated the inability of the cascade analysis to accurately
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predict the deviation angles for the rotor. Many useful correlations

are attempted and reported in this investigation.
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NOMEI.;CLATURE

A Fourier cosine coefficient
n

a constant (Equation !)

B interceptof the calibrationcurve

. B Fourier sine coefficient
n

b constant (Equationi)
I

c blade chord length

Cd section drag coefficient

i

stagnation-pressure rise coefficient = (P - PI)/(__ OUT2 )Cp

c static-pressure rise coefficient = (p - Pl )/(_--z0UT2)P

CLo camber expressed as design lift coefficient of isolated
airfoil

E mean voltage

E hot-wire voltage at zero velocityo

e fluctuating voltage

G percentage of annulus from hub

H wake shape factor = _*/0"

i incidence of inlet-flow with rotor-blade in relative

(rotatin_ frame of reference

K constant, probe factor (Equation 2)

L 2(L + L )/S = sum of the characteristic length on the
s p

pressure and suction surfaces normalizedby semi-blade

spacing (interval of integration, Equations 36 and 37)

Ls,L wake width at half the depth on rotor blade suction-and
P pressure-surface of the wake, respectively

L value of L at the trailing-edgeo

wake width at half the depth of turbulence intensity on

£s'£P the rotor-bladesuction-andpressure-surfaceof the wake,
respectively

n exponent,slope, and number of Coefficientsin the Fourier
series
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p stagnation-pressure

p static-pressure

R radius ratio = (r/rT)

R radius of curvature
C

R Reynolds number
e ,

r local radius, radia! direction

(r,9,z) rotating cylindrical coordinate system (radial, tangential, •
and axial coordinate directions) (Figure i)

S blade spacing

(s,n,r) natural coordinate system (streamwise, normal, and radial
coordinate directions) (Figure I)

U peripheral speed

normalized velocity defect = (Ud/Udc) = (Umax - u)/(Uma x -
Udn u )

min

U maximum velocity in the wake
max

U minimum velocity in the wake
min

U velocity at any point in the wake

V local absolute velocity

v defect in absolute velocity (Vmax - V)

W total relative velocity

w defect in relative velocity

w' fluctuating component of relative velocity

y tangential distance

(2y/S) tangential distance normalized by half the blade spacing *
(y = 0 at wake center)

Z axial distance from blade trailing-edge normalized by
rotor blade chord

mass averaged flow coefficient (W/UT)

-- mass averaged stagnation pressure rise coefficient (nor-

malized by ½ UT20)
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speed of rotation of rotor blade

qs,_p wake traverse distance normalized by Ls and Ls.,respectively

q rotor efficiency (Euler) = _/'_Euler

o solidity = c/S

B blade outlet angle
O

air outlet angle

' B1 streamline angle (Equation 3)

deviation angle (Equation ii), boundary layer thickness

displacement thickness = _i fs (i - W)rd8
S 0 Wo

8L angular distance between wake centerline and the location

Where Ud = Udc/2

8* momentum thickness, Equation 9

rz' 're an_w_gential direction, respectively (_fW, _/W

rr normalized turbulence intensities in the axial, radial,

rsn,rrn,r normalized streamwise, radial Reynolds stress, and stress

sr correlation, respectively (w'w'/W 2, _/W^ 2, WsWr/Ws 2S Lz _ L L_

s Neumann' s factor
n

angle of attack

Subscripts

c value at wake center

d defect (difference between free-stream and wake value)

m,max maximum value in the wake

• o value at wake edge/free-stream value/stagnation property

p pressure side

(r,e,z) values in the radial, tangential, and axial coordinate

directions, respectively

(s.n,r) values in the streamwise, normal, and radial coordinate

directions, respectively

s suction side, blade spacing
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T value at the rotor tip, stagnation condition

TE values at the trailing-edge

i value at inlet (passage averaged), wire number one

2,3 wire number two and three

Superscript •

average value

' flucutating quantity



Chapter i

INTRODUCTION

I.i Problem Relevance and Objectives

The flow through a compressor rotor blade row is very complex and

• deviates considerably from a two-dimensional f!ow-field because of a

number of phenomena including vortex shedding, variation in spanwise

circulation, radial flows in boundary layers, and hub- and annulus-wall

boundary layer growth. These are in addition to inviscid and compres-

sibility effects. The boundary layers on the blades are shed out from

the pressure and suction surfaces, and they combine at the trailing-edge

to form the viscous wake referred to as the rotor-wake. Study of the

rotor-wake should yield a comprehensive understanding of the flow and

the acoustic fields induced by this phenomena, which is essential to the

progress in reducing the noise, aerodynamic losses, and in improving the

mechanical, aerodynamic and acoustic performance of rotors. The wake

has considerable influence on the noise generated, aerodynamic losses,

as well as vibration, flutter, and stress characteristics of the rotor-

blade.

Rotor-wakes, which influence the flow-field downstream of the rotor,

are not only dependent on the upstream flow-field conditions but are
t

also controlled by such parameters as blade spacing, distance from the

• blade trailing-edge, curvature and rotation. Complexity brought about

by these and other effects makes both the analytical and experimenta!

investigations extremely complicated.

The characteristics of the rotor-wakes change rapidly in the trailing-

edge region. The flow-field at these !ocations is shown schematically

in Figure l. The three-dimensional nature of the flow-field exists in



Suction Surface

N

/
/

/

/

/
/

/
/

s,w ,W ,WI
S S S

Figure 1. Nature of the Rotor-Wake and Coordinate System

• • •



3

both the mean velocity as well as in the turbulent structure of the

wake.

Lack of knowledge of the flow-field downstream of compressor-rotor-

blade has hampered the progress in many areas of compressor development,

particularly in the fields of acoustics and performance prediction. It

is known that the rotation-induced centrifugal and Coriolis forces

• generate spanwise flows inside the boundary layers, the magnitude of

which depends on rotor-blade geometry, angular ve!ocity of the blade,

flow coefficient, etc. This spanwise migration of the flow results in

a decrease of the boundary layer near the hub and an increase near the

tip. In addition, near the tip, very complex f!ow interactions take

place between the blade boundary layer, secondary flow, tip-leakage flow,

and the wake. The resulting flow is extremely difficult to model analy-

tically as well as to evaluate it experimentally.

It is thus essential to carry out a systematic study of the com-

pressor-rotor-wake and the exit flow for the prediction of the aerodyna-

mic, acoustic and mechanical performance of compressors. Previous

investigations have given an insight into the flow far downstream of

the rotor-blade. The present study was conducted in the trailing-edge

and near-wake regions of a moderately loaded compressor blade using a

, tri-axial hot-wire-probe in a non-inertial frame of reference. The

flow-field was surveyed very close to the trailing-edge as well as
&

inside the annulus- and hub-wail boundary layers.

The scope and objectives of this investigation are as follows:

i. To study experimenta!ly the three-dimensional wake characteris-

tics in the vicinity of the blade trailing-edge. The primary interest

is in the three-dimensional mean ve!ocity and turbulence flow-field.
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2. To study the wake characteristics in the near- and far-wake reX

g_ons and to calculate the decay and profile characteristics.

3. To study experimentally the effects of annulus- and hub-wall

boundary layers on the blade wake.

4. To evaluate the static-pressure gradients in the wake.

5. Correlate the data from this study with earlier measurements

and theory.

This study was conducted in a low speed (low subsonic Mach numbers)

single stage compressor using rotating hot-wire and conventional probes.

Many parameters relevant to design were derived out of these measurements.

1.2 Previous Investisations

A comprehensive survey of isolated airfoil wakes and rotor-wakes

are given by Raj and Lakshminarayana (1975) and Reynolds (1978), respec-

tively. In order to compliment the earlier reviews only the investigation

of cascade, stator, and inlet-guide-vane wakes are reviewed in this

sections. Interested readers are referred to earlier reviews.

The interest in laminar wakes which started around 1920 soon gave

way to the analytical and experimental study of turbulent wakes as it

was realized that many of the flows in practical applications were

usually highly turbulent. Excellent reviews of the laminar wake of

bodies are given by Goldstein (1953), Eagleson, et al. (1961), and

Berger (1971). •

The work on turbulent wakes in subsonic flow received much attention

due to its practical application in many aerodynamic problems, both

internal and external aerodynamics. A review of all the work done on

two-dimensional turbulent wakes has been reported by Raj and Lakshminar-

ayana (1975). Lieblein (1956) and Reynolds (!978) have summarized much



5 ¸

of the work done related to isolated airfoilwakes. The isolated airfoil

wake study received great acclaim from turbomachinery aerodynamicists as

these wakes represented the rotor-wakes to a first approximation.

The effect of adjoining blades in a cascade would greatly influence

the wake behavior downstream of a cascade of blades. The first measure-

ments that have been reported on cascade wakes are by Lieblein and

J

Roudebush (1956). They reported extensive measurements at one downstream

station of a cascade of blades. They covered a wide range of blades and

flow parameters. Their correlations, based on semi-empirical formula-

tions, seem to envelop a large portion of the existing data. Since these

measurements were carried out with pressure probes they were able to pro-

vide information on only the gross properties, such as semi-wake width

and the decay of the total mean velocity with downstream distance. No

turbulence measurements havebeen reported. This set of measurements

has inadequate da_a to,derive the deca_ characteristics°, But i_ $_

interesting to note that their decay law as given by

V c
I a(_ + b)-I/2 d(_ + b) -I (i)

V "c "c
o

is of the same nature as the one employed by Reynolds, et al. (1978) in

predicting the decay of lightly loaded rotor-blade wakes.

• Detailed measurements of the cascade wake using an "x" configuration

hot-wire probe were reported by Raj and Lakshminarayana (1973). This is

probably the first and most complete set of measurements where turbulence

data as well as mean velocity was measured at various downstream loca-

tions and incidences. These measurements show that the wake is asym-

metrical and that its structure is different from that of a flat plate,

cylinder, or even isolated airfoil (symmetrical) wakes. It was also



realized that the turbulence intensities are higher than those of a flat

plate or isolated airfoil wake while the decay rates are about the same.

Lakshminarayana (1976) has shown semi-analytically that the wakes become

self-similar when proper characteristic lengths and velocity scales are

employed. Raj and Lakshminarayana (1975) have also provided semi-
%

analytical expressions for the decay of wake-centerline velocity with

downstream distance. Gustafson, et al. (1977) have obtained an analytical

solution to the equations of motion and have predicted the wake shape

using local as well as global similarity solutions. The agreement between

their theory and the experimental data of Raj and Lakshminarayana (1973)

is good, particularly for wakes beyond a tenth of a chord downstream. Tbe

similarity solution was tried hecauseRaj and Lakshmlnarayana (1973) have

shown that the wake edge velocity and the wake centerline velocity vary

as a power law in downstream distance. It is of interest to note that

the similarity solution required a power law variation of the eddy-

viscosity downstream of the trailing edge, the exponent taking different

values for each incidence angle.

Pollard and Gastelow (1967) have also reported the wake measurements

downstream of a cascade of blades. Unfortunately, not enough information

is available on these meaurements. However, the significant result from

this investigation was to show that high free-stream turbulence tends to

promote early boundary layer transition and to delay the increase in loss

normally associated with a reduction of Reynolds number,

All the wake data discussed above seems to follow the similarity

rule given by Lakshminarayana (1976). The similarity plots will be given

at a later section in this thesis. Even the decay of the cascade wakes

-0.5
can be collapsed onto a single curve when cD was used as the norma-



lizing factor. This seems to indicate that the wake decay depends

mainly on the section drag coefficient of the blades.

In present day compressors the stage is invariably preceded by a_

inlet-guide-vane assembly and the rotors are separated by a stator assem-

bly. It is necessary to understand the flow downstream of these inlet-
t

guide-vanes and stators accurately to predict the pure tone noise, blade

4"

row vibration and aerodynamic losses in axial-flow compressors arising

due to the interaction of these wakes with the downstream or upstream

rotor.

Very little literature is available on the inlet-guide-vane and

stator-wakes. The earliest data available on stator-wakes is due to

Bitterlich and Rubner (1972). They have made a very extensive radial

survey downstream of the stator. Probably this is the first set of data

on stator-wakes where the effect of interaction of the secondary flow

with the wakes is given. Lakshminarayana and Davino (!978) have measured

the stator- and inlet-guide-vane wakes using a single sensor hot-wire

• and rotating the wire about its axis to obtain the three components of

the mean velocity and turbulence intensities. This was the first com-

prehensive set of measurements reported where turbulence as well as mean

velocity data for the inlet-guide-vane wakes are available as a function

of radius and downstream distance. Correlations of these data in terms

of profile and decay are reported in a later section. One of the striking

features of the boundary layer development on the stator blades was

reported hy Evans (!975} who measured the boundary layer on the stator

blades using the ensemble average technique. The results of Evans indi-

cate that the boundary layer development on the stator blades is much

greater compared to the two-dimensional cascade case, Further, the
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stator blade boundary layer is found to be highly unsteady, which implies

that the stator-wake is unsteady. This is due to the rotor-wake inter-

action with stator blade boundary layer.

Rotor-wakes are probably the most complex of all the wakes considered

so far. This is because of the complexity introduced by the centrifugal

and the Coriolis forces arising from the rotation. A comprehensive

survey of literature has been given by Reynolds (1978).

It should be realized that the flow situation and wake properties

in each component of a compressor stage (for example, the inlet-guide-

vanes, stator, rotor) are very different, it is essential to study eac_

component individually and arrive at correlations which are unique to

each one of them. When the flow phenomena in each of these components

have heenproperly understood it is possible to combine these effects

and arrive at an analytical formulation that could he employed to predict

the comhined effect.



Chapter 2

TEST FACILITY, DATA ACQUISITION, AND PROCEDURE

All the measurements reported in this investigation were performed

using the axial-flow compressor facility located in the Turbomachinery

, Laboratory of The Pennsylvania State University. All the data were

acquired with a tri-axial hot-wire probe and a direction insensitive
J

spherical headed pitot probe rotating with the rotor. The study included

the measurements of the mean velocities, turbulence intensities, Reynolds

stresses and their decay characteristics downstream of the blade trailing-

edge region. This experimental information is needed not only for the

understanding of the wake but is also essential in predicting the aero-

dynamic and acoustic properties of the turbomachines.

2.1 The Axial-Flow Compressor Facility

The axial-flow compressor facility, sho_m in Figure 2 consists of a

rotor which is located between an inlet-guide-vane assembly and a stator

assembly. The design features of this single-stage compressor are given

by Smith (1956). A 37.29 _ (50 HP) variable speed motor drives the

rotor through a belt and pulley system. An aerodynamically designed

throttle, placed downstream of an auxiliary fan can vary the flow rate

throughthe machine to enable operation at varying flow coefficients

(Figure 3). Table i lists some of the relevant data of the compressor

stage. The rotating hub of the machine has slots cut in it to traverse

the probe across the blade passage. The traverse mechanism, described

later, is located inside the rotating hub and the slots on the hub

facilitate a comprehensive flow survey to be undertaken downstream of

the rotor blade.
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Table 1

Axial-Flow Compressor Facility Specifications

Particulars IGV Rotor Stator

i. Number of Blades 43 21 25

2. Rotor Speed (Operating) - 1050 (rpm) -

3. Outer Diameter of Rotor 0.9322m (36.7 inch)

4. Hub/Tip Ratio 0.5

5. Blade Element NACA Modified NACA 65 Series

65-010 (see Table 2)

6. Tip Clearance 0.089" at L.E. (0.0024"m)

0.091" at T.E. (0.0025 m)

7. Electric Power 37.29 KW (50 HP)

8. Spacing between Elements 18 1/4"

(at Tip)

9. Inlet-Static-Pressure (Wall) -1.758" of H^O
(88.44 ft/se_)

i0. Auxiliary Fan Series i000

Joy A_xivane Fan #0 to #16

Blade Setting
Fan Dia. 96.52 cm (38")

ii. Fan Drive Power 37.29 KW (50 HP) "
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2.2 The Compressor Rotor

The rotor consists of 21 cambered and twisted blades and has a tip

diameter of 0.9322 m (36.7 inch). The hub-tip ratio is 0.5. The blade

elements are of modified NACA 65-010 basic profile on a circular arc

camber. The blades have varying stagger angles and blade chords along

the radius and relevant details are tabulated in Table 2. Reference is

" made to Smith (1956) for detailed design. The blades are made out of

aluminum with cast tee-shaped roots and are attached to the hub at the

design pitch angle.

To evaluate the blade element properties and to find out the blade

static pressure, one of the blades is instrumented by pressure taps. The

pressure leads from the rotating blade are taken to a stationary data

acquisition system through a 20-channel scanivalue and a three-channel

pressure transfer device. These are illustrated in Figure 2.

All measurements reported here have been carried out at a rotor

speed of 1066 rpm, at the operating flow coefficient (#_ of 0.56. The

speed of the rotor is monitored by a photocell circuit with a 60 slot

calibrated disk mounted on the rotor shaft and displayed on an electronic

counter.

2.3 Rotatin$ Probe Traverse Gear

One unique feature of this facility is the traverse gear unit for

the rotating probe measurements. Figure 4 shows the traverse gear, which

is a modified version of the one used by Anand (1976). This gear achieves

the objectives of the gear used by Reynolds (1978) in a much simpler

fashion.

Referring to Figure 4 the traverse gear consists of a SLO-SYN motor

--9

of 1.589 Nm (225 in-oz) torque driving a 3.81xi0 - m (%.5") diameter



Table 2

Blade Element Details

Particulars Radius Ratio

Inlet-Guide-Vane Rotor Stator

Radius Ratio 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

5.19 7.64 9.80 12.39 13.25 14.41 8.83 10.37 12.39

(in)(2.04) (3.01) (3.86) (4.88) (5.22) (5.67) (3.48) (4.08) (4.88)Chord, cm
6.63 8.64 10.95 12.68 13.68 15.41 9.80 10.95 13.97

(2.61) (3.40) (4.31) (4.99) (5.39) (6.07) (3.86) (4.31) (5.50)

3.46 4.90 6.05 6.91 9.80 12.68 5.76 8.35 10.66

Spacing, (1.36) (1.93) (2.38) (2.72) (3.86) (4.99) (2.27) (3.29) (4.20)
cm (in) 4.61 5.47 6.91 8.35 11..24 14.12 6.91 9.5] 11.67

(1.82) (2.16) (2.72) (3.29) (4.42) (5.56) (2.72) (3.74) (4.59)

-5.0 16.0 32.0
Camber 1.35 1.5 1.48 1.7 1.05 0.5

(CLo for (deg) (deg) (deg)6.0 24.0 45.0

Rotor & Stator) (deg) (deg) (deg) 1.45 1.5 1.32 1.4 0.8 0.4

Thickness 13.0 10.5 8.5 9.50 7.6 5.9 - - -

(t/c x i00) 12.0 9.5 8.0 9.1 6.5 5.1 - - -

Chord Angle, ° - - - 22.5 28.5 39.0 16.5 31.0 42.0
34.0 45.0 24.0 37.0 50.0

(Stagger) - - - 26.0

Blade Outlet 19.5 16.0 26.0

Angle, o 13.5 19.5 33.5
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shaft through a planetary reduction gear train. The gear train steps

down (l.8°/step) the circumferential stepping to (0.09°/step). The

shaft carries a rider which can be traversed axially. The rider in turn

carries a pair of mounting blocks which can be used to hold the probe.

The mounting blocks give the probe two degrees of freedom; (a) rotation

about the probe axis, which is used to align the hot-wire sensors in

any desired direction and (b) movement in the radial direction; the

probe can be traversed from hub to tip of the machine.

The probe holder, the stepping motor, and the probe are mounted

inside the rotating hub of the machine (Figure 2). The probe which is

located behind the blade row traverses a slot in the hub. The motor is

powered and controlled by a stationary traverse indexing device (SLO-SYN

preset indexer) through a eight-channel brush slip-ring unit. The tra-

verse gear and probe are locked except when indexed. Though the circum-

ferential traverse can be accomplished when the rotor is rotating, the

radial and axial motions have to be accomplished manually when the rotor

is stationary.

2.4 Data Transmission System

2.4.1 Pressure transfer device

To transfer the pressure from the rotating frame to the stationary

data acquisition system, a three-channel pressure transfer device (PTD)

was employed. Referring to Figure 2, each channel Of the PTD was made

air tight by using double sealed ball bearings. Pressure leakage along

the shaft was prevented by the use of o-rings and plastic sealers. Pres-

sure from the rotating system was transferred to the PTD through a hollow

shaft and the pressure was measured by a micro-manometer. The pressure

transfer device, which is located in front of the nose cone, is housed
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inside a streamlined cowling to avoid interference with the incoming

flow.

2.4.2 Brush slip-ring unit

A commercial eight-channel slip-ring unit was used to conduct elec-

trical signals from the stationary indexing unit to the rotating traverse

gear motor. Carbon brushes in contact with rotating commutator provided

electrical continuity from the stationary frame to the rotating frame.

The brush slip-ring unit was mounted next to pressure transfer device

and the hollow shaft that carried the pressure tubings also carried the

electrical connections.

2.4.3 Mercury slip-ring unit

A ten-channel mercury slip-ring unit made hy Rotocon was used to

transmit the hot-wire signals from the rotating, tri-axial hot-wire probe

to the stationary hot-wire anemometer and data acquisition system. This

interface component was chosen, as the triple distilled mercury in the

unit provided the greatest conductivity and the !owest noise level dis-

tortions possible. The slip-ring unit was connected to the rotor assem-

bly through a flexible coupling. To eliminate spurious electrical sig-

nals from the rotor assembly and vibrations to its electrical contacts,

+ the entire unit was mounted on a four-arm vibration damper.

- 2.5 Probes and Instrumentation

2.5.1 Three-sensor hot-wire probe

In order to evaluate the properties of the rotor-wake both hot-wire

and pressure measurements were undertaken. Described below are the

probes and instrumentation employed during the experimentation_
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The special three-sensor boundary layer hot-wire probe shown in

Figure 5 was used for all rotating hot-wire measurements. The probe

sensors were built out of tungsten wire and had a length-to-diameter

ratio of 270. The sensor resistances were around 5.0 ohms. The probe

calibrations were corrected from the variation of temperature and aging

of thewire. The effect of rotation on heat transfer properties of the

wire was found to be negligible (Hah and Lakshminarayana, 1978). Figure •

5 also shows the orientation of the wires; during measurements they are

placed in the media to be measured such that the velocity vector falls

inside the cone formed by the three sensors. In order to eliminate the

influence of prongs only the middle third'was etched to give a sensor

length of 1.25 mm (0.0492 in). (The distance between the prongs is 3.2

mm (0.126 in).) The prongs were imbedded in ceramic tubing. The spatial

resolution was such that the active positions of the wires were inside

a sphere of 3 _m (0.1181 in) diameter.

2.5.2 The spherical-head static-sta$nation pressure probe

One of the main problems in the measurement of static pressure in

the wake is that the direction of the velocity vector will he varying

continuously across the wake and it is impossible to obtain an accurate

measurement of the static pressure using conventional probe. To over-

come this difficulty a spherical-headed static-stagnation probe, insen-

sitive to direction, was built at The Pennsylvania State University.

Main features of the probe are illustrated in Figure 6. It consists

of an 3.175 mm (0.125 in) brass sphere with trips around it to stabilize

the wake region. The sphere has a total pressure port at its center and

the stem at the back carries four static pressure ports which actually

measure the pressure behind the sphere (pw). Knowing the total pressure
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(P) and the pressure pw , it is possible to get the static pressure in

the wake, which is given by:

Pw +kP

P = l+k (2)

The sphere-static-stagnation probe has been designed so that the k,

I

which is known as the probe factor, is substantially constant at a value

• near 0.305 over the entire range of yaw and pitch angles.

The sphere-static-stagnation probe gives a time average pressure

reading, as long as the characteristic velocity of the flow is such that

their product is large compared to the sphere diameter. It should be

realized that even though time averages of p and P may be obtained from

the probe, the corresponding velocity magnitude may not be a correct time

average of the velocity magnitude, since the velocity does not depend

linearly on the pressure.

Wall vicinity effects might adversely affect the data from these

probes. Experimental evidence has shown that a distance of at least

three-sphere diameters should be maintained between the center of the

sphere and the walls, and no obstacle should be placed in the wake of the

sphere closer than seven sphere diameters from the probe to insure ac-

curacy of the probe reading. The probe is calibrated in a known uniform

flow and, therefore, the calibration shown in Figure 7, includes the

aerodynamic interference effects. However, errors due to the probe

immersed in shear gradients are not included.

2.5.3 Measurement stations

Rotating hot-wire data was taken at seven radial stations and at

several axial stations at each of these radii. The measurement locations

are tabulated in Table 3 (see Figure 2).
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Table 3

• Wake Measuring Stations

Chord Inlet

m(inch) Axial Location From Trailin$ Edse 2 Turbulence

0.9595 0.150(5.90_ 0.0104 0.0417 0.124 0.240 0.458 0.5%
0.9324 0.147(5.80) 0.0104 0.0412 0.125 0.250 0.458

(Axial

0.8615 0.141(5.56) 0.0104 0.0417 0.125 0.208 0.417 0.625 Inten-

0.7973 0.137(5.40) 0.03125 0.146 0.229 0.375 0.563 sity/

0.7297 0.134(5.26) 0.0104 0.0208 0.1354 0.219 0.354 0.5313 Axial

0.6581 0.130(5.12_ 0.1146 0.240 0.458 0.6875
Vel.)

0.5676 0.128(5.02) 0.125 0.208 0.458 0.656
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Static pressure measurements were carried out at mid-radius and at

other representative radial locations.

2.6 Signal Processing Equipment

Figure 8 illustrates the instrumentation used for processing the

tri-axial hot-wire probe signals. The choice of the instrumentation was

made so that the raw data from the experiment could be used directly in

the data processing program developed by Gorton and Lakshminarayana

(1976) .

The output from the anemometer consists of three d.c. signals (a

measure of mean velocity) and three fluctuating a. c. signals (a measure.

of turbulence). The d.c. signals were measured with a 5327B timer counter

digital voltmeter up to an accuracy of 1 millivolt while the a.c. sig­

nals corresponding to intensity were read on a TSI 1060 RMS meter with

a 100 second integration time. A model AD530 analog device sum and dif­

ference unit was used to evaluate the Reynolds stress component in the

flow. The three sums and three differences were channeled through a DISA

52A35 channel selector switch and were read on a DISA D35 ~~S meter tvith

a 100 second integration time.

