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SITt.UIARY

A study was con ILmted to develop a _ethod for the direct

inter, ration of a rotor dynanics systeu e"-_Deriencin,; _ blade loss

induced rotor rub. The a_roach was first to insure the nttuerical

stability of the inte,_,ratlon technique" and seconJ, to provide a

variable ti,ue step. l_ais was i_oortant because durin_ tl,e rub hi;h

freaL_encv, vibration co_n_xonents could be exclte_ _nl s_aller ti_e

steps _ul! he necessary to calculate the vibration conoonents

accurately. _rln_ other ti.nes lar_.er tlae steps could be used to

conserve co,.:n,|tational tiqe. lhe nethod ,wn_ nu_erically stable for

any t[-_c step u_ to a third order integrator. The ti_e ste_ was

controlled so that the :aaxi,aLrn error was less then .01% and the

probable error _s between .001% to .0001%.

An e×_stin_, rotor, (_hich dynanically si,nulates a tyDical _all

_,_ turbine) was modeled. _e rotor bearin_ system consisted of a

sha-_t _¢ith three disks nomated on two preloaled ball bearin%s, (t_,_

,Jis'_is o ut_oard of the bear in_,s) • The bearing, s were mounted in

squeez_-filn danpers, which haJ centering sprin%s. _e first three

critical speeds were calculated to be 7600, 9200, and II2NN rp,n" all

three modes are bent-shaft tyoe. Prior to the blade loss sinulation

the rotor wa_ assur_e__ t_ he balanced an_| o_eratln_ at 950_ rp_a. _ne

blade loss was siqolate:_ by an instantaneotm application of 5 _ils o_

mass e×centrlclty in the far disk. ]]_e rotor rub _s si'_ulated by

surro_mdln_, each ,'link with _ shrou-] that hal a 2 rail radial clearance

and a stiffness of II_O,OO0 ,_/in.

In F,eneral both the blade loss and rotor rub pheno_,enon _,enerate

hilh _requency vibration co_n_onents. The rotor :notion is initially

localizeJ !_t;t ._[tl_ tine progresses to other o,arts of the rotor hv



means of travelin% waves. The travelinz _mvesfro_ several rubs can
interact with one another causino, very conplicated rotor motion. ,"Yen
if there is no rub, (Just a blade loss), the traveling, wave can cause

the rotor to beat at a frequency _ich is the difference between the

operatin_ and the critical speeds. Rotor rubs _enerate a frictional

force which tends to drive the rotor to ,2airl in a direction opposite

to the direction of rotation, (backward _dnir]). For the rotor typical

of small %as turbines, a small chanze in the coefficient of friction,

(from .I to .2) caused the rotor to change from forward to backward

O, irl and to theoretically destroy itself in a few rotations. This

nethod provides an analytical capability to study the susceptibility

of rotors to rub induced backward whirl problems. A lO minute,

16-millimeter, color, sound motion picture supplement is available, on

loan, iron the NESA Le,.ris Research Center, that shows the coaputer

made ,lotion pictures for the blade loss induced rotor r_bs.

I._. RO_UC TIO.,

In a typical aircraft _[as turbine there are nanv instances in

which rotor rIL_s occ_. Two of the _ost connon are blade tin and seal

rubs, ,_hich are caused by thermal _aismatch, rotor inbalance, hizh "_"

maneuver loads, aerodynamic forces, etc. Current interest in fuel

efficiency is a consideration which drives the en%ine desi%n to_rd

closer o,_eratinq clearances. ]bus increasln:_ tl_e probablitv of rotor

rubs. _ne interaction of a rotor with its case, (rotor rubs), has

been studied in ref I and 2. Ref I studied a steady state interaction

between a rotor with a rizi_l case ne%lectin% friction at the interface

and Ref 2 studied a steady state int_ractlon Between a linear

flexible rotor and case includinq friction at the interface. _e_ I and

2 did not consider the critical transient situation in which the rotor

bounces off the case.

It is known that rotor rubs can have an inportant effect on the

rotor dyna_lics. ',_en a rotor robs on the case. a frictional force is

generated _._Ich can drive a rotor to _airl in a direction opposite to

the direction of rotation, (backward whirl). This frictional force is

relatively constant up to the back, Jard _lirl speed at _kich the rotor

r,_lls around the case. Since this roll in,* contact speed is

pro,nortional to the rotational speed of the rotor tL,ne:; the ratio of

the diameter to the rotor clearance, the _,_Irl speel can be hundred_

of ti,nes the rotational speed of the rotor: and thus be ootentiallv

very Janlerou.q.

