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1.0 SUMMARY

Three types of navigation onorbit numerical integrators were evaluated, and the
following results were obtained:

Power integrators with no delta-V incorporation, just coasting; i.e., using
Taylor series expansion integrators

(1)

(2)
(3)

Super G is slightly better than average G for step sizes of 2 and 4
seconds. (A 1200-meter error for delta-T = 4 seconds after 10 revolu-
tions (revs)). Super G is marginal for delta-T = 15 seconds. Neither
are adequate for delta-T > 30 seconds.

Spiffy G shows no improvement over super G.
Super G4 (third order) has slight improvement over super G or spiffy G

at steps of 2 and 4 seconds, but is inferior to them for <Zelta-T > 15
seconds.

Coasting integrators using the Cowell method of special perturbations

(1)

(2)

(3)

(4)

With the exception of Runge-Kutta third order, all third-order (RK or
Nystrom) integrators performed rather poorly for delta-T > 15 seconds.
The RK3 is a remarkable exception, and it competes favorably with
fourth-order integrators with delta-T up to 60 seconds. (The RK3 error
is less than 1000 meters for delta-T = 60 seconds and 10 revs).

The fourth-order Nystrom integrators performed as well, or slightly
better than the RK's but they are a little slower to exectte. The
Nystrom 4 with Lear's coefficients ((ref. 1) - NLXDU/4) [ .rformed
better than all other Nystrom integrators.

All fourth order integratoi's at delta-T = 2 seconds had a 0.1-meter or
less error when compared to the KS (ref. 2) reference integrator.

In general, RKY integrators perform adequately for up to AT = 60 sec-
onds and 10 revs with errors less than 1200 meters except for RK.42.
Degradation occurs rapidly beyond that AT with the exception of

RKLY41 (ref. 1), which ic adequate for up to 120-second time steps.

Coasting integrator using the Pines variation of parameter perturbation
method.

(n

(2)

The Pines formulation with RKGY (the standard predictor for onorbit nav-
igation, ref. 3) performs excellent for up to 5-minute (300 seconds)
time steps (error less than 200 meters for delta-T = 5 minutes and 10
revs). The 10-minute time steps may be considered.

The Pines method used more core and executes slower than the Cowell

method for a single step. However, for certain applications where
longer time steps are permitted, this method is more time efficient.
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2.0 INTRODUCTION

This document presents results for using the three onorbit navigation integrators
in the onboard software: (a) average G for user parameter propagator (UPP), (b)
super G for the onorbit navigation state propagation function, (¢) Pines/RKG for
the onorbit state prediction function, and (d) other potentially useful Runge-
Kuttz and Nystrom integrators for onorbit navigation where an analysis task was
performed with typical Shuttle orbits (i.e., 100- to 300-n. mi. altitude and
small eccentricities).

The acceleration function for a simulated force model (app. E) included a cen-
tral force field, J2 gravity terms, and a drag perturbation (ref. ). These
were programed into a Hewlett Packard HP9825 desktop calculator (12-digit ma-
chine; no double precision). Gravity up to 4x4 (fourth degree-fourth order) was
also investigated by CSDL, and its results are included here for completeness.

All cases were run for approximately 10 revs or until pos:tion error (RSS) was
greater than 100 kilometers.

Integrator step sizes considered were 2, 4, 15, 30, 60, 150, 300, and 600
seconds.

The following integraﬁors were considered in this analysis for total accelera-
tion integration (ref. 1):

a. Series expansion integrators for powered flight:

(1) Average G - second order

(2) Super G - second order (app. A)

(3) Spiffy G - second order (app. A)

(4) Super G4 - third order (app. A)
b. The RK/NYSTROM integrators using the Cowell method for coasting flight:

(5) RK3 - standard Runge-Kutta third order

(6) RKL3 - Lear's coefficient for RK3

(7) NLXD4/3 - Nystrom-Lear coefficient for NXD4/3

(8) NXD4/3 - Nystrom third order

(9) RKG4 - Runge-Kutta-Gill fourth order

(10) RKLY41 - Runge-Kutta-Lear fourth order

{(11) RKL4Z2 - Runge-Kuiti-Lear fourth order

(12) RKY4 - standard Runge-Kutta fourth order
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(13) NLXD4/4 - Nystrom-Lear coefficient fourth order
(14) NXD4/4 - Nystrom fourth order

¢. The following variation of parameters for special perturbation was examined
for the coasting flight:

(15) Pines/RKGH (ref. 3)

Three integrator initial conditions (IC) were used for this analysis and are
listed in table I. The positions and velocities (in kilometers and km/sec)
listed constitute the state vector at time = zero second. After approximately
10 revolutions (t = 54000 seconds), the state vector propagated by the reference
integrator - a KS (Kustannheimo-Stieffel) formulation (ref. 2) with Runge-Kutta
45 integrator (table I) was compared with the tested integrator. The position
difference was RSS (root sum squared) to determine an integrator error for the
varis;: %ntegrator steps attempted. The position errors are listed in tables II
thro .