The turbulence spectral measurements were done using a UA-500

ubiquitous spectrum analyzer in conjunction with a HP 7044A x-y recorder.

A four-channel 3A74 type Tektronix storage oscilloscope was used in

all the hot-wire measurements to visualize the magnitude of all three

turbulent signals. The scope was also used in measuring the d.c. levels

in the flow, which information was needed to set the tape speed and d.c.

attenuation while taping the signals. A photograph of the instrumentation

used is shown in Figure 9.

..

•
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The data from the hot-wire El, E2, E3, _/_2", _, _,

/(e 2 ! e3)_ /((e3 ! el)2 are used in the computer program developed by

Gorton and Lakshminarayana (1976) to derive the values of the three com-

ponents of mean velocity, turbulence intensities and shear stresses.

Consistent with the assumptions made in the program (Appendix AI), the

output yield velocities and turbulence quantities in the streamline co-

• ordinate system. These quantities were then transformed, using a sub-

sequent coordinate transformation program, into the r-e-z coordinate

system where r was in the radial outward direction and z in the axial

direction.

Hot-wire measurements are found to be very sensitive to the ambient

conditions as well as to the physical constraints imposed on the probe.

The type of anemometer employed dictates that correct cable lengths

should be employed. The cable compensation unit served the purpose of

compensating for the bridge unbalance caused by the differences in cable

parameters. Procedures for adjusting these controls are given in the

DISA 55M service and instruction manual.

Integration times for the rms meters and digital voltmeters were

set at i00 sec. Allspectra were taken at i0 KHZ on a 0 db scale (_hat

is no attenuation). There was no gain on any of the instruments employed.

2.7 Peripheral Equipment

A low-turbulence calibration tunnel was used for the hot-wire and

static-pressure probe calibration. The horizontal open jet tunnel had

a square cross section and operated in the range of air velocities of 0

to 54 m/s (0 to 175 f/s). A spherical probe attachment built at The

Pennsylvania State University was used to align the probe in the direc-
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tion of the flow. It could also be used to traverse the probe across

the jet or to be set at different pitch and yaw angles.

Available hot-wlre-making techniques at the _epartment of Aerospace

Engineering we=e used for all sensor replacements. The hot-wire elements

were of 12_ copper plated tungsten wire. After the wire was made, dilute

nitric acid was used to etch the wire (approximately middle one-third

was etched to the desired resistance, 4 to 5 ohms). The over-heat ratio

was calculated based on the "actual" resistance of the wire and dialed

on the anemometer.

The sensor angles and the probe geometry were measured using a

Bausch and Lomb stereo zoom microscope in conjunction with length and

angle measuring eyepiece disks, with a least count of 0.002" at 3X power-

pod magnification.
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Chapter 3

EXPERIMENTAL RESULTS AND INTERPRETATION

3.1 Rotor In-Flow Conditions

The rotor-wake development and decay is strongly influenced by the

rotor inlet-flow conditions. It is essential that an accurate knowledge

of the flow-field ahead of the rotor be known before any attempt is made
i

to study the flow-field downstream of the rotor. Both the mean velocity

and turbulence structure ahead of the rotor and the pressure field up-

stream of the rotor are of importance.

In The Pennsylvania State University axial-flow compressor facility,

the rotor is preceeded by an inlet-guide-vane assembly. Some typical

pressure and velocity surveys were done upstream and downstream of the

guide-vane to evaluate the effects of inlet-guide-vane on the mean velocity

and turbulence structure.

3.1.1 Measurements upstream of the inlet-$uide-vanes

Mean velocity and turbulence intensity profiles ahead of the inlet-

guide-vanes were measured using a hot-wire and a spherical-headed static-

stagnation pressure probe. Figure i0 shows the velocity that exists in

the annulus just ahead of the inlet-guide-vanes. Also plotted in Figure

i0 is the velocity derived from wall-static measurements. It is evidentt

that the velocity variation across the annulus is less than two percent

from hub-to-tip, indicating nearly uniform entry flow.

Figure Ii shows the spectrum of the wall-static pressure taken just

ahead of the inlet-guide-vanes. It is seen that pressure fluctuations

exists ahead of the guide-vanes and that most of the fluctuations are

concentrated in the lower energy range (0 to i00 HZ_. The reasons for
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the existance of such peaks are not known. They occur at the rotor fre-

quenc_ and its harmonics, and may be caused by vibration or the inter-

action of one of the strut wakes with the rotor.

3.1.2 Measurements downstream of the inlet-guide-vanes

An "X" hot-wire was employed for the inlet-guide-vane wake survey.

An axial velocity defect (which is defined as the ratio of the defect of

axial velocity to the free-stream axial velocity, Vz/Vzo) of 0.16 at

0.158 chords downstream becomes 0.03 at two chords downstream and an

axial turbulent intensity of 30 percent at 0.158 chords reduces to less

than two percent at two chords downstream. It is thus seen that the

inlet-guide-vane wakes have decayed considerably before reaching the

rotor. There is a three percent defect in velocity near the rotor inlet

and as will be seen later, this will be picked up by the rotating hot-

wire downstream of the rotor. Figures 12 and 13 show the plots of velo-

city and turbulence intensity downstream of the inlet-guide-vane. Detail-

ed measurements of the inlet-guide-vane wakes have been reported by

Lakshminarayana and Davino (1979).

The spectra of the wall static taken ahead of and downstream of the

inlet-guide-vanes, Figure 14, do not show significant differences. So

it can be assumed that the inlet-guide-vanes do not affect the pressure

fluctuations.

It can thus be said that the position of the inlet-guide-vanes with

respect to the rotor (.1.5 rotor chords at tip and 2.03 rotor chords at

hub) is such that no appreciable distortion in mean velocity is intro-

duced because of the inlet-guide-vanes. A turbulence level of two per-

cent before the inlet-guide-vane gets amplified to about three to four
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percent after the vanes and this might add up to the overall turbulence

level of the rotor-wake.

3.2 Rotor-Wake Velocity Profiles

Rotating tri-axial hot-wire probe measurements were used to study

the properties of the rotor-wake of a moderately loaded compressor_rotor

in the trailing edge, near-wake and far-wake regions. The trailing-edge

region is defined as the region very close to the blade trailing-edge

where the radial velocities show trends similar to that of a trailing

vortex system; a near-wake region is defined as the region where the

velocity defects are of the same order of magnitude as the free-stream

velocity. The far-wake region is defined as the region where the velocity

defects are very small. Mean velocity, turbulence intensity and Reynolds

stress profiles are studied in this section. The effect of loading,

blade incidence, annulus- and hub-wall boundary layer effects on the

profile was also studied. To compliment the hot-wire measurements,

static-stagnation pressure surveys were also taken and velocity from pres-

sure measurements _as_ compared with those obtained from hot-wire measure-

ments.

All velocities discussed in this section are relativevelocities

and are normalized to the corresponding free-stream axial-velocity, un-

less otherwise specified.

3.2.1 Axial mean velocity

The variation of the axial velocity across the wake at various down-

stream and radial locations is shown plotted in Figures 15 through 20.

distance is normalized by the semi-hlade spacing (2s-_0
The tangential It

is clear that the wake profiles are asymmetrical about thewake center
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indicating the differential growth of boundary layers on the two surfaces

of the blade. This is to be expected as the suction-surface boundary

layers are thicker than the pressure-surface boundary layers. This asym-

metry is maintained even at half-a-chord downstream of the blade trailing-

edge. The existance of pressure gradients (inviscid effects) across the

passage immediately downstream of the blade trailing-edge is reflected

" in the free-stream velocity distributions, where the suction-surface

velocity is higher than the pressure-surface velocity (Figure 17). This

effect persists to about 0.3 chords downstram. Velocity profiles outside

and inside of the annulus- and hub-wall boundary layers exhibit charac-

teristics which are quite different. Not only the velocity profiles but

also the decay rates are different.

Variations of axial velocity across the wake and at various down-

stream locations for the radii R = 0.6581 and 0.7973 are shown as three-

dimensional plots in Figures 16 and 18. Figures 15, 17, 19, and 20 shows

the variations of the axial velocity profiles for R = 0.5676, 0.7297,

0.9324 and 0.9595, respectively. The wake profiles at R = 0.6581, 0.7297,

and 0.7973 are outside annulus- and hub-wall boundary layer regions. Wake

profiles and decay are fairly well behaved in these regions. Because of

wake spreading and mixing with free-stream as well as interchange of

, momentum and energy on either side of the wake, the wake shows a tendency

to become symmetrical at far downstream locations.

In the trailing-edge region, for the radius R = 0.7297 (Figure 17),

the wake defect (Wz/Wzo) is 0.88 which reduces to 0.2 at Z = O.5313. For

the wake at R = 0.7973, a defect of 0.71 at Z = 0.03125 reduces to 0.24

at Z = 0.5625. As the hub-wall is approached the decay rate decreases as

shown at the radius R = 0.6581 (Figure 16), where a defect of 0.66 at
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Z = 0.1146 reduces to 0.33 at a Z-location of 0.6880. The same trend is

observed even when the annulus-wall boundary layer is approached. So

the wakes decay differentially in the radial direction.

Because of the radially outward transport of mass, momentum, and

energy in the boundary layer, the wakes at the hub are expected to be

thinner, gradually increasing towards the tip. But in the present case

the wakes at the lower radius are as thick as those at the higher radii.

The probable reason for this is that the drag coefficient at the root is

higher than that at tip due to larger turning and consequently offset

the effect discussed earlier. One other possible reason is the existance

of inward radial velocity discussed later in this section.

For the wake in the trailing-edge region the gradients in the tan-

gential direction are very large as can be clearly seen in Figure 17.

This characteristic for the wake results from the development of the

boundary layer f!ow as it moves over the rotor-blade and transforms into

the wake at the trailing-edge. In the far-wake region the gradient

becomes considerably smaller because of the wake spreading and mixing

with the free-stream. The steep gradient in the trailing-edge region

represents highly unstable and developing flow conditions. There is

another interesting feature that can be observed in the trailing-edge

region. Here the pressure-side wake is thicker than the suction-side

wake. One probable cause of this is that the radial inward velocities

on the pressure-surface, observed experimentally, will cause a larger

accumulation of boundary layer on the pressure-surface compared to that

on the suction-surface. As the wake travels downstream, the radially

inward velocities decrease, and beyond 0.15 chord downstream, only
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radially outward flow exists. In such a situation the suction-side of

the wake is thicker and follows the usual trend.

The effect of blade loading can be observed in the near-wake plots

shown in Figure 17, for R = 0.7297. The wakes are highly asymmetrical

because of loading and it is noted by comparing Figure 17 with Figures

4 and 5 of Reynolds, et al. (1978). From the Figures 4 and 5 of Reynolds,

et al. (1978) we note that the wakes become approximately symmetrical at 0.271

chords downstream, where as in the present case the wakes still tend to

be asymmetrical at half-a-chord downstream. Thus the effect of blade

loading is to sustain the asymmetry to much larger extent downstream of

the blade trailing-edge.

Blade loading not only makes the velocity profiles asymmetrical,

but it also increases the velocity defect and slows down the decay rate.

Thus at mid-radius (comparing Figure 17 with Figures 4 and 5 Of Reynolds,

et al., 1978) we note that at about the same Z-location (say Z=0.028) a

heavily-loaded-blade gives a much deeper wake compared to that of a

!ightly-loaded-blade. The decay of the heavily-loaded-rotor-wake is

also slower. A velocity defect (Wz/Wzo) of 0.16 exists at half-a-chord

downstream of the present rotor compared to that of a lightly-loaded-fan

wake of Reynolds, et al. (!978) where the defect is 0.2 at Z = 0.271.

The wake in the annulus-wall region exhibits complex behavior. At

Z = 0.0104 and R = 0.9595, Figure 20, the velocity defect is 0.34 which

initially increases to 0.40 at Z = 0.0417 beyond which it decreases very

slowly. This may be attributed to the tip vortices and secondary flow

as well as annulus-wall boundary layer in this region. As the vortex

grows in strength immediately behind the trailing-edge it adds to the

overall defect in the wake. Beyond Z = 0.0417, the strength of the



vortex decreases and consequently the usual wake behavior is seen. Not

only the decay of mean velocity defect is different but also the profile

is different. As seen from Figure 20 we note that the wake covers the

entire blade passage and hence reflects the effect of leakage and secon-

dary flow on the wake. The secondary flow not only distorts the wake

profile but also has the effect of slowing down the decay.

The existence of large wake-width in the tip region which is attri-

buted to the leakage and secondary flows can be explained as follows:

The effect of secondary and leakage-flow is to increase the blade boundary

layer thickness on the suction-side. This effect can be seen at Z =

0.0104 and R = 0.9595 IFigure 20). The profile becomes nearly symmetri-

cal beyond Z = 0.124. The presence of an additional dip in the profile

at Z = 0.0104 and R = 0.9324 IFigure 19_ seems to indicate the presence

of vortices. Since this vortex is located closer to the pressure-surface,

it may he• either the scraping vortex or the secondary flow vortex. This

radial location is at the edge of the annulus-wall boundary layer.

For the wake inside the hub-wall boundary-layer, Figure 15, the wake

decay is comparatively slow. This might be due to the complex interaction

of the wake with the hub-wall boundary layer. It is also seen that the

wake spread is not appreciable, indicating that the spread of the wake

is greatly altered by the hub-wall boundary layer.

3.2.2 Tansential mean velocity

Variations of the tangential mean velocity across the wake at vari-

ous downstream and radial locations are shown plotted in Figures•21

through 26. As in the case of axial velocity, the tangential distance

is noramlized by the semi-blade spacing.
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For the wakes outside the annulus- and hub-wall boundary layers

represented by the radii R = 0.6581, 0.7297, and 0.7978 it is found that

the tangential velocity defects are greater than axial velocity defects.

At R = 0.7297 (Figure 23) and at Z = 0.0104 the defect is almost 0.9

dropping off to about 0.2 in half-a-chord downstream. The same type of

trend is observed for the other radii, R = 0.7973 and 0.6581. The tan-

gential velocity profiles are also asymmetrical because of differential

growth of boundary layers on the two surfaces. The decay of the defect

in tangential velocity varies radially and is clearly seen by comparing

Figures 22, 23, and 24. The tangential velocity defects are much larger

near the hub and tends to decay much more slowly. But compared to axial

velocity, the tangential velocity defect decays much more rapidly.

For the wakes inside the annulus-wall boundary layer, R = 0.9324

and R = 0.9595 (Figures 25 and 26) tangential velocities do not show any

marked change in behavior except that the defects are much smaller com-

pared to those at other radii found outside the boundary layer. The tan-

gential velocity profiles in these regions show the effect of interaction

between the wake and the annulus-wall boundary layer. As discussed in

the case of axial velocities the leakage-flow, secondary flow and the

annulus-wall boundary layer contribute significantly to the overall shape

of the velocity profile and its decay in this region.

The tangential velocity behavior in the hub-wall boundary layer

region represented by the radius R = 0.5676, Figure 21, shows marked

changes. A defect of 0.4 at Z = 0.125 drops off to 0.15 at 0.2 chords

downstream and the defect increases beyond 0.3 chords and this values

is maintained even at 0.65 chords downstream of the blade_ This strange

behavior can he attributed to the radial velocity which is radially
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inward at this location. Also the "dips" that are observed on either

side of the viscous wake are attributed to the secondary flow that exists

at the hub-wall. It can thus be said that the wake behavior, as to its

decay and profile, are greatly altered by the hub- and annulus-wall

boundary layer, secondary flow at these locations and the tip-vortex in

the annulus-wall region.

The effect of loading is not only to increase the defect and asym-

metry, but also to reduce the decay rate. Comparison of Figures 22, 23,

and 24 with that of Figures 6 and 7 of Reynolds, et al. (1978) confirm

this argument. Tangential velocities also show considerable asymmetry

in the trailing-edge and near-wake regions. Blade loading does make a

significant contribution to the asymmetry and its effect persists up to

half-a-chord downstream.

Tangential velocities are influenced by the radial component of

velocities through the radial equilibrium equation. In the trailing-edge

and the near-wake regions for R = 0.7297, it is ohserved that there are

very large radial velocities and a small component of negative relative

tangential velocities. This implies that the absolute and relative ve-

locities are in the same direction and that there is a very large change

in angle inside the wake in these regions.

3.2.3 Radial mean velocity

Radial velocity profiles for the various radial locations are shown

plotted in Figures 27 through 32. It is clear that radial velocities

show trends which are quite unique in the trailing-edge region compared

to that at far downstream locations.

Radial velocities are caused hy an imbalance in the radial pressure

gradients and the centrifugal forces. Physically, at either surface Of
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the trailing-edge of a compressor rotor-blade, the radial velocities must

be zero, while the maximum radial velocities occur slightly away from the

blade surface. This was confirmed by measurements on an inducer blade by

Lakshminarayana, et al. (1972). Raj and Lakshminarayana (1976) and Rey-

nolds, et al. (1978) measured the radial velocity profiles in the wake of

a lightly loaded rotor. The behavior of the radial velocities were dif-

ferent from those anticipated on the basis of the investigation By Lak-

shminarayana, et al. (1972). On the other hand, a trailing vortex system

associated with the shed circulation might give a radially inward-flow on

one side and radially outward-flow on the other side of the blade. Refer-

ring to Figure 29 it is seen that at the wake center as well as in the

free-stream there is nearly zero radial velocity while there is radially

inward-flow near the pressure-surface and radially outward-flow near the

suctlon-surface. This situation is possible if a trailing vortex system

dominates the flow in the trailing-edge region while the boundary layer type

of flow dominates the flow in the near- and far-wake regions. This com-

plex flow phenomeno_is not fully understood and a knowledge of the flow

on the blades (for eg., near the blade boundary layer) could assist in

explaining the nature of the flow. Further experiments in this region

along with the flow visualization studies could assist in a better under-

standing of this data.

As the shed circulation and the centrifugal and Coriolis forces vary

with radius, there will be a variation in the magnitude and nature of

radial velocities in the radial direction. This can be seen by comparing

the Figures 28, 29, and 30. The radial velocities are also influenced by

the constraints imposed on the flow by the existance of annulus- and hub-

walls, end-wall boundary layers, secondary and tip vortices.
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The nature of the radial velocities inside the annulus-wall bound-

ary layer, Figures 31 and 32, shows trends similar to those observed in

the trailing-edge region at lower radii, except the spread of the wake

is considerable. This is believed to be caused by the secondary flow

and the tip-vortex. Referring to Figure 33 it is noted that at the

pressure-surface the tip leakage- and secondary-vortices assist each

other and that they oppose one another at the suction-surface. Hence

the radial velocities get amplified at the pressure-surface and atten-

uated on the suction-surface. This is seen clearly in Figure 32 for R =

0.9595. The tip-vortex initially grows in strength as it travels down-

stream before it starts to dissipate and this phenomenQn is seen in

Figure 32 for R = 0.9595 and Z = 0.125. Very complex flow phenomena

exist at the edge of the annulus-wall houndary layer where the secondary

flow, tip-leakage flow and the annulus-wall boundary layer interact.

Figure 31, R = 0.9324 represents this region where highly complex flow

conditions exist.

For the wake inside the hub-wall boundary layer, R = 0.5676, Figure

27, the radial velocities in the near-wake region show trends similar to

those that exist in the traillng-edge region at other radii; but in the

far-wake region only radially inward velocities exist. The effect of

secondary vorticity is very clearly seen in the near-wake plots of Figure

27. Here the radial velocities are radilly inward at the pressure-surface

and radially outward at the suction-surface. This nature of the radial

velocity pattern is opposite to what is observed in the annulus-wall

region. The large radial component of the velocities indicate the highly

three-dlmensional nature of the rotor-wake. The radially inward or out-

ward flow in the wake will result in an increased dissipation of energy.
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The spread of the radial velocity profile downstream of the blade is not

as marked as in the case of the axial or the tangential component of

velocity.

Because very near the trailing-edge both the wake and the vortices

are decaying it is to be expected that the decay of radial velocity be

much more rapid than the axial and tangential components. In the far-

wake region the decay rates of all the three components of velocity are

the same.

The effect of blade loading on the radial velocities can be discerned

by comparing Figure 29 with Figures 8 and 9 of Reynolds, et al. (]978).

The radial velocities are dependent on the pressure gradient, centrifugal

forces and Coriolis forces arising due to rotation and the strength of

the trailing-vortex. All these effects increase with increased blade

loading. Referring to Figure 29, it is noted for this rotor at R = 0.7297

and at Z = 0.5313 the magnitude of the maximum radial velocity is nearly

0.2, while for a lightly loaded fan used by Reynolds, et al. (%978), the

radial velocities have dropped to a value of around 0.i even at 0.2 chords

downstream. So the effect of loading is to induce higher radial veloci-

ties, and these decay at a slow rate.

3.2.4 Total mean relative velocity

The total mean relative velocity, which is the resultant of the

axial, tangential, and radial velocities, is shown plotted in Figures 34

through 3N. The velocities are normalized to the corresponding free-

stream velocity and the abscissa represents the tangential distance as

spacing, with@)being equal to zero at the wake
a fraction of blade

centerline. A maximum wake defect of 0.8 at Z = O. 0104, for R = Q,7297

(Figure 36_ reduces to about 0.2 at Z = 0.5313. The data seem to confirm
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that the velocities are very low at the blade trailing-edge and the _

defect decays very rapidly in this region (0 < Z < 0.13). In the case

of rotor-wakes this is probably the closest station to the trailing-edge

(Z = 1.588xi0 -I cm or 6.25xi0 -2 in) where measurements are available.

Furthermore, the defects measured are larger than any reported so far.
9

The asymmetry in the velocity profiles, which arises due to differential

growth of boundary layers, and the effect of loading in sustaining the

asymmetry to beyond half-a-chord downstream can also he Qbserved in

Figure 36.

The nature of total relative mean velocity in the hub- and annulus-

wall houndary layers, Figures 34, 38, and 39 shows the same type of

trend as that of axial velocity. The wakes are relatively thick because

of the effect of secondary flows at hub and tip (and at tip there is the

added effect of the tip clearance flow). The decay rates are very slow

in these regions. This can be attributed to the secondary flow, leakage-

flow and the annulus- and hub-wall boundary layers.

Velocity derived from the hot-wire and pressure measurements are

shown plotted in Figure 40 for the radius R = 0.7297. The agreement

beyond Z = 0.1354 is very good indicating pressure measurements are as

accurate as hot-wire measurements. In the trailing-edge and near-wake

measurements there is slight discrepancy between the two measurements.

The pressure measurements do show the inviscid effects which are not

reflected in the hot-wire measurements. A point of concern is that the

velocity measured hy hot-wire is greater than that measured hy the

pressure-probe and the difference between the two is as much as ten per-

cent. Although the spatial resolution of the hot-wire is better than

that of the pressure probe, it is not possible to assume that thehot-
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Wire has better accuracy than the pressure-probe. Two most probable

errors at the trailing-edge locations are (a) wall vicinity effects in

the case of pressure-probe and (b) distortion of cooling characteristics

of the wire because of vicinity of the wall. No attempt is made in this

investigation to evaluate the relative merits of the two systems in the

near-wake and trailing-edge region as the source of error is not properly

understood. The probe is calibrated in a known uniform flow, and, there"

fore, the calibration would include the aerodynamic interference effects.

But the errors due to the probe immersed in shear gradients are not

included.

3.3 Pressure Variation across the Wake

In order to get a complete understanding of the flow in the wake,

time averaged static-stagnation-pressure surveys were done in a relative

frame of reference. A spherical head static-stagnation pressureprobe,

built at The Pennsylvania State University and described earlier, was

employed for all pressure surveys reported in this section. Variation

of the static-pressure rise coeffcient (Cp) across the wake of the rotor

is shown plotted in Figure 41. Some of the traditional models of an

invlscid core flow plus a viscous wake appear in these plots. The static-

pressure not only varies across the wake, hut also at the wake-edge near

trailing-edge due to inviscid effects, which are not reflected in the

. stagnation-pressure plots. In the trailing-edge region the static-pres-

sure variation across the wake is as large as 40 percent, which drops off

to about five percent at half-a-chord downstram. The measurement seems

to confirm the trend observed hy Thompkins and Kerrebrock (I_751 who have

reported a 25 percent variation in statlc-pressure across the wake at ten

percent of an axial chord downstream of a transonic rotor. In the present
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case the first measurement station is very close to the trailing-edge

and consequently very large static_pressure gradients were measured.

However, the data must be viewed with some caution. As reported earlier,

the pressure probes are subject to wall vicinity effects and also the

large angle variations reported earlier would adversely affect the values

inthe trailing-edge region.

Experimental evidence indicates that statlc-pressure increases at

the wake center and as the wake travels downstream this difference de-

creases. For the data presented for R = 0.7297, the ratio of the static-

pressure at the wake center to the corresponding static_pressure in the

free-stream decays rather rapidly in the traillng-edge region and the

decay is markedly slower in the near- and far-wake regions. This very

rapid decay at the trailing-edge region is attributed to the very rapid

decay in velocity defect and turbulence intensity.

The existence of pressure gradients across the wake can be under-

stood by examining the equation of motion in rotating coordinate system

in a direction normal _n_ to the streamlines (_. The equation can he

approximately written as (neglecting the viscous terms as well as some

of the inertial terms)
2

W

_ _ _p = 2_WrCOSB I s _ _w_2) 13)p _n R _n
c

where n is the direction normal to streamlines, W is the streamwlses

velocity, R is the radius of curvature of the streamline and w_2 is the
c n

turbulent fluctuation in the n-dlrectlon. It is evident from the above

equation that, in addition to Coriolis and centrifugal forces, the grad-

ients of turhulent intensity in the n-dlrection have an appreciable in-

fluence on the pressure gradient 8p/_n. At the wake center, near the

trailing-edge region, the turbulence intensity terms dominate and hence
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the static-pressure gradients can exist even in the absence of curvature

(Rc). Qualitative analysis of this effect is given by Reynolds (1978).

3.4 Turbulence Intensity Profiles

3.4.1 Axial turbulence intensity

Axial turbulence intensity profiles for the rotor-wake at various

radii from hub-to-tip are shown in Figures 42 through 47. The turbulence

intensity has been non-dimensionalized by the local mean velocity, since

turbulence is dependent on local flow conditions. The abscissa in the

figures represents the tangential distance normalized to half the blade

spacing.

The axial intensity profiles show very high values in the trailing-

edge region. In the near- and far-wake regions the magnitude reduces

considerably. The very high values in the trailing-edge region are attri-

buted to the hot-wire's sensing the trailing vortices as an unsteady

signal which shows up as turbulence.

