NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

EXECUTIVE SUMMARY

A MICROPROCESSOR BASED HIGH SPEED PACKET SWITCH FOR

SATELLITE COMMUNICATIONS

GRANT NO.
i | - NSG3191
with
National Aeronautics and Space Administration

LEWIS RESEARCH CENTER
CLEVELAND, OHIO

James Rotnem - Project Officer
\ Mohammed Arozullah - Principal Investigator (

\ Stephen C. Crist - Co-Investigator i

Grant Title: Design of a Microprocess-Based High
Speed Space Borne Message Switch

April 15, 1978 - May 30, 1980

CLARKSON COLLEGE OF TECHNOLOGY
POTSDAM, NY 13676

AR

e

g

(NASA-CE-163357) A MICROPBOCESSOR BASED N80-27558
HIGH SPEED PACKET SWITCH FCR SATELLITE

COMMUNICATIONS, EXECUTIVE SUMMARY Executive

Summary Report, 15 Apr. 1978 - 30 May 1980 Unclas
(Clarkson Coll. of Technology) 1o p G3s32 28063

ABSTRACT

This report is concerned with the design and evaluation of a
microprocessor based high speed space-borne packet switch. Three
designs, namely a sinéle, three and multiple vrocessor designs,
are presented. System architectures for these three designs are
presented. Further, the hardware circuits, and software routines
required for implementation of the three and multiple processor
designs are also presented. A bit-slice microprocessor is used.
This processor has been designed and microprogrammed. Maximum
throughput has been calculated for all three designs. Quecue
theoretic models for these three designs have been developed and
utilized to obtain analytical expressions for the average waiting
times, overall average response times and average queue sizes.
From these expressions graphs have been obtained showing the

effcct on the system performance of a number of design parameters.

AR AN s b A

3.
4.

TABLE

Introduction. « «. ¢« « o« &
System Architecture . . .
Performance Evaluation. .

Conclusion. « « « + « + &

OF CONTENTS

. L]

Publications resulting from the grant

Page

N

o 2

S —

1. INTRODUCTION

The purpose of the research .supported under this grant was
to eviluate the feasibility of using microprocessors to control
satellite-borne packet switching. This was accomplished by
designing a packet switch architecture suitable for microprocessor
control, designing the processor(s) using 2900 series components,
and evaluating the packet switch in terms of system throughput,
delay, and queue sizes within the packet switch.

This work assumes that the packet switch has N serial bit
streams in packet form, where N is the number of users. Output
from the switch is accomplished by loading packet-sized buffers
and transferring control to external circuitry to transfer data
to the channel. There is one output buffer per user.

The first packet switch architecture studied uses a single
microprocessor. In doing this design, it was found that three
distinct software routines were needed. Under normal circumstances,
each packet passing through the switch must be selviced by each
of the three routines. The second design utilizes three distinct
processors, one for each of the software functions. In the final
design an attempt was made to use multiple processors within each
of the three functions. However, it was found that to minimize
contention among processors, one of the functions must be divided
into two functions. It is then possible to use several processors
for each of the four functions.

Some consideration was given to protocols that could be

supported by the packet swtich. It was found that a full ARQ

protocecl could not be used because of on-board storage requirements
on the packét switch. Furthermore, it was found that any protocol
not transparent to the switch resulted in significant performance
degradation due to the increased processing required. For this
reason, no serious consideration of protocols was made with respect
to the latter two designs. ‘ |

The header of each packet is protected by an error-correcting
code for any protocol because, as a minimum, the packet switch
must correctly identify the destination of a packet. The on-board
decoding can generally be accomplished by a ROM look-up table
becavse of the limited length of the header. Any other error
correction is done by the receiving ground station.

A single fixed packet length is required by the packet switch.
Any other scheme results in a significant increase in both hardware
and software.

2. SYSTFM ARCHITECTURES

Because throughput is of critical importance, sufficient
hardware is provided such that the processor(s) is the limiting
item in system performance. This premise leads to the following
properties of the proposed system architectures.

1) All data transfers are done serially. This eliminates
the need for processor storage of data. .