Integrators (2) and (15) (super G and Pines/RKG) were also tested by Charles
Stark Draper Laboratory (CSDL) personnel in the HAL code environment (ref. 5).
The CSDL results basically duplicated the results of tables II to V. In addi-
tion, reference 5 provides actual execution time for AP101 (Shuttle onboard
computer) in extended precision for 1, 5, and 10 revolutions (revs) of propaga-
tion for various step sizes. Some of the data in reference 5 are duplicated in
this report.

3.0 ANALYSIS RESULTS

3.1 CASE 1 DATA

For case 1, all 15 integrators were ini isiized with IC#1 and allowed to run for
approximately 10 revs (54 000 seconds) with state vectors printed at 10-minute
increments. Only J2 gravity perturbation was included in the functional evalua-
tion call to the acceleration function. (Drag was used in case U only.) IC#1,
which is a 146-n. mi. circular orbit inclined at 30° with the equator, was used
as the basic orbit to screen out integrator performance. The integrators that
performed well in this environment were further evaluated in cases 2, 3, and 4.

To quickly assess integrator performance, the energy and percent delta energy
equations were programed. Although no energy data are presented in this re-
port, it was found that with these parameters, coding errors were detected much
sooner than by the normal differencing of state vectors along the reference
trajectory. The initial orbit energy Eb was printed at the beginning of the
run and subsequently, delta energy A& was printed. For conservative orbits;
i.e., no drag or self-induced satellite accelerations like uncoupled RCS thrust,
the delta energy must be zero along the trajectory: i.e., energy is conserved.
(This is a necessary but insufficient condition that indicates to the user that
orbit errors are probably not being introduced by the integrat.on scheme
selected.) It was found that with 1 digits of delta energy printed, integrator
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induced errors in the orbit are detected much soomer (in 10 or 20 steps) than
they would by differencing the reference state vector with the tested integrator
state vector. Therefore, integrator errors could be detected within a few

time steps rather than after a rev of data.

The following formulas were used for energy and delta energy:

3

- 2

L 5 HKjRe
X32 1
A - A( —— - _--)
R 333
ve
n

2 = e = =l
% R 2
a Ei - &

s
)
where

A
Ei = orbit energy at time = tj

A
€, = 1initial orbit energy at time = 0

& 2
B = Earth gravitational constant = 398601.0 km3 /sec

A
R = satellite position vector magnitude, km

A
V = satellite velocity vector magnitude, km/sec
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(]

potential function
A
A = J2 perturbation constant

A
Xy, X5, x3 = inertial components of satellite position vector,

X, along Earth's equator, x3 along Earth's North Pole

J2 potential constant = 1.08265 x 10-3

L
e
"

Earth's radius = 6371.22 km

(]
"

Ag; = delta energy from time = 0

Table II shows that the average G integrator performs adegquately for steps up to
4 seconds and then degrades rapidly. Super G performs slightly beiter and is ef-
fective up to 15-second step sizes before collapsing. Spiffy G (app. A)
performs almost identically to super G in all cases. As mentioned in section
1.0, a 1200 meter error (fig. 1) was noted for super G after 10 revs of propaga-
tion for U-second time steps.

Super GU, developed in appendix A (ref. 6) performed quite well up to 4-second
step sizes but degraded quickly for higher steps and was not evaluated further.

The fourth-order Runge-Kuttas used a common fourth-order RK algorithm and only
the coefficients were changed for each integrator. FPFunctional flow charts for
the third- and fourth-order Runge-Kutta and Nystrom integrators are given in
appendixes B and C. All coefficients were obtained from reference 1 and are
listed in appendix D.

The functional evaluation subroutine was obtained from reference 7 and is shown
in the appendix E flow chart. This flow chart was used by integrators to deter-
mine the acceleration vector. Note that only central force field, J2, and drag
is used.