The axial turbulence intensity profiles are asymmetrical in the

trailing-edge region and tend to become symmetrical beyond 0.2 chords

downstream. The asymmetry in the profile results from the differential

growth of turbulence on the suction- and pressure-surfaces of the blade.

In the near-wake plots of Figures 43, 44, and 45, the turbulence inten-

€

sity profiles show a dip (a lower intensity value) in that the peak

value occurs on either side of the centerline. This type of trend is

to be expected as the turbulence intensity must be zero on the blade

surface and the maximum value occur slightly away from the surfaces.

Further the centrifugal force increases the intensity on the suction-

surface and diminishes the intensity on the pressure-surface. This is

very clearly seen in the Figures 43 and 45. The profiles for R = 0.7297,
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Figure 44 do not depict this trend very clearly. This might be due to

the region's being too narrow and the large spatial resolution of the

probe may not have detected this feature.

The magnitude of axial turbulence intensity is about 0.85 at Z =

0.0104 (and R = 0.7297) which reduces to less than 0.15 at Z = 0.5313.
w

This implies that the decay of intensities is very rapid in the trailing-

• edge region and it slows down considerably beyond 0.2 chords downstream.

The same trend is observed for the other radii R = 0.7973 and 0.6581.

The rapid decay of turbulence intensities indicates that there is a very

rapid redistribution of energy and momentum in these regions.

The axial intensity profiles for the wakes inside the annulus-wall

boundary layer are shown plotted in Figures 46 and 47 and they depict

very complex turbulence structure in the trailing-edge region. The

effect of interaction of the secondary flow, tip-leakage flow and the

wake is very clearly seen in these plots. Free-stream turbulence inten-

sity is far higher than those that exist outside this region (seven to

ten percent as compared to three to five percent outside the annulus-wall

boundary layer). There are also two very distinct peaks in the turbulent

intensity profiles. One of these peaks is believed to have been caused

by the tip-clearance flow and the associated tip-vortex. The other peak

• is due to the wake. Peak intensity reaches nearly 90 percent at the

trailing-edge locations. As the tip-vortex travels downstream it dissi-

pates very rapidly and consequently the turbulence intensity contributed

by it to the overall rotor-wake also decays rapidly. A 90 percent in-

tensity at Z = 0.0104 drops off to 15 percent at Z = 0.0417. The decay

beyond this is rather gradual and the free-stream intensity remains



84

fairly high at a value of above five percent even at the far downstream

location of Z = 0.458.

For the wake inside the hub-wall boundary layer, R = 0.5676, Figure

42, the decay of axial turbulence intensity is rather slow compared to

the one in the annulus-wall boundary layer region. The interaction of

the hub-wall boundary layer, the secondary flow and the wake make the

intensities decay at a much slower rate. For the wakes inside the hub-

wall boundary layer, even though the free-stream axial turbulence inten-

sities are below five percent, the maximum intensity at the wake center

remains as high as ten percent even at 0.656 chords downstream. It can

thus be said that the decay of intensities are slowed down to a greater

extent inside the hub-wall boundary layer besides sustaining higher

values of free-stream intensity.

The axial intensity measured before the inlet-guide-vanes was about

0.5 percent and this does not show any appreciable amplification after

. moving through the rotor blade row. Free-stream axial turbulence inten-

sity downstream of the rotor was found to be around the same order of

magnitude in the region outside the wake boundary layer.

The effect of blade loading onothe axial turbulence intensity can

be seen by comparing Figure 44 with Figure 3 of Lakshminarayana and

Reynolds (1979). The free-stream axial turbulence intensity for both ,

the rotors were of the same order, but very near _he blade trailing-edge

the turbulence intensities are nearly 80 percent for the heavily loaded

rotor. On the other hand, the intensities are about 30 percent for the

lightly loaded fan blade. Thus the effect of loading is to increase the

turbulence level in the wake. Increase in blade loading not only in-

creases the turbulence levels, but also increases the decay rate.



85

3.4.2 Tangential turbulence intensity

Tangential turbulence intensity profiles are shown plotted in Fig-

ures 48 through 53 for various radii and varying axial distances. In

these plots the ordinate represents the tangential turbulence intensity

normalized to the local mean velocity and the abclssa represents the

tangential distance normalized to half the blade spacing.

•Asymmetry in the tangential intensity profiles is clearly seen in

these plots. In the trailing-edge region it is not very clear because

of the scales. This asymmetry, as in axial intensity profiles, is

attributed to differential turbulence growth on the two sides of the

blade. The symmetry in these profiles was not obtained until 0.6 chords

downstream, the last measuring station using a rotating probe. This

seems to confirm the arguments put forth by Raj and Lumley (1976) and

Lakshminarayana and Reynolds (1978), that symmetry will be obtained

only beyond one chord downstream.

Unlike the axial component of turbulence intensity, no dip in the

turbulence profiles was found at the wake centerline for the tangential

intensity profiles for all the radii. This indicates that in the inner

layer of the wake a larger redistribution of energy and momentum occurs

for the tangential intensities near the rotor-blade trailing-edge than

' does in the axial component of intensity. The magnitude for hot, axial

and tangential intensities is the same in the trailing-edge region but

in the far-wake region the tangential intensities are far smaller than

the axial intensities indicating that the tangential component of inten-

sity decays faster than the axial component.

The turbulence intensity profiles for the wake inside the annulus-

wall boundary layer region, Figures 52 and 53, show distinctly different
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trends. The dominant effect of the tip-clearance vortex is seen in these

plots. Not only is the turbulence intensity high, but it also extends

to most of the passage which is attributed to the tip vortex arising due

to the clearance flow. It is also interesting to note that the turbu-

lence profile is highly unsymmetrical in the trailing-edge region which

also reflects the effect of the tip vortex and the secondary flow on the

turbulence intensity. The decay of the turbulence intensity in this

region has to be viewed with some caution as we are not only dealing with

the decay of the turbulence but also the decay of the vortex. In the

trailing-edge region the decay is extremely rapid and becomes very grad-

ual in the far-wake region with the free-stream tangential turbulence

intensity remaining as high as six percent even at 0.458 chords down-

stream of the blade trailing-edge.

For the wake inside the hub-wall boundary layer the magnitude of

the tangential turbulence intensity is very small, as can be seen in

Figure 48. Not only is the magnitude of the intensities smaller, the

decay is also slow compared to those outside the boundary layer. The

effect of secondary flow that exists at the hub region can be seen in

these plots.

The effect of blade loading on the turbulence intensity can be seen

by comparing Figure 50 with Figure 4 of Lakshminarayana and Reynolds

(1979). For a heavily loaded rotor the turbulence intensities are nearly

60 percent while for a lightly loaded fan blade the maximum value is

less than 30 percent. Increase in blade loading not only increases the

turbulence levels, but also increases the decay rate. Tangential and

axial turbulence intensities are of the same order with similar profiles

and decay characteristics.
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3.4.3 Radial turbulence intensity

Radial turbulence intensity profiles for various radii from hub-to-

tip are shown plotted in Figure 54 through 59. Figure 54, R = 0.5676,

represents the region inside the hub-wall boundary layer, Figures 55,

56, and 57 for the radii R = 0.6581, 0.7297, and 0.7973 outside the end-
e

wall boundary layers while Figures 58 and 59 for R = 0.9324 and 0.9595

inside the annulus-wall boundary layer. The abscissa in these figures

represents the tangential distance normalized to half-the-blade spacing

while the ordinate represents the radial turbulence intensity normalized

by the local mean velocity.

Radial turbulence intensity profiles are asymmetric in the trailing-

edge and near-wake regions. Not only do the profiles show marked changes

from one radius to the other; so do the decay rates.

Radial intensities in the free-stream are found to be approximately

two to four percent for all the radii. These intensities are larger than

the axial and tangential components. At the wake center the radial

velocities are very high and reach nearly the same value as axial velo-

city in the trailing-edge region. The exlstance of these large radial

componen=s of intensities demonstrates the three-dimenslonal nature of

the rotor-wake. Large radial intensities result from centrifugal and

, Coriolis force effects on the rotor-blade boundary layers and on the

wake flow. Anand and Lakshminarayana (1978) have reported dominant

radial component in their measurement on helical inducer blades.

It is noted for comparison that the radial turbulence intensity

decay is by far the slowest compared to the axial and tangential turbu-

lence intensity decays. This indicates that the rotation effects are

significant in the turbulence intensity structure of the rotor-wake.
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As seen from Figure 56, for R = 0.7297 and at Z = 0.0104, the radial

turbulence intensity reaches a value of 0.65 which at Z = 0.0208 becomes

0.96 which indicates the effect of the trailing vortex on the radial

turbulence intensity. The increase in turbulence intensity at these two

locations might indicate the development of the vortex which initially

grows stronger before it starts to decay. At Z = 0.1354 the value of

radial component of turbulence intensity is about 0.65 and beyond that

the radial turbulence intensity decreases monotonically and reaches a

value of nearly 0.25 at half-a-chord downstream.

The dip in profile that was observed in the case of axial intensity

was noticed for the radial turbulence intensity for the wakes inside the

annulus- and hub-wall boundary layers (Figures 54, 58, and 59). At R =

0.9595 another interesting feature was noted, namely that the intensities

decayed rather rapidly increasing again before showing a peak. Beyond _ =

0.25 it decayed very slowly to a value of 0.2 at Z = 0.458. This shows the

effect of tip vortex and secondary flow on the radial turbulence inten-

sity. In general, at these locations the intensities were high and they

covered one entire passage. The complex flow phenomena in this region

can be attributed to the interaction of secondary flow, tip leakage-

flow and the associated tip-vortex, and the annulus-wall boundary layer.

The presence of vortex near the tip is clearly seen in Figures 58 and

59. There are two distinct profiles, one of which is due to the vortex

and the other due to wake.

It was previously argued that the radial turbulence intensities are

markedly influenced by the centrifugal forces arising due to rotation.

This is very clearly seen for the wake at the radius R = 0.5676. Here

the turbulence intensities are an order of magnitude lower than those at
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the tip. Here also the dip in the intensity profiles is observed and

the dip tends to persist for a longer distance downstream of the blade

trailing-edge than at a higher radius. This might be due to the effect

of secondary flow at the hub and the hub-wall boundary layer which has

a tendency to slow down the decay.

Raj and Lumley (1976) and Lakshmlnarayana and Reynolds (1979) have

given a theoretical explanation of the redistribution of energy between

the three components of fluctuating velocities and have shown that the

>T
effect of Coriolis force is to redistribute the energy such that rr _ s

in a compressor. This trend is generally true in this case with the

axial and radial intensities of the same order of magnitude. However in

a non-rotating case r > r • It is also seen that beyond half-a-chord
S r

downstream of the blade the turbulence becomes isotropic with all the

three components of intensities having nearly the same values.

3.5 Turbulence Shear Stress Profiles

The streamwise (rsn) and radial component (mr) of the Reynolds

stress as well as the correlation (rsr) are shown plotted in Figures 60

through 77. Only the data in the s-n-r (natural coordinates) are given

as they are the ones which are of any practical interest. All the Rey-

nolds stresses given here are normalized to the local dynamic pressure.

The tangential distances are normalized to half the blade spacing. The

, turbulent stresses are very small in the free-stream and increase in

magnitude near the wake center, where they reach a maximum value. This

type of trend is to be expected as the production of stresses is brought

about by velocityand turbulence intensity gradients.

The variation of the streamwise stress, r , across the wake issn

shown plotted in Figures 60 through 65. These plots show the expected
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reversal of stress at the wake center. This positive and negative stress

distributionresults from opposite gradients of streamwise mean velocity

about the wake center. The profiles are asymmetrical about the wake

center with the pressure-surface stresses being higher than the suction-

surface stresses. The location of the zero streamwise Reynolds stress

occurs slightly away from where _W/_n is zero. This characteristic has

been measured and reported by Raj and Lakshminarayana (1973) and Laksh-

minarayana and Reynolds (1979). Hah (1980) used a stationary hot-wire

and an ensemble average technique to evaluate the wake properties and has

reported that the zero streamwise Reynolds stress occurs slightly away

from where _W/_n is zero. This implies that this characteristic is in-

herent for the wake and does not arise due to the spatial resolution of

the hot-wire probes.

' The profiles are asymmetric about the wake center and the decay of

the stresses is extremely rapid in the trailing-edge region at all the radii

and reach nearly zero values in the near-wake region. This rapid decay

is expected as the steep gradients in mean velocity that exists in the

trailing-edge region become very small for Z > 0.15. Further it is seen

that at most of the radii the stresses in the free-stream have a value

other than zero which might be due to the upstream inlet-guide-vane wakes.

The dominant effect of the leakage vortex can be seen in Figures 64 and

65 for the radii R = 0.9324 and 0.9595, respectively. The vortex dlssi-

pates rapidly, very close to the trailing-edg_ and the contribution to

the Reynolds stress from this vortex also diminishes very rapidly.

The radial component of Reynolds stress for all the radii is shown

in Figures 66 through 71. The radial stresses are opposite in sign to

those of the streamwise stress. This is consistent with the mean velo-
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City data presented in Section 3.2, where it was noted that the stream-

wise component of velocity increases on either side of the wake, while

the radial componentof velocity decreases. In the free-stream the

value of the radial Reynolds stresses is around zero.

As the radial velocities are very much smaller than the streamwise

velocities it has to be expected that the ratio of the radial stress to

_ streamw se stress will be less than unity. But in the present case their

ratio is greater than unity (trailing-edge and near-wake locations, out-

sidethe hub-wall boundary layer) indicating the effect of rotation on

the stresses. This can be argued on the basis of the Reynolds stress

equation in the rotating coordinate system (Lakshminarayana and Reynolds,

1979) where in the effect of rotation is to attenuate the streamwise

stress component (rsn) and amplify the radial stress component (Trn).

In the traillng-edge region the situation tends to be far more compli-

cated because the trailing-vortex system dominates the flow. Their ef-

fect seems tomake the radial velocity gradients steeper. In the trail-

ing-edge and near-wake regions for R = 0.7297, the ratio of rrn/rsn is

approximately 1.04. For the wakes inside the annulus-wall boundary layer

the ratio is about 1.5. Thus it is seen that the effect of the vortex

is, like rotation, to attenuate the radial component of Reynolds stress.

But for the wakes inside the hub-wall boundary layer the streamwise com-

ponent of stress seems to dominate. This has to be expected as the
8

secondary flow and the hub-wall boundary layer interaction with the wake

and their influence on the Reynolds stresses arenot clearly understood.

The ratio of the radial-to-streamwise Reynolds stress represents the

deviation of the total stress vector from the streamwise direction. Com-

parison of these angles with those of Reynolds (1978) indicatesthe effect
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of loading. The higher the loading the greater seems to be the deviation

of the stress vector from the streamwise direction. This is to be expec-

ted as higher loading results in higher radial components of the velocity

gradient and the higher the gradients, the larger are the radial stresses.

The stress correlations, rsr, are shown plotted in Figures 72 through

77. It is seen that the magnitude of this correlation is of the same

order as that of streamwise stress. It has the same sense on either side

of the wake.

The Reynolds stress data presented in Figures 60 through 77 must be

studied with some caution. It is possible that the results are subject

to spatial errors which are inherent in a tri-axial hot-wire probe. How-

ever the contribution to stress from eddies larger than the distance

between the probe sensors is measured accurately. An estimate of the

scales of flow and the expected orders of error is given in Appendix A2

and Appendix A3.

3.6 Wake Curvature and Flow Angle Variation

The locus of the wake centerline, which is a measure of the wake

curvature, is shown plotted in Figure 78. The curvatureof the rotor-

Wake is appreciable in the trailing-edge region and negligibly small in

the far-wake region. As seen from the Figure 78, the wake curvature is

towards the suction-surface of the blade in the near- and far-wake re-

gions and the path is coincident with the blade outlet angles in the

trailing-edge region. It is also found that the radius of curvature of

the wake is higher at higher radii and continuously decreases as the

hub-wall is approached where the trend of the curvature changes.

The curvature of the wake inside the annulus-wall boundary layer is

affected greatly by the tip-vortex and secondary flows. Here the curva-
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ture initially decreases and then starts to increase up to 0.12 chords

beyond which it decreases gradually. This implies that outlet angle

variation is considerable in the annulus-wall region, caused by different

decay rates for axial and tangential velocities, coupled with the tip-

vortex and the secondary flows which deflect the flow very strongly near

the blade trailing-edge.

Curvature can also be thought of as the variation in flow angle at

the wake center with downstream distance. The flow angle can be calcu-

lated from the velocity-triangles at each of the downstream locations.

This plot is shown in Figures 79 through 84 where all the velocities are

normalized ts the free-stream axial velocity and the angle B is in de-

grees. In the traillng-edge region the flow is still developing where

the trailing-vortex system may dominate the wake. As the axial compon-

ent of velocity is very small and the radial velocities are large, the

flow deflection is quite considerable resulting in small negative tan-

gential relative velocities. This implies that the relative and the

absolute velocities are in the same direction. As the wake travels down-

stream, the tangential relative velocity reverses its sign and becomes

positive. The reversal of tangential velocity in its sign introduces a

large angle variation which is reflected in the wake curvature in the

traillng-edge region. Beyond Z = 0.1354 the flow angle variation is

very small and consequently the curvature of the wake is also small.

%
The secondary flow and the tip-leakage flow which exist at the

end-wall boundary layers have a pronounced influence on the tangential

velocity and consequently , the curvature of the wake. The increased tan-

gential velocity and widely differing decay rates of axial and tangential

velocity defects in the trailing-edge region assisted by the tip-vortex
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tend to give a large "negative" curvature in the trailing-edge region.

Beyond ten percent of the chord downstream of the blade the tip-vortex

depletes in its strength and also the decay rates of both axial and tan-

gential velocity defects are of the same magnitude and consequently the

wake curvature becomes nearly asymptotic with the chord angle.

4

The effect of loading is to increase the curvature of the wake and

• is noted by comparing Figure 80 with Figure i0 of Reynolds, et al. (1978).

3.7 Rotor-Wake Decay

3.7.1 Decay of maximum defect in mean velocities

The decay of wake centerline velocity which reflects thedecay of

the wake is discussed in this section for all the three components of

velocities as well as the resultant mean velocity.

Decay of the mean velocity defect is greatly influenced by the pres-

sure gradients and turbulence fluctuations, as well as by the viscous

effects that exist near the blade trailing-edge. The secondary flow that

exists near the hub-wall as well as the secondary flow and tip-leakage-

flow at the annulus-wall also contribute to the decay of the defect near

theannulus- andhub-wall.

Decay of the defects of axial and tangential velocities is shown

plotted in Figure 85 for the radii outside the end-wall boundary layers.

Since the free-stream velocities on the pressure- and suction-side are

r different, the velocity defect based on these two velocities is shown

plotted in the figure. The genera! trend observed for the decay of the

defect in axial and tangential velocity is that they decay very rapidly

in the trailing-edge region and the decay tends to be less rapid in the

near- and far-wake regions. The very rapid decay in the trailing-edge

region is attributed to large turbulence intensities, pressure gradients,
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and three-dimensional effects. The tangential velocity defect decays

much more rapidly than the axial velocity defect. The contributing fac-

tor to the very rapid decay of the tangential velocities is the radial

component of velocity as well as the radial distribution of free-stream

tangential and axial velocities.

Figure 86 shows the decay of the maximum radial velocity for the

wakes outside the annulus- and hub-wall boundary layers. It is clear

that the decay is extremely rapid in the trailing-edge region and slows

down considerably in the near- and far-wake region. Even at 0.6 chords

downstream it is seen that there is a significant radial velocity com-

ponent. This not only indicates that the decay of the radial velocity

component is less rapid compared to the defect in axial and tangential

velocities but also reflects the radial migration of flow in the rotor-

wakes. The very rapid decay in the trailing-edge region can be attri-

buted to not only the high turbulence intensities but also the decay of

the trailing-vortex system which dominates the flow in this region. Also

plotted in Figure 86 is the data on the maximum radial velocity from Raj

and Lakshminarayana (1976), Reynolds, et al. (1978), Thompkins and Ker-

rebrock (1975), and Kool, et al. (1978). Comparison of the data from

various sources indicates the effect of blade loading on the radial ve-

• locity. Higher blade loading induces larger radial velocities. Comparing

the decay rates in the trailing-edge region with Figure 14 of Reynolds,

et al. (1978) and Figure 7 of Lakshminarayana (1976) showsthat the decay

rate in this region is more rapid than the cascade, isolated airfoil, or

even the wake of a lightly loaded rotor.

Comparison of the decay rates with those of Reynolds, et al. (!978)

reflects the effect of blade loading. The higher the blade iQading, the
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larger the wake defect. It is also observed that the wake decays much

more slowly with increased blade loading. The effect of blade loading

is shown to have a greater effect on the tangential velocity defect, more

so than for the axial velocity defect.

The decay rates change drastically for the wakes inside the annulus-

and hub-wall boundary layers. In the annulus-wall region, Figure 87, it

is seen that the defect initially increases until 0.15 chords downstream

before it monotonically decreases. This strange behavior is attributed

to the tip-vortex in the tip region arising due to tip-clearance flow.

It is also observed that the axial velocity defect is much smaller in the

annulus-wall boundary layer compared to that in the hub-wall boundary

layer. The interesting feature to be noted is that, though the defect

is much larger in the hub-wall boundary layer, the decay rate in the far-

wake region is about the same at approximately the same downstream dis-

tance from the trailing-edge.

The decay of the total relative velocity which is the resultant of

axial, tangential, and radial velocity components is shown plotted in

Figure 88 for the wakes outside the end-wall boundary layers. Some very

interesting features are noted in the decay of the total velocity defect.

For the radius R = 0.7297 and at Z = 0.0104, the defect in total velocity

• is 0.69 which increases to 0.735 at Z = 0.0208 and from then on it mono-

tanically decays to a value of 0.13 at half-a-chord downstream. The data
9

of Thomkins and Kerrebrock (1975) for a transonic rotor also follows the

trend of the author data. The decay of the total velocity conforms more

closely to the decay of the axial velocity. It is seen that at a half-a-

chord downstream the defect in total velocity (wc/Wo) is of the same order
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as that of axial velocity defect (Wzc/Wzo) while the tangential velocity

defect (wec/Weo) is much less than either the axial or the total velocity.

Not only do thedefects of axial and tangential velocities and max-

imum radial velocities change in the downstream direction but also the

free-stream velocity changes. This plot is shown in Figure 89. For the

wakes outside the annulus- and hub-wall boundary layers it is seen that

the free-streamvelocity increases with downstream distance from the

trailing-edge. This can be explained based on the continuity equation.

As the wake decay is rather rapid in the trailing-edge region, increase

in the free-stream velocity occurs. This is very clearly seen in Figure

88a for the radii R = 0.6581, 0.7297,0.7973,_ 0.9324. As the wake travels

downstream the decay is less rapid and consequently we have a gradual

increase in the free-stream velocity. For the wake inside the annulus-

wall boundary layer the free-stream velocity decreases with distance,

Figure 89b, contrary to those at other radii. This behavior can be ex-

plained based on the annulus-wall boundary layer growth. For the radius

R = 0.9595 and at Z = 0.0104, the free-stream velocity normalized to the

tip-speed is of the order of 0.664 which drops to 0.648 at Z = 0.458.

This is due to the fact that at the same radius, but at differentaxial

locations, the annulus-wall boundary layer would have grown and thus

would represent a lower free-stream velocity. Thus the effect of the

annulus-wall boundary layer onthe free-stream velocity is opposite to

that which occurs at some lower radii. For the wake at R = 0.9324, an

interesting trend is noticed. Initially up to Z = 0.25 chord downstream

the free-stream velocity increases and for Z > 0.25, the velocity shows

a decreasing trend. This is due to the annulus-wall boundary layer at

this radius beyond Z = 0.25. The same trend is noticed even for the wake
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at the radius R = 0.5676, which is clearly seen in Figure 89b. This

trend is also reported by Ufer (1968) who has measured the annulus-wall

boundary layer growth to nearly 20 percent of the blade height behind

the rotor.

It is thus seen that the initial wake characteristics differ con-

siderably in the radial direction and hence the decay rates are also

b different. The main controlling factor in the development of a wake is

the section drag coefficient. So normalizing the decay by the drag coef-

ficient should collapse all the data points on to a single decay curve.

This correlation is reported in a later section.

3.7.2 Decay of maximum turbulence intensity

Decay of maximum axial, tangential, and radial turbulence intensi-

ties normalized t_ the local relative mean velocity is shown plotted in

Figure90, for the wakes outside the annulus- and hub-wall boundary

layers. It is seen that the intensities are very high in the trailing-

edge region and that they decay very rapidly in the trailing-edge region.

Lakshminarayana and Reynolds (1979) have given a qualitative analy-

sis on the effects of rotation on turbulence and have shown that the

turbulence structure is quite different compared to a stationary case.

The radial intensities are likely to be higher than the axial and tan-

gential components. The present data seems to confirm this analysis only

at higher radius. For the radius R = 0.9324 at Z = 0.0104, the maximum

radial component (normalized to the local axial velocity) is 0.99 while

the axial and tangential components are 0.8316 and 0.8870, respectively.

Further the data at this radius also confirms the analysis of Raj and

Lumley (_1976)who have shown that if the gradient of the radial component
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of mean velocity across the wake is much larger than the angular velocity

of the machine, then

_r > _e > Tz " (4)

But the data at lower radii does not agree with this reasoning.

• Not only the magnitudes of the turbulence intensities at various

radii are different so also are their decay rates. It is seen from Fig-

ure 90, that the decay of the axial and tangential components is about

the same while the radial intensity decays much more slowly..

For the wakes inside the annulus- and hub-wall boundary layers it

is seen, from Figure 91, that

T > • > Te . (5lz r

It is also seen that the intensities for the wakes inside the annulus-

and hub-wall boundary layers decay slower as compared to the ones outside

the end-wall boundary layers.

Comparing these figures with those of Reynolds (1978), it is seen

that the effect of loading is to increase the maximum axial, tangential,

and radial intensities in the wake. Furthermore, the decay of intensi-

ties is also extremely rapid with increased blade loading.