2) All internal serial transfers are performed and terminated
by hardware. This allows the processor(s) to initiate a transfer

and move on to the next task.

e

S

=g = Sty

3) The processor is not required to access the data portion
of the packets, but only the header.

The system architecture for the one and three processor
designs are essentially identical. The single processor version
is shown in Figure 2.1, and the three processor version is shown
in Figure 2.2. The operation of both switches is explained by
following a packet through the system.

The routing of the users' messages begins with the buffering
of all incoming packets. Each input line is double buffered.
Even with double buffering, the processor service response time
must be short. Buffer overflow will destroy packet§ left too
long in a buffer. 1In order to avoid packet losses, a minimum
of processing is done at the input buffers. As soon as a full
buffer is detected, the processor immediately stores the packet
in temporary storage. This storage area is constructed of shift
registers arranged in an array.

Once stored in the shift register array, each packet receives
additional service. Their headers are decoded by the processor
to determine each packet's destination. The routed packets are
assigned to software output queues. Use of software gueues
eliminates the need for additional packet transfers required
by hardware queues. Each queue corresponds to one unique output
buffer.

When an output buffer becomes empty, the processor accesses

the associated queue for the next packet awaiting transmission.

-

Each gqueue contains the location of each routed packet in the
array awaiting trénsmission to that queue's corresponding output
buffer. Using this information, the processor begins the transfer
of the queue's oldest packet to the proper buffer. Once in the
buffer, the packet is then transmitted onto the network channel
under hardware control. |

The software required to control the paéket switch consists

of three routines: The input service routine, the routing

service routine and the output service routine.
In designing the multi-processor version, careful consideration
was given to eliminating resource contention, becau;e this would
cause the processors to wait for hardware. One of the more
significant changes from the first two designs is that the routing
function is divided into two functions, sorting and routing.
This was necessary because otherwise all routing processors
would in general have to access all output gueue lists. The
function of the sorting processors is primarily to assign the
packet to a specific routing processor, depending on the
destination. Thus, each output queue list is accessed by one
routing processor and one output processor. The general
configuration of the multiple processor packet switch is shown

in Figure 2.3.

The first function of the switch is to receive and to store {
each incoming packet. When a packet arrives, it is temporarily

stored in an input buffer. An input buffer containing a newly

B ok

R .

received packet requests processor service. Dedicated hardware
pollers seqdentiaily scan their assigned group of input buffers
searching for full buffers. One group of input buffers is
assigned to one Input Processor. Upon finding a full buffer, a
polling circuit signals the Input Processor it is serving.
Immediately, this processor establishes a data link between the
full buffer and the Shift Register Array. In order to set up
this link, the processor must first find an available data path
in the processor's dedicated Input Switching Network. Next,
the processor must find an empty location in the Shift Register
Array. Once the address of an empty location is fetched from
the Empty Shift Register List (ELIST), the processor completes
the data link. The processor then initiates the packet's serial
transfer into the array. As in the previous systems, this
transfer is hardware monitored and terminated, allowing the
processor to move on to a new task.

The second function of the switch is to sort each packet
in the array into groups of packets that are destined for the
same group of ground stations. Each unique group of stations
is serviced by one unique Routing Processor. Shift registers
containing newly arrived packets signal for Packet Sorting
Processor service. Dedicated hardware pollers scan their
assignod group of shift registers for new packets. Once a
polling circuit locates a new packet, the Sorting Processor
it is serving is notified. This processor fetches the packet's

header and corrccts it. The packet's destination is then read

from the header. Using this information, the Sorting Processor
sends the packet'é destination information and array address to
an input/output port associated with the packet's destination.
Each different I/0 port belongs to one unique Packet Routing
Processor. Any Sorting Processor may access any I/O port.

The Packet Routing Processors carry out the switch's third
function, which is the updating of the Outpﬁt Queue Lists with
the addresses of sorted packets. Once an I/O port is found to
contain valid packet routing data, the I/O port polling circuit
signals the Routing Processor it serves. The Routing Processor
responds by fetching the packet's destination inforﬁation.