All fourth-order Runge Kutta integrators (RKGY4, RKLY41, RKL42, and RKY) performed
quite well with delta steps up to 60 seconds. The RKL41, a Runge-Kutta
integrator with Lear's first set of coefficients performed quite well with delta
steps up to 150 seconds.
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Two third-order Runge-Kutta integrators were tested (a standard RK3 and RKL3
that used the Lear coefficients). The RK3 performed exceptionally well for a
third-order integrator and, in fact, performed almost as well or better than the
fourth-order Runge-Kutta integrator for delta-T < 60 seconds. The RKL3 did not
perform well.

Two fourth-order Nystrom integrators were tested: the NLXD: and the NXD4. Tk-
NLXD4, which used the Lear coefficients, performed slightly better than the st
dard Nystrom NXD4. In general, the Nystrom integrators performed at least as
well as the RK's. However, the algorithm took slightly more time to execute be-
cause of the extra calculations required in the Nystrom algorithm.

Two third-order Nystrom integrators were tested, and as shown in table II, they
performed rather poorly and were quickly discarded (NXD3 and NLXD3).

The last integrator tested was the fourth-order Runge-Kutta-Gill (RKG4) using
the Pines variation of parameters formulation technique. The code was obtained
directly from the onorbit navigation FSSR (ref. 3). As shown in table II, this
formulation and integrator combination performed exceptionally well up to 10-
minute steps. However, the Pines code is more complex than Cowell's formula~
tion, and as shown in table VI, it does take about five times longer to execute.

Table VI lists the relative time it took for the various algorithms to perform
*n the HP9825 environment (a fairly accurate but somewhat slow desktop calcula-
tor when compared with a typical powerful and much faster machin2 such as the
UNIVAC 1108). It should be noted that the algorithms coded were genaral purpose
and inefficient, specifically in terms of execution time because if a coeffi-
cient of zero were encountered, the algorithm operation was still performed. In
any case, this table clearly shows that Pines/RKG is not only the most accurate
method but also the slowest method tested for a single step. More or less the
same relative execution timing data were observed in reference 5 and are
reproduced elsewhere in this report.

3.2 CHSE 2 DATA

For case 2, the initial condition IC#2 represented a Skylab reboos  rendezvous
orbit after the terminal phase finalization (TPF) maneuver. To conserve com-
puter time, some of the small delta step runs were deleted. It was assumed that
the trend to higher accuracy for smaller time steps had been established in the
case 1 results. Only the average G, super G, spiffy G, RKGU, RKL41, RK3, and
the NLXD4 integrators of case 1 were tested for this case.

Results for case 2 were basically the same as for case 1 and are tabulated in
table III.
3.3 CASE 3 DATA

Case 3 results are listed in table IV. The IC#3 represented a Skylab insertion
orbit of 100 n. mi. circular. Because drag is significant at this altitude, the
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integrators of case 2 were tested with the drag perturbation of reference 4 (a
simplified atmospheric model) in the acceleration function.

The accuracy results for case 3 were very similar to those of cases 1 and 2.

This seems to indicate that drag, if modeled properly in the acceleration func-
tional evaluation used by the integrator, will present no difficulty to the Inte-
gration scheme used. However, it was noted immediately that the orbit energy

and delta energy computations were being affected by the slight acceleration
produced by the drag. Therefore, if drag or some other nonconservative force

are included in the acceleration model, the value of the energy check in
evaluating integrator performance is lost.

3.4 CASE 4 DATA

Cas2 4 results are given in table V. In essence, this case is ident.~ i to cage
3 except that no drag was included in the evaluation of the acceleration. .ome
runs with super G4 and Pines/RK6 were added to get more data for this integra-
tor. As with previous cases, the accuracy results were very similar to the
other cases. The integrator error differences between cases 3 and 4 (i.e., drag
versus no Jdrag) were very minimal. However, the actual position differences
after 10 revs were about 30 kilometers (for constant Shuttle surface area) due
to the drag.

3.5 CSDL RESULTS

To obtain some performance data for OPS-2 state propagators in HAL code running
in AP101 extended precision, CSDL used IC#1 and IC#2 and propagated them for 10
revs for both the super G and Pines/RKG integrators at various integruator step
sizes in their AP101 simulation.

