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SUMMARY

This paper presents a numerical method and the results of a computer program

for solving an exact, three-dimensional, full-potential equation that models rotat-

ing and nonrotating inviscid, absolutely irrotational, homentropic flows. Besides

calculating the flows through an arbitrarily shaped rotor or stator blade row

mounted on an axisymmetric hub and confined in an axisytmnetric duct, the computer

program is also capable of analysing flow fields about arbitrarily shaped wing-body

combinations, propellers, helicopter rotors in hover, and wind turbine rotors. The

governing equation is solved numerically in a fully conservative form by using an

artificial time concept, a firite volume technique, rotated type-dependent differ-

encing, successive line overrelaxation, and sequential bounds ry-canforming grid

refinement. An artificial viscosity is added in fully conservative form; and an

initial guess for the potential field is applied, as determined by a two-dimensional

cascade analysis.

INTRODUCTION

This work is based on the principles used in external transonic aerodynamics

(Jameson, 1974; Caughey and Jameson, 1971) and represents an extension of the

author's doctoral research in the field of potential, transonic turbomachinery flows

(Dulikravich, 1979).

In axial turbomachinery the pressure ratio across a stage can be substantially

increased by operating in the transonic speed regime. Analyses of these possibly

shocked flows should account for their full nonlinearity (Rae, 1976). The simplest

mathematical model that describes such flows exactly is the so-called full-potential

equation. This equation can be obtained for rotating or stationary turbomachinery

geometries from the following analysis.

ANALYSIS

The relative courdinate system ( x,y,z) is attached for a rotor (fig. 1) which

rotates at the constant angular speed I 12I about the x axis. The free stream ad-

vances along the same axis at the constant speed U_	 Let

V t u 10 +v^ +we	 y a	 (1)
r	 r x	 r y	 r z	 r s

he the relative velocity vector of the fluid with respect to the blade, and let the

absolute velocity vector be defined as
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Then the sum of the inertia, centripetal, Coriolis, and pressure forces can se ex-

pre-seed in the form (	 1952)

Vr x (a x V) - VI - TIM	 (3)

Here T is the absolute static temperature, S is the entropy, and rothalpy is de-

fined as

I h + (Vr - Vr - 112r2^j2 H - (A x r) V	 (4)

where h is the static enthalpy and H is the total enthalpy.

The entire flow field can be described with a single potential function

1P(x,y,z) defined as

VFW	 (5)

if the condition of irrotationality of the absolute velocity vector is satisfied.

This requires that VI - 0 and ;S - 0 simultaneously everywhere, or that ;I - ^S.

Consequently there should be no heat transfer between the fluid and solid surfaces,

the flow should not separate, and all possible shock waves should be•weak. As al-

ready shown (Coradonna and Isom, 1972; Dulikravich, 1979), the continuity equation

v • (PVr) - 0	 (6)

can be written in its full-potential vector operator fors

a217q) - FV	 (``m - W)/2 + 2 F	 (n x r) W)

- ( (S l x r) - ;5) ((S l x r) . W) - 0	 (7)

where a is the local speed of sound. The canonical form (Dulikravich and Caughey,

1980) of equation (7) is

a2,729 - q^	 0	 (8)r as 

where s is the relative streamline direction (fig. 1). One can consider this

second-order, quasi-linear, partial differential equation to be the stecdy-state

limit of the more general (Garabedian, 1956; Jameson, 1974; Dulikravich, 1979) arti-

ficial, time-dependent equation expressed in a form suitable for the type-dependent,

finite difference discretization

(
a2 - g r)()Hss - 

q)Eas) 
+ (a2V2TE - 

g2TEss) + (2cLlCP,st + 2a'2
(P
,mt + 2a34+

,nt + e",t - 0

(9)

Here the superscript H designates upstream differencing (used only in the regions

of locally supersonic relative flow for the purpose of numerically approximating the

proper domain of dependence), and the superscript E designates central

differencing; t is the artificial time; and the (n,m) plane is locally orthogonal

to the relative streamline direction (s coordinate). Equation (9) is iteratively

solved by using a successive line overrelaxation technique where the iterative

sweeps through the flow field are considered as successive intervals in the artifi-

cial time direction. The mixed space-time derivatives are obtained by using a fi-
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nite difference mixture of old, temporary, and new values of <P obtained in the

iterative sweeping process (Jameson, 1976; Dulikravich, 1979).

In order of obtain a finite difference evaluation of the derivatives, the flow

field geometry, the governing equations, and the boundary conditions are transformed

from the physical apace (tig. 1) into a parallelepiped-shaped computational space

(fig. 2). The periodic flow domain about a single arbitrarily shaped blade mounted

on an axisymmetric hub and confined in an axisymmetric duct is discretized by a num-

ber of intermediate axisymmetric surfaces (Dulikravich, 198Ua). Every two-

dimensional periodic surface with the blade intersection contour in the middle is

then transformed (fig. 3) into a rectangular plane by using conformal mapping

(Dulikravich, 1979), elliptic polar coordinates, and coordinate stretchings and

shearings. The uniform grid in the (X,Y) computational plane thus remaps back into

a periodic body-conforming, quasi-orthogonal grid in the physical space (fig. 4).