3.7.3 Decay of maximum turbulent shear stress

- The decay of the maximum turbulent shear stresses is shown plotted

in Figure 92. The stresses are very high in the trailing-edge region

decaying very rapidly downstream of the trailing-edge. The rate of decay

seems to fo!low the same trend for the radii outside the annulus- and

hub-wall boundary layers. But for the wakes inside the end-wall boundary

layers the decay rates seems to be appreciably slower. The decay as

shown in Figure 92 for the streamwise (rsn), radial (rrn), and the corre-
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lation (rsr), seems to exhibit wide scatter for the different radii.

This is to be expected as the wake development and decay are different

at different radii. Normalizing the stresses by the corresponding values

at the trailing-edge should collapse all the data onto a single curve,

provided the stresses like the intensities and velocities depend only on

their initial value. This correlation is attempted at a later section.

3.7.4 Statlc-pressure decay

The experimental evidence indicates that the static-pressure in-

creases towards the wake center and as the wake travels downstream this

difference decreases. For the data presented, R = 0.7297, Figure 93,

the ratio of the static-pressure at the wake center to the corresponding

static-pressure in the free-stream decays rather rapidly in the trailing-

edge region and the decay is markedly slow in the near- and far-wake

regions. The very rapid decay at the trailing-edge regions is attributed

to the very rapid decay in velocity and turbulence intensity as well as

to the existance of streamwise curvature.

The z-momentum can be written as: (neglecting viscous terms)

_! p=Re Bw Bw Bwz z z B , , B ,2
p Bz r Be + Wr _ + Wz _ + r-_8(W8Wz ) - B_zWz " (6)

equation BWz/28 and BWz/BZ are positive while (B/Bz)(Wz'2")
In the above

and (B/rBB)(wB'Wz') are negative. If the decay in velocity gradients •

[(BWz/B8), (BWz/BZ)]dominate, the value Bp/Bz should be negative. This

means the decay in velocity gradientsas well as the turbulence quantities

contribute to the decay of the pressure difference across the wake. This

static-pressuredecay is shown plotted in Figure 93.
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3.8 Semi-Wake Width Variation

The semi-wake width is defined as the width of the wake at half the

defect of total relative velocity. The variation of this semi-wake width

normalized by the blade spacing is shown plotted in Figure 94a for the

radii R = 0.6581, 0.7297, 0.7973, and 0.9324. The wake width increases

rapidly in the trailing-edge region and then the growth becomes very

gradual in the near- and far-wake regions. As the interchange of momen-

tum and energy is continuous on the two sides of the wake, the growth

should also be continuous and this behavior is observed in Figure 94a.

This is consistent with those observed for the isolated airfoil and the

cascade wake. The wake width increases almost linearly with the down-

stream distance for (Z/cosB o) > 0.2 at all the radii, as shown in Figure

94a.

in the case of rotors, because of centrifugal effects, wakes at

higher radius tend to be thicker compared to the wakes at lower radii.

But as the hub- and annulus-wall regions are approached the wake width

grows enormously due to the complex interaction of the wake with the

end-wall boundary layers and secondary flow (and tip leakage in the case

of annulus-wall region). The wake width variation in the annulus-and

hub-wall boundary layers is shown plotted in Figure 94b. In the hub-wall

region, at 0.6 chords do_stream the wake has grown to approximately 30

percent of the passage while in the annulus-wal! region at a Z-location

of 0.458, the wake has grown to wel! beyond one passage. This implies

that the adjoining wakes have already started interacting with one another.

The effect of loading on the wake width variation can be seen by

comparing these results with those of Reynods, et al. (1978). One should

be cautious in such a comparison as the wake width depends, besides other
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factors, on the aerodynamic properties of the blade and in particular is

strongly dependent on the section drag coefficient. So it is logical to

compare the wake after its dependency on the drag coefficient (and

consequently the radius) is removed. This correction is attempted in a

subsequent section. But is should be commented that increased blade

loading increases the wake width.

3.9 Wake Shape Factor and Momentum Thickness Variation

3.9.1 Wake shape factor

The wake shape factor (H_ defined as the ratio of the displacement

thickness to momentum thickness, is uniquely related to the velocity pro-

file. The variation of the shape factor with downstream distance for

all the radii is shown plotted in Figure 95. For the wakes outside the

annulus-wall boundary layer the shape factor, shown in Figure 95, mono-

tonically decreases with increasing distance from the trailing-edge and

it asymptotically approaches the value of 1.2 at far downstream locations.

In the hub-wall boundary layer region it is noted, Figure 95, that the

value of the shape factor is very high, and this may be attributed to.

the pressure gradients. In the trailing-edge region for R = 0.7297, the

value of the shape factor is greater than 1.8 which indicates that the

flow shows a tendency to separate. For the wake inside the annulus-wall
&

boundary layer the shape factor shows a very interesting trend. It ini-

• tially decreases and beyond Z = 0.i it starts to increase. This might

be due to the merger of the tip-vortex with the wake. As the wake tra-

vels downstream from the trailing-edge, the vortex dominates the flow

initially and later as the vortex dissipates the secondary flow and

boundary layer flow dominate the flow. This may account for the unusual

behavior of the shape factor variation in this region. It can thus be
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concluded that for the wakes inside the annulus- and hub-wall boundar X

layers the variation of the shape factor is no longer controlled by the

variation of the momentum thickness or the free-stream velocity varia-

tion.

The variation of the shape factor for isolated airfoils and cascades

has experimentally been determined and reported by Liehlein and Roude-

" bush (!956), Raj and Lakshminarayana (!973). Reynolds (1978) has given

this variation for a lightly loaded fan. Comparison of the data from

Reynolds (!978) with the present data (Figure 95) indicates the effect

of loading on the shape factor. The higher the loading, the higher the

shape factor. Compared to a lightly loaded blade the shape factor for

a heavily loaded rotor decays much more slower. Thus the effect of

loading is to slow down the decrease of the shape factor.

Raj and Lakshminarayana (1973) have shown that Spence's semi-analyti-

Cal expression for the variation of the shape factor can be employed even

to a cascade to accurately predict the downstream variation and that the

agreement between the expression

i _ z i)-1/2
(i - _) = (i - (b _ + (7)

and the data is good, where the constant b takes the value of 40. But

the same expression could not accurately predict the rotor-wake shape

factor thus indicating highly three-dimensional nature of the rotor-wake.

The magnitude of the shape factor based on this two-dimensional analysis8

yields very high values and this reflects the effects of three-dlmension-

ality which dominate the flow in these regions.
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3.9.2 Wake momentum thickness

Momentum thickness is defined as

e* = y6 W w
o _-(i - _-)d(n/6) (8)

O O

and is used as the characteristic boundary layer dimension. The momentum

thickness implies the loss of momentum in the boundary layer, as compared

with potential flow. In the case of the rotor-wake, this loss of momen- .

tum is defined in the wake, with the integration carried across one blade

spacing and is given by

e* i fs w w
= _ o _7-(1-_7-)rd0" (9)o o

The experimental variation of the wake momentum thickness with downstream

distance is shown plotted in Figure 96 for various radial locations.

Note the 0* variation from one radius to another. These variations can

be explained on thebasis of conventional Boundary layer momentum equa-

tion (two_dimensional) with zero shear stress as follows.

dO* (H + 2)°* dW__= o = o (i0)ds W ds
o

From this equation it is clear that the value of e* will increase if W
O

decreases and it will decrease if W increases. A knowledge of the free-o

stream velocity variation will thus enable the determination of e* vari-

ation. A plot of this free-stream velocity variation with downstream

distance is shown in Figure 89. A comparison of this figure with Figure

96 shows that the above reasoning is valid except in the trailing-edge

and annulus-wall boundary layer regions. For the case of cascades and

isolated airfoils this has experimentally been determined and reported by

Raj and Lakshminarayana (1973) and Lieblein and Roudebush (1956). For

the case of lightly loaded rotor it has been reported by Reynolds (1978).
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As seen from Figure 96, for a moderately loaded compressor rotor,

most of the increase in momentum thickness occurs very close to the trail-

ing-edge where the change in shape factor and consequently the displace-

ment thickness is greatest. For Z > 0.2 very little change in 8* occurs

indicating approximately constant free'stream velocity. Very close to

the trailing-edge 8* variations may not conform with the free-stream

, velocity variation due to the three-dimensional nature of the flow, the

static-pressure gradients and the curvature induced Coriolis and centri-

fugal forces.

The wake inside the annulus-wall boundary layer behaves quite dif-

ferently from that at other radii. Here the momentum thickness increase_

by nearly six percent until 0.4 chords downstream beyond which it stay_

approximately constant. This large momentum thickness might be attri-

buted to thetip-vortex (leakage vortex) which might he continuously

contributing to the wake de_ecit. Beyond Q,4 chords the _trensth Of the

tip-votex might he very weak and the flow ia dominated by the wake_

The effect of blade loading can be observed by comparing Figure 96

with the data of Reynolds (1978). At the same Z-location, say Z = 0.25,

R = 0.7297, for a moderately loaded compressor rotor the momentum thick-

ness is 0.06 while for a lightly loaded rotor the value is only 0.02.

(Actually 8/c should be compared. But both the rotors, in the present

comparison, have the same chord length.) Thus the effect of blade loading

is to increase the momentum thickness.

3.10 Variation of Wake Characteristics in the Radial Direction

In previous sections the decay of the wake properties as a func-

tion of the downstream distance from the trailing-edge was dealt with.

In these studies it was realized that the wakes differ considerably in
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the radial direction with regard to their decay and profile. This neces-

sitated a search for variation of wake properties in the radial direction.

3.10.I Wake characteristic velocity variation

Radial variations of the maximum axial, tangential velocity defects,

and the maximum radial velocity of the rotor-wake are shown plotted in

Figures 97, 98, and 99. Figure i00 shows the variation of the maximum

velocity defects and the maximum radial velocity with radius for the

station about 0.12 chords downstream of the blade trailing-edge. The

proper parameter to be employed is the streamwise distance, Z/cos_ .o

The data points shown in Figures 97 to 109 are at Z-locations given in

Table 3. Variations of 8 at various radial locations are given in Table
o

2. It is seen that the velocity defect is maximum near the hub and de-

creases with increasing radius. The variation is not appreciable beyond

R = 0.•7 and the defect remains fairly constant as the wake decays along

the relative streamlines. At higher radii the streamwise distance down-

stream of the rotor in the relative frame of reference is higher. Hence

the defect tends to be lower. For the same reason, at lower radii the

defect will be larger. Inside the annulus- and hub-wall boundary layers

the wake is greatly influenced by the secondary flows and the tip-leakage

flows (essentially true only in the annulus-wall region) where the above

reasoning may not apply.

• Variation of the tangential velocity defect with radius is shown in

Figure 98. The tangential defect increases with increasing radius up to

0.73 and starts to decrease beyond that. This clearly indicates the

effect of the,three-dimensional nature bf the floras well as the effect

of secondary flow (tip-vortex in the case of annulus-wall region). The
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lower tangential velocity defects near the hub and annulus-wall can be

attributed to the rapid decay of the wake caused by the tip-vortex and

secondary flow.

The effect of blade loading on the tangential velocity defect can

be discerned by comparing this figure with that of Reynolds (!978_.

Higher loading seems to give higher tangential defects. Comparing the

two radii R = 0.7297 and 0.9595, at the same Z-location of 0.0104, it

is noticed that at the lower radius the tangential velocity defect is

larger. The same is true as the •hub-wall is approached; in fact the

tangential velocity defects are much more pronounced than the axial

velocity defects.

The radial variation of the maximum variation in velocities [(_m) p -

(Wrm)s]/Wzo is shown plotted in Figure 99. As mentioned earlier the

radial velocities are significant in the rotor-wakes and it varies con-

siderably in the radial direction. Secondary flow, tip-leakage land the

associated tip-vortex) and the trailing-vortex system greatly influence

the radial flows. The radial velocities are also influenced by the

centrifugal and Coriolis forces which are not only a function of speed

of rotation but also the radius. Radial velocities will also be induced

by the trailing-shed-vortices and the unbalanced pressure gradients in

. the radial direction. The effect of all this is to make the radial vari-

ation of the radial velocity highly complex. Near the hub-wall boundary

layer radial velocities are inward in nature (influence of secondary

flows) and at higher radii the effect of secondary flow vanishes and the

radial transport of mass, momentum, and energy influenced by the centri-

fugal forces dominates. As the annulus-wall region is approached the

radial outward velocities have to vanish and may result in radially in-
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ward velocity. The effect of these on the radial velocities is shown

plotted in Figure 99.

3.10.2 Maximum turbulence intensity in the wake

The radial variation of maximum axial, tangential, and radial turhu-

lence intensities in the wake is shown in Figures I01, 102, and 103.

Measurements in the trailing-edge region show that the turbulence f

intensities are maximum at the wake center (allowing for the probe's

spatial error). These intensities are an order of magnitude higher than

those that were measured in the near- and far-wake regions. These high

intensities are attributed to the trailing-vortex system that dominates

the flow at these locations. But the trailing-vortexes contribution to

the wake-turbulence decays very rapidly (in less than five percent of

the chord) and the wake-turbulence dominates over the vortex-turbulence

beyond this downstream location.

Considering only the wake-turbulence it is noted that the turbulence

intensity is maximum at the annulus-wall region and decreases steadily

to a minimum at the mid-radius and starts to increases again towards the

hub-wall region. (This is true for only near- and far-wake regions.

For the trailing-edge locations the trailing-shed vortex contribution is

substantial and may offset the above trend). This trend can be explained

based on the tip-leakage-vortex, secondary flow, annulus- and hub-wall

boundary layer and its interaction with the wake. Thus the intensities

are fairly constant over a very narrow region across the annulus.

Of the three components of intensity the largest component is the

radial intensity. Very close to the trailing-edge and in the near-wake

regions the turbulence is highly anisotropic and has a tendency to become

isotropic at far-downstream locations. Even thoug h the turbulence struct-
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ure was radially varying, free-stream turbulence for all the wakes outside

the end-wall region was around four to five percent. The presence of

maximum radial intensities of an order equal to or greater than that of

axial and tangential components indicates the three-dimenisonal nature of

the turbulence structure. This characteristic becomes less pronounced

beyond 0.5 chords downstream. Reynolds (.19.78)has mentioned that radial

intensities dominate even at far downstream locations. This might reflect

on the effect of loading on the three-dimensionality of the turbulence

structure. The higher the loading the faster is the tendency for the

turbulence to tend towards isotropy.

3.10.3 Free-stream turbulence intensity

Variations of the free-stream axial, tangential, and radial turbu-

lence intensities are shown plotted in Figures 104, 105, and 106. Here

again the radial intensity is at a maximum, confirming the effect of

rotation on the turbulence structure.

It is of interest to note the turbulence amplification through the

- blade row. A two percent free-stream axial and tangential turbulence

and a less than one percent radial t_rhulencemeasured ahead of the hlade

row show up as rather high values in the free-stream after passing

through the blade row. This amplification is probably caused by the

blade force acting on the fluid.

In the case of radial intensity (Figure 106), a less than one per-

cent turbulence intensity in front of the rotor gets amplified to nearly

16 percent in the trailing-edge region for R = 0.7297 and it drops off

rather quickly to less than eight percent in half-a-chord downstream.

The same is true at other radii except for those inside the annulus-wall

boundary layer. Here the overall radial turbulence level was within the
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range of eight to ii percent indicating the effect of secondary flow and

the tip-vortex on the turbulence structure. In the hub-wall region, as

no trailing-edge measurements are available, the radial turbulence inten-

sity remained fairly low in the range of 2.5 to 4.6 percent. All this

clearly indicates the effect of centrifugal and Coriolis forces on the

radial turbulence intensity.

A two percent axial and tangential intensity measured ahead of the

rotor is found to have been amplified to nearly eight percent in the

free-stream in the trailing edge and near-wake regions and drops off to

around two percent in the far-wake region. So the free-stream axial and

tangential turbulence intensity are of the same order of magnitude while

the radial intensity is nearly twice the value of the axial and tangen-

tial components.

The free-stream turbulence structure does not in any way reflect the

wake characteristics. It is helpful to the aerodynamicists and aero-

acousticians in evaluating the inlet flow conditions to a subsequent

stage. As is seen the axial and tangential components are of the same

order while the radial turbulence structure is greatly affected by cen-

trifuga! forces. Near the hub- and annulus-wall, because of interactions

of the wake, secondary flow and the end-wall boundary layers, the level

of turbulence is high. At the tip region added to the above mentioned

is the effect of tip-vortex.

Thus in a multi-stage machine there will be a spanwise gradient in 4

turbulence intensity which would alter the flow situation into a suc-

ceeding blade row and consequently there will be a spanwise gradient in

noise generation andpropagation.
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3.10.4 Semi-wake width

The variation of the semi-wake width with radius is shown plotted

in Figure 107. It is seen that the wake width is a minimum in the mid-

radius region and increases very rapidly towards annulus-wall and hub-

wall region. This has to be expected as the radial transport of mass,

momentum, and energy in the rotor-wake is towards the annulus-wall region

• and also the influence of the secondary flow (and the tip-leakage flow

in the case of annulus-wall), on the wake is pronounced at these loca-

tions. Inside the annulus-wall boundary layer the wake width covers the

entire blade passage. This is believed to have been caused by the tip-

vortex and secondary flow and their interaction with the wake. Again as

the hub-wall region is approached the wake width starts to grow because

of the interaction of the two shear layers, namely the wake and the hub-

wall boundary layer.

Semi-wake width is controlled by many parameters, the important ones

being the section drag coefficient, blade spacing and the rate of decay.

In the case of an isolated airfoil the wake has an infinite media in

which it can expand. But in the case of a rotor, the wake growth is

controlled by the adjacent blade wakes. Thus the wake growth is very

rapid in the trailing-edge region and the growth slows down and becomes

asymptotic in the far-wake region. It is also possible that the two

adjacent wakes might merge together. In such an event the wake width

would be greater than one blade passage and this is very clearly seen

in Figure 107, where at the radius R = 0.9595, the wake width is greater

than one passage. Such a growth might also be assisted by the tip-vortex

at those locations.
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3.10.5 Momentum thickness and shape factor

Momentum thickness and shape factor variation along the radius are

shown plotted in Figure 108. Both the momentum _ thickness and shape fac-

tor are very high in the end-wall regions and they decrease towards mid-

radius. With increased blade loading there will be greater radial out -

ward transport of momentum and energy and consequently larger momentum

deficit and larger values of shape factor. This can be observed by

comparing these results with those of Reynolds (1978).

3.10.6 Variation of deviation angle

The deviation angle is defined as the angle between the average

exit flow direction and the direction of a line tangent to the blade

section camber line at the trailing-edge. A knowledge of the deviation

angle is essential in predicting the losses and aerodynamic performance

of compressors. Most of the compressor design done today is based on

existing cascade correlations. Even the deviation angles are predicted

based on cascade correlations. There may he a difference between the

deviation angles derived from cascade correlation and the actual values

in a rotor. In this section an attempt is made to evaluate the applica-

bility of cascade correlation to the actual compressor rotor-blade data.

The NACA/NASA deviation angle correlation as given by Serovy (1977) was

employed to compare the results from the present experimental data.

The base equation for the NACA/NASA deviation angle correlation

based on cascade data is given as:

_ref _ + mo=l= o ---6-- (ll)
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where:

= deviation angle measured from chord line for zero camber
o

cascade with same fluid inlet angle and solidity as the

cambered cascade.

_ref = cascade exit average deviation angle measured from tangent

to blade trailing edge

m =1 = rate of change of deviation angle with camber angle for

cascade with solidity of 1.0

b = exponent to account for variable influence of solidity

o = cascade solidity

= blade section camber angle.

For the present rotor the deviation angles were calculated using the

above equation. The actual deviation for the rotor-blade was obtained

to be the difference between the blade outlet angle and the fluid outlet

angle. The fluid outlet angle can be obtained from the mean velocity

data presented earlier. Figure 109 shows the plot of this variation

of the deviation angle from hub-to-tip of the machine. It is seen that

the cascade correlation overpredicts the deviation angle by as much as

four to five degrees.

Thus it can be concluded that the deviation angles based on the cas-

cade correlations will not yield true estimates in an actual rotor-blade.

The failure of the cascade correlations to predict deviation angles cor-

rectly is the result of three-dimensional viscous and inviscid effects.
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3.11 Structure of Turbulence

3.11.1 Correlation coefficient

The shear-correlatlon coefficient, defined as (rsn/Ts-Tn) is a mea-

sure of the turbulence structure. This coefficient depends on the nature

of turbulence.

v

For the rotor-wake this coefficient is shown plotted in Figure Ii0i

at various downstream locations for the radius R = 0.7297. Ermshaus

(1970_ has given this correlation coefficient for the far-wake of axisym-

metric bodies in a two-dimensional flow. The data indicates that this

coefficient varies from 0.6 to -0.6 across the wake with nearly zero

values at the center of the wake. It is known that a value of 0.4 to

-0.4 represents an isotropic turbulence structure. Comparison of data

from Ermshaus (!970) with the author's data, Figure ii0, reflects the

highly non-isotropic and asymmetric nature of turbulence, particularly

in the near-wake region. Beyond Z = 0.5313 the coefficient becomes al-

most constant across the rotor-wake. This is due to very small Reynolds

stress and turbulence intensity measured at these locations. The data

in the trailing-edge region for the present case must be viewed with

some caution. The wake width at trailing-edge locations being very small,

the hot-wire with its spatial error might yield erroneous values.

In the trailing-edge and near-wake regions the outer regions of the

wake display isotropic turbulence with the value around 0.4. But inside

the wake where the radial intensities are dominant compared to streamwise

and normal components this correlation coefficient takes on very high

values indicating the highly non-isotropic nature of turbulence. In the

far-wake region the wake turbulence is isotropic in nature.
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3.11.2 Turbulence spectra

Real time spectrum analysis was carried out to evaluate the spectral

content of the turbulencein the flow behind the rotor-blades. Such an

energy spectrum was taken at various axial, radial, and tangentialposi-

tions behind the rotor from a rotating hot-wire. The spectrum in the

free-stream (betweenhlades_ as well as inside the wake Cat the wake cen-

ter_ are presentedand discussed in this section.

It is known (Hinze,1959) that the slope of the energy spectrum is

-5/3in the inertial range of isotropic turbulenceand -i in the viscous

convective range. It is of interest to know whether the rotor-wake

spectrum also followsthisboundary layer spectrum.

Figure iii shows the spectrum taken at four representativeradius

in free-stream. The spectrum shows peaks at the blade passing frequency.

If plotted on a linear scale, the area under the peaks would represent

the fraction of the total fluctuatingenergy contained in the periodic

oscillationsinfluenced by the upstream inlet-guide-vanewakes while the

area of the lower band would representthe fraction of the energy con-

tained in the turbulent fluctuations. It is seen from Figure iii that

most of the energy in turbulenceoutside the wake is confined to the low

frequencyrange iless than 2 KHZ] with a peak blade passing frequency

corresponding to the inlet-guide-vane wakes. The blade passing frequency

is obtained as,

BPF = speed(rpm) x no. of IGV blades
60 (12)

= 0.74 KHZ

It is evident that the rotatinghot-wire senses the inlet-guide-vane

wakes as a source of turbulence and hence its effect appears in the

spectrum. The amplitude of the peaks represents the magnitude of the
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velocity defect that persists in the inlet-guide-vane wake after its

passage through the rotor-blade. The figure also shows the radial vari-

ation of the velocity defect which is sensed by the rotating wire as a

source of turbulence. The maximum defect seems to occur in the mid-

radius region tapering off towards the end-wall zones.

Figure 112 shows the spectrum taken at different radii at the center

of the wake. The effect of radius on the spectral content can be seen

from this figure. The energy content in the turbulence fluctuations

increases with increasing radius. Further there are no "peaks" in the

energy spectrum indicating that the inlet-guide-vane wakes undergo sub-

stantial changes in the transport properties as it passes through the

boundary layer of the rotor-blades. The spectrum also exhibits typical

energy distribution that exists in turbulent flows withmost of the

energy contained within i0 KHZ.

The energy in the spectrum is given by

E(k) = l(k)f(k_-2 (13)

where:

l(k) = constant depending on the wave number

f(k] = frequencyof the turbulentfluctuations

n = exponent.

For the present case, the spectrumstaken in the blade passages

show a slope of -i for the wakes in the higher radius region and -5/7

in the lower radius region. For the spectrums taken at the wake center

the slopes are -5/3 at higher radii and -i at lower radii. The -5/3

law is characteristic of an isotropic structure of turbulence.

It is of interest to note the length scales of eddies in the above

spectrums. The eddy lengths in the frequency mange of the present
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interest lie between Q.14 cm to 1.52 cm, the lower value approximately

corresponding to the wake thickness in the trailing-edge region.
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Chapter 4

SIMILARITY, CORRELATIONS, AND FOURIER ANALYSIS OF ROTOR-WA_I_S

4.1 Similarity Relations

Experimental evidence has shown that similarity exists in streamwise

• mean velocity profiles. This has been reported by Schlichting (1968) for

wakes behind flat plates, circular cylindersand isolated airfoils.

Schlichtinghas also given a semi-analyticalexpressionfor the similari-

ty profiles and has shown that they follow a Gaussian distrihutiongiven

by Pe-kn2, where P and k are constants and n is defined as the wake tra-

verse distance normalized by half the wake-width. This prompted a search

for the similarity for the wakes of isolated airfoils,cascades,and

rotors. Raj and Lakshminarayana(1973)have reported the similarity for

cascadewakes. Lakshminarayana(1976)and Reynolds (1978)have reported

the similarity for lightly loaded fan blade wakes. In this section

similarity is tried for the moderately loaded compressor rotor-blade

wakes reported in an earlier chapter. Similarityis tried for both the

mean velocities and turbulence intensities.

4.1.1 Mean velocity profiles

Lakshminarayana (.1976) has shown that the normalized velocity com-

-0.693n2 In this sectionponents follow the Gaussian profile given by e

similarity for the mean velocity are tried for the compressor rotor-wake

reported in an earlier section.