Since the onboard flight code was to be used for this analysis, it was decided
that an existing ENCKE-Nystrom formulation would be used as a real world refer-
ence test case. This formulation consists of a full double precision with a
fourth-order/degree gravity model and an integration step size of 3C seconds.
(This was later changed to an 8 degree/order gravity model to determine the dif-
ferences between a 4/4 and 8/8 gravity). Results are given in reference

5 and they can be summarized as follows:

a. For J2 only (gravity = 2 order, zero degree), which is what the HP9825 pro-
gram was formulated to, the differences between the super G and RKG/Pines
were about 1000 meters - basically the same as tables II and V. Reference 5
results can be summarized in table VII. (They can be computed by
differencing cases: super G6 and PRKGS5; super G6' and PRKG5'.) This same
integrator difference is basically observed for cases usi..g higher fidelity
gravity models: i.e., super G1 and PRKG1; super G5 and PRKG3; super G5 and
PRKG4; and the similar primed cases.

b. Table VII shows that the Pines/RKG, using a 3-minute step size (predictor
type operation), performs almost the same as for the l-minute step size.
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4.0 “ONCLUSIONS AND RECOMMENDATIONS

7.

The super G integrator is a very simple and effective integrator for 2- and
4-second time steps. Since IMJ delta-V data can be easily incorporated in
the integration scheme, its use as the standard onorbit navigation
propagator for the maintenance of the current state has been implemented in
the onboard navigation software.

The Pines variation-of-parameters formulation method with a Runge-Kutta-Gill
(RKG) fourth-order integrator method pro--ices excellent results up to 300-
second time steps. Onorbit prediction w..h this method (3- to S5-minute time
steps) has been implemented in the onboard onorbit navigation scheme.

The Runge-Kutta third order {ref. 1), using Cowell's method, is an excellent
general purpose orbit determination integrator for iime steps up to a 60-
second duration.
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TABLE I.- INTEGRATOR INITIAL CONDITIONS
Param Unit Case 1 Case 2 Case 3 Case 4
to = 0.0
X, lm 6 649.02 -3 972.220046 -4 192.451762 -4 192.451762
Y, ke 0 -1 892.121621 4 777.3425M1 4 T77.342541
Z, 0 -5 000.635973 1 636.711626 1 636.711626
X, = 0 5.393527408  -4.85227183  -4.35227183
Y, km/sec 6.705343087  -6.262423238  -2.327477093  -2.327477093
2, lm/sec 3.871331637  -1.112883779  -5.64056083  -5.64056083
Hy m 284.08 185.05 185.05
Hp 269.85 181.38 181.38
i deg 30° 49.86° 49.93° 49.93°
Final position @ tg = 54 000 sec

W/0 drag W/0 drag W drag W/0 drag
Ap km 6 507.6213 -4 068.7385 -4 955.392 -4 968.7873
Y¢ lm 1 027.5009 -1 666.3453 - 543.481 - 519.5312
Zpg ko 895.9049 -5 003.6163 -4 263.2106 -4 211.5175
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TABLE II.- CASE 1 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS

[No drag; 1 = 30°]

TIPM25

Delta-T
Integrator 2 sec 4 sec 15 sec 30 sec 60 sec 150 sec 300 sec 600 sec
AVE G 759 3035 42 687 170 682 681 716
SUPER G 332.2 1.161.1 3 360.8 57 526 228 962
SPIFFY G 332.5 1 161.2 3 360.8 57 526 228 962
SUPER GY 22.9 37.2 8 857.3 70 776 563 902
RKG4 .1 1.1 16.3 227 .1 4 558.5 92 327.1
RKLH#1 . .1 .8 7 1358.3 50 861
RKLY2 1 .1 10.5 244.5 6 326 515 726
RKY4 .1 . 1.8 43.5 1 159.7 100 114
RK3 i .3 9.8 66.9 164.2 84 411.7
RKL3 21.3 169.6 8 939.8 71 545.3
NLXD4 . B 1.0 31.7 3 121.6 103 271
NXDY . 2.0 34.8 672.1 39 134.4
NLXD3 150.7 918.6 17 747 .1 82 921.5
NXD3 390.7 2 406.8 48 173.5 233 569
PINES-RKGY .1 .1 1 1.70 33.4 683.9
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TABLE III.- CASE 2 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS

T9FM25

No drag; i = 49.8°

Skylab TPF

Hy = 153.4 n. mi.

Hp = 145.7 n. mi.