Using this information, the processor determines to which ground
station the packet is destined. Packets leave for a ground
station via an output buffer which corresponds to that ground
station. Each output buffer is assigned to only a single ground
station. 1In order to route a packet to a particular ground
station, the Routing Processor must assign the packet to the
software output queue list which corresponds to the proper
output buffer. This assignment is made by fetching the packet's
array address from the I/0 port and placing it into the proper
gueue list. Each Routing processor controls a unique group

of output queue lists. A packet is considered routed once its
array address is placed into one of the N queue lists.

The fourth and final function of the switch is to transmit
the routed packets to their final destinations. This job

belongs to the Output Processors. When an output buffer emptics

.

due to a completed packet transmission, the buffer requests
processor service. Dedicated hardware pollers sequentially
scan their own group of output buffers in search of empty
buffers. When an empty buffer is found by a polling circuit,
the Output Procegsor served by this poller is informed. The

! processor then accesses the output queue list belonging to

the empty buffer. The address of the oldest packet waiting
for transmission to this destination is fetched from the queue

list. Next, the processor finds a free data path in its

dedicated Output Switching Network. A link is established
between the shift register containing the packet to.be
transferred and the empty buffer via the free data path. Once
this link is complete, the packet transfer is initiated by the
processor. Automatic hardware controls this serial packet
transfer. As soon as an output buffer is loaded, the packet
is automatically transmitted to the ground station by hardware
external to the packet switch. While the internal hardware
transfer takes place, the Output Processor updates ELIST by
placing the packet's array address into ELIST.
3. PERFORMANCE EVALUATION

Performance of the proposed designs were evaluated in
terms of maximum throughput, average waiting times, overall *
average responsc times and average queue sizes.

In computing the throughputs of the various architectures

it should be noted that the processing times are the determining

|
g
,
1

M el b el

MR an et o et L IR o il o R s Lo Bl o M s

factor. This processing time, in all cases, is not a function
of the packet size. (The delay encountered by a packet in the
system does depend on packet size). The results of the
throughput calculations are in terms of packets/sec.

The one and three processor architectures have an upper
bound of approximately 150,000 and 500,000 packets/sec.
respectively. These numbers correspond to a utilization factor
of one, and thus are not realizable without theoretically
infinite delay and queue sizes. The throughput of the multiple
processor design depends on the number of processors. A
fundamental limitation of 107 packets/sec. exists, but if 104
bits/packet are permitted this results in a system throughput
well above projected needs. As an example of the multiple
processor capability, it was found that 21 processors are

6 packets/sec. provided

required for an upper bound of 3x10
the number of users is at least 7. This corresponds to a
throughput of 30 Gbit/sec. for a 10K packet length.

Queueing analyses wecre performed for all three systems.
It was generally found that the delay times were considerably
less than the propagation delay and the internal queue sizes
were reasonable for utilization factors less than .7. Graphs
showing the effect of the various design éarameters on the
average waiting times, overall average response times and average

queuc sizes for the three proposed designs have been obtained

and are found in the final report.

CONCLUSION

The most significant result of this research is that system
throughputs sufficient for applications currently being considered
are obtainable with a processor-controlled packet switch. The
delay times and queue sizes for such a switch are reasonable.
The technology required for the switch is currently available
and is military qualified. The production cost of the single
processor packet switch is estimated at $500,000. (This does
not include cost of development). The three processor version,
which can support a maximum throughput of 500,000 packets/sec.
is estimated to have a production cost of under S1,boo,ooo. For
the multiple processor system, cost is believed to be proportional
to throughput, with $1,000,000 for 500,000 packets/sec. being
the proportionality factor. It should be noted that the design
and development of efforts required to get any of the packet
switches proposed into the production phase is significant.
5. PUBLICATIONS RESULTING FROM THE GRANT
The following publications have resulted from the work
sponsored by NASA under this grant.
1. J.F. Burnell, S.C. Crist and M. Arozullah, "Architecture
and Evaluation of a Packet Switch for Satellite

Applications", Conference Record of the IEEE International
Conference on Communications, June, 1979.

2. S.C. Crist, J.F. Burnell and M. Arozullah, "A Microprocessor
Based Space Borne Packet Switch", Proceedings of 1979 1EEE
National Telecommunicatinns Conferecnce, November, 1979.