Each distorted, three-dimensional grid cell is mapped into a unit cube by using tri-

linear, isoparametric local mapping functions (Jameson and Caughey, 1977) of the form

8

b 
8	

bP(1 + Ri
p
 )(1 + YYp)(1 + HP )	 (10)

P=

where the subscript p refers to the value at the cube's corner; that is,

X = tl	 Y	 tl	 Z = tl	 (11)
P	 P	 P

and b stands for any of the following: x,y,z, or (P.

In order to use the finite volume technique as defined by Caughey and Jameson

(1977), equation (8) has to be expressed in terms of the computational (X,Y,Z) coor-

dinates (fig. 2). If the geometric transformation is defined as

[JJ ' M x,y,z)/6(X,Y,Z) and D is a determinant of 1JJ, the modified contravariant

components of the relative velocity vector are

[UrVrWr J T = D[J1 -1
[urvrwr J T
	(12)

If [BJ = ► J]-1[JTJ-1, the steady part of equation (9) can be written in the

following matrix form:

(r ^\(a^ - qr) /(Dgr))[UrVrWr1[7XYZq',s^T+ e2(vX?Z J[B]LVXY,m1T

- (1 /Dgr )[UrVrWr J[ VXYZp ,B
j T) - 0	 (13)

where

[UTVTWrI = D[J) -l [o n= _ayJ T + D[BJ[7xrzq'JT	 (14)

and

T,s = (1/Dgr )[UrVrWr JI7gYZ
q)	 (15)

Equation (b), which is actually equation (8) multiplied by p/a2 , transforms into

(pur)
.X \

+ (ovr\ 
.Y	 \	 //

+ (pWr l ' 0	 (16)
,2

The boundary conditions in the computational space are the following: On the hub

surface W r ' 0, on the blade surface V  - 0, and on the duct surface
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W 	 P1 ((s.Xx,Y - 
x
,X

s
,Y) s 

- 
(x,XY,Y Y,Xx,y)Y)	

(17)

The periodic boundary condition applied on the surfaces A'A"B'S" (fig. 1) is

m(X + b,O,Z) _ CP(X - b,O,Z), where b < x. If the absolute enthalpy of the fluid

at upstream infinity is constant, it follows from equation (4) that the most general

flow kinematics at upstream infinity can be expressed as ^ . - U-p 
Ix 

+ (C./r)

The blade trailing edge is enforced to be a stagnation line. The finite dis-

continuity in the velocity potential at the trailing edge i Vqual to the circula-

tion P(r) of the velocity field. This discontinuity (i.e., no jump in static

pressure) is enforced at every point of an arbitrarily shaped vortex sheet (surface

D'E'D"E" in fig. 2) after each iterative sweep through the flow field.

RESULTS

A computer program has been developed on the basis of a previous analysis

(Dulikravich, 1980e). This program uses a potential field generated by a two-

dimensional cascade analysis as an initial guess for the three-dimensional potential

field calculations (Dulikravich, 1980c). The iterative convergence rate is accel-

erated by using a three-level consecutive, grid refinement sequence.

The program was tested for two speed regimes. The first test case was a sub-

sonic free mtor of a propeller-type, IOU-kW wind turbine, the NASA Mod-0 type

(Dulikravich, 1980b and 19804). Numerical results showing chordwise distribution of

the relative Mach number at the tip section are presented in figure 5. Because of

the lack of available published results for three-dimensional, transonic rotor cal-

culations, we decided to test an atypical ducted rotor having eight nontwisted, non-

tapered blades mounted on a doubly infinite cylindrical hub with a hub-tip radius

ratio rh/rt of 0.85. The blades were composed of NACA 0012 airfoil sections

and had a constant twist (or setting) angle of 40 and a relative chord length

r 	 of 0.1. Numerical results c.btained at a tip section for 	 120 rpm,

(Mx) •
	

0. 7458, (p t )	 = lb N/cml , and (T t ) - = 325 K are shown in figure b.

Insufficient sharpneax of the isentropic shock developing on the suction surface is

due to the relatively coarse grid used and the low number of iteration cycles.

CONCLUSIONS

A general computer program has been developed for fast and ace irate, fully con-

servative finite volume calculations of the full-potential equation for transonic.

steady, three-dimensional, potential rotating and nonrotating flows. As a part of

the program, three-level, refined, boundary-conforming grids are generated for arbi-

t-arily shaped cascades of blades mounted on an axisymmetric hub and confined in an

axisymmetric duct. The program uses results of the two-dimensional cascade flow

calculations as an initial guess for the three-dimensional iterative procedure.
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Artificial viscosity was added in conservative form, and this assures the correct

strength and position of the captured isentropic shocks.

*National Research Council - National Aeronautics and Space Administration
Research Associate.
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Figure L - Physical space.

Figure 2. - Computational space.
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Figure I - Geometric transformation sequence, where TE denotes

trailing edge and LE denotes loading edge.

Figure 4 - Computational mesh in physical space ix, y. z).
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Figure 5. - Subsonic rotor.
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Figure 6. - Transonic rotor.
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