.'_nere are t_ basic methods for st,_d yin% transient rotor

dyna,_Ics. One is the _,_odal -_etho_ (ref _ an:I 4_ which exnands the



solution in terms of a few of the lower frequency mode shapes. If the

transient under study is localized (llke a blade loss or a rotor rub)

the high frequency components are, at least initially, dominant. Thus

the modal method is not applicable to this type of transient. The

other method involves the direct Integration of the equations of

motion, which can be done in either of t_ ways, explicit or implicit

integration. For example, ref 5 used explicit Integration of the

equation of motion, but this solution is plagued with numerical

stability problems. Further, ref 6 showed that explicit integration of

the equation of motion was unstable when the product of the critical

frequency (for any mode ntnnerically possible) and the time step was

large. Therefore. the explicit integration can only be done for simple

rotors.

In contrast, the implicit integration tends to be stable (ref 7

and 8) but it requires the solution of a large number of nonlinear

simultaneous equations at each ti_e step. r/el 9 used a technique

similar to ref 7 except that It _s applied directly to the second

order equation of motion. Ref 9 also noted that the generalized

forces on a rotor were functions of the generallz_',' position and

velocltv of the point _ere the forces were applied and its nearest

axial neighbors. This allowed tl_e variables to be arranged so that the

Jacobian of the set of nonlinear equations wns block trldla_onal.

Therefore, comput in>" time became proportional to the nu-,ber of

elements in the rotor dvnamics model rather than to the cube of the

number of elements. _e objective of this studv is to refine the

method used in ref 9 to include an automatic time step routine and

then apblv the technique t_ study blade loss induced rot_,, rubs. ,_e

automatic tlrae step routine is necessary so tl_at the time step can be

varied as the rotor Impacts the case. Also. the n_-_erlcal stability

of the method used in ref 9 will be investigated.
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_ALYS IS

Nu_me_Kric al__in teg rAt.io_n•

Given_ an arbitrary vector function _k(t) whose derivatives exist,
_(J)(t), a Taylor series expansion can be written:
_k

q-k

-_k(t + _t) (_t)J],._ J)(t) + _q-k

J-O

_Ith remainder of order Oq_ k. If the arbitrary function is chosen as

ak'.

the Taylor series for this function becomes

q

J-O

where the binomial coefficients are defined as

0 for J < k

(3_)

If the form of the remainder is chosen as

-4, .+

0 i

q akU

the Taylor series becones

q

Zk(t + At) - (t) + akU

J=O

(4)

(5)



where the alphas are given in ref 7 and u can be determined from the

equations of motion at the advanced time. The form of the set of the

equations of motion at the advanced time is:

 r(r, r, t, at) - o (6)

-4.

From the definition of z . the various derivatives become:

-_(k) ak'. -_

r - )k Zk (7)(at

SubstltutinF, for the various derivatives into the equations of motion;

and kno_'ing the values at the previous time, result in the equations

of motion belnF, a function of:

t + - 0 (s)

This set of equations can be solved for u and. fron this value of u.

the remainder can be used as an error estimate to control the time-¢.

step. Fro._ the definition z 1 represents a nondi_ensional form of r 1.
_xerefore an estimate of the maximm_ absolute error is:

_ere I _ull. the vector nor_ is tt_e maxim_ component of _. T,_e

co_p,ater code used in ref 9 was modified to include the followln!_

automatic time step althrogim- If E>.OI% re-do the calculation with
1_>,,>. 001% accept the

the time ste,n reduced by a factor of 10. If .0 _ _
calculation but decrease the time step by a factor of 2. If

.001%>E>.0001%. accept the calculation and maintain the sane time

step. If .O001%>F-. accept the calculation but increase the time step

by a factor of 2.

Numerical stabilit v:

The analysis of the stability of the numerical Inte_ratlon

technique assumes a model of a rotor bearing system that is linearlzed

at some instant of time. The homo?,eneous equation of motion for any

mode is

2
+ 2_$r + w r - 0 (10)

where ome_,a is the natural frequency and zeta is the damping, ratio for

the mode. For every mode that is nun_rically possible, with



nonnegatlve Hanping ratio, the amplitude must either remain constant

or decay in time. The numerical integration is defined as unstable if

the amplitude grows in time.

