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SULIARY

A study was coniucted to develop a nethod for the direct
inteqration of a rotor dynanics systen experiencing a blade loss
induced rotor rub. The approach was first to insure the mmerical
stability of the intecration technique: and seconi., to provide a
variable time step. This was iaportant because durine the rub thish
frequencv., vibration components could be excited ani sraller time
steps woull he necessary to calculate the vibration conponents
accurately. Murint other times larzer time steps could be used to
conserve counitational tine. The nethod was nunerically stable for
any tlmne step un to a third order intecrator. The tinme sten uas
controlled so that the uaaxiaum error was less then .01% and the
probable error was between .0017% to .0001Z.

An existinm rotor, (which dynanically sinulates a tvpical snall
vas turbine) was modeled. The rotor bearing system consisted of a
shaft with three disks mounted on two preloaied ball bearings, (twn
disits outboard of the bearints). The bearings were iounted in
squeeze~filn  dampers, which had centeriay sprines. The first three
critical speeds were calculated to be 7670, 9205, and 11200 rpt- all
three modes are bent-shaft type. DPrior to the blade 1loss sinulation
the rotor was assunel to be balanced and onerating at 9599 rpa. The
blale loss was siaulatea by an instantaneous application of 5 mils of
mass excentricity 1in the £far disk. The rotor rub was sinulated by
surround ine each disk with a shroul that hal a 2 =il radial clearance
and a stiffness of 100,007 #/1in.

In 7eneral bhoth the hlade loss and rotor rub phenomenon g¢enerate
qaith trequency vibration covponents. The rotor motion 1is initially
localizel but with tine prosresses to other parts of the rotor b




means of traveling waves. The traveling waves from several rubs can
interact with one another causing very conplicated rotor motion. Pven
if there is no rub, (just a blade loss), the travelins wave can cause
the rotor to beat at a frequency which 1s the Aifference between the
operatine and the critical speeds. Rotor rubs senerate a frictional
force which tends to drive the rotor to whirl in a direction opposite
to the direction of rotation, (backward whirl). For the rotor typical
of suall gas turbines, a small chanze in the cocfficient of friction,
(from .1 to .2) caused the rotor to change from forward to backward
whirl and to theoretically destroy itself in a few rotations. This
riethod provides an analytical capability to stnuiy the susceptibility
of rotors to rub induwced backward whirl oproblems. A 10 minute,
'16-millimeter, color, sound motion picture supplement is available, on
loan, fron the YNASA lewis Research Center, that shows the coaputer
made notion pictures for the blade loss induced rotor rubs.

INTRODPUCTION

In a typical aircraft gas turbine there are nanv instances in
which rotor rubs occur. Two of the most common are blale tin and seal
rubs, which are caused by thermal mismatch, rotor 1inbalance, high "g"
maneuver loals, aerodynamic forces, etc. Current interest in fuel
efficiency is a consideration which drives the enzine desinn toward
closer operating clearances. Thus increasins; the probablitv of rotor
runs. The {interaction nf a rotor with its case, (rotor ruhs), has
been studied in ref ! and 2. Ref 1 studied a steadv state interaction
between a rotor with a rinil case nevlecting friction at the interface
and Ref 2 studied a steady state interaction hetween a 1linear
flexible rotor and case includinn friction at the interface. Raf 1| and
2 dii not consider the critical transient situation in which the rotor
bounces off the case.

It is kaown that rotor rubs can have an insortant effect on the
rotor dynanics. “Yhen a rotor ruds on the case, a frictional force is
zenerated which can drive a rotor to whirl in a direction opposite to
the direction of rotation, (backward whirl). This frictional force is
relatively constant up to the backvard whirl speed at which the rotor
rolls around the case. Since this rolline contact speed is
proportional to the rotational speed of the rotor timnes the ratio of
the diameter to the rotor clearance, the whirl speei can be hundreds
of times the rotational speed of the rotor: and thus be motentially
very lanverous.

There are two basic methois for studying transient rotor
dynanics. One {s the nodal =methold (ref 1 andl 4) which exmands the




solution in terms of a few of the lower frequency mode shapes. If the
transient under study is localized (like a blade loss or a rotor rub).
the high frequency components are. at least initially. dominant. Thus
the modal method 1s not applicable to this type of transient. The
other method involves the direct integration of the equations of
motion, which can be done in either of two ways. explicit or implicit
integration. For example, ref 5 used explicit intepration of the
equation of motion. but this solution is plagued with numerical
stability problems. Further. ref 6 showed that explicit integration of
the equation of motion was unstable when the product of the critical
frequency (for any mode numerically possible) and the time step was

large. Therefore. the explicit integration can only be dore for simple
rotors.