3. M. Arozullah, S.C. Crist and J.F. Burnell, "A Microprocessor-
Basced High Speed Space-Borne Packet Switch", IEEE
Transactions on Communications, COM-28, 1, pp. 7-21,

January, 1980.

B N NN e T R

J.F. Burnell, S.C. Crist and M. Arozullah, "Microproc.ssor
Utilization in Satellite-Borne Packet Switching", jointly
in IEEE Transactions on Computers, C-29, 2, pp. 206-208,
February, 1980, and IEEE Journai of Solid State Circuits,
sC-15, 1, pp. 142-147, February, 1980.

P.N. Jean, S.C. Crist and M. Arozullah, "Multi-Microprocessor
Based Architecture for a Space Borne Packet Switch",
Proceedings of COMPCON, February, 1980.

M. Arozullah, P.N. Jean and S.C. Crist, "Evaluation of a
Three-Processor Architecture for a Satellite Packet Switch",
Conference Record of the IECE International Conference or
Communications, June, 1980.

-

9IN3093 TYDIY YOITMS 3I9)ded OTseg °[°Z 2anbrg
I i
I l
| !
Joss®d0.4y
Je N# N$
AI, 4309 sneng Lowmamm
indyng nding yndut
N |suwoy) s N jeuuoy)
| ! 1
! ! _
! ! _
! ! 1
ct
— =g | 2 syyrgle
inding S jndying jnduy
2 |dwny) e dJonjeN 2 |suuoyy
hl, Buy Aoaay Bu)
13 -y23115 Je3s|Bay =y231ng
12
— °3ing snang inding 43 ynduy A|
ﬂaag ? 4943ing
ndng K- yncur
i | jewoyy

Eﬂiﬁ‘ sty Ll

sy¥3J4ing
104100

2IN3093TYDIVY

I10SS3D0xd 22aYylL 9{YL

*Z°¢ @anb1g

thH.._m

>

903503034
din
.ﬁ:u..w ”..0:_0._ O 4370 A' s§s!
4ndy) n30h \/
O ndgno
, 24.L
spaom [K___ so3590y; (9
ess o — s
couno .—‘)_ vy
podyno K vyney $er001> Su|e)
sty $34S
<
yoompan i /\H
Soppimg e
\-.DLA—.\—O .—\smCH
Rouy saysibey pyg 2yl |

Sy344Nn8
AndNT

I ST e

2IN3D033TYDIY I0SS3201d O[CTITNW

“g+z oInb1a

o i i A

_ 0_ e \,”\.~ A o — | | 2ol i |
. ' ! - Y i
) T e
! (R oMas BT 1}
".-..MIN&“ — _%aw:.ﬁ‘ H i ~ | rI|\._ s.&&T ry o=v M
: ' C‘.] e 3 i & !
..naour.t).ﬂ. ~ Dy O { _FMHJW ! .+. T~— n.c" & \-“
i ’= m _.\,:.l.n......w i ~ _ i “.x... Tebn L2t
| ,nd.n 12erqneome o aaris | xt > — P _ . {
_,.. il R o | oo LTI b m— | = P ;.:,.Hm
| Oq...man 1

2 m:uj l«’.&\;o_ h. (
|

———————

‘ 11
_ Pl
Tel 17T
| f
|t
°3 _
2
)i
I
K\\ —_
33104 w_

e e Ts v <—
' la1yeg, HE _. * . ,

¥ o7 | I w : AYHYY

s F [—— HET 1a%s)

mnu(...q:wm _ 12 “Au N 1 Y3lSIO3Yy
T T I “ L4THS

«.amosu..ﬂ $
| S—

I ﬁ-.{

.

l

;

b
o.
<

H

A

13

	0015A02.JPG
	0015A03.JPG
	0015A04.JPG
	0015A05.JPG
	0015A06.JPG
	0015A07.JPG
	0015A08.JPG
	0015A09.JPG
	0015A10.JPG
	0015A11.JPG
	0015A12.JPG
	0015A13.JPG
	0015A14.JPG
	0015B01.JPG
	0015B02.JPG
	0015B03.JPG
	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