‘Delta-T

Integrator 2 sec 4 sec 15 sec 30 sec 60 sec 150 sec 300 sec
AVE G 752.3 3 009.4 42 312 169 187 675 543
SUPER G 328.7 1 149.7 3 434.9 55 915 783 477
SPIFFY G 3 434.9 55 915 783 U477
RKGY4 .1 1.0 16.0 223.3 4 500.5 89 065.1
RKL41 1 .8 2.2 1 228.4 47 179
RK3 .5 10.8 751.0 91 251
NLXD4 .1 1.0 30.9 3 041.6 1060 600




TABLE IV.- CASE 3 INTEGRATOR POSITION ERROR AF7ER 10 REVS, METERS

Skylab insertion

With drag; i = “9,93°]
100-n. mi. circular

T9FM25

Integrator 2 sec 4 sec 15 sec 30 sec 60 sec 150 sec
AVE G 782.9 3 133.4 4y 064 176 119

SUPER G 344.0 1 215.4 3 oly,3 64 646 878 152

SPIFFY G 349.5 1 216.3 3 044.2 64 659 878 232

RKGY 1 1.1 15.4 209.0 3 526.5
RKL41 . .1 .8 .7 1 487
RK3 . 3.9 14.8 ”37.6 103 727
NLXDY A A 1.2 35.6 3 501.4

300 sec

126 550
54 573

115 984

—
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TABLE v.~ CASE 4 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS

No drag; i = 49.93°
Skylab insertion
100-n. mi. ecircular

Integra.or 2 sec U sec 15 sec 30 sec 60 sec 150 sec 300 sec 600 sec 1200 sec
AVE G 774.9 3 100.1 43 591 174 299 695 897

SUPER G 347.3 1 207.9 3 016.8 64 267.8 871 275

SPIFFY G 347.2 1 208.0 3 016.8 64 267.8 871 275

SUPER G4 48.1 269.1

RKGY . 1.1 17.1 237.7 & 427.6 116 140

RKLU1 | .2 b 7.3 1.775.3 59 263

RK3 .1 3.7 14.3 T44.7 103 285

NLXD4 A 0 1.0 35.2 3 478.7 115 263

PINES-RKGY n .2 .1 .1 5.4 122.7 1 247.7 42 TU9




TABLE VI.- INTEGRATOR RELATIVE TIMING DATA FOR

hP9825 EXECUTION TIME

Integrator
(a)
Average G
Super G
Spiffy G
Super GY

RK3
RKL3
NLXDU/3
NXDU4 /3
RKGH
RKL41
RKLU2
RKY
NLXDU /4
NXD4

Pines

Order

Approximate time,
step/sec

)]

0.293
.320
.327
.643¢
493
.493
.527
.527
.693
.693
.693
693
.720
.720

3.375

aNonoptimum code could be reduced significantly
for some, especially super Gi.

bIncluding F evaluation J2; no drag.

Clnefficient coding by programer.

14
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TABLE VII.- CSDL RESULTS

Case Time, Gravity Model IC Total position error,ft
no. ‘step/sec deg order no. Integrator 1 rev 5 revs 10 revs
1 4 2 0 1 Super G 2588 13 650 35 358
3 y 2 0 2 Super G 2593 6 064 20 807
2 i ] 4 1 Super G u79 2182 3 814
y y ] y 2 Super G 475 2 156 371
2A 8 4 4 1 Super G 1875 7 623 10 836
4a 8 ] 4 2 Super G 1856 7 545 10 761
5 60 2 0 1 Pines-RKG 2134 11 634 32 000
8 60 2 0 2 Pines-RKG 2137 4 096 17 T4
6 60 ] y 1 Pines-RKG 5 160 556
9 60 4 4 2 Pines-RKG 9.5 161 609
7 180 ) y 1 Pines-RKG 19 185 540
10 180 y y 2 Pines-RKG 33 415 1 499
6A 60 ) 2 1 Pines-RKG 473 1 602 10 204
9A 60 4 2 2 Pines~RKG 2655 8 248 21 888
6B 60 2 2 1 Pines-RKG 390 2 751 13 322
9B 60 2 2 2 Pines-RKG 2126 5 544 16 543
2' 4 y 2 1 Super G 156 3 469 13 383
by 4 4 2 2 Super G 3117 10 193 25 060

Note: Truth model for above data used an Encke-Nystrom formulation in full
double precision with a fourth-order and degree gravity model and an
integration step size of 30 seconds.