4.1.1.i Rotor-wake axial and tansential velocity profiles

Maximum velocity defect was used as the non-dimensionalizing velocity

scale for the local velocity defect. Thewake width at half the depth was

taken as the characteristiclength scale. Correspondingvalues Ls and Lp
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were taken for the pressure and suction surfaces of the wake. Using this

technique, similarity was examined for the axial and tangential velocity

profiles and are shown plotted in Figures 113 and 114 for the radii R =

0.6581, 0.7297, and 0.7973. It is seen that similarity exists even in

the case of a heavily loaded blade following the Gaussian distribution

-0.693n2
given by e As seen from Figures ll3 and 114, the discrepancy

from the Gaussian curve for the wake in the trailing-edge region can be

attributed to the fact that one is not only dealing with the wake but

also dealing with the trailing-vortex system out of the trailing-edge of

the blade. There is a susbstantial scatter from the Gaussian curve in

the outer regions of the flow. The discrepancy is marked particularly

for a heavily loaded blade (compare these figures with those of Reynolds,

et al. (!978)). Townsend's (_1947) approach of inclusion of an inter-

mittancy factor into the Gaussian law in the form

i

Ud 2 1 ("_2_ 4]-- = exp[-cln {i +_ )} 114)
Udc

might yield better results. Here ud is the velocity defect, cI and ql

are constants.

Figures 115 and 116 show the plots of similarity profiles for the

radii R = 0.9595, 0.9324, and 0.5676 which represent the wakes inside

the annulus- and hub-wall boundary layers. As seen, the discrepancy

from the Gaussian curve is considerable not only in the outer regions of

flow but also at the wake center. It should be realized that at these

locations not only the wake flow is dealt with but also the secondary

flow, annulus- and huh-wall boundary layers and in the tip region the

tip-vortex associated with the wake are also being dealt with_ There is

no analytical or experimental evidence, till now, to show that the velo-
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city profiles of such complicated flows should be similar and this is a

first step in that direction. A better agreement might be obtained if

a factor to include secondary flow and tip-vortex is included in the non-

dimensionalizing parameter.

• 4.1.1.2 Rotor-wake radial velocity profiles

Radial velocities show two different trends, one trend in the

trailing-edge region and the other in the near- and far-wake regions.

For the far-wake region the similarity is quite good and is shown in

Figure 117. The maximum radial outward velocity is taken as the nor-

malizing velocity. The similarity for the wakes for R = 0.6581, 0.7297,

and 0.7973 is quite good except for the scatter in the outer regions of

the flow. This again indicates that even the radial velocities follow

the trend of the Gaussian law. The similarityforthe radial velocities

inside the annulus- and hub-wall boundary layers represented by the radii

R = 0.9595, 0.9324, and 0.5676 is shown plotted in Figure 118. It is

seen that there is a considerable discrepancy between the data and the

Gaussian curve. This shows that the secondary flow and the tip-vortex

that exist at the hub and tip of the machine have considerable influence

on the wake profile. It can also be noted that the secondary flow and

the tip-vortex have considerably more influence on the radial velocity as

compared to axial and tangential velocity components.

• The radial velocities in the trailing-edge region exhibit two dif-

ferent types of velocity distribution with radially inward-flow on the

pressure side and radially outward flow on the suction side of the wake.

Here again, maximum radial velocity defect was used as the normalizing

velocity (on the suction surface the absolute magnitude of the velocities

were consideredl. The plots are shown in Figure 119. The agreement with
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the Gaussian distribution is fairly good. It has to be realized that at

these Z-locations we are not only dealing with the boundary layer flow

but also the trailing-vortex system (secondary flow, corner flows, tip-

vortex in the end-wall regions). Similarity for such a complex flow

phenomena has not been proven before and this is a first step in that

direction. It is quite prohable that inclusion of intermittency factors

• to account for the trailing-vortex and secondary flows might yield better

correlation with the experimental data.

4.1.2 Turbulence intensity profiles

The similarity rule was examined for the axial, tangential and ra-

dial components of turbulence intensity for the entire wake region and

the plots are shown in Figures 120, 121, and 122. In these plots the

turbulence intensity has been normalized by the maximum turbulence in-

tensity. In situations where a "dip" was noticed at the wake center, an

extrapolated peak intensity near the wake center was taken. To study

the intensity profiles in the wake alone, the free-stream value was

subtracted fromthe local values. The distance from the wake centerline

to the lotation where the maximum turbulence intensity minus the free-

stream value is half was taken as the characteristic length scale _s and

respectively on the pressure and suction side. Using this technique
P

which is similar to the one employed to examine the velocity profile

• similarity, similarity was tried for the axial, tangential, and radial

components of turbulence intensity.

Similarity was found for all the three components of intensity for

the entire wake region. As in the case of velocity profile similarity,

the discrepancy from the Gaussian curve was noticed in the outer regions

of the flowas well as for the wakes in the trailing-edgeregion. For
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the wakes inside the annulus- and huh-wall boundary layers the deviation

from the Gauss' curve was considerable, particularly for the wakes in

the trailing-edge and near-wake regions. This is to be expected as in

these regions the turbulence structure is markedly affected by the tip-

vortex, secondary flow, and the interaction of the wake and annulus- and

hub-wall boundary layers.

4.1.3 Static-pressure profiles

The similarity in static-pressure is examined using the characteris-

tic values of the pressure (Pmax] and lengths £s and £ . The plot ofP

such a similarity is shown in Figure 123. The data follows the Gaussian

distribution fairly closely and only in the outer regions of the flow

-0.693n 2
substantial scatter from the e curve is observed. This might be

due to interference effects or the effect of the inviscid region located

just outside the "wake" region. The data due to Thompkins and Kerrebrock

(1975) also shows the existence of similarity in static-pressure distri-

bution, Figure 123.

4.1.4 Velocity profile similarity for cascade, inlet-guide-vane 7
and stator-wakes

As previously reported, experimental evidence has shown that simi-

larity in mean velocity profiles exists for the wakes of flat plates,

circular cylinders, and isolated airfoils. Lakshminarayana (1975) has

shown that the similarity follows the Gaussian distribution given by

e-kn2 Kaj and Lakshminarayana (1975) have examined the similarity for

their cascade data. Lakshminarayana and Davino (1978_ have shown that

similarity exists for the wakes of inlet-guide-vanes and stators and that

the distribution is Gaussian (e-kn2). In this section the similarity is

tried for the cascade wakes (Pollard and Gastelow (!967_, Satkyanarayana
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(1977}, and Barna 11964)), Stators (Bitterslich andRubner (1972) and

Holbrook and Okiishi (1978)), and annulur cascades and inlet-guide-vanes

(Daneshyar (1974) and Welsh (1973)). These are plotted in Figures 124a,

124b, and 124c. In all these cases, it is seen that the correlation is

very good except in the outer regions of the flow.

4.2 Correlations for Decay of the Maximum Defect

4.2.1 Rotor-wake velocity correlation

The wake property is strongly dependent on the blade section parame-

ters, the predominant one being the section drag coefficient. Schlichting

(1968) has theoretically correlated wake properties using the drag coef-

ficient and collapsed the mean velocity data from different configurations

onto a single curve. The functional dependency for the mean velocity

decay was given by Schlichting as

w cdl/2fl(_= )
0

where s is the streamwise distance. This correlation has been tried for

the rotor-wake data reported in this investigation and shown in Figure

125. The functional relationship for the decay of the axial and the

tangential velocity defect as well as the radial velocity can be repre-

sented in the trailing-edge and near-wake region in the form,
t

w Z-Z

_x_ = klicosBT) n (16)G

where the values of kI, (Z/cOSBo) and n take different values for the

three components of velocity. These relationships for the rotor-wake

data are given by (_n the trailing-edge and near wake region_

Wz_____cx i = 0.592[(Z/cOSBo ) + 0.35]-2"39 _7)
Wzo _D
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Z
for 0.03 < (_-_--_) < 0.2

o

i ( Z -2.39wo---_cx- = 0.778[ + 0.35]
%o (18)

( Z
for 0.03 < _) < 0.2

O

W

rm i Z ]-2.39
T x- = 0.566[(co-_--B) + 0.35 (19) "
ZO _ 0

Z

for 0.03 < (co--_--)< 0.2
o

In the region 0.2 < Z/cosg ° < 0.8 the decay of the radial velocity and

defects in axial and tangential velocities were found to vary linearly

with (z/cos8) and can be represented by a general equation of the type,o

w

c -1
W-- = k2 cosg + k3 (20)
O O

where again the constants k2 and k3 assume different values for the three

different velocity components and are as follows:

W
zc i . Z .-i

-- x -- = 0.391 + 0.984 (21)
o

Z
for 0.2 < (-----r--_)< 0.8

cos%

we--!tx _ = z -i
W8° c_D 0.221(c--_--s_) + 1.492 (22)o

Z

for 0.2 < (c-_o) < 0.8

W
rm i Z -i

_-- x -- = 0.221(co_) + 1.20 (23)
zo _

Z
for 0.2 < (-----r-)< 0.8 .

cos%
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The decay rates as represented by the above equations are shown plotted

in Figure 125. It is seen that the data correlates quite well with these

expressions.

For the wakes inside the annulus- and hub-wall boundary layers the

-0.5
data could not be collapsed on to a single curve using cD as the

normalizing parameter. This implies that the wakes at these locations

• are not only strongly dependent on the section drag coefficient but are

also dependent on the secondary flows, tip-vortex, and the end-wall

boundary layers. Inclusion of all these parameters into the correlating

function might yield better results.

4.2.2 Cascade_ stator_ and inlet-$ulde-vane correlation

A correlation for the cascade wake data due to Raj and Lakshmlnaray-

ana (1973), Pollard and Gastelow (!967), Sathyanarayana (1977) and Lie-

blein and Roudebush (1956_ is shown plotted in Figure 126. The correla-

tion seems to work well in the near- as well as far-wake region. But in

the trailing-edge region it does not seem to yield good results. This

has to be expected as in the trailing-edge region the flow is still de-

veloping and where no correlation is known to exist. Besides a correla-

tion based on section drag coefficient might not yield good results as

the properties of the wake might depend on a variety of other parameters.

A functional dependency of the defect of velocity with streamwise dis-

, tance was tried in the form

v Z

c i (co__) " Cc__S_o n
_-- x -- = k[ - _] 124)
O _ O

where :

v = velocity defect at the wake centerc

V = free-stream velocity
o
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(Z/coSBo) = streamwise distance

(Zo/COSBo) = virtual origin

k = constant

n = exponent.

The relationship for the data presented in Figure 126 seems to follow

the relationship

, v

c x i Z ]-0.645

V_ -_D = 1.978[(c--_--s_)o + 0.2 (25)

z )
for 0.i < (c-_--s_ < 0.9 .

o

It is seen that the data correlates quite well with the above expression.

Figure 127 shows the correlation for the decay of stator-wake for

the data from Lakshminarayana and Davino (1978) and Holbrock and Okiishi

-0.5
(1978). The data seems to correlate quite well using cD as the

normalizing parameter. All the three components of velocity have been

plotted. It is interesting to note the variations of the exponent for

the axial and tangential components in the near-wake region. It is seen

that the tangential velocity component decays much slower compared to

the axial component. Beyond (Z/cos8) = 0.4, both axial and tangentialo

velocity components seems to decay as (Z/coS8o)-I.
The functional rela-

tions for the decay of axial and tangential components of velocity for

the stator-wake are as follows:

Near-Wake :

Vzc i ( Z -3.236

Axial Comp: V---zox--c_D = 3.50[ c--°_-s_)o + 0.95] (.26)

for 0.05 < (_) < 0.5



210

i I

Reference Axi. TanK . Rad.

Lakshminarayana, Davino (1978) O O $
1.5 _ Halbrock, Okiishi (1978) O _

) ,

_= 1.o "o

>

0s;, . , ,
Vec 1 z 47 - 6.0
--x-- = 3.6 + 0.95) .2.

• Veo C/_D (cosao

Equation 27

4o
Ve___!cx i 0.1318 .+ 1.77

• Veo C/_D((Z/coS_o)_
__._Equation 29

6.0 "_"'_ ---'_''!3=----''---'-'--Q ....... 2.0

v •
zc I - 3.50_ Z -3.236

.o V x C/_D cos-----_+0.95)> ZO O

_No 4.0 __mquatiOnvzc 261 0.694 0.0
_ --x - o) 0.01632.0 v C/_m (Z/cosS"' go

Equation 28

---'--_-.. _.... _.0.0
, t I _ t T

0.2 0.4 0.6 0.8 1.0 1.2

Streamwise Distance, (Z/coS8o)

Figure 127. Correlation of Velocity Defect for Stator Wake
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__ i Z 470
Tang. Comp: Vec x = 3.60 + 0.95] -2" (27)V0o •

Z

for 0.05 < (co--_) < 0.3
O

Far Wake
T

•___ . z )-I
Vz---_cx 1 = 0.6941_ - 0.0163 _28), Axial Comp : V c/_D ozo

Z
for 0.6 < (-----r-)< 1.2

cos%

Tang.Comp: vs---_ci . Z )-ivo°x_- 01318%-_S_o+177 (29)
Z

for 0.4 < (------2-)< 1.2 •
cos_o

The radial velocity for the stator-wakes in the near-wake region

seems tO oscillate with (Z/cos8 o) and no functional depen¢ancy can be

found.

The annular-cascade and inlet-guide-vane wake data from Lieblein

and Raudebush C1956), Daneshyar (1974), and Lakshminarayana and Davino

(19781 are shown plotted in Figure 128. The functional dependency for

the decay as a function of streamwise distance seems to be similar to

that of cascade wake.

Thus it is seen that the cascade, inlet-guide-vane, and annular-cas-

" cade wakes differ considerably from that of a stator-wake. The stator-

wake tends to decay much more rapidly than the cascade wake. This is

attributed to the very high swirl component of velocity that exists in

the stator-wakes. Hill, et al. (_963) have shown that pressure gradients

can have considerable influence on the boundary layer and wake develop-
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ment and decay. This may be the influencing factor in the observed pheno-

mena.

4.3 Wake Width Correlation

4.3.1 Rotor-wake width correlation

Wake width depends on number of parameters like the blade thickness,

initial flow conditions, blade turning angle, etc, But the most pre-

dominant parameter seems to be the section drag coefficient. So normali-

zing the wake width as a function of cD should collapse all the data

points on to a single curve. Figure 129 shows this correlation, where

-0.5

cD has been used as the normalizing parameter. A functional depen-

dency for the growthl of wake width (L/C/_D) of the form

Z

L ( Z _ o ..n
- k[ cos_ ) - co-_-_J C30)o o

can be used to represent the present data quite accurately. The constant

k, and the exponent n, take on differentvalues in the near- and far-

wake regions and are found to be as follows:

L = [ Z 2.39
/_D 1.34 c--_--s8) + 0.83] (31)o

Z

for 0.01 < (c-_-_-_8)< 0,2
o

Far-wake

• Z

L = 0.833(C___sB) + 1.302 (32)

Z

for 0.25 < (co--_--8)< 0.•8
O

In Figure 130 is shown the plots of wake width normalized by L the
O _

corresponding initial value at the first station. The wake spread can

now he represented by the equation
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_ = A4(c--_sZ_ ) + A5 (33)D
O O

Z

for 0.05 < (co--_--8)< 0.7
O

where the constants are found to be A4 = 3.292 and A5 = 1.0. Here Lo

is the value of L at the trailing-edge. The constants depend on the

type of blade row. These correlations are shown in Figure 130.

The wake decay and the wake width correlations discussed so far are

for the data outside the annulus- and hub-wall boundary layers. Inside

the end-wall boundary layers the wake behaves quite differently and a

single functional dependency based on drag coefficient may not yield very

good results. This correlation is shown in Figure 131. It is evident

that the wake structure at these locations are very much dependent on

the end-wall boundary layer characteristics. The correlations developed

so far do not account for the end-wall boundary layers or the secondary

flows (and in the tip region, the tip-vortex generated due to leakage

flow}. The complex interactions of these flows with the wake makes the

flow highly complicated to be amenable to any simple correlation, based

just on the section drag coefficient. Correlations to account for the

secondary flow, tip-leakage flow, and some end-wall boundary layer prop-

erties might yield better results.

4.3.2 Cascade_ inlet-$uide-vane and stator-wake width correlation

As mentioned earlier the wake-width depends on many parameters like

the thickness ratio, inlet flow conditions, section drag coefficient, etc.

So in comparing wake widths from different blade geometries it may not

be possible to collapse all the data on to a single curve. But an attempt

has been made in this section to collapse the cascade wake width from
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different blade geometries onto a single curve, using the wake width at

the trailing-edge as the normalizing parameter. This is the most logical

normalizing parameter as the initial wake width takes into account all

the parameters that were mentioned earlier. This plot is shown in Figure

132. The correlation seems to work well for each set of rotor-blade

individually and a overall correlation is not very satisfactory.

4.4 Turbulence Shear Stress Correlation

In an earlier section it was seen that the turbulence structure

varies considerahly in the radial direction. So normalizing the stresses

by the value of the stress at the trailing-edge should collapse all the

data points onto a single curve provided the value of the stress at the

trailing-edge is a proper factor. Such a correlation is attempted in

this section.

Raj and Lakshminarayana (1975) have shown that the decay of the

stresses can be represented in the form

( Z .n
rij a co--_) (34)

O

where the exponent n assumes different values for the three components

of stress. This plot is shown in Figure 133. A closer look at the

present data indicates that the exponent n, assumes different values for

the different radii. So other normalizing factors to include radial

variations of mean-velocity and turbulence intensities, section drag

coefficient might yield better results.

4.5 Fourier Decomposition of Rotor-Wake

In the aerodynamics and aeroacoustic analysis of rotors, it is con-

venient to represent the components of the wake velocities in terms of
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Fourier series. This representation is possible because the velocity

distribution is. periodic and continuous, as depicted inFigure 134.

For example, the velocity at a point (r,e,z) can be represented as

ne .n%
+ Z [A (r,z)co _s-_-+ Bn(r,z)sln_] • (35)

Udn_r'e'z) = Ao n=l n o_

" This type of representation was tried for the data of Raj and Lakshminar-

ayana (!976) and the present data. The method of computation of the

Fourier coefficients is based on the "FORIT" subroutine and is given in

Appendix A-4. The subroutine uses recursive technique described by Ral-

ston (1960).

Tjoennelano (1967) has investigated the repeatability of experimen-

tal velocity distributions inside the wake of a marine propeller. The

Fourier coefficients calculated from the velocity distributions have

shown that tha variation between the experimental data and that obtained

from the equation is of the order of +__2.0ta 3.0 percent for the first

four harmonics. Even for the present data the first four harmonics were

found to be sufficient to get a close correlation with the data.

The coefficients of the Fourier series are given by,

€ ud (0__._)A n IL nO
= -- -- cos_-- d (36)

n L o Udn L L

and

_n IL Ud . nO (__,
= -- sl_n-:--d ) (37)

" Bn _- o Udn 0L dtJ

where, S = Neumann's factor
n

= 1 for n = 0

= 2 for n > 0

L = interval of integration (in the analysis only the wake

portion is considered. The value of o/e L .at the wake

center is = and at the edges 0 and 27.)
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Figure 134. Typical Rotor-Wake and Coordinate System for Fourier Analysis
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For n = 0,

A I f2_ Ud (O= -- -- d ) . (38)
o 27 o Udn %

This is the average defect across the wake. So A° represents the

average value across the wake and since the defect is normalized by the

corresponding wake centerline defect, A° should approximately remain

constant with downstream distance. This is shown plotted in Figure 135

for the data of RaJ and Lakshminarayana (_1976)and the present data.

The data of Raj and Lakshminarayana (.1976)is at zero loading. The ef-

fect of loading is clearly seen in these plots. The higher the loading,

the higher is the defect and correspondingly larger is the value of A .o

The harmonic content in the wake is represented by the Fourier co-

sine coefficients and the asymmetry of the wake by the Fourier sine coef- .

flcients. As normalized velocity defects were used in the analysis the

values of B were found to be very small indicating the axisymmetricn

nature of the normalized wake. The dominant coefficients are shown

plotted in Figures 135, 136, and 137.

The Fourier curve correlates quite well with the data, considering

only the first four harmonics. Figure 138 shows the plot of the scatter

in the first four coefficients. The scatter is due to the asymmetry in

the velocity defect profile in the outer regions of the flow, in parti-t

cular, even after normalizing by the wake centerline velocity. As in

this investigation only the wake portion is considered, the correlation

with. the Fourier curve seems to be good, with the correlation coefficient

being about 0..989.
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Chapter 5

CONCLUSIONS

The characteristics of the wake of a moderately loaded compressor

rotor blade was investigated. The present set of measurements represent

the first set of data in the trailing-edge region. All the measurements

were acquired in the rotor frame of reference using a three sensor hot-

wire probe and a direction insensitive static-stagnation pressure probe.

Pressure survey indicated appreciable static-pressure gradient across

the wake, particularly in the trailing-edge region. It was also found

that the trailing-vortex system influences the mean velocities, partic-

ularly the radial velocity, in the trailing-edge region. Some of the

important conclusions that can be drawn based on the results of the

present investigation are as follows:

I. Mean velocity profiles in the trailing-edge and near-wake

regions are asymmetrical and tend to become symmetrical in the far-wake

region. In the end-wall regions, secondary flows (and tip-leakage flows

in the case of annulus-wall region) affect the velocity profiles consid-

erably resulting in vortex and wake type of distributions.

2. Radial velocities inside the annulus-wall layer are influenced

by the secondary flow and the tip-leakage-flow. The tip-vortex, which

is very strong in this case, dominates the radial velocity profile in

this region.

3. Very large velocity defects were measured in the trailing-edge

region. The defect was found to decay very rapidly in the trailing-edge

and near-wake regions.

4. The defect in tangential velocity was found to be greater than

the defect in axial velocity. The decay of the radial velocity in the
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trailing-edge region was much more rapid than the axial and tangential

components.

5. For the wake inside the annulus-wall boundary layer, the axial

and tangential velocity defects and the maximum radial velocity initially

increase and thenstart todecrease. This is attributed to the tip-

vortex which initially increases in its strength and then decreases

downstream of the blade. The decay of velocity defects inside the annu-

lus- and hub-wall boundary layers is far slower compared to the decay

rates outside the end-wall boundary layers. The slower decay is attri-

buted to the combined effect of secondary flow (tip-vortex in the case

of annulus-wall boundary layer) and the end-wall boundary layers on the

wake.

6. The wake-width increases very rapidly in the trailing-edge

region and the growth becomes very gradual in the far-wake region. Be-

cause of centrifugal effects, wake-width at higher radii is thicker.

Inside the annulus- and hub-wall boundary layers the wake width is found

to be very large due to the effect of secondary flow and tip-leakage

flow.

7. For the wakes outside the end-wall boundary layers the wake

shape factor monotonically decreases with downstream distance. It

reaches an asymptotic value of nearly 1.2 at far downstream location.
a

In the trailing-edge region the value is greater than 1.8 indicating the

" tendency of the flow to separate.

8. Variation of the momentum-thickness in the near- and far-wake

regions is in close conformity with the free-streamvelocity variation.

For the wakes inside the annulus-wall boundary layer the momentum thick-

ness grows very rapidly in the trailing-edge region and nearly remains
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constant in the far-wake region. This behavior is due to the tip-vortex

and the secondary flow at these locations.

9. There is a marked variation in the wake properties from one

radius to the other. Not only the profiles, but also the defects and

decay rates vary from one radius to the other.

i0. For the wakes outside the end-wall boundary layers, the wake

decay and wake width differ in the radial direction. But they correlate

well with C/_d.

ii. Similarity exists for axial, tangential, and radial velocity

components. The radial velocities in the near- and far-wake regions also

exhibit similarity. The radial velocities in the traillng-edge region

show similarity only when the pressure and suction surface velocity

profiles are separately considered.

12. Very strong static-pressure gradients across the wake were mea-

sured in the traillng-edge and near-wake regions. Static-pressure is

found to increase towards thewake center. The difference in static

pressure across the wake decays very rapidly in the traillng,edge region

and the decay is very gradual in the far-wake region.

13. The turbulent stress profiles are asymmetrical about the wake

center with the stresses near the pressure-surface being higher than

those near the suction-surface. The streamwise Reynolds stress reaches

zero value slightly away from the location where the velocity is minimum.

14. Decay of intensities and stresses are very rapid in the trailing-

edge region and thi_ trend slows down in the far-wake region. The rapid

decay in the trailing-edge region is attributed to the trailing-vortex

system.
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15. Radial turbulence intensity decays slowest compared to axial

and tangential components. The radial component of turbulence intensi-

ties was found to be the largest and this phenomenonis attributed to

rotation effects.

16. The turbulence structure of the rotor-wake is highly asymmetric
f

and non-isotropic in the trailing-edge region and becomes nearly isotro-

pic and symmetric at half-a-chord downstream.

17. The free-stream turbulence in the wakes outside the end-wall

boundary layers is about the same at all radii. But for the wakes in-

side the annulus- and hub-wall boundary layers, the magnitude of the

free-stream turbulence is higher indicating the influence of secondary

and tip-leakage as well as wall boundary layers on the turbulence inten-

sity.

18. Similarity relationship was also found for all the three com-

ponents of turbulence intensity. Discrepancy from the Gaussian curve,

-0.693_ 2
e , was observed only in the outer regions of flow as well as for

wakes in the trailing-edge region.

19. The wake profiles could be represented by a Fourier series.

The magnitude of the coefficients decreases rapidly, with the first three

coefficients being the dominant ones.
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Appendix AI

ROTATING HOT-WIRE DATA REDUCTION COMPUTER PROGRAM

The FORTRAN-IV computer program described in this appendix reduces

the rotating hot-wire data to obtain the mean velocity, turbulence inten-

sit_ and Reynolds stresses in any arbitrary coordinate system. This

program was developed by Gorton and Lakshminarayana (1976). Later it

was modified by Anand (1976) and Reynolds (1978) to include many of the

corrections, including temperature and E variation. The author modifiedo

the program by incorporating the effects of varying rotational speed,

inletvelocity, and test section temperature. This modified version of

theprogram was employed to reduce the data reported in the thesis.

Reference is made to Gorton and Lakshminarayana (1976) for the basic

analysis and mathematical interpretation. Only the information required

to run this program and to interpret the output is given below.

AI.I Description of Input and Output

The principal inputs for the program are the correction factors to

account for the deviation from the cosine law rule, calibration voltages

of the hot-wire probe, the direction cosines of the hot-wire sensors,

and the mean and the root mean square value of the fluctuating components

of voltage at each measuring location. The output of the program include
j

three components of mean velocity and three components of intensity, and

Reynolds stress and other relevant data.

AI.I.I Input

The input variables are read into the program on punched data cards.

The first input card sets a switch depending on whether it is the last

data set or another data set will follow (.for example, a blank card will
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allow the program to proceed to the next set of data and 2.0 in the

first two columns terminates the program with that particular data set.)

The second card is a title card which serves for problem identifi-

cation. Any information can be put in the first 72 columns and the

rotor tip speed, which is used as a normalizing parameter is punched in

the 73rd to 80th column.