Substituting the Taylor series for the various derivatives into

the modal equation of motion at the advanced time results in:

' ]
u - - L2=2 + 2_1_ nt ¢+ _0(_ At) 2 ' zj(t)

J=O

For this value of u, the Taylor series expresses the solution

advanced time in terms of the solution at the present time as:

(11)

at the

)Z aklj(J- i)+ 2J_ At _+ (_ At)2_Zk(t + At) = - Zj(t) (12)

2_2 + 2_i_ &t _+
j-0

Defining the matrix S to be:

aklj( j - I) + 2J_ At _+ (_ At) 2]

CO-[ ]Skj " _2 + 2_l_At _+ a0(_ At) 2

(13)

and the vector Z whose kth element is zk,

difference equation:

"_(t+ At) = s-_(t)

results in the finite

(14)

This equatlen has a solution of the form:

_(t + At) = _(t)
(15)

where larnbda is an ei_envalue of:

s_- x_

If the IX [ >I, the a_l,iitude grows and

ur,stab le.

the method

(16)

is numerically



Rub model :

The interaction of a rotor with its case is a complicated

phenomenon. It can involve non-linear deformation of both the rotor

and the case. Rotor-case rubs were experimentally studied in ref 10.

Analytically only simple rotor-case rub models are available;

therefore, the case was assumed to be linear with dry friction

interaction with the rotor. The radial and tangential forces on the
rotor are then:

.@

rr- o, F0. 0 Irl < c (17A)

-b

F r " -k(ir I - C),
-4.

Fe " _F [r I > C (17!_)
r

RESULTS A:_ DISCUSSIO'.;

The numerical method of ref 9 ev_ployed a second order integrator

with a constant time step. However to study blade loss induced rotor

rubs. it is necessary to _nodifv the method of ref q to include higher

order integrators g_Ith an automatic time step routine. The automatic

time step routine is necessary so t!,at the ti-_e step can be varied as

the rotor impacts the case. In order to calculate hi:,h frequency

components accurately, the time ste> must be less than the period of

the high frequency con?onent, _-_en onlv Io_: freouencv co'nponents are

important the ti'_,e step car TM. be increased to decrease co'_putin% time.

The algorithm discribed in the analysis section keeps the mazlmu_

error in the displacement at less than .01%. It tries to maintain the

error between .001% to .0001% by either decreasing or increasing the
time step.

Another way to decrease computing: time is to use a higher order

integrator. Ref 7 studied the numerical stability of up to a sixth

order integrator applied to a first order differential equation. The

numerical stability of these integrators applied to a second order

differential equation _s given in the analysis section. The

numerlcal stability of an Inteo, rator is based on modal rotor dynamics

analysis. If the integrator is applied to a node which is not driven

and has damping, the amplitude must decay in time. Figure I shows a

stability map for the integrators used in ref 7 applied to a second

order differential equation. The abscissa is the dn,=pin_, ratio and the

ordinate is the product of the time step and natural frequency for the

mode. The stability map has contours on it for which the amplitude

does not change fror, one time to the next. On one side of the contour



the amplitude grows (unstable region), and on the other side it
decays. (stable region).

Figure 1 shows the stable regions for a fourth through sixth

order integrator, Yhe second and third order integrators were stable

everywhere. For the regions where the integrators were trustable, the

amplitude grew by a few percent per time step. It would take on the

order of a hundred time steps for the amplitude to double, and it

would take on the order of a thousand time steps for the amplitude to

increase by a factor of a thousand. Due to round off errors, every
mode that is nu_nerlcally possible in the rotor dynamics model, has a

finite amplitude. These amplitudes may be small' but If they are in an

unstable region, in a few thousand time steps they can become very

large. For this reason, only the second and third order integrators

_ere used. This is still a vast improv_ent over other types of

integrators such as the one used by NASTRAN. NASTRA_] uses an i,nplleit

form of the Newraark-Beta integrator, ref 8. This integrator is second
order and does not have an error estimate.

The rotor-bearlng system described in ref 11, (which dyna._ically

simulates a typical small gas turbine), was used as the example
problea. This rotor bearing system consisted of a shaft with three

disks mounted on two axially preloaded ball bearings (fig 2). In this

rotor-bearing system the bearings were mounted in squeeze-fil_ damper

journals, and t_e Journals had centering springs.