15
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TABLE VII.- CSDL RESULTS (Concluded)

Case Time, Gravity Model IC Total position error,ft
no. step/sec deg order no. Integrator 1 rev 5 revs 10 revs

2" 4 2 2 1 Super G y13 4 698 16 424
yo 4 2 2 2 Super G 2592 7559 19 780
2A° 8 4 2 1 Super G 1430 8 844 20 402
4pr 8 ] 2 2 Super G uu9y 15 575 32 043

Note: Truth model for above data used an Encke-Nystrom formulation in full
double precision with a fourth-order and degree gravity model and an
integration step size of 30 seconds.

16
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APPENDIX A

SUPER G AND SUPER G4 EQUATIONS






Super G and super G4 algorithms:
a. Compute F, = F(T,, Ry, Vo)
b. Compute Ry, V,

Ry = Ry + VDT + FDT2/2

-3
-
1]

Vo + FoDT

]
—
"

To + DT
c. Evaluate Fq = F (Tq1, Ry, Vy)

d. Update Ry, V4

Ry = Ry + VDT + FoDI$/2 + A3 °

If super G + Go to step (e)

Vi = Vg + FoDT + A3 - DT2/2
Where
A3 = (Fq - F,)/DT

e. If (Spiffy G or Super G) + Relabel

And go to (a)
f. Evaluate Fq = F (Tq, Ry, Vy)

g. Compute Ry, Vp

Ry = Ry + V;DT + FyDT2/2 + A3
DT
V2=V1+F1DT+A3°—2—
Where
37 TpT

T, = Ty + 20T

DT 3/6

Vo « V4

TO‘-T1

- pT3/6

A-3
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h. BEvaluate Fp = F (T2, Ry, V)

i. Update

J. Update
k. Update

R

Where

A3

A4

R, Vs

Vi + FyDT + A3 - DT2/2

(Fy - Fy)/DT
Fp = F (Tp, Ry, V3)

Ry, V5

Ry + VDT + F{DT/2 + A3

Vi + FyDT + A3 - DT9/2 +

(Fp - Fg)

2DT

Fp - 2Fy + F,

pT2

1. Evaluate Fp = F (Tp, Rp, Vy)

m. Relabel

R4

Fo « Fyy

“ Ra, Vy Wy, Fy<«Fy

GOTO (g)

Ry + ViDT + F{DT2/2 + A3 -

pT3/6

- D13/6 + A4
A4 - DT3/6

To« Ty

Th+ T2

- pri 2y

T9FM25



Derivative a proximations:

a. Two points (T,, F,), (Ty, Fq) Known

. . F1 = Fo
F.‘ = FO = o7 - + 0(DT)

b. Three points (T,, F,), (Ty, Fy), (T, F,) Known

F 2~ fo 0(DT2)
VE o Tt
" Fy = 2F, + F
Fpo= 2 172, o(p1?)
DT2

The errors (DT) and (DT) are due to the derivative approximations.

Further errors may be introduced due to errors in Fg,

A-5
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-1

[]
A1

CALL "ACC" (r; . . . rqa, Koy, ka5, kog)

]
)
i
'l

]
(]
! Second functional evaluation
1
]

1 []
] ]
!} For 1=1to3; kpj = r(i+9); nexti H
i ]
1 '
i For i=1to6; rli+6)=ri+ aT(rig * k1g + rqy7 * kpy) ; next i |
] ]
[] : ]
1
i '
i CALL "acC” (rq . . . rqz, k3y, k35, k3g | Third functional evaluation
1 ]
| = ]
1
! :
| For 1 =1to3; k33 =7r(i+9); nexti H
' {
i For 1= 1to6; Xj=mry+ aT(rig " kqg +Pryg * kpi +rpg k31) { next i |
[] []
] ; ]
:
/ \
/ \
No / \ Yes ! !
TCURR = | PRINT: FINAL STATE |
\ Ty / { AND STOP !
\ / ' '
\ /

Figure B1,- Concluded.
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S-8

®

| 1 1 H
| Pqq = = riy = = ric = 1 |
; 13 2 14 > 15 i
] [] [) [)
] [} [] 1
{ LOAD COEFF: rjy e s ] 1 ] H
P Tcurr = Ty 3= 13 + 25 telom-mmi P = 5 ri7 =0 rMg = 3 |
] ) ] )
i - ' : :
[ ] :
' | a riyg = 0 rog = 0 Poy = 1 ;
] ] ’
~ew-p- RKY LOOP | ! 1 1 1 !
! ! 'r 2 - r s r z - r S - !
! I ' ; 22 = ¢ 23 2l 3 25 6 =‘
] N ]
i i '
]
' ] H ]
H Teogr = T p+ aT e T ry = X, !‘2=X2 l“3=xB ! « POS
! LOAD STATE VECTOR: |wa-er~ecemen=-] !
] ! P ry = Xy rg = Xg rg = Xg i « VEL
]
i