In contrast, the implicit integration tends to be stable (ref 7
and 8) but it requires the solution of a large number of nonlinear
simul taneous equations at each time step. Ref 9 wused a technique
similar to ref 7 except that it was applied directly to the second
order equation of motion. Ref 9 also noted that the generalized
forces on a rotor were functions of the generalize? position and
velocity of the point where the forces were applied and its nearest
axial neizhbors. This allowed the variables to be arranped so that the
Jacobian of the set of nonlinear equations was block tridiagonal.
Therefore. computiny time becane proportional to the nurmber of
elements in the rotor dynarics model rather than to the cube of the

nunber of elewments. The objective of this studv is to refine the
method used in ref 9 to include an automatic time step routine and
then apply the technique to  stulv blade loss induceld roter rubs. The

autonatic time step routine is necessary so that the time step can be
varied as the rotor dimpacts the case. Also. the nunerical stability
of the uethod used in ref 9 will be investigated.

SY'IBOLS

a reference amplitude

c radi1al clearance

E absolute error estimate
F force

0 order of errcr in Tavlor series
q order of Taylor series
r radi{al displacement

S stabilitv matrix

t time

At time step

u

defined In eq-(4)




independent variable

given set of constants

damping ratio

eigenvalue of stability matrix
coefficient of friction
frequency

E T > QN

ANALYSIS
Numerical integration:

(1) Given an arbitrary vector function %, (t) whose derivatives exist.
Ekj (t), a Taylor series expansion can be written:

q-k
. )l =) >
2 (t+ t0) 2 R (1)
=0

-
with renainder of order oq_k- If the arbitrary function is chosen as

Z, - %?;*r“‘) 2)
the Taylor series for this function becones
q
Zk(t + At) = Z (i>fj(t) + 6q (34)
j=0

where the binomial coefficients are defined as

S R
(j)_ k() -wo:  fer dzk 31
k

0 for j < k

If the form of the remainder i{s chosen as

P4 ->
= 4
0q a,u (&)
the Taylor series becones
->
Zl'(t + 4t) = Z <k>zj(t) + Qku (5)
=0




vhere the alphas are given in ref 7 and U can be determined fron the
equations of motion at the advanced time. The form of the set of the
equations of motion at the advanced time is:

+ >

EFG, r, ¥, t + 4t) = 0 (6)

Fron the definition of ; . the various derivatives becone:

+ (k) ak! =
b g - — 7 7
(Al’.)k k

Substitutins for the various derivatives into the equations of motion;
and knowing the values at the previous time. result in the equations
of motion being a function of:

Y@, t+at) =0 (8)

This set of equations can be solved for J and. fronm this value of u.
the remainder can be used as an error estimate to control the time
sten. Fron the definition. z, represcnts a nondimensional form of Ty
Terefore an estimate of the maximun absolute error is:

E= o lld] )
where |[ull. the vector norn is the mwmaximun component of T The
corputer code used in ref 9 was modified to include the followinz
automatic time step althrogin. If E>.01% re-do the calculation with
the time step reduced by a factor of 10. If .01%>C>.001%. accept the
calculation btut decrease the time step by a factor of 2. 1f
.001%>T>.0001%. accept the calculation and maintain the sane time

step. 1f -0001%>T. accept the calculation but increase the tinme step
by a factor of 2.

Numerical stability:
The analysis of the stabiliry of the nurnerical integration
technique assumes a model of a rotor bearing systen that is linearized

at sone instant of time. The homocr eneous equation of motion for anv
mode is-

P 4 20tf + wlr = 0 (10)

where omepa is the natural frequency and zeta is the dampinp ratio for
the mode. For every mode that is nunerically possible, with




nonnegative canping ratio, the amplitude wmust either remain constant
or decay in time. The numerical integration is defined as unstable if
the amplitude grows in time.

Substituting the Taylor series for the various derivatives into
the modal equation of motion at the advanced time results in:

q
2
504 = 1) + 2feat T4 (w Bt)
u--z [ 2a,w 0t T+ apl at)? }zj(t) (n
202 + 204u g+ agle
i=0

For this value of u, the Tavlor scries expresses the solution at the
advanced time in terms of the solution at the present time as:

q
N e l3G - D+ 23wt Tt G ar)?
zk(: + At) = <i> - 7 Zj(t) )
232 + ZQlL.. At T+ uo(w At) ]
j=0

Defining the matrix S to be:

3 ak[j(j - 1) + 2jutt T+ (u At)zl
5 - ( > B} (13)

[2:12 + Zalu At 4+ ao(u At)zj}

-
and the vector 2Z whose kth elenent 1is zk. results in the finite
difference equation:

F(t + at) = SZ(t) (14)

This equaticn has a solution of the form,

(e + at) = AZ(b) (1%)

where lambda is an elgenvalue of;

s? = A2 (16)

If the |r|»1, the ampiitude grows and the nethod is numerically
unistable.