The first three critical speeds for the rotor bearing syste_

without oll in the dampers are sho_n in figure 3. Note that all the

modes are bent- shaft modes. The "classical" hierarchy only applies

to stiff shafts" therefore, the classical node shapes do not

characterize the actual mode shapes. The first mode. about 7600 rpm,
classically would be the cylindrical mode. But in this case, it has a

large amount of bending outward near the shaft center. The second

mode. about 9200 rpm, classically would be the conical _ode, In this

case, it has a slight amount of bending outward near the shaft ends.

The third mode, about 11200 rpn. classically would be the bending

mode. In this case, it has a large amount of bending throughout the
shaft.

The rotor-bearing system was modeled by using 23 eler._ents. Prior

to the blade loss simulation the rotor was assu_ed to be balanced and

operating at 9500 rpm. The blade loss was slmulated by an

instantaneous application of 5 mils of mass excentrlclty in the far

disk. The equations of motion for this system were directly

Integrated by the method used in ref 9 with a variable time step. The

output was interpolated to equal ti,_e steps (100 time steps per shaft



rotation), and displayed on a CRT. figure 4. The display she.d an

oblique view of the rotor bearing system, with the bearing center line

as the oblique axis. The transverse vibration is indicated by the

position of the rotor centerline. The scale of the transverse

vibration exaggerates the amplitude of tile vibration. The display on

the CRT was photographed at each time step. These photographs were

then shown as a _otlon picture.

Figure 5 shows the superposltlon of the first ten frames of the

blade loss simulation without a rub. Initially the rotor, the

bearing, and the mass center line coincided. After the blade loss, a

traveling wave starts at the blade loss disk and travels down the

rotor, During the time high frequency components are dominant,

(because the rotor as a w%_ole is not moving). A model analysis which

only uses the lower modes cannot discrlbe the motion during this time

period.

Figure 6 shows the position of the rotor for the first six

rotations of the rotor after blade loss without a rub taking place.

Durin_ the first rotation, the blade loss disk spirals out. During

the second rotation, the disk on the other end of the shaft spirals

out. DurinR the third rotation, the center disk spirals out. After

this the envelope of the rotor positions, seens to oscillate in a

conical fashion, with a frequency of about I/4 operating speed. This

beatin_ seems to be at a f_equency difference between the operating

speed and the Ist critical speed. (Ref 12 experimentally showed a

simillar beat frequency between the operating speed and the critical

speed.) During this time the rotor shape resembles the third critical.

except that the bearing center line is not in the plane of the rotor.

The maximum a_plitude occurred on the blade loss disk on the sixth

rotation and on the opposite disk on the fourth rotation. The

conclusion drawn from this figure is that if there is clearance space

do_ the rotor and a rub occurs, it does not necessarily occur at the
blade loss disk first.

The rotor-case rub was sinulated by surrounding each disk with a

shroud that had a 2 ,011 radial clearance and a stiffness of

lO0.O00_-_/in. The rub was induced by a repeat of the blade loss

simulation with the clearance restrain. Two rub simulations were run.

one _rith a coefficient of friction of .I and the other with a

coefficient of friction of .2.

Figure 7 shows the first 6 rotations of the shaft after blade

loss for a coefficient of friction of .I. During the first shaft

rotation the blade loss disk spirals outward and bounces off the case

four times. Each collision of the rotor with the case sends out



traveling waves down the rotor. _]_ese haves interact with each other

causing the envelope of the rotor motion to be very complicated. On

the second shaft rotation both outboard disks bounce off the case four

times. /_ the rotor continues to turn the orbit becomes more

circular. Rat is, the rotoz_-case interaction becomes less of a

bouncing nature and more of a continuous contact. 11_e envelope of

the rotor motion seems to be oscillating in a conical nature; but both

outboard disks seem to remain in contact with the case. _e rotor

continues to whirl about the bearing centerlLne in the rotc.lonal

direction (formrd whirl). _he frictional drag forces are not larde
enough to drive the rotor into backward O_irl,

Figure 8 shows the first 4 rotations of the shaft afte'r blade

loss for a coefficient of friction of .2. _he motion of the rotor on

the first rotation is similar to the .I coefficient of friction case.

On the second rotation, the blade loss disk has a very hard collision

with the wall, causing the rotor to bend considerably. On the third

rotation the rotor whirl direction changes from fnr_rd to backward

whirl and the rotor whirl begins to accelerate in the backward

direction. On the fourth rotation, the rotor ,notion becomes very

lar_e and it continues to grow on succeeding totatlons.