• The third card sets the number of iteration and the tolerance limit

in the program. Any limit on these two parameters can be set, depending

upon the accuracy needed for the problem under consideration.

The next card is for setting the attenuation of the input electrical

data. This is a nongeometric parameter and has to be obtained from the

instruments used during the experimentation.

The fifth card is the K-factor employed to account for the deviation

of hot-wire response from the cosine law. This factor has to be calcu-

lated based on the length-to-diameter ratio as well as the angle the

sensors make with the flow direction.

The program can take either individual or multiple sets of calibra-

tion and this is punched in the sixth card of the input data. The tem-

perature at which the calibration is carried out and the number of cali-

bration curves employed for the data reduction are punched in the next

two cards. The ninth card accounts for the number of calibration points.
I

The tenth and eleventh cards are used for the initial and final values

of voltages of the hot-wire sensors at zero flow velocity. The next sets

of cards take values of the flow velocity in the calibration tunnel in

inches of water and the voltages of the hot-wire sensors at various flow

velocities in the tunnel. The next card in the input deck is used to

designate the number of radial stations in that particular survey and
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also the number of tangential positions across the wake for that parti-

cular measurement. In the next three cards are punched the angles which

each of the sensors make with the system of coordinates choosen. The set

of cards that follow these carry the D.C. voltages, wall static pressure,

temperature in the tunnel, the rotor speed, as well as the output from

the sum and difference unit at each of the data points.

The input variables described above have to be in some consistant

units. Only a list of the input variables are given below and reference

is made to Gorton and Lakshminarayana (1976) for detailed description of

the program and program variables.

RAVI control card to set a switch to indicate whether the data

set following is the last one in the deck or whether suc-

ceeding data sets will follow that particular data set.

NTITLE title card to designate problem identification

UTIP tip speed of rotor for that particular experiment (m/sec

or ft/sec)

N-REPS number of iterations desired

EPS expected tolerance limit

ATTEN attenuation of the input signal

KK K-factor. The factor that accounts for the deviation from

the cosine law
I

CALA defines whether single or multiple sets of calibration is

employed in the program

TEMP,NTER temperature at which calibration was carried out (°C or

°K)

NCAL number of calibration curves employed in the subroutine

N_TS number of calibration points in that particular data set
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EO value of the voltage from the hot-wire sensor at zero

flow velocity (volts)

V velocity in the calibration tunnel as pressure head (inches

or cms of water colum)

CALE calibration voltage of the sensor (volts)

POWER slope of the Calibration curve (multiple calibration)

• NOR,JRAD number of radial stations in the data set

NOT,THETA number of tangential positions across the wake in the data

set

A1 angle the sensor number one makes with the one of three

coordinates, usually streamwise or axial, in degrees

BI angle the sensor number one makes with the second coordi-

nate, usually normal or tangent direction, in degrees

CI angle the sensor number one makes with the third coordi-

nate, usually the radial direction, in degrees

DI,EI,FI angles the sensor number two makes with the coordinate

system (s,n,r or z,e,r, respectively) in degrees

GI,XHI,XII angles the sensor number three makes with the coordinate

system (s,n,r or z,8,r, respectively) in degrees

IPRO number of probes employed for the data set

DSLOP slopes of the calibration curve (simultaneous calibration)

VCHAN voltage output from sensor at operating conditions (volts)

T temperature in the test section (°F)

PW wall static pressure (a measure of through flow velocity

into the test section) (cm or inches of water column)

N rotational speed at which the data set was taken (rpm)



240

FVI5,FV25,FV35 root mean square voltage of the fluctuating component of

flow for the three sensors (volts)

EI2,E23,EI3 root mean square voltage output from the summing circuits

between two hot-wire signals (volts)

E21,E32,E31 voltage output from the differencing circuits between two

hot-wire signals (volts)

Q

AI.I.2 Output

A sample of input variables as they are punched on the data cards

is given at the end of the program listing.

The printed output from the program is in the form of three mean

velocity components, three turbulent intensities, and turbulent shear

stresses. The output is also in the form of punched cards. Consistent

with the assumptions made in the program the output which will be in the

form of velocities, turbulence intensities, and stresses will be in the

natural coordinate system. The punched output is used in a subsequent

coordinate transformation program to convert the velocities and turbulence

quantities from the streamline coordinate system to the coordinate system

of interest. A listing of the same is also given after the sample data

input listing.

Below is listed the printed output directory.

WS streamwise component of total mean ve$ocity normalized by "

blade tip speed

WN normal component of total mean velocity normalized by

blade tip speed

WR radial component of total mean velocity normalized by

blade tip speed

W total mean velocity normalized by blade tip speed
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FWS streamwlse component of turbulent intensity normalized

by local mean velocity

FWN normal component of turbulent intensity normalized by

local mean velocity

FWR radial component of turbulent intensity normalized by

local mean velocity

' B(4) streamwise component of Reynolds stress normalized by

local dynamic pressure

B(5) normal component of Reynolds stress normalized by local

dynamic pressure

B(6) radial component of Reynolds stress normalized by local

dynamic pressure

RESSTR resultant of streamwise, normal, and radial components of

Reynolds stress

AI.2 Program Listing

This program utilizes about 460 records for a 22 points data set

on the IBM 370 system. The run time for this program is 5 seconds. A

listing of the program begins on the next page.



C ROTATING HOT-UIRE DATA REDUCTION PROGRAH

IMPLICIT LOGICAL_I ($)

DIMENSION SLOPEI (99),SLOPE2(99),SLOPE3(99),NTITLE(20)

DIMENSION FVELI (6,99),FVEL2(6,99),FVEL3(6,99)
DIMENSION VI(4,25),V2(4,25),V3(4,25)

DIMENSION NPTS(25),CINCH(4,25),CVEL(4,25)
DIMENSION VELI(6,99),VEL2(6,99)

DIMENS IO_! VEL3(6,99)

DIMENSION RRAD (6)

DIMENSION TIIETA(99),RAD(6)

DIIdENSION FVIS (99), FV2S (99), FV3S (99), FVI2S(99),FVI3S(99),
I FV23S (99),DATA(200,30)

DIHENSION C (3,3) ,A (6,6), ERROR (6) ,ATTEN (3) ,TIME (3) ,TEMP ( 99),XI (6)

COHMON VCHAN! (4,6,99),VCHAN2(4,6,99),VCHAN3(4,6,99),EOI,EO2,EO3,EO

C4,EO5,EO6,EO7,EOB,EO9,CALEI (4,25),CALE2(4,25),CALE3(4,25),NOT
COM_ION JJ,CALVI (4,25) ,CALV2 (4,25) ,CALV3 (4,25)
REAL_8 CC(3,3) ,AA (6,6) ,D (3) ,B (6) ,DET

5553 CONTINUE

READ (5,5555)RAVI

5555 FORMAT(FIO. 4)

FACT=SQRT (2.)/2.
FACTOR=O. 0

RAT_3. 14159/180.

READ (5,83) (NTITLE (I), I=_I, 18) ,UTIP
WRITE (6,98)

98 FORMAT(////////)

WRITE (6,95) (NTITLE(1),I=I,18)
WRITE (6,666)

666 FORMAT(////)

READ (5,82)NREPS, EPS
EPS = EPS • UTIP

READ (5,45) (ATTEN (L) ,L=I, 3)
C

C READ IN HOTWIRE CONSTANTS FOR L/D
C

READ (5,70)XKI,XK2,XK3



READ (5,6)CALAI, CALA2, CALA3
CALAI=CALAI_RAT

CALA2=CALA2*RAT

CALA3=CALA3_RAT

C

C READ IN CALIBRATION CURVES

C

READ(5,32) (TEI4P(LL),LL..I, 6)

READ (5,5)NCAL

DO I00 I_I,NCAL

READ (5, IO)NPTS (1)

JJ_-NPTS(1)

READ(5,15)EO4,EO5,E06

READ(5, 15)EO7,EOS,E09

DO 105 J=.l,JJ

READ (5, 15)VI(I,J),CALEI (I,J),V2(I,J),CALE2(I,J),V3(I,J),CALEB(I,J)

X,T

IF(T.LT. 50.0) T..l. 8,T+32.0

IF (T.EQ.O.O) T=73.0
C CORRECTION TO ACCOUNT FOR TIlE DIFFERENCE IN EO VALUES

DEI=.O.O

DE2.=O.O

DE3=O.O

C

C TEMPRATURE CORRECTION TO VELOCITIES & VOLTAGES

TEMP (J)=T

CALEI(I,J)=.CALEI(I,J) *(1.0+ 0.0014"(TEMP(J)-73.0))
CALE2(I,J).=CALE2(I,J) *(I.0+ 0.0014"(TEMP(J)-73.0))

CALE3(I,J)=CALE3(I,J) *(I.0+ 0.0014_(TEMP(J)-73.0))

C CORRECT CALIBRATIOH CURVE FOR SKEWED PROBE
c

VI(I,J)=66.7*(I.O+O.O01*(TEMP(J)-73-O))*SQRT(VI (l,J))

V2 (I, J)=66.7" (I. 0+0. O0 I* (TEMP (J)-73. O))*SQRT (V2 (I, J) )

V3 (I, J)-66.7* (I. 0+0. 001 #_(TEtKP (J)-73. O) )#_SQRT (V3 (I, J) )

105 CONTINUE
100 CONTINUE r-

t,J



t_

C

C READ IN CALIBRATION CONSTANTS OF llOT WIRES
C

READ (5,6) POWERI,POWER2,PO_ER3,KOUNTR
C

C WRITE OUT CALIBRATION CURVES
C

DO I01 I-I,NCAL

WRITE (6,99)

WRITE (6,50) I

WRITE (6,54)

JJ=NPTS(1)

DO 102 J=l,JJ

VSQI=VI (I,J)**POUER|

VSQ2=V2(I,J)**POUER2

VSQ3=V3(I,J)**POUER3

EISQ=CALEI (l,J)**2.

E2SQ=CALE2 (I, J)**2 •

E3SQ=CALE3 (I ,J)**2.

CALVI(I,J)=CALEI (l,J)

CALV2 (I, J)=CALE2 (I ,J)

CALV3 (I, J) =CALE3 (I, J)

WRITE (6,55)J,CVEL(I,J),VI (I,J),V2(I,J),V3(I,J),CALEI (I,J),CALE2(I,
IJ), CALE 3 (I, J), VSQI, VSQ2, VSQ3, E ISQ, E2SQ, E3SQ

C

C USE VOLTAGE SQUARED VS. ROOT VELOCITY CURVE FOR CALIBRATION
C

CALVI (I,J)=CALEI (l,J)**2.

CALV2 (I ,J)=CALE2 (I ,J) *'2.

CALV3 (I, J)=CALE3 (I, J)**2 •

VI(I,J)=VI (I,J)**POWERI

V2 (I, J)=V2 (I, J) **POUER2

V3(I,J)==V3(I,J)**pO_ER3

102 CONTINUE I
I01 CONTINUE

WRITE(6,99)



READ (5, 20)NOR,NOT
READ (5,32) (RAD(I),I=I,NOR)
DO 112 I=I,NOR
RRAD (I)= (10.75-RAD (I) )/10.75

112 CONTINUE

C
C WRITE OUT INPUT DATA

C

WRITE(6,32) (RRAD(1),I"I,NOR)

C

C READ IN DIRECTION COSINES

C

READ (5,70)AI, B1 ,C 1

READ(5,70)DI,EI,FI

READ (5,70)GI,XHI,XII

URITE (6,87)AI,BI,CI,DI,EI,FI,GI ,XIII ,X11
C

AI= A1 * RAT

BI= B1 * RAT

CI= CI* RAT

AI=COS (A1)
B I=COS (B 1)

CI= COS (el)
A2 ,= 0.00
D2 TM 0.00

G2= 0.00

BX= SQRT( BI_BI+CI_CI )

B2=. CI/BX

C2= -BI/CI_B2

BY= CI*B2-C2*B !

BSQ= AlgAl+BY'BY

BSQ_ SQRT (BSQ)

A3_, BY/BSQ

B3= AI*C2/BSQ

C3 = -AI*B2/BSQ
DI= D1 _ RAT



Elf El* RAT

Flffi FI* RAT

DI= COS (DI)
El= COS(El)

F1- COS (FI)

EX- SQRT( EI*EI+FI*FI )
E2= FI/EX
F2= -EI/FI*E2
EY= FI*E2-F2*EI

ESQ,_ D I*D I+EY*EY
ESQ-, SORT (ESQ)

D3= EY/ESQ

E3= DI*F2/ESQ

F3= -DI*E2/ESQ
GI- GI* RAT

XI!I=X!i l* RAT

XII=XII* RAT

GI= COS (GI)

XHI= COS (XHI)
XlI= COS (Xll)

EX= SQRT(XHI*XIil+XII*XII)
Xli2=, XlI/EX

XI2= -XHI/XII*XH2
EY= XI I*XH2-XI 2*XH 1

ESQ= GI*G I+EY*EY

ESQ= SQP, T(ESQ)
G3= EY/ESQ

XH3= GI'*XI 2/ESQ

XI3= -GI*XH2/ESQ

|$RITE (6 74)

WRITE(6 75) AI,BI,CI,DI,EI,FI

WRITE(6 75) GI,XHI,XII,B2,E2,XH2

WRITE (6 88)AI,BI,CI,A2,B2,C2,A3,B3,C3

WRITE (6 88)DI,EI,FI,D2,E2,F2,D3,E3,F3

WRITE (6 88)GI,XHI,XII,G2,XH2,XI2,G3,XH3,XI3

C CALCULATE EQUATION COEFFICIENTS



C

A4ffiXKI*XKI*A I*A I+A2*A2+A3*A3

B 4_XK I*XK!*B I*B I+B 2*B 2+B 3*B 3

C4=XKI*XKI*C I*C I+C2"C 2+C 3"C 3

D4ffi2., (XKI*XKI*AI*B I+A2*B 2+A3*B 3)

E4,,2.* (XKI*XKI*AI*C I+A2*C2+A3*C3)

F4,,2., (XK I*XKI*B I*C I+B 2"C 2+B 3"C 3)

C

A5..XK2*XK2*D I*D I+D 2*D 2+D 3*D 3

B5=XK2*XK2*E I*E I+E2*E 2+E 3*E 3

C 5._XK 2*XK2*F I*F I+F 2*F 2+F 3*F 3

D5_=2. * (XK2*XK2*D I*E I+D 2*E 2+D 3"E3)

E5.-2. * (XK2*XK2*D I*F I+D2*F2+D3*F3)

F5ffi2.* (XK2*XK2*E I*F I+E 2*F 2+E 3*F 3)

C

A6ffiXK3*XK3*G l*G I+G 2*G 2+G 3*G 3

B6=XK3*XK3*XH I*XH I+XI[ 2*XII 2+X[{ 3*XH 3

C6=XK3*XK3*XI L*XI I+XI 2*XI 2+XI 3*XI 3

D 6ffi2•* (XK3*XK3*G 1*XH I+G 2*XH 2+G 3*XH3)

E6=2.*(XK3*XK3*GI*XIL+G2*XI2+G3*XI3)

F6_.2 .* (XK3*XK3*XII I*XI I+XI;2*XI 2+X;I 3*XI 3)

C

WRITE(6,76)A4,B4,C4,D4,E4,F4

IIRITE (6,76)A5, BS,CS,D5, E5, F5

I?RITE (6,76)A6, B6, C6, D6, E6, F6

C

C(I I)=SQRT (A4)

C(I 2)ffiD4/(2.*C(I, l))

C(I 3)-E4/(2.*C(I, I))

C(2 I)ffiSQRT (A5)

C(2 2),.D5/(2.*C(2, I))

C(2 3)ffiE5/(2.*C(2, I))

C (3, 1)ffiSQRT (A6)

C (3,2)=D6/(2.*C (3, I) )

C(3,3)ffiE6/(2.*C(3,1))
C -.J



bo

GO

DO I07 I=1,3

URITE(6,75) (C(I,J),J=I,3)
107 CONTINUE

C

C READ IN MEAN AND FLUCTUATING VOLTAGES, FIND CORRESPONDING VELOCITIES
C

READ(5,82) lITER, TIIETAI

READ (5 ,40) IPRO, JRAD

WRITE (6,99)
IPROBEffilPRO

READ(5,6) DSLOPI ,DSLOP2 ,DSLOP3

DO II0 IffiI,JRAD

READ(5,45) ERROR(I),XI(I),TIME(I)

DO 300 J=I,NOT

READ (5,45)VCHANI (IPROBE, I, J) ,VCHAN2 (IPROBE, I, J) ,VCHAN3(IPROBE, l,J)
X,T,PW,N
ANfN

IF (J.EQ.I) ANIffiAN

IF(AN.EQ.O.O) AN..AN I

IF(J.EQ. I) UTI=UTIP
UT I=0.3147"0. 02780"18.5*AN

UT,=UT I'AN/AN I

IF (T.EQ.O.O) T..73.0

IF(T.LT.50.O) T=I.8*T+32.0

PWALL,, ([. 000 / I•0000) *PW

TEMP(J)=T

IF(J.EQ. I) PWALL I=PUALL

IF (PWALL. EQ. O. O) P_4ALL,.PICALL I
DT:,T-73.0

RltOffi,(1.0-0. O0 I*DT ) **2

IF(J.EQ,1)RHOlfRHO
READ(5,45) FV1S ( J),FV2S ( J),FV3S ( J)

READ (5,45) EI2,E23,EI3

READ (5,45) E21,E32,E31

FVI2S (J)= (EIZ*EI2-E21*E2 I)/4.0

FV23S (J)= (E23*E23-E32*E32)/4.



FVI 3S (j)ffi(E 13,E 13-E31*E3 I) /4.0
WRITE (6,46) VCHAN 1 (IPROBE, I ,J), VCHAN 2 (I PROBE, I ,J), VCHAN3 (IPROBE, I ,J)

C) ,FVIS (J) ,FV2S (J) ,FV3S (J) ,FVI2S (J), FVI 3S (J), FV23S (J)
THETA (J)-TIIETAI+I

300 CONTINUE
WRITE(6,88) (THETA(IJ) ,IJ=l, 3)
IF (KOUNTR.EQ.O) GO TO 302
IXffil
NOTTffiNOT-I
DO 301 JXffiI,NOTT
J-JX+I

VCHAN2 (IPROBE, IX, JX)=2. O*VCHAN2 (IPROBE, IX, JX)-VCIIAN2 (IPROB E, IX, J)
VCHAN3 (IPROBE, IX, JX)=0 •5*VCHAN3 (IPROBE, IX, JX)+VCHAN3 (IPROBE, IX, J)
FV2S (JX)ffi2.0*FV2S (JX)-FV2S (J)
FV3S (JX)=O.5*(FV3S (JX)+FV3S (J))
FV12S (JX),.0.5*(3.0*FVI2S (JX)-FVI2S(J))
FVI 3S (JX) =0.25* (3.*FVI 3S (JX)+FVI 3S (J))
FV23S(JX)"O.25*(5-0*FV23S(JX)-FV23S (J))

301 CONTINUE
IY=I
VCHAN2 (IPROB E, IY, NOT) =VCHAN 2 (IPROBE, IY, NOTT)
VCHAN3 (IPROBE, IY ,NOT)= (3 •*VCHAN2 (IPROBE, IY ,NOT)-VCHAN3 (IPROBE, IY,

CNOTT ))*0.5
FVI2S (NOT) ffi0.5, (FV 12S (NOT)+FVI 2S (NOTT))
FV2S(NOT)_FV2S(NOT-I)
FV3S (NOT)-0.5*(3.*FV3S (NOT)-FV3S (NOTT))
FVI3S(NOT)ffi0.25*(3-0*FVI3S(NOT)+FVI3S (NOTT))
FV23S (NOT).-O.25*(3.0*FV23S(NOT)+FV23S(NOTT))

302 CONTINUE
DO 115 J=I,NOT

C
FVISQ-FVIS (J)
FV2SQ=FV2S (J)
FV3SQ=FV3S (J)
FVI 2..FVI2S (J) _-.
FVI3ffiFVI3S (j) _o



to
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FV23=FV23S (J)
NJ= J+7

TEMP(J)=73.0
TCORR= l.O + O.O028*(TEMP(J)-73.0)
VCHAN!(IPROBE,I,J)=,VCHANI (IPROBE,I,J)*VCHANI (IPROBE,I,J)*TCORR
VCHAN2 (IPROBE, I, J)_=VCHAN 2 (IPROB E, I, J) *VCHAN 2 (IPROBE, I, J) *TCORR
VCHAN3(IPROBE,I,J)=.VCHAN3(IPROBE,I,J)*VCHAN3(IPROBE,I,J)*TCORR

JJ=NPTS(IPROBE)
CALL CALIB (IPROBE,J)
DO 120 K=I,JJ
IF(VCHANI(IPROBE,I,J).GT.CALVI(IPROBE,K))GO TO 120
IF(K.GT.2) GO TO 170
SLOPEI(J)=(CALVI(IPROBE,K)- CALVI(IPROBE,K-I))/ (VI(IPROBE,K)-VI

1 (IPROBE,K-I)) + DSLOPI * J / NOT
GO TO 171

170 SLOPEI(J)=(CALVI(IPROBE,K)- CALVI(IPROBE,K-2))/ (VI(IPROBE,K)-VI
I (IPROBE,K-2)) + DSLOPI * J / NOT

171 RATIO,,(VCIIANI (IPROBE,I,J)-CALVI (IPROBE,K-I))/ SLOPEI (J)
VELI (I,J)=VI (IPROBE,K-I)+RATIO
VELI(I,J)=VELI (I,J)**(I.O/POIIERI)
KI=K
CO TO 121

120 CONTINUE

121 JJ=NPTS(IPROBE)
DO 125 K-I,JJ
IF(VCHAN2(IPROBE,I,J).GT.CALV2(IPROBE,K))GO TO 125
IF(K.GT.2) GO TO 173
SLOPE2(J)=(CALV2(IPROBE,K)- CALV2(IPROBE,K-I))/ (V2(IPROBE,K)-V2

I (IPROBE,}'-I)) + DSLOP2 *J/NOT
GO TO 174

173 SLOPE2(J)=(CALV2(IPROBE,K)- CALV2(IPROBE,K-2))/ (V2(IPROBE,K)-V2
1 (IPROBE,K-2)) + DSLOP2 *J/NOT

174 RATIO=(VCHAN2(IPROBE,I,J)-CALV2(IPROBE,K-I))/ SLOPE2(J)
VEL2(I,J)=V2(IPROBE,K-I)+RATIO
VEL 2 (I, J)zVEL 2 (I, J) ** (I.0/POWER2 )
K3=99



K2fK

GO TO 122

125 CONTINUE

122 JJ=NPTS(IPROBE)

DO 130 K=l,JJ

IF(VCHAN3(IPROBE,I,J).GT.CALV3(IPROBE,K))GO TO 130

IF(K.GT-2) GO TO 176

SLOPE3(J)=(CALV3(IPROBE,K )- CALV3(IPROBE,K-I))/ (V3(IPROBE,K)-V3

1 (IPROBE,K-I)) + DSLOP3*J/NOT
GO TO 177

176 SLOPE3(J),,(CALV3(IPROBE,K)- CALV3(IPROBE,K-2))/ (V3(IPROBE,K)-V3

1 (IPROBE,K-2)) + DSLOP3*J/NOT

177 RATIO= (VCHAN3 (IPROBE, I, J)-CALV3 (IPROBE, K- I) )/SLOPE3 (J)

VEL3 (I, J)=V3 (I PROB E ,K-I )+RATIO

VEL3 (I, J) =,VEL3 (I, J) ** ( 1 • 0/POffER3)
K3=K

GO TO 135

130 CONTINUE

C

C USE NEWTON-RAPHSON METHOD TO CALCULATE MEAN VELOCITIS

C

C FIND INITIAL VALUES OF VELOCITY USING DLEQD HETHOD

C

135 D(1)fVELI (l,J)

WRITE (6,3334)
WRITE (6 7 CIIAN1(IPROBE, i,j) ,VCHAN2 (IPROBE, I,J) ,VCHAN3 (IPROBE, I J

C) ,VELI (I ,J) ,VEL2 (I ,J), VEL3 (I ,J)

D(2)-VEL2(I,J)

D (3)=VEL3(I ,J)
DO Ill 11=1,3

DO 111 JJ==l,3

CC (II ,JJ)=C (II ,J J)

III CONTINUE

CALL DLEQD (CC,D, 3, I, 3,3,DET) u1

U0=D (2)
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vO=n(1)
WO=D(3)
WRITE (6,61)VO,UO,WO
VINIT=VO

UINIT=UO

WINIT=ffO
C

C BEGIN NEWTON-RAPIISON ITERATION
C

AAI =SQRT (A4)

AA2=SQRT (A5)

AA3=SQRT (A6)

BBI=D4/(2.*AAI)

BB2=D5/(2. *AA2)

BB3=D6/(2.*AA3)

CCI=AAI* (B4/(2.*A4)-D4*D4/(8. *A4*A4 ))

DD I=AA I* (V4 / (2.*A4)-D4*E4 /(4. *A4*A4) )

EEI=E4/(2.*AA1 )

FFI=AAI* (C4/(2.*A4)-E4*E4/(B.*A4*A4))

CC2=AA2* (B5/(2.*A5)-D5*D5/(8.*A5,A5))
DD2'-AA2* (F5 / ( 2.*A5)-D 5,E5 / (4.*A5*A5))
EE2=E5/(2.*AA2)
FF2".AA2*(CS/(2.*A5)-E5*E5/(8.*A5_AS) )
CC3=AA3* (B6/(2. *A6)-D6*D6/(8. *A6*A6) )
DD3.=AA3*(F6/(2. *A6)-D6*E6/(4. *A6*A6) )
EE3=E6/(2. *AA3)
FF3=AA3* (C6/(2. *A6)-E6*E6/(8. *A6*A6) )
DO 200 N=I,NREPS
GG I==AAI*V0+BB I*U0+CC I*U0*U0/V0+DD I*U0*W0/V0+EE I*UO+FF I*W0*W0/V0

I-VELI (l,d)

GG2=AA2*VO+BB 2*UO+CC2*UO*UO /VO+DD 2*UO*IIO /VO+EE2,WO+FF2,UO,_IO /VO
1-VEL2 (I , J)

GG3=AA3*V0+BB3*U0+CC3*U0,UO/VO+DD3,U0,t/0/VO+EE3,WO+FF3,WO,WO/VO
1-VEL3 (I,J)