Rub model :

The interaction of a rotor with 1its case 1is a complicated
phenomenon. It can involve non-linear deformation of both the rotor
and the case. Rotor-case rubs were experimentally studied in ref 10.
Analytically only simple rotor-case rud rodels are available;
therefore, the case was assumed to be 1linear with dry friction
interaction with the rotor. The radial and tangential forces on the
rotor are then:

F =0, F. =0 ';l<c (174)

> ng
Fp = -k(jr| - C), F, = F x| > C (175)
r

RESULTS AXND DISCUSSION

The nunerical method of ref 9 emploved a second order integrator
with a constant time step. However. to study blade loss induced rotor
rubs. it is necessary to mwmodifv the method of ref 9 to include higher
order integrators with an automatic tine step routire. The autonatic
time step routine is necessary so that the ti-e step can bhe varied as

the rotor impacts the casce- In order to calculate hi~h frequency
conponents accurately. the time step nust be less than the perioc¢ of
the high trequency conmponent. %hen only low freaouency coaponents are

important the tine step car be 1increcased to decrease coiputine tine.
The algorithn discribed in the analysis section keeps the maxinun
error in the displacement at less than .C1%. It tries to maintain the

error between .001% to .CO00l% by either decreasing or increasing the
time step.

Another way to decrease computine time i3 to use a hicgher order
integrator. Ref 7 studied the nunerical stability of up to a sixth
order integrator applied to a first order differential equation. The
numerical stability of these integrators applied to a second order
differential equation was given in the analysis section. The
nunerical stability of an inteqrator is based on modal rotor dynanics
analysis. If the integrator 1is applied to a nmode which is not driven
and has damping, the anplitude must decay in time. Figure ] shows a
stability map for the integrators used in ref 7 applied to a second
order differential equation. The abscissa 1is the danpine ratio and the
ordinate {s the product of the time step and natural frequency for the
mode. The stability map has contours on it for which the amplitude
does not change from one time to the next. On one side of the contour




the amplitude grows  (unstable region). and on the other side 1t
decays. (stable region).

Figure 1 shows the stable regions for a fourth through sixth
order integrator. The second and third order integrators were stable
everywhere. For the regions where the integrators were unstable. the
anplitude grew by a few percent per time step. It would take on the
order of a hundred time steps for the amplitude to double. and it
would take on the order of a thousand time steps for the amplitude to
increase by a factor of a thousand. Due to round off errors. every
mode that 1s numerically possible in the rotor dynamics model. has a
finite amplitude. These amplitudes may be small' but i{f they are in an
unstable region, in a few thousand time steps they can become very
large. For this reason, only the second and third order integrators
were used. This 1s still a vast {mprovement over other types of
integrators such as the one used by NASTRAN. NASTRAM uses an implicit
form of the Newmark-Beta integrator. ref 8. This integrator is second
order and does not have an error estimate.

The rotor-bearing system described in ref 11. (vhich dynanically
simulates a typical small pas turbine). was used as the example
problen. This rotor bearing system consisted of a shaft with three
disks mounted on two axially preloaded ball bearings (fig 2). 1In this
rotor-bearing system the bearings were mounted 1in squeeze-£film danper
journals. and the journals had centering springs.

The first three critical speeds for the rotor bearing systen
without 0il 1n the dampers are shown in figure 3. Note that all the
modes are bent- shaft modes. The "classical" hierarchy only applies
to stiff shafts' therefore. the classical mode shapes dc¢ not
characterize the actual mode shapes. The first mode. about 7600 Tpm.
classically would be the cylindrical mode. But in this case. it has a
large amount of bending outward near the shaft center. The second
mode. about 9200 rpm. classically would be the conical mode. 1In this
case. 1t has a slight amount of bending outward near the shaft ends.
The third mode. about 11200 rpn. classically would be the bending

mode. In this case, it has a large amount of bending throughout the
shaft.

The rotor-bearing system was modeled by using 23 elements. Prior
to the blade loss simulation the rotor was assumed to be balanced and
operating at 9500 rpn. The blade 1loss was gimulated by an
instantaneous application of 5 mils of mass excentricity in the far
disk. The equations of motion for this system were directly
integrated by the method used in ref 9 with a variable time step. The
output was interpolated to equal tise steps (100 time steps per shaft




rotation). and displayed on a CRT. figure 4. The display showed an
oblique view of the rotor bearing system. with the bearing center line
as the oblique axis. The transverse vibration is indicated by the
position of the rotor centerline. The scale of the transverse
vibration exaggerates the amplitude of the vibration. The display on
the CRT was photographed at each time step. These photographs were
then shown as a motion picture.