This ex mnpl e proble_ ,has sho Inn that snail chanzeq in the

coefficient of friction, (fro_0 .I to .2) can chanqe a rotor response

to a blade loss condition from a relatively safe response to a

catastrophic response, rbr seal rubs the coefficient of friction is

probably between .I to .2. For blade tip rubs, this rub model is not

accurate. _Is t_pe of rub involves r_aterlal re_qoval, phase chan=,e:,,

and cr non-elastlc defortnatlons. If this _oJel were to be used In a

general manner, then the coefficient of friction _u]d probably be
Rreater then .2.

In conclusion, this co,nputer code allows us to look at blade loss

induced rotor rubs an3 displays the rotor motion in a motion-picture

format. A lO-minute, l_-milli_eter, color, sound motlon-picture

supplement is available, on loan, that shows _he computer ma_e notion
picture for the blade loss induced rotor rubs.

SUI'IARY OF RESISTS A'_ CONCLUSIO_:S

A method for direct inteR ration of a rotor dynamics system

experiencing a blade loss induced rotor rub _s developed. ._e
following conclusions were drawn:

I. The method _as nunerically stable for any tl_e step up to R t _Im]
order Inte% rato r.

iO



2. The time step was controlled so that the maxi_un error was less

then .01% and the probable error was betwee_ .001% to .0001%.

3. For the rotor typical of small _as turbines a s_all change in the

coefficient of friction. (fron .I to .2). caused the rotor to chan_e

from for_rd to backward whirl and to destroy itself in a few

rotations.

This method provides an analytical capability to study the

susceptibility of rotors to rub induced backward whirl problems.

REF EKENCES

I. Johnson,D.C, Synchronous Whirl Of A Vertical Shaft Having

Clearance In One Bearing, J, ._ech. Eng. Sci. vol.4. 7:o.I. 1962. pp

85-93.

2, Black. H.F. _ Interaction Of A k_hlrllnz Rotor With A %'ibratin_

Stator Accross A Clearance, J. _ch. Eng. vol.10. _o.I. 1968. pp

1-12.

3, Childs. D.W." A Rotor-Fixed _)de] Simulation Model Of Flexible

Rotating Equipment. J. Eng. ind., Voi.96, I_o.2, May 1974, pp 659-669.

4. Gunter,E.J. et al. Transient And Stability Analysis Usin!_ The

_lodal P_thod. UVA/525144/l_77/102, University of Virginia, 1977.

5. Shen,F.A. : Flexible Rotor Dynamics Analysis. (R-9252, Rocketdy_e

NASA Contract NAS3-14422,) NASA CR-121276, 1973.

6. Kascak,A.F.: Stability Of Numerical Integration Techniques For

Transient Rotor Dynamics, NASA TP-I092, 1977,

7. Gear ,C.W. _ The A11tomat ic Integration Of Stiff Ordinary

Differential Equations. Proc. IF!P Con?,ress Information Processin_l 6S

(Edinburgh 1968). A.J.H. Morrell ed.. Vol.l, Mathematics Soft_nre,

North Holland Publ. Co., Amsterdam 1969. pp iR7-193,

8. Newmark,N.M.: A Metl,od Of Computation For Structural _'na_nics. J.

of the En_. Mech. Div.. Proc. of the American Soc. of Civil En?.

Paper No.2094. Voi.85. No, E_3, July 1950. pp 67-94

9. Kascak,A.F.' Direct Integration Of Transient Rotor D_,namics. NASA

TP 1597. A%,_,ADCOM TP, 79-42, Jan 1980.

i0. BilI.R.C, and Wi sander .D.W. Friction And l_ar Of Several

Compressor Gas-Path Seal _-i_terials. NASA TP I12S, 1978.

II. Cunninghmm.R,E. : Fleming,D.P. and Gunter.E.J. Design Of A

Squeeze-Film Damper For A _lulti-Mass Flexible Rotor. A,_'IE Trans. J.

Eng. Ind., Voi.97. No.4, Nov. 1975, pp 1383-1389.

ii



>.-

e_

£
.,:r

ORDER OF

INTEGRATION
]0--

6th

_ 5th ,.__ STABLE

.I _ I L L

.001 .01 .1 ]

DAMPING RATIO

Figure 1. - Numerical stability of Gear's integra-
tion method applied toa second order differ-

ential equation for a 2nd thru 6th order of in-

tegration. • ,,e 2rid and 3rd order methods are
always stable•

J
]0
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