Y

---------------- y 2 :

RK4 START

------------ eee—| LOAD: Xq = Xg; Ty; Tgi aT

S

input output
CALL "ACC" (rq . . . rg, kg, kis,) kyg)

« First functional evaluation

]
}
]
L

For

For

[
“

1 to 3

1 to b

L]
"

k13 = r{d + 3) ; next i

r(i + 6) = rg + rqg *+ aT * kyy ; next i

Figure B2.- RKM4 functional flow chart.
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[]
A

1
i

CALL "ACC" (rq . . . »y3, Koy, kpg, kpg) | + Second functional evaluation
}

3
]
'
Il

L]
-

For 1 to 3 ; ky; s r(i+9); nexti

Fr~ 4 =1t06; r(i+6)=r;+ aT(rq7 * kyy + rig * kpy) ; next i

N—

P

CALL "ACC" (R . . . ryp, k3y, k35, k3g Third functional evaluation

+

= -

For i =1to3; ki3 = r(i + 9) ; next i

For i=1to6; r{(i+6)=r;+aT(rig " xqg + rpg * kpj + rpy * k33) ; next i

[
i
]
'

CALL ™ACC" {rp . . . ryo, kyy, kys, kyg) Fourth functional evaluation

+

For 1

"t
-

to 3 ; kyi = r(i+9) ; nexti

For i=1to6; Xj-ry+ aT(rp " ki +rp3° kpj +roy * K3j +ro * kyg) ; next i

7\
/N
No / \ Yes | ]
ﬂ /TCURR =\—ames PRINT: FINAL STATE VECTOR |
A i AND STOP I
\ !
N/
N/

Figure B2.- Concluded. tage 2 of 2.
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r-2

)

]
'
A

CALL "ACC™

-——— - ——

input output
{rq7 . . . P12, K21, k22, k23)

1
'
1
A

+ Second functional evaluation

]
1
i For i=1to3; r(i+6)=mri+ry AT @ r(i+3)« ATE(P17 * kyg + rig " koy)
1
]
i r{i + 9) = r(i + 3) + 8T(rp7 * kyy + rpg * koi) ; next i
' !
4
i ]
i CALL "ACC" (r7 . . . ryz, k37, k32, k33) i « Third functional evaluation
] ]
) ]

b -

For 1 =

"
-

to 3 ;

r(i « 6)
r(i + 9)

ry +ri5 AT » r(i+3) + ATZ(P19 * kyg + rpg ¢ kg + rpq ¢ kig)

r(i + 3) + 8T(rpg * kyy + r3p * k2g + r3s * k3g) ; next i

(]
]
)
A

CALL "aAcCC"

(r7 .

< - T120 Kypy Kyz, ky3)

e -

+« Fourth functional evaluation

For 1 = 1

Y(i+ 3)

to3; Xy =ry + 48T r(i + 3) + ATz(rzz © kg + ra3 ° koy + roy k31 +r k“i)

-
=

r(i+ 3) + 8T(r3p * kqg + r33 * kpg + ray * k3g + r3s * kyi) ; next i

/ N\
/ \
No /

f
\

N/
N/

\ Yes
— (Tcgnn A V|

/

/

P
A

RINT:FINAL STATE VECTOR
ND STOP

Figuwe C1.- Concluded. Page 2 of 2.
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INTEGRATOR COEFFICIENTS






QINTIA LON MNVIZ 3OVJ ONIQIOTAJ

TABLE D1.- INTEGRATOR COEFFICIENTS

TIFM25

I‘13

riy

P]S

ris
r7
ri8
rg

r20

RK3

1/3

2/3

/3

2/3

174

3/4

RKL3 NXD3 NLXD2
6 -Vo
—_— 172 0.6 - V.06
10
6 +Vo
: 1 .6 +\06
10
6 -Vo
1/8 .21 - .6N.0b
10
-(54 + 19 ¥6)/250 ) (.15 + 4 ¥.06)/25
(102 + 22 ¥6)/125 172 (5.1 + 1 \/.06)/25
1/9 176 179
(16 + ¥8)/36 173 (7 + 20 \/.06)136
(16 - Vo)/36 0 (7 - 20 V.06)/36
1/2 (.6 - V.06)
-1 -(5.4 + 19V06)/25
2 (20.4 + 44 V.06)/25
1/6 1/9
0 O 273 (8 «5 V.OS)/lS
/R
= 1/6 (8 - 5 V.06)/18
%8
.8 >
w0 &
-
O -
c 5
4
B
<N
W C

RKU

172

172

172

1/2

1/6
1/3
173

176

2 +N2)72
1/6

2 -V2)/6

2 +N2)/6

1/6

33.0330538317
1.41435185185
-9.5860566u488

8.95271818648

.218968660u542

RKGY RKL14 RKL24
1/2 0.15 (5 -V;)/m
172 192 (5 +V5)/10
1 1 1
1/2 .15 (5 -V;)/‘IO
(-1 +¥2)22 1536 -5 + 3V5)/20
(2 -N2)/2 .0384 (3 « V)74
0 6.74526571119 (=1 + SV;)/R
V272 -38.7783195429 (5 + 3V5) /1

(5 -V5)/2
1712
8/12
5/12

1712

NXD4

1/2

172

1/8

1/8

1/2
1/6
1/6

1/6

1/2

0

172

1/6

NLXDY

(5 -V5)/10

5 +V5)/10

3 -v;)/ZO

o]
(3 »V;)/ZO

(=1 +\f;)/u

0
(3 - 5)/4
1/12

(5 +V'5')/24

5 -V;)/ZM

0
(5 -V5)/10
(5 + 3V5)/20
(3 +V5)/u
(-1 + 5V5)/4
(-5 « 3V5)/u
(s -V5)/2

1/12
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TARBLE D1.- Concluded

RK3 RKL3 NXD3 NLXD3 RK4 RKGY4 RKL14 RKL24 NXDY NuXD4
r33 1/3 5712
ry 173 5712
ris 1/6 1712

Note: In this study, only J2 is considered (except for reference 5). Therefore, for third order integrators, rj3 and rj4 constants
are not used. Similarly, for fourth order integrators, ry3, riy, and ri5 constants are not used.
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ACCELERATION FUNCTION SUBROUTINE

E-1






£-3

ALITVAD ¥00d 40

§1 dOVd TVNIVICO

START

- -

LOAD CONSTANTS:
Mg = 3.98601D5;

°pey = 8.3631D-1; Cpy = 0.67385D-2

Jp = 1.08265D-3; Rp = 6.37122D3

1
L Intermediate Calculation

Rmac

R5In

XpaM

XL1B

Vr12+r22+r32 i Vmag = \/V12+V22+V32

5
RMag

1.5 * Ug - Jp * Rg?

XM 5 - r3

Regy = ——

7
RMAG

2 - RyIn + Rorn)

S

COMPUTE CENTRAL FORCE ACCELERATION:

AcFy = Bgp " ry 5 next i

Qe B
R —

Figure E1.- Acceleration furiction subroutine,

TIFM25
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sn

6512 §10 1£9—6L61 11440 ONIINIYA INIWNHIAC.

¥-3

O

COMPUTE J2 (OBLATENESS) ACCELERATION:
for i=1to2; Ajpij = =X Tp " ri + next i

Aj23 = =Xy " r3 - Xam * 2 © r3 * Rgpy

!

'

]
e

COMPUTE DRAG ACCELERATION:

Rg

RE =

\/7 ry 2
(1-0 + CAY —
Ruag

Z = (RMAG - RE)/0.30‘l8

ZpyNCcT = © (=24.2 - 0.00289 « Z + 2605/2)

DRAG = -0.5 * PppN * ZruncT - VMag
for i=1to3; Ap; = DRAG - Vy ; next i

- - - —— e - -, B Y. —- - - —— -
—— - —- " - —-_— - - - em m— B . e - - ——

- -

Note 1:

NOTE 2:

TOTAL ACCELERATION:

For 1i=1+¢%o 3 ; ATOTALi = ACFi + Ajoq + Apy

next 1

- - - -

Stat- vector units.

A
ry, rp, 'y = position in km

a

Vi, Vo, V3 velocity in km/sec

A
r, = position computation along
Earth's North Pole.

Page 2 of 2.

Figure E1.- Concluded.