Figure 5 shows the superposition of the first ten frames of the
blade 1loss simulation without a rub. Initially the rotor. the
bearing. and the mass center line coincided. After the blade loss. a
traveling wave starts at the blade loss disk and travels down the
rotor. During the time high frequency components are dominant,
(because the rotor as a whole is not moving). A model analysis which

only uses the lower modes cannot discride the motion during this time
period.

Fipure 6 shows the position of the roter for the first six
rotations of the rotor after blade loss without a rub taking place-
During the first rotation, the blade loss disk spirals out. Dur ing
the second rotation. the disk on the other end of the shaft spirals
out. During the third rotation. the center disk spirals out. After
this the envelope of the rotor positions. seens to oscillate in a
conical fashion. with a frequency of about 1/4 operating speed. This
beating seens to be at a frequency difference between the operating
speed and the lst critical speed. (Ref 12 experimentally showed a
similiar beat frequency between the operating speed and the critical
speed.) During this time the rotor shape resembles the third critical.
except that the bearing center line is not in the plane of the rotor.
The maximum amplitude occurred on the blade loss disk on the sixth
rotation and on the opposite disk on the fourth rotation. The
conclusion drawn from this figure {s that 1f there 1is clearance space

down the rotor and a rub occurs. it does not necessarily occur at the
blade loss disk first.

The rotor-case rub was simulated by surrounding each disk with a
shroud that had a 2 wil radial clearance and a stiffness of
100, 000{/4n. The rub was 1induced by a repeat of the blade 1loss
simulation with the clearance restrain. Two rub simulations were run.
one with a coefficient of friction of .1 and the other with a
coefficient of friction of .2.

Figure 7 shows the first 6 rotations of the shaft after blade
loss for a coefficient of friction of .l1. During the first shaft
rotation the blade loss disk spirals outward and bounces off the case
four times. Each collision of the rotor with the case sends out

s S e e



travel ing waves down the rotor. These waves interact with each other
causing the envelope of the rotor motion to be very conmpl icated. (n
the second shaft rotation both outboard disks bounce off the case four
times. As the rotor continues to turn the crbit becomes more
circular. That i{s, the rotor-case interaction becomes less of a
bouncing nature and more of a continuous contact. The enve.ope of
the rotor motion seems to be oscillating in a conical nature; but hoth
outboard disks sees to remain in contact with the case. The rotor
continues to whirl aout the bearing centerline in the rot: .ional
direction (forward whirl). Te frictional drasc forces are not larze
enouzh to drive the rotor into backward whirl.

Figure 8 shows the first 4 rotations of the shaft after blade
loss for a coefficient of friction of . 2. The motion of the raotor on
the first rotation is similar to the «l coefficient of friction case.
On the second rotation, the blale loss disk has a very hard collision
with the wall, causing the rotor to bend considerably. On the thirt
rotation the rotor whirl directicn changes from forward to backward
whirl and the rotor whirl begins to accelerate in the backward
direction. n the fourth rotation, the rotor motion becomes very
lame and it continues to g Owon succeeding rmtations.

This exanple problem has shown that snall changes 1in the
coefficient of friction, (frow .1l to «2) can chanee a rotor response
to a blale 1loss condition froa a relatively safe response to a
catastrophic response. Br seal rus the coefficient of friction is
probably between .1 to .2. For vlade tip rudbs, this ru> model is not
accurate. This type of ru involves material removal , phase changes ,
and cr non-elastic defornations. If this model were to be usel in a
general nmanner, then the coefficient of friction wuli probably bhe
Rreater then .2.

In conclusion, this conputer code allows us to look at blade loss
induwced rotor rubs and displays the rotor motion in a motion~-pic ture
format. A 10-minute, 1h-mill imeter, color, sound motion=-pic ture
supplement {s available, on loan, that shows the conputer :uaie notion
picture for the blade loss indired rotor rus.

SULIARY NF RESULTS AND CONCLUS IONS

A method for direct intesration of a rotor dvnamics svsten
experiencing a blade loss indwed rotor rub was developed. The
following conclusions were drawn:

l. The method was nunerically stable for any tire step up to a taird
ordier intevrator.
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2. The time step was controlled so that the maximun error was less
then .012 and the probable error was between .001% to .0001%.

3. For the rotor typical of small gas turbines a small change in the
coefficient of friction. (from .1 to .2). caused the rotor to change
from forward to backward whirl and to destroy itself in a few
rotations.

This method provides an  analytical capability to study the
susceptibility of rotors to rub induced backward whirl problems.
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