G IWV=AA I-CC I*UO*U0 / (V0*V0)-DD I*UO*WO/(VO*VO)-FF I*U0*WO/(VO*V0)

G 2I,'V..AA2-CC2*U0*U0 / (V0*VO)-DD 2*U0*ffO/(VO*V0)-FF2*UO*tI0/(V0*V0)



G3WV=AA3-CC3*UO*U0/(V0*VO)-DD 3*UO*II0/(VO*VO)-FF3*W0*_I0/(VO*V0)

G IWU=BB 1+2 •*CC I*UO/V0+DD I'U0/V0

G2NU=BB2+2.*CC2*UO/V0+DD2*ITO/V0

G3UU=BB3+2. *CC3*U0/V0+DD3*IJ0/VO

G INU=EE I+DD I*UO/VO+2 .*FF I'I./0/VO

G 2NW=EE2+DD 2*U0/V0+2 .*FF 2"_I0/V 0

G 3UK_=EE3+DD 3*UO/VO+2.*FF3*I_O/VO

D(1)=-GGI *I0
D(2)=-GG2 *I0

D(3)=-GG3 *I0
CC(I I)= GII_V* I0.0
CC(I 2)= GII,JU* I0.0
CC(I 3)= GII_|I * I0.0

CC(2 l)= G2UV* IO.O
CC(2 2) TM G2WU_€ IO.O
CC(2 3) = G2WU* IO.O
CC(3 I) TM G3UV* 10.0

CC(3 2)= G3_IU* I0.0
CC(3 3)= G3VlU* I0.0

CALL DLEQD (CC,D, 3, I, 3,3,DET)

DELV=D (I) /I0

DELU=D(2) /I0

DELI_=D (3) /I0
RLX=I .0

DELU=RLX*DELU

DELV,=RLX*DELV

DELWffiRLX*DELW

VO= V0+DELV

UO=U0+DELU

NO= U0+DELU

GRES= SQRT((GGI*GGI+GG2*GG2+GG3*GG3)/ 3.0)
EPX= EPS

IF(ABS(GRES).GT.EPX) GO TO 210
NV=VO

WU=U0
WW=II 0 L.o



Ln

C

C SOLUTION CONVERGED
C

WRITE (6,84)r_
WRITE (6,61)WV,WU,UW
I_R-UU/UTIP

WT-WV/UT IP

ffZIWI4/UT IP

W=SQRT (WT*ffT+UR,WR+WZ,WZ)

CONST=SQRT (PWALL/RilO*RHO 1/PUALL )
WT=WT/CONST

WR=WR/CONST
WZ=WZ/CONST

WRITE (6,61)WT ,WR,WZ ,W
DATA(J, I)-WT

DATA(J, 2) =,WR

DATA(J,3)=UZ

DATA (J, II)=W
GO TO 220

210 IF( N.EQ. 20) GO TO 211

IF ( N .EQ. 40) GO TO 211

IF ( N .EQ. 60) GO TO 211

IF ( N .EQ. 80) GO TO 211
GO TO 200

211 EPX m 2.0_EPX

200 CONTINUE

C

C SOLUTION FAILED TO CONVERGE
C

WRITE (6,86)NREPS

86 FORMAT(5X,*MEAN VELOCITIES DID NOT CONVERGE AFTER',I5," ITERATIONS"
C')

WRITE(6,61) V0,UO,WO
C

C USE INITIAL VALUES OF VELOCITY FOR TURBULENCE CALIIULATIONS
C



WV.-VINIT

WU=UINIT

WW..WINIT

WR-WU/UT IP

WT-WV/UTIP

WZ=WU/UTIP

WuSQRT (WT*WT+I_R*WR+WZ*WZ)

WRITE (6,61 )WT ,WR,I_Z ,W

DATA ( J, I ) .=_-IT

DATA(J,2)mWR
DATA (J, 3)'=UZ
DATA (J, ll)'=ff

C
C CORRECT INPUT FLUCTUATING VOLTAGES FOR TIME ERROR

C

220 FVISQ=FVISQ/TIME(1)

FV2SQ=FV2SQ/T IME (I)

FV3SQ=FV3SQ/TIME (I)

FVI 2- (FV 12/TIME (I) )

FVI 3= (FVI3/TIME (I) )

FV23 =,(FV23/TIME (I))
C

C USE LINEARIZED THEORY TO CALCULATE FLUCTUATING VELOCITIES

C

FACTI-2.0*SQRT(VCIIAN! (IPROBE,I,J))*VELI(I,J)**(I'O-POWERI)/SLOPEI

C (J)/POUER !

FACT2-2 •0*SQRT (VCIIAN2 (I PROB E, I, J) )*VEL2 (I, J) ** (1 •O-POffER2)/SLOPE2

C (J)/POUER2

FACT 3=2 •0*SQRT (VCHAN3 (IPROBE, I, J) )*VEL3 (I, J) ** (1 •O-POWER3)/SLOPE 3

C (J)/POUER3

URITE(6,45)SLOPEI (J),SLOPE2(J),SLOPE3(J)

FVI,,SQRT (FVISQ)/ATTEH (I)

FV2=SQRT (FV2SQ)/ATTEN (2)

FV3=SQRT (FV3SQ)/ATTEN (3)

FVI 2,,FVI 2/(ATTEN (I)*ATTEN (2))
FVI 3,,FV 13/(ATTEN (I)*ATTEN (3)) u_Ln



tn

FV23= FV23/(ATTEN(2)*ATTEN(3))
DI=FACT I*FV I
U2=FACT2*FV2
U3=FACT3*FV3

C

FVELI (I,J)=UI*UI
FVEL2 (I,J)=U2*U2
FVEL3 (I,J)=U3*U3
FVEL 12=FACT 1*FACT 2*FV! 2
FVEL 13=FACT 1*FACT 3*FVI 3
FVEL 23=FACT2*FACT 3,FV23

C
C

C CALCULATE FLUCTUATING VELOCITY COEFFICIENTS
c

AA!=C(I, l)

AA2=C(I,2)

AA3=C(I,3)

AA4=AA I*(B4/(2.*A4)-D4*D4 /(8.,A4,A4))
AA5=AA I*(C4/(2.*A4 )-E4*E4 /(8.*A4*A4))
AA6=AAI* (F4/(2.*A4)-D4*E4/(4.,A4,A4) )
AA7= AA4/2.0
AAS= AAS/2.0

AA9=AA6
BBI = C(2,I)
BB2 = C(2,2)
BB3 = C(2,3)

BB4=BBI* (B5/(2 .*AS)-DS*DS/(8.*AS*AS) )
BB5=BB I*(C5/(2. *A5 )-E5"E5/(8.*AS*A5 ))
BB6=BB l*(F5/(2.*AS)-D 5"E5/(4.*A5*A5 ))
BB7= BB4/2.0
BBS= BB5/2.0

BB9=BB6

COl = c(3,1)
cc2 = c(3,2)
cc3 = c(3,3)



CC4=CCI* (B61 (2.*A6)-D6*D61(8- *A6*A6) )

CC5=CC I* (C61 (2.*A6)-E6*E 61 (8.*A6*A6))

CC6=CC l* (F6/(2.*A6)-D6*E6/(4.*A6*A6) )

CC7= CC412.0

CC8= CC512.0
CC9=CC6
AAA 1 -AA 1

AAA2=BB1
AAA3=CCI
BBB I-AA2+AA7_WR/WT+AA 6*WZ/WT

BBB 2-BB2+BB 7_WR/WT+BB 6*NZ/WT

BBB 3=CC2+CC 7_WR /WT+CC6*WZ /WT

CCC I=AA3+AAB*WZ/WT+AA6*IIR/WT

CCC 2,,BB 3+BB8*WZ/WT+BB 6_IJR/WT

CCC 3=CC 3+CC 8*WZ/WT+CC 6*_R/WT

A(1 1)ffiAAAI*AAA1
A([ 2)=BBBI*BBB 1
A(I 3)=CCCI*CCC l

A(I 4)-2.*AAAI*BBB 1

A(I 5)=2.*AAA I*CCCI

A(I 6)-2.*BBB I*CCCI

A(2 I )-AAA2*AAA 2

A(2 2)=BBB2*BBB2

A(2 3)=CCC2*CCC 2

A(2 4)=2.*AAA2*BBB2

A(2 5)=2.*AAA2_CCC2

A(2 6)=2.*BBB2_CCC2

A(3 I )=AAA3*AAA3

A(3 2)=BBB3*BBB3

A(3 3)ffiCCC3*CCC 3
A(3 4)=2.*AAA3*BBB3

A(3 5)=2.*AAA3*CCC3
A(3 6)=2.*BBB3*CCC3
A(4 1)=AAAI*AAA2

A(4 2)-BBBI*BBB2 t..n

A(4 3)-CCCI*CCC2 "J



bo
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A (4,4)ffiAAA I*BBB 2+AAA2*BBB 1

A(4,5)=AAAI*CCC2+AAA2,CCCI

A (4,6)-BBB I*CCC 2+CCC l_BBB 2

A(5, I)=AAAI*AAA3

A(5,2)=BBB I*BBB3

A(5,3)=CCC I*CCC3
A (5,4)-AAA l_BBB 3+AAA3*BBB 1

A (5,5)=AAA I*CCC 3+AAA3*CCC I

A (5,6)-BBB I*CCC 3+CCC I_BBB 3

A(6, I)ffiAAA2*AAA3

A(6,2)ffiBBB2*BBB3

A(6,3)-CCC2"CCC3

A (6,4)=AAA2*BBB3+AAA3*BBB2
A (6,5)=AAA2*CCC 3+AAA3*CCC 2

A(6,6)-BBB 2*CCC 3+CCC 2*BBB 3

DO 108 11=1,6
108 CONTINUE

B(1),=FVELI (I,J)
B(2)ffiFVEL2(I,J)
B(3)=FVEL3(I ,J)
B(4)-FVEL 12
B (5)=FVEL 13

B (6)=FVEI. 23

DO 113 11-1,6

DO 113 JJ-l,6

AA(II, JJ)'A (II ,J J)
I13 CONTINUE

CALL IILEQI)(AA,B,6, 1,6,6,DET)

IIRITE(6,65) (B(K),K=I,6)

WRITE (6,66)DET

B ( 1)=DSQRT (B ( 1 ) )
B (2)ffiDSQRT (B (2))
B (3)=DS QRT (B (3))

C

C CORRECT FLUCTUATING VELOCITIES FOR HIGH TURBULENCE INTENSITIES
C



I

ARG I= 1.+FACTOR* (B (I)/ (W*UTIP)) **2 •

ARG 2mI.+FACTOR* (B (2)/(W*UT IP))**2 •
ARG3=I .+FACTOR* (B (3) / (W*UTIP)) **2.

B (1 )=B (1 )/SQRT (ARG 1)

B (2),,B (2)/SQRT (ARG2)

B (3)=B (3)/SQRT (ARG 3)

c
FWT=B (I)/ (W*UTI P)

FWR-B (2) / (W*UT IP)

FWZ=B (3)/(W*UTIP)
FW=ABS (Ft_R*WR/W)+ABS (FWT*WT/W)+ABS (FWZ*WZ/W)
WRITE (6,62) F_T, FNR, FWZ, FW
B (4)=B(4)/ (W*W*UTIP*UTI P)
B(5)=B (5) /(W*%.;*UTIP*UTIP)
B (6)=B (6)/(W*W*UTI P*UT IP)
RESSTR=DSQRT (B(4)*B (4)+B (5)*B (5)+B (6)*B (6))
Q-SQRT (FWR*FUR+F_;Z*FWZ+FWT*FNT)
QSQI)=Q*Q
WRITE (6,67)Q, QSQD
RATIO I,=B (4)/QSQD
RATIO2= B (5)/QSQD
RATIO3= B (6)/QSQD
RATIO= RESSTR/ QSQD
WRITE(6,68) RATIOI, RATIO2, RATIO3,RATIO
CRI=-B (4) /(F%JT*FWR)

CR2=-B (5)/(F_T*FWZ)
CR3=-B (6) /(FWR*FWZ)
CRR= RESSTR/ QSQD

DATA (J,4)=FIIT
DATA (J,5)-FNR
DATA (J,6)=FWZ
DATA (J,7)'=Fll

DATA (J,8)=B(4)
DATA (J,9)=B(5)
DATA (J,IO)=B(6) r.)
DATA (J, 12)-RESSTR _n%0
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DATA (J,13)=Q

DATA (J, 14)=QSQD

DATA (J, 15)=RATIc)I

DATA (J, 16)=RATIO2

DATA (J, 17)=RATIO3
DATA (J, 18)=RATIO

DATA (J, 19)-CRI
DATA (J, 20)=CR2

DATA (J,21)=CR3

DATA (J,22)=CRR
115 CONTINUE

DO 1124 J=l,12

AMAX = DATA(I,J)

A[IIN = DATA(I,J)

DO 1122 II=2,NOT

IF (AMAX. LT. DATA (I I, J) )A_IAX=DATA (I I, J)

IF (AMIN .GT. DATA (I I, J) )AMIN=DATA (I l,.I)
I122 CONTINUE

WRITE (6, II23)J,AMAX,AMIN

IF(J.EQ.II)AHA = AMAX
I124 CONTINUE

I123 FORMAT(" ",5X,13,10X,FIO.4,10X,FI0.4)
DO 1112 J=I,NOT

DATU=DATA (J, I )/A_A

DATAI=DATA (J, 2)/A_A

DATAO=DATA (J, 3)/AliA

WRITE(6,7777) DATU,DATAI,DATAO,

X (DATA(J,n),L=4,6),(DATA(J,L) ,L=8, I0) ,DATA(J, 12)
7.777 FORMAT(IOFI3.4)
1112 CONTINUE

97 FORMAT(SFIO. 4)

WRITE 46,85)

DOllll J=I,NOT

I/RITE (6,96) J,DATA(J, I),DATA(J,2),DATA(J,3),DATA(J, ll), (DATA(J,KN
X), KN=4, I0)

1111 CONTINUE



WRITE (6,89)

DO I[0J'-I,NOT

WRITE (6,96) J,(DATA(J,KN),KN=I2, 22)

96 FORMAT (13,IX,II(FI0.4,1X))

85 FORMAT(//16X •b[EAN VELOCITIES• 24X •TURBULENCE INTENSITIES',20X,

X•TURBULENCE STRESSES • /• j•,5X "WS• 9X,•WN•,9X •l_R•,10 X,•W •,gX,•FW

XWS • 8X •FWN • 8X •FUR • 9X •FW • 7X °B(4)•,TX,•B(5)',TX,•B(6)'/)

89 FORMAT(//• TOTAL STRESS•,9X, •TOTAL ENERGY•,gx,•STRESS/INTENSITY• • RATI•

XTIOS•,20X,•CORRELATION COEFFICIENTS • /• j•,4X,•RESSTR•,TX, Q ,SX,
•CRI • 8X,•RATIO • ,8X,•RATIO3 • ,5X,XQSQD',6X,•RATIOI •,SX,•RATIO2 •,SX,

X•CR2 •,SX,•CR3 •,8X,•CRR'/)
II0 CONTINUE

C

C FORMAT STATEMENTS

C

5 FORMAT(gX, I l)

6 FORMAT (3FI0.5,13)

I0 FORMAT (8X, 12)

15 FORMAT(8FI0.5)

16 FORMAT ( • CALIBRATION CURVE OF PROBES•,4FI5 -6)

20 FORMAT (9X,II,8X, 12)

32 FORMAT (6F I0.5)
40 FORIIAT (21 lO)

44 FORMAT( 5X, • MEAN & AVERAGED FLUCTUATING VOLTAGES •)

45 FORMAT (5F I0.6,14)

46 FORMAT ( • MEAN & FLUCTATINC VOLTAGES--•,9 FI0*5)

50 FORbIAT(5X, • VALUES FOR CALIBRATION CURVE •,12//)
• •Vl • 6X •V2 • 6X,•V3•,5X, •CALEI•,54 FORMAT( 3X, J•,3X,•CVEL•,7 X, , , '

•CALE3 • 4X •VSQ l• 5X •vsQ2",SX,'VSQ3•,5X,•EISQ •,I 4X,'CALE2 •,4X, , , , ,

2 5X,•E2SQ •,SX,'E3SQ • )
55 FORMAT(IX,13,13F9.5) •

60 FORMAT(5X, •TIIETA STATION NUMBER •,12, • PROBE CALIBRATION CURVE

C,II, NO. OF RADIAL STATIONS ,I211)
61 FORMAT(IOX,'MEAN VELOCITIES :',4E15.5)

62 FORIdAT(10X,'TURBULENCE INTENSITIES :',4E15.5)

63 FORMAT(IOX,*TURBULENCE STRESSES : ,4E15.5)



t,J

65 FORMAT(IX,'SOLDTION MATRIX',6FI6.6)

66 FORMAT(IX,•DETERMINANT = ,F16.8)

67 FORMAT(10X,•TOTAL ENERGY :',2E15.51

68 FORMAT(IOX,•STRESS/INTENSITY RATIOS:', 4FI0.51

70 FORMAT(3FIO. 5)

71 FORMAT ( 10X, " CORRELATION COEFICIENTS:*,4FI0.5)

74 FORMAT( 5X,•DIRECTION COSINES OF WIRES • )

75 FORMAT (6FIO. 61

76 FORHAT (6E15.5)

80 FORIIAT(515) 9F12.51

82 FORMAT(5X,15,FI0.5)

83 FORMAT (18A4,FS. 31

84 FORMAT(5X,'MEAN VELOCITIES CONVERGED IN',I5, _ ITERATIONS')

95 FORMAT (30X,20A41

87 FORMAT (• PROBE D.C. ANGLES ,9FI0.41

88 FORMAT( IX, 10FI0.51

99 FORMAT(IX,//)

IF(RAVI.EQ.2.0) GOTO 5554
GO TO 5555

5554 CONTINUE

STOP

END

SUBROUTINE CALIB (I,K)

CO_IMON VCHANI (4,6,991,VCHAN2(4,6,99),VCHAN3(4,6,99),EOI,EO2,EO3,EO

C4,EO5,EO6,EO7,EOS,EO9,CALEI (4,251,CALE2(4,25),CALE3(4,251,NOT

COMtION JJ,CALVI (4,251,CALV2(4,25),CALV3(4,25)
AJ=K-|

All=NOT-1

D1 = (EOT-EO4)/AN

D2 = (EOB-EO5)/AN

D3 =. (EO9-EO6)/AN
EO1 = EO4+AJ*D1

EO2 = EO5+AJ*D2

EO3fEO6+AJ_D 3

DO 1155 Jfl,JJ

IF(J.NE.I)GO TO 1156



DEI=CALEI(I, I)*CALEI (I,I)-EOI*EOI

DE2fCALE2 (I, 1 )*CALE2 (I, I )-EO2*EO2

DE3..CALE3(I,I)*CALE3(I,I)-EO3*E03

1156 CALE 1 (I, J)-SQRT (CALE 1 (I, J)*CALE 1(I, J)-DE 1 )

CALE2(I,J)fSQRT(CALE2(I,J)*CALE2(I,J)-DE2 )

CALE3 (I ,J)ffi.SQRT(CALE3 (I ,J)*CALE3 (I, J)-DE3)

CALVI (I,J)ffiCALEI (l,J)**2.0

CALV2 (I, J)ffiCALE2 (I, J)**2.0

CALV3 (I ,J)=CALE3 (I ,J)**2.0
1155 CONTINUE

RETURN

END

AFC ROTOR WAKE: X/C-0.O0104,R/RTm0.7297,1=5: DATED;04/18/1978 169.578
I000.01

1.0 1.0 1.0

0.175 0.175 0.175

73.0 73.0 73.0 73.0 73.0 73.0
l

9

1.791 1.867 1.732

I.6689 1.745 1.6014

0. 000 I•758 O. 000 I. 795 O. 000 I•732

0.355 2.280 0.328 2.326 0.3380 2.462

0.756 2.400 0.963 2.499 0.5970 2.572

1.622 2.518 1.813 2.608 I. 170 2.690

3.025 2.621 2. 328 2.654 2.400 2.832

4. 599 2. 697 3. 844 2.754 3. 889 2. 929

6.021 2.747 5.247 2.817 4.536 2.963

6.600 2.767 6.117 2. 850 5.738 3. 014
6. 875 2. 778 6. 814 2. 875 6. 662 3. 050

0.516 0.545 0.476
1 21

7.75
40.0641 47. 2406 97. 6157 u_°_



to

66.4042 105.7630 148.2960
55.4258 128.3390 59.5102

7321.0
1 1

50.0
2.556 2.767 2.830 23.5 1.594 1051
0.0190 0.0160 0.020
0.0240 0.0280 0.0240
0.010 0.0150 0.0180
2.513 2.756 2.805 24.0 1.587 1050
0.020 0.0170 0.0180
0.0250 0.0280 0.0240
0.020 0.0220 0.020
C REMAINING SET OF DATA

C COORDINATE TRANSFORMATION PROGRAM

DIIIENSION DATA(12,100)

DIMENSION I;ORDI(80),WORD2(80)
C COMPIITER PROGRAM TO CONVERT VELOCITIES AND TURBULENCE QUANTITIES
C FROM ONE COORDINATE SYSTEM TO ANOTHER COORDINATE SYSTEM

C

C READ IN DIRECTIOH COSINES

C

READ (5,2 I)AL II ,AL 12 ,AL 13,AL 21 ,AL22

21 FORMAT (5FIO. 4)

READ (5,22)AL23 ,AL31 ,AL32,AL33

22 FORMAT (4FIO. 4)



I000 CONTINUE

UHAX-O •0

C

C READ IN RAVI NOT EQUAL TO ZERO FOR LAST DATA SET

C

READ (5, 18)RAVI

18 FORMAT(FIO.4)

C

C READ IN DATA SET DESIGNATIOn]

C

READ (5, I) (WORDI(L),L'I,80)

C

C READ IN BLANK CARD

C

READ (5, I) (_ORD2(L),L'_I,80)

1 FORMAT(80AI)

C

WRITE(6,2) (WORDI (14),Hnl,80)

WRITE(6,2) (WORD2(M),M"I,80)

Z FORMAT(" °,80AI)

C

C READ IN NUHBER OF POINTS IN DATA SET

C

READ (5, IO)N
10 FORMAT (15)

DO I00 I=.I,N

READ (5,20)US,UN,UR,FS,FN,FR,B4,BS,B6'RES

20 FORMAT (5FI0.4)

C

C MEAN VELOCITY TRANSFORMATION

C

UX=.AL [[*US+AL 12*UN+AL 13*UR

UY-AL2 [*US+AI, 22*UN+AL 23*UR

UZ=AL31*US+AL 32*UN+AL33*UR

IF (UX.GT.UMAX)UMAX'=UX Ln
C



bo

C TURBULENCE QUANTITIES
C

FX=ALII*ALII*FS*FS + ALI2*AL12*FN*FN + ALI3*ALI3ScFR*FR + 2.0*(ALII
C*ALI2_B4 + ALII*AL13*B5 + ALI2*AL13*B6)

FY= AL21*AL21*FS*FS + AL22*AL22*FN*FN + AL23*AL23*FR*FR + 2.0*(AL2
CI* AL22*B4 + AL22*AL23*B6 + AL21*AL23*B5)

FZ-AL31*AL31*FS*FS + AL32*AL32*UN*UN + AL33*AL33*FR*FR + 2.0*(AL31
C*AL32*B4 + AL31*AL33*B5 + AL32*AL33*B6)

FXY=ALll*AL21*FS*FS +AL12*AL22S_FN,FN + ALI3*AL23*FR*FR + (ALI2*AL2
CI + ALII*AL22)*B4+ (AL13*AL21 + ALl[ * AL23)*B5 + (AL13*AL22 + ALl
C2*AL23)*B6

FXZ_ALII*AL31*FS*FS + ALI2*AL32*FN*FN + AL13*AL33*FR*FR + (ALII*AL
C32 + AL12*AL31)*B4 + (ALlI*AL33 + ALI3*AL31)*B5 +(ALI2*AL33 + ALl
C3"AL32) *B6

FYZ - AL21*AL31_FS*FS + AL22*AL32*FN*FN + AL23*AL33*FR*FR + (AL21*
CAL32 + AL22*AL31) *B4 + (AL21*AL33 + AL23*AL31)*B5 + (AL23*AL32 +
CAL22*AL33)*B6

FX=SORT (FX)

FY=SQRT (FY)

F Z,_SQRT (FZ)

DATA (I, I )=UX

DATA (2, I) =UY

DATA (3, I ),.UZ

DATA(4, I)=FX

DATA (5, I),,FY

DATA(6, I)=FZ

DATA (7, I)mFXY

DATA (8, I)=FXZ

DATA (9, I),_FYZ

DATA(10, I)_RES
I00 CONTINUE

DO 200 J=l ,I0

AHAX=DATA (J, I)

AHIN=,DATA (J, I)

DO 201 llx2,N

IF (A_IAX. LT .DATA (J, II ))AMAXzDATA (J ,II )

i



IF (AMIN.GT. DATA (J,II) )AMIN=DATA (J,II)
201 CONTINUE

IF(J.EQ.I)AbIA=AHAX
AMAX_.AHAX/AMA
AMIN = AMIN/AMA
WRITE(6, !L23)J,AMAX,AMIN

1123 FORMAT( • ",5X,I3,1OX,FI0.4,10X,FI0-4)

200 CONTINUE

DO 202 IJ,,l, I0

DO 203 IK'I,N
DATA(I J, [K)=DATA (I J, IK)/AMA

203 CONTINUE

202 CONTINUE

WRITE (6, 1124)UMAX
" UHAX= ,FI0 4)I124 FORMAT(" ",

DO 204 KK..I,N
WRITE (7,20) (DATA(JK,KK),JK-I, I0)
WRITE (6,98) (DATA(JI',KK),JK_'I,I0)

98 FORMAT(10FI0.4)
204 CONTINUE

IF(RAVI.EQ.O.0) GO TO I000
STOP
END

t,J



268

Appendix A2

SCALES AND OTHER PARAMETERS OF FLOW

The flow parameters and various scales of turbulence encountered

in the present study are given below.

