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CONFORMAL AND NONCONFORMAL SURFALES

Hydrodynamic lubrication is generally characterized by surfaces that
are conformal. That is, the surfaces fit snugly into each other with a high
dgegree of geometrical conformity, so that the load is carried over a rels-
tively large area. Furthermore the luad-carrying surface area remains
essentially constant while the load is increased. Fluig-film journal and
slider bearings are conformal surfaces. In journal bearings the radial
clearence between the shaft and the bearing is typically oune-thousandth of
the shaft diameter; in slider bearings the inclination of the bearing sur-
face to the runner is typically one part in a thousand,

Many machine elements have contacting surfaces that do not conform to
each other very well, The full burden of the load must then be carried by a
very small contact area. In general the contact areas between nonconformal
surfaces enlarge considerably with increasing luad but are still small com-
pared with the contact areas between conformal surfaces. Some examples of
these nonconformal surfaces are mating gear teeth, cams and followers, and
rolling-element bearings.

The load per unit area in conformal bearings 1s relatively low, typi-
cally only 1400 N/m¢ and seldom over 35 000 N/m¢. By contrast, the load
per unit area in nonconformal contacts, such as those that exist in ball
bearings, will generally exceed 700 000 N/m¢, even at modest applied
loads. These high pressures result in elastic deformation of materials such
that the elliptical contact areas are formed for oil film generation and
load support. The significance of the high contact pressures is that they
result in a considerable increase in fluid viscosity. Inasmuch as viscosity
is a measure of a fluid's resistance to flow, this increase greatly enhances
the lubricant's ability to support load without being squeezed out of the
contact zone,

Figure 1 shows the nonconformal surfaces of a bail bearing. The ball
and race conform to some degree in the section shown in figure l(a), but the
section view shown in figure 1(b) clearly exhibits little conformity. We
are concerned only with nonconformal contacts,




CURVATURE SUM AND DIFFERENCE

The undeformed geometry of contacting solids can be represented in gen-
eral terms by two ellipsoids. The two solids with aifferent radii of curva-
ture in a pair of principal planes (x and y) passing through the contact
between the solids make contact at a single point under the condition of
zero applied load. Such a conaition is called point contact and is shown in
figure ¢, where the radii of curvature are denoted by r's. It is assumed
throughout the lecture that corv-a surfaces, as shown in figure 2, exhibit
positive curvature and concave <irfaces, negative curva*ture. Therefore, if
the center of curvature lies within the solid, the radiu. of curvature is
positive; if the center of curvature lies outside the solid, the radius of
curvature is negative. It is important to note that if coordinates x and
y are chosen such that
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coordinate x then determines the direction of the semiminor axis of the
contact area when a load is appliea and y, the direction of the semimajor
axis.

The example of a ball bearing is used to illuctrate the definition of
the radii of curvature. A cross section of a thrust-loaded ball bearing
operating at a contact angle B is shown in figure 3. Equivalent radii of
curvature for both inner- and outer-race contacts in, and normal to, the
direction of rolling can be calculated from this figure. The radii of cur-
vature for the ball - inner-race contact arc

d .,
Pax = Tay = Z (¢)
de - d CcoS B8
"bx = T Z cos B (3)
Poy = T (4)

d
Tax = Taw = 7 (5)

+
de d cos 8

Tox =~ ~Z cos B (6)
rby =T, (7)

Note that the ball - inner-race and ball - outer-race contact inequality (1)
is satisfied and that the sign convention mentioned earlier has been adopted.

The curvature sum and difference, which are quantities of some impor-
tance in the analysis of contact stresses and deformations, are
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Equations (10) and (11) effectively reaefine the problem of two ellipscidal
solids approaching one another in terms of an equivalent ellipsoidal solid
of radii R, and Ry approaching a plane in the manner shown in fig-

ure 4, From the radius-of-curvature expressions, the radii R, and

Ry for the contact example discussed earlier can be written for the
ball - inner-race contact as

i o(de - d cos B)

Rx B Zd (12)
e
rid

and for the ball - outer-race contact as

a(de + d cos B)

R, = y (14)
X (Oe
rod

Ry=zr. -3 (15)

GEOME TRICAL SEPARATION OF ELLIPSOIDAL SOLIDS

The geometrical separation (S,, + be{ or (Say * Spy) between
two ellipsoidal solids is thus made equivalent to {hat between a single
ellipsoidal solid and a plane in the manner shown in figure 4, The geumet-
rical requirement is simply that at any value of x and y (fig. 4(a)) the
geometrical separation between the two ellipsoids must be the same as the
separation between the equivalent ellipsoid and a plane at the same values
of x and y (fig. 4(b)). From figure 4(a) the following can be written:
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xS (2r. -5 ) (17)
ax'" ax  “ax
But 2ray >> Sax, S0 (17) becomes
4
. X
Sax ¥ 7r (18)
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This is the well-known parabolic approximation to the circular section of
the solid and is valid as long as the separation is much smaller than the
radius of curvature. Similar expressions for S,,, Spy, and Sp, can
be written, and the expression for the total sepagation of an e?*ipsoidal
solid and a plane (fig. 4(b)) can thus be written as

+ L (19)
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SURFACE STRESSES AND DEFORMATIONS

when an elastic solid is subjected to a load, Stresses are produced
that increase as the load is increased. These stresses are associated with
deformations, which are defined by strains. Unique relationships exist be-
tween stresses and their corresponding strains, For elastic solids the
stresses are linearly related to the strains, with the constant of propor-
tionality being an elastic constant that adopts different values for differ-
ent materials. Thus a simple tensile load applied to a bar produces a
stress o) and a strain e}, where

Load . . . . .
%, = Fross—sectional area - Stress in axial direction (20)
_ Change in length o . . . .
“] = OriginaTl Tength ~ Strain in axial direction (¢1)
and
°l
£ =« — = Elastic constant or modulus of elasticity (2¢)

‘1
Although no stress acts transversely to the axial direction, there will
nevertheless be dimensional changes in that direction such that as a bar

extends axially, it contracts transversely. The transverse strains ¢
are related to the axial strains €1 by Poisson's ratio v such that

V& = - (23)




where the negative sign means that the transverse strain will be of the
opposite sign to the axial strain. The modulus of elasticity and Poisson's
ratio are two important parameters used to describe the material in the
analysis of contacting solids,

As the stresses increase within the material, elastic behavior is re-
placed by plastic flow, in which the material is permanently deformed. The
stress state at which the transition from elastic to plastic behavior oc-
curs, known as the yield stress, has a definite value for a given material
at a given temperature. In these lectures elastic behavior alone is con-
sidered,

When two elastic solids are brought together under a load, a contact
area develops, the shape and size of which depend on the applied load, the
elastic properties of the materials, and the curvatures ¢f the surfaces.
When the two solids shown in figure ¢ have a normal load applied to them,
the shape of the contact area is elliptical, with a being the semimajor
and b the semiminor axis. It has been common to refer to elliptical con-
tacts as point contacts, but since these lectures deal mainly with loaded
contacts, the term elliptical contact is adopted. For the special case
where Tray = ray and rpy = rpy, the resulting contact is a circle
rather than an zllipse. Where “r,, and rp, are both infinite, the
initial line contact develops into a rectang*e when load is applied.

Figure 5 shows the contact ellipses obtained with either a radial or a
thrust load for the ball - inner-race and ball - outer-race contacts in a
ball bearing. These lectures are concerned with the conjunctions between
solids with contact areas ranging from circular to rectangular. Inasmuch as
the size and shape of these contact areas are highly significant to the suc-
cessful operation of machine elements, it is important to understand their
characteristics.

Hertz (188l