A2.1 Free-Stream Turbulence

The values, in the relative frame of reference, inside and outside "

the end-wall boundary layers and in the trailing-edge and far-wake regions

at the operating speed and flow coefficients are given by

Z Wo/U T W m/sec (ft/sec) R-- o e

0.5676 0.1250 0.6604 34.217 (112.261) 17.42x

0.5676 0.6560 0.6639 34.399 (112.858)

0.7297 0.0104 0.6145 31.843 (104.470) 105

0.7297 0.5313 0.6500 33.6804(110.500) (Based

0.9595 0.0104 0.6639 34.412 (112.900) on

0.9595 0.458 0.6457 33.467 (109.800) Tip Con-
ditions)

A2.2 Semi-Wake Thickness

Semi-wake thickness is considered to be the characteristic rotor-

wake thickness. The values at representative radii inside and outside

the end-wall boundary layers are:

Z L (Semi-Wake Width) £ (Wake Width) m(ft)

0.5676 0.1250 0.2650 0.0211 (0.0694)

0.5676 0.6560 0.3200 0.0255 (0.0838)

0.7297 0.0104 0.0190 0.0020 (0.0064)

0.7297 0.5313 0.1313 0.0135 (0.0442) -

0.9595 0.0104 0.413 0.0557 (0.1828)

0.9595 0.458 0.620 0.0836 (0.2744)

Overall turbulence level is about two percent in free-stream and 45 per-

center at wake center.

Reynolds number based on tip velocity is 17.42 x 105 .
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A2.3 Length Scales

In order to calculate the errors involved in the measurement of

turbulent flow as well as in categorizing the type of turbulent flow,

it is necessary to make an estimation of the length scales that are

encountered in the rotor-wake data. The three important scales of tur-

bu1ence are:

1. Large eddy length scale (~)

2. Taylor's microsca1e (A )g

3. Ko1mogorov scale (n)

The large eddy length scale is proportional to the boundary layer thick-

ness. In the case of wakes, it is proportional to the semi-wake width.

It is known that the semi-wake width varies depending on the radius and

downstream location. Typical values are given below

R Z L (Semi-Wake Width) R. (Wake Width) m(ft)

0.5676 0.1250 0.2650 0.0211 (0.0694)
0.5676 0.6560 0.3200 0.0255 (0.0838)
0.7297 0.0104 0.0190 0.0020 (0.0064)
0.7297 0.5313 0.1313 0.0135 (0.0442)
0.9595 0.0104 0.4130 0.0557 (0.1828)
0.9595 0.458 0.6200 0.0836 (0.2744)

The Reynolds number based on the turbulence intensity is also an

important parameter in determining the structure of turbulent flow. It

varies with the radius as well as the downstream distance. Typical values

are (Re = u'~/v, u' is turbulence intensity and v is the kinematic vis-

cosity).

R Z
Re

0..5676 0.1250 1.54 x 105
0.5676 0.6560 6.30 x 104

0.7297 0.0104 2.53 x 104

0.7297 0.5313 4.65 x 104

0.9595 0.0104 8.04 x 105
0..9595 0.4580 4.65 x 105
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Taylor's microscale: This scale X is defined as
g

15vu '2
=

Xg 2

where _ is the turbulent dissipation rate. An estimate of _ based on

Tennekes and Lumely (1972) is

3
U T

For the rotor-wake under consideration, the typical values are,

R Z E

0.5676 0.1250 4.31 x 103 (4.64 x 104 )

0.5676 0.6560 1.65 x i0.j (1.78 x i04_
0.7297 0.0104 1.72 x IQ,b (18.47 x i0u)

0.7297 0.5313 4.7 x id.4 (5.06 x 104 )
0.9595 0.0104 5.53 x i0_4 (5.95 x i0_.)

0.9595 0.458 4.95 x 103 (5.33 x 104 )

Taylor's miscroscale will then be,

R Z % (cm (inch)
_ _ g

0.5676 0.1250 0.063 (0.0248)

0.5676 0.6560 0.117 (0.0462)

0.7297 0.0104 0.018 (0.0070)

0.7297 0.5313 0.102 (0.040)

0.9595 0.0104 0.102 (0.040)

0.9595 0.458 0.152 (0.060)

Kolmogrov scale represents the small scale eddies in the dissipation

range and is defined as:

n = (_3/s)i/4

Again the representative values inside and outside the end-wall boundary

layers are:
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R z A

0.5676 0.1250 0.0345 (1.36 x i0-_)

0.5676 0.6560 0.0132 (5.20 x i0-_)

0.7297 0.0104 0.008 (3.14 x i0-j)

0.7297 0.5313 0.0348 (1.37 x 10-2 )

0.9595 0.0104 0.0191 (7.52 x 10-3 )

0.9595 0.458 0.0345 (o.36 x 10-2 )

A2.4 Wave Number

Wave number for the turbulent flow is defined as:

2_m i

u £
c

where m is the frequency at which the contribution due to a correlation

between two fluctuating velocity components to the Reynolds stress is

being considered, u is the mean flow velocity at which an eddy of length

, corresponding to that wave number is convected. The wave number
e

which is expressed in centimeter units is required in calculating the

errors in Reynolds stress correlations. The distance between the sensors

is 1.5 mm, while the sensors are I mm long. The wave number correspond-

ing to an eddy of sesnor length is i0 cm-I and the wave number correspond-
-I

ing to an eddy equal to distance between wires is 6.67 cm •

A2.5 Thermal Inertia of the Wire

The temperal error due to thermal inertia at any frequency is given

by Hinze (1959) as:

i
,, e(_) =

¢(1 + _ZMz)

where M is the time constant of the wire and is equal to

eLCw(ew - ef)

I2Rf
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where:

eL = conversion constant between heat and electrical units,

c = specific heat of the wire materialw

e = temperature to which the wire is heated
w

8f = working fluid temperature

I -- amperage in the circuit

Rf = resistance of the wire at fluid temperature. •

The time constant is M = 1.56 x 10-4 sec. So the thermal inertia order

at

i KHZ e (i KHZ) --0.897

5 KHZ e (5 KHZ) = 0.789

i0 KHZ e (i0 KHZ) --0.540
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Appendix A3

ESTIMATION OF ERRORS IN MEASUREMENTS

Hot-wire and pressure measurements are prone to numerous errors,

some of which can be compensated for by inclusion of correction factors.

" Some of the errors are inherent in the measurement technique and call for

detailed and elaborate equipment to overcome them. Broadly the errors
I

can be divided into three categories: probe errors, instrumentation

errors, and mechanical errors. A detailed discussion is given by Anand

(1976).

A3.1 Probe Error

The major source of error arising due to probe and the sensors are:

i. Inclination of the wire to the flow streamlines (deviation from

cosine law).

2. Effects of wire supports on the frequency response and heat-

transfer properties of hot-wires.

3. Spatial resolution of the probe (eg. finite length of probe

sensors).

4. Aging of hot-wire and variation of resistance due to ambient

conditions.

5. Ambient temperature and test section temperature drift.

I

6. Wall proximity effects.

7. Inaccuracies in angle measurements.

As mentioned earlier some of these errors can be eliminated by use

of correction factors while some are inherent in the measurement techni-

que. Some estimates and reductions of the above losses are discussed

below.
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i. Effective cooling velocity on the wire is given by Hinze (1959)

as:

Uef f = U 2 + K2U 2n a

where U and U are velocity components normal and parallel to the wiren a

K is a correction factor which depends on the length-to-diameter ratio

and its variation with %/d can be calculated using the relation

j°

K2 = cot2_{[b + ! _ _ 4 _ i}

cosl/2_ ]

where e = angle of incidence between free-stream direction and the nor-

mal to the axis of the wire.

b = parameter that depends on _/d ratio. For standard wires, the

value can be obtained from Champane, et al. (1967).

For the departure from cosine law, Hizne (1958) gives a semi-analy-

tical expression of the form:

Uef f = U(cos21 + b2sin21) I/2

Finite dimensions of the wire with respect to the local parameters --

to be measured might yield errors llke,

a. Temperature distribution along the wire.

b. _odifications of the time constnat of the wire.

2. Effects of wire supports on the frequency response and heat-

transfer properties of hot-wlres.

a. Betchov (1948) and Corrson (1963) give the heat loss to the

support, based on theoretical deductions, around seven to ten percent.

h. The prongs have negligible influence on the frequency re-

sponse and transient response of the hot-wire, when operated in constant

temperature mode, and its effect is reported by Olivari (1976).
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3. Spatial resolution of the hot-wire. When the wire length is

not negligible compared with the characteristic length of interest in

mean velocity and turbulence, an imperfect spatial resolution occurs

because of "inactive" wire length. The source of error introduced by

this may be appreciable, particularly in the highly three-dimensional

. flow-field that exists in the trailing-edge region of the blades. Be-

sides the wake width at these locations will be of the same order or

smaller than the effective length of the sensor. In effect there will

be a error in the measurement of mean velocity, fluctuating quantities,

and correlations.

The error in a cross correlation to spatial resolution is the mini-

mum eddy size the probe can correlate because of separation between the
-i

two wires. The wave number corresponding to these distances are i0 cm .

The error e in the correlation is given by Lumley (1965) as:

u.'u.'- u.'u.'(K)
e(u.'u.')= l j , I,]z 3 u.u.z 3

Anand (1978)has shown that u.'u.' correlationis directly related toz 3

measured fluctuatingvoltage correlatione.e.. Using these relations,13

the maximum anticipatederrors in the measured voltage correlationsare:

Error in

Radius Axial Loc.

ele 2 e2e 3 e3e I
R Z
-- -- (in Percent)

0.5676 0.1250 8.7 9.2 7.9

0.5676 0.6560 7.2 8.1 6.5

0.7297 0.0104 34.5 42.5 47.9

0.7297 0.5313 9.8 11.9 7.2

0.9595 0.0104 14.7 17.2 12.6

0.9595 0.4580 6.3 7.1 8.2



276

The inaccuracies introduced by the "cold lengths" can be overcome

by individual calibration of the wire which would give a proper slope in

the King's law. The error arising due to this is discussed by Anand

(1976) and the order of error in the far-wake region is about the same.

The error arising due to the aging of the hot-wire and the variation

due to ambient conditions which is reflected in the wire resistance and

voltage at zero flow conditions can be corrected for by calibrating the J

wires before and after the experiment and incorporating the variation in

the data reduction process. The error arising due to this cannot be

evaluated as it is a function of time, environment in which it operates,

over-heat ratios employed, to mention a few variables.

The error arising due to the ambient temperature variation (and

consequently the test section temperature variation) has been discussed

by Anand (1976) and has been incorporated in the data reduction computer

program given in Appendix AI. Hence this error is not discussed in this

section.

9.

A3.2 Instrumentation Errors

The errors arising due to instrumentation may be due to:

i. Improper integration time constant in voltmeter and rms meters.

2. Not properly balanced anemometers.

3. Improper gain adjustments in the sum and difference circuits.

As most of these factors can be easily checked, it is assumed that they

do not contribute any error to the data.

A3.3 Mechanical Errors

There are many errors introduced because of mechanical problems.

Most of these errors are easy to recognize and can be solved to an
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extent when they do not actually influence the data. The probable errors

are:

i. Probe body vibration. The vibration of the probe body due to

rotation, flow induced vibration, transmission of vibration due to other

mechanical sources like vibrating belts and pulleys can add significant

amount of spurious signal to the measurements. The probe vibration can

be analyzed using a spectrum analyzer at various frequencies. The spec-

tral measurements did not indicate the existance of any spurious signal

due to vibration.

Following Hartog (1947), the natural frequency of the probe and the

probe support can be evaluated assuming that the probe acts like a con-

centrated mass at the end of the support. The natural frequency in

bending mode is given by,

2 mn 2 aa2=( ) +
n _=o

where:

El/£o 3 (M + 0.023 m)(mn)_=o
3.03

E = elastic modulus = 30 x 106 psi

m = mass per unit length of the probe = 0.0018 £o

M = mass of the probe = 0.0041 ibm

i M(ro 2 2) = 2.65 x 10-4I = moment of area = _ - ri

r and r. are outer and inner radius of the probe support, respectively.
o l

a = constant (according to Hartog = 1.5)

The natural frequencies at lower and mid-radii were found to be

greater than the cut-off frequency and so did not affect the measure-

ments. Spectral measurements at higher radii did not exhibit the exis-

tance of spurious signal, so the error arising due to probe support vi-

bration, if any, is neglected.
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2. Gear slack in the traverse mechanism. This problem, if present

during rotation, can present a major source of error in the tangential

distance moved by the probe. This source of error can be visualized

using a strobeflash and was found to be neglegible. The gear slack, when

the rotor was stationary was found to be around 1/8" at the tip radius.

To eliminate this slack, the traverse gear shaft was pre-torsioned by a

spring. ._,

3. Spurious and stray electrical noise from line frequency, impure

mercury in the slip-ring unit, or ground loops in the electronic cir-

cuitry can introduce a major source of error in the data. Spectrum

analysis of the signal would show up these signals. It was found that

it made no significant contribution to the data.

4. Errors due to improper sensor angle measurement as well as mis-

alignment of the probe could make a significant contribution to the

error in the data. The anticipated errors were of the same order as that

given by Anand (1976) and hence are not given here.
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Appendix A4

PROGRAM FOR FOURIER DECOMPOSITION OF ROTOR-WAKE

The program listed below was employed in the present investigation

for the Fourier analysis of rotor-wake data. The problem description

,. and method of analysis is given in Section 4.5. Reference is made to

Ralston (1960) for description of FORIT and program variables.

The input to the main program is velocity, turbulent intensity, or

any such parameter whose Fourier decomposition is desired. The data

points can be either at regular or irregular intervals. The program

executes a linear interpolation between the points and generates data

points at equal intervals. Subsequent to this the program starts to

normalize the given velocity and tangential locations such that it modi-

fies an asymmetrical wake into a symmetrical wake. The mathematical

implications for such normalizations are discussed in Section 4.5 The

program FORIT evaluates the hormonic content in the wake up to the de-

sired number of coefficients. Given below is a list of input variables.

Refer to Figure 134 for some of the notations used below.

V(I,L) velocity for the parameter whose Fourier decomposition is

desired) at the ith point; L refers to the component of

velocity to be considered

UMAXI maximum free-stream velocity on one side of the blade

surface

UMAX2 maximum free-stream velocity on the other side of the

blade surface

UMIN minimum velocity in the wake

N1 tangential location where UMAXl occurs

N2 tangential location where UMAX2 occurs
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NM tangential location where UMIN occurs

For the Fourier analysis the tangential locations are subscripted

such that N2 (where UMAX2 occurs, UMAX2 > UMAXI) assumes a value of _ = 0

and NI takes a value of 0 = 2_. The value of e at NM is _.

The data input for this program is in the form of punched cards

which is obtained from the program given in Appendix AI. The output can

either be in the form of printed output or punched cards of the Fourier o,

coefficients. Listed on the next page is the combined MAIN and FORIT

program along with a sample listing of the data input format.



IMPLICIT REAL*8 (A-H, O-Z)

C X/C=0. 083,R/RT=0- 860, I=10
C FOURIR ANALYSIS OF ROTOR WAKE MANA I0

C MAIN PROGRAM
DIMENSION U (39 i) ,UD (391) ,T (391) ,TD (391) ,M(20) ,A (20) ,B (20) ,V (39 1,4)MANA 40
DIMENSION VEL (391) ,FNT (39 1) ,TN (391) ,UN (391) MANA 50

N=27

DO I00 I=I,N

555 FORMAT(20X,'AVGVIS AVGV2S AVGV3S AVGI23"/IlX,4(" IN

-TENSITY" )//)

READ(5,10) (V(I,L),L=I, 4)

READ (5,10) VVI MANA B0

5555 FORMAT(" ",IOX,4FIO.5) MANA I00
100 CONTINUE

10 FORMAT (5E 15 . 8)
DO 1000 L=I, 1

READ(5,20) UMAXI,UMAX2,UMIN,NI,N2,NM MANA 130MANA 140

20 FORMAT(3FI0.6,315) MANA 150

C UPDATING VELOCITY SUBSCRIPTS MANA 160

DO 200 I=NI,N2 MANA 170

J=I-N 1+I MANA 180
U(J)=V (I ,L) MANA 190

200 CONTINUE MANA 200

NN=N 2-N l+l MANA 210

N=(NN-I)/2 MANA 220
T(I)=0.0 HANA 230

T (NN)=360.0 MANA 240

K=NM-N I+I MANA 250

T(K)=I80.O MANA 260

AA=K-I MANA 270

DT=IB0.0/AA MANA 280

DO 60 I=2,K MANA 290

60 T(I)=T(I-1)+DT MANA 300
KI=K+I MANA 310
AA=NN-K MANA 320 oo
DT=I80.0/AA
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DO 70 I=,KI,NN MANA 330

70 T(I)-T(I-I)+I)T MANA 340

AA=,K- I MANA 350

DT=I80.0/AA MANA 360

NK,=2*K- 1 MANA 370

TN(K)=I80.0 MANA 380

DO 71 I,,KI,NK MANA 390

71 TN (1)=TN (I-I)+DT MANA 400

C FINDING U-DEFECT MANA 410

UDC=UMAX I-UMIN HANA 420

DO 300 I=I,K MANA 430
UD (I)=, (UMAXI -U (I) )IUDC

UD (I)=.(U_IAXI-U (I) )/UDC MANA 440

300 CONTINUE MANA 450

UDC =UIIAX2-U_IN MANA 460

DO 400 I=.KI,NN MANA 470

UD(I)=(UMAX2-U(1))/UDC MANA 480

400 CONTINUE MANA 490

DO 410 I=KI,NK MANA 500

DO 420 K=,KI,NN MANA 510

IF(TN(1).GT.T(K)) GO TO 420 MANA 520

GO TO 430 _IANA 530

420 CONTINUE MANA 540

K=NN MANA 550

430 KS=K-I MANA 560
UN(I)=UD(KS)+(UD(K)-UD(KS))*(TN(I)_T(KS))/(T(K)_T(KS)) MANA 570

410 CONTINUE MANA 580

DO 440 I-KI,NK MANA 630

T (I),=TN (I) MANA 640

440 UD(I)=UN(1) MANA 650

NN=NK MANA 660

C FINDING THETA°S AND TIIETA-P'S MANA 670

VII=0.5 HANA 680

DO 500 I=.I,K MANA 690

IF(UO (I).GT.VII) GO TO 510 HANA 700

GO TO 500 LIANA 710



510 IS=I-1 MANA 720

II-I MANA 730

GO TO 520 MANA 740

500 CONTINUE MANA 750

II=K MANA 760

520 l=II MANA 770

IF(I.EQ.I) GO TO I000 MANA 780

TS=T (IS)+(UD (I)-VI{) / (UD (I)-UD (IS))* (T (I)-T (IS)) MANA 790
DO 600 I"KI,NN MANA 800

IF(VH.GT.UD (I)) GO TO 610 MANA 810
GO TO 600 MANA 820

610 IS=I-I IdANA 830

II=I MANA 840

GO TO 620 MANA 850

600 CONTINUE MANA 860

II=NN MANA 870

620 I-II MANA 880

TP=T (IS)+(UD (I)-VH) / (UD (1)-UD (IS))* (T (1)-T (IS)) MANA 890

C NORMALISING THETA'S MANA 910

DO 700 I-I,K MANA 920

700 TD(1)=(IBO.O-T(1))/([B0.O-TS) MANA 930

DO 800 I=KI,NN MANA 940

800 TD(1)=(T(1)-I80.0)/(TP-180.O) MANA 950

15 FORMAT(3X,'THETA',4X,'FOURIER MEASURED DIFFERENCE'/12X,2(" UDCMANAI010

+NORM" )/) MANA 1020
MAffi9 MANA 1030

N.,(NK-I)/2

CALL FORITCUD,N,MA,A,B,IER) MANAI040

PRINT, 126,1ER

126 FORMAT(" FORIT ERRORz',I4)

IF(L.EQ. I) WRITE(6,103) MANA1050

IF(L.EQ.2) WRITE (6,104) MANAI060
IF(L.EQ.3) WRITE(6, I05) MANAI 070
IF(L.EQ.4) _RITE (6,I06) MANA I080

103 FORHAT (10X, "AVGVIS"//) MANA I090 bO

104 FORMAT (I0X, "AVGV2S"//) ooLO



[,j
{30

105 FORMAT (lOX, "AVGV3S"//) MANAI II0

106 FORMAT (fOX, "AVGI23"II) MANA 1200

PRINT I01, (A(1),I,I=I,MA) MANA1130

101 FORMAT(" A0=',8(FIO.7," A',II,'._'),FIO.7/(8(" A',I2,'=*,FII.8))) MANAII40
PRINT 102, (B(I),I,I=I,MA) MANAII50

102 FORMAT(" B0=',8(FIO.7," B*,II,'='),FI0.7/(8( • B*,I2,'-',FII.8))) MANAII60
WRITE(7,11121 (A(1),I=I,7)

WRITE(7,1112) (B(I),I=2,7)

II12 FORbIAT (7FlO. 4,F9.4)

DO llll I=I,NN bIANAII80

U (I)=A (1) MANA 1190
DO 810 J=2,MA MANAI200
AJ=J-I MANA1210

TItETA=AJ*T (I) *22.0/7.0/180.0 bIANA 1220
U (1)_.U (I)+A (J)*DCOS (THETA)+B (J) *DS IN (TIIETA) MANAI230

810 CONTINUE MANA1240

TD (I)=UD (I)-U (I) MANA 1250

IIII CONTINUE MANA1270

I000 CONTINUE MANAI280

STOP MANAI290
END MANA 1300

SUBROUTINE FORIT(FNT,N,M,A,B,IER) FRIT 490

C FRIT I0

C .................................................................. FRIT 20

C FRIT 30

C SUBROUTINE FORIT FRIT 40

C FRIT 50

C PURPOSE FRIT 60

C FOURIER ANALYSIS OF A PERIODICALLY TABULATED FUNCTION. FRIT 70

C CO_IPUTES THE COEFFICIENTS OF THE DESIRED NUMBER OF TERMS FRIT 80

C IN THE FOURIER SERIES F(X)=A(0)+SUM(A(K)COS KX+B(K)SIN KX) FRIT 90
C IJHERE K--I,2,...,M TO APPROXIMATE A GIVEN SET OF FRIT I00

C PERIODICALLY TABULATED VALUES OF A FUNCTION. FRIT II0

C FRIT 120

C USAGE FRIT 130

C CALL FORIT(FNT,N,M,A,B,IER) FRIT 140



C FRIT 150

C DESCRIPTION OF PARAHETERS FRIT 160

C FNT-VECTOR OF TABULATED FUNCTION VALUES OF LENGTH 2N+I FRIT 170

C N -DEFINES THE INTERVAL SUCH THAT 2N+I POINTS ARE TAKEN FRIT 180

C OVER THE INTERVAL (0,2PI). THE SPACING IS TIIUS 2PI/2N+[ FRIT 190

C M -MAXIMUM ORDER OF IIARMONICS TO BE FITTED FRIT 200

C A -RESULTANT VECTOR OF FOURIER COSINE COEFFICIENTS OF FRIT 210

C LENGTfl M+I FRIT 220

C A SUB O, A SUB I,.-., A SUB M FRIT 230

C B -RESULTANT VECTOR OF FOURIER SINE COEFFICIENTS OF FRIT 240

C LENGTH M+I FRIT 250

C B SUB 0, B SUB I,..., B SUB M FRIT 260

C IER-RESULTANT ERROR CODE WHERE FRIT 270

C IER=0 NO ERROR FRIT 280

C IER..I N NOT GREATER OR EQUAL TO M FRIT 290

C IER=2 M LESS THAN 0 FRIT 300

C FRIT 310

C REMARKS FRIT 320

C H MUST BE GREATER THAN OR EQUAL TO ZERO FRIT 330

C N MUST BE GREATER THAN OR EQUAL TO _ FRIT 340

C THE FIRST ELEMENT OF VECTOR B IS ZERO IN ALL CASES FRIT 350

C FRIT 360

C SUBROUTINES AND FUNCTION SUBPROGRAHS REQUIRED FRIT 370

C NONE FRIT 380

C FRIT 390

C METJlOD FRIT 400

C USES RECURSIVE TECHNIQUE DESCRIBED IN A. RALSTON, H. WILF, FRIT 410

C °MATHEMATICAL METHODS FOR DIGITAL COMPUTERS', JOHN WILEY FRIT 420

C AND SONS, NEW YORK, 1960, CIIAPTER 24. THE METHOD OF INDEXINGFRIT 430

C THROUGII THE PROCEDURE HAS BEEN MODIFIED TO SIMPLIFY THE FRIT 440

C CO_IPUTATION • FRIT 450

C FRIT 460

C .................................................................. FRIT 470

C FRIT 480

IMPLICIT REAL*8 (A-If,O-Z)
DIHENSION A(20),B(20) FNT(391) FRIT 500 cot.n



bo
Oo
O_

C FRIT 510

C CHECK FOR PARAMETER ERRORS FRIT 520

C FRIT 530

IER=O FRIT 540

20 IF(M) 30,40,40 FRIT 550

30 IER.,2 FRIT 560

RETURN FRIT 570

40 IF(M-N) 60,60,50 FRIT 580

50 IER.=I FRIT 590

RETURN FRIT 600

C FRIT 610

C COHPUTE AND PRESET CONSTANTS FRIT 620

C FRIT 630

60 AN=N FRIT 640

COEFa2- O/(2- O*AN+I •0) FRIT 650

CONST=,3. 141593"COEF FRIT 660

S I='DSIN (CONST) FRIIr 670
CI.,DCOS(CONST) FRIT 680

C,,I .0 FRIT 690

S=O.0 FRIT 700

J=l FRIT 710

FNTZ=FNT(1) FRIT 720

70 U2,.O.O FRIT 730

UI=O.0 FRIT 740

I=2*N+I FRIT 750

C FRIT 760

C FOR_[ FOURIER COEFFICIENTS RECURSIVELY FRIT 770

C FRIT 780

75 U0.,FNT(1)+2.0*C*UI-U2 FRIT 790

U2=UI FRIT 800

U I,=U0 FRIT 810

I=,I-I FRIT 820

IF(l-1) 80,80,75 FRIT 830

80 A(J)=.COEF*(FNTZ+C*UI-U2) FRIT 840

B (J)_=COEF*S #_U1 FRIT 850

IF(J-(H+I)) 90,100,100 FRIT 860



90 Q,,CI*C-SI*S FRIT 870
S,,C I_S+S I_C FRIT 880

C=Q FRIT 890
J_J+l FRIT 900

GO TO 70 FRIT 910

100 A(1)=A(1)_0.5 FRIT 920
RETURN FRIT 930

END FRIT 94O

t,J
00
"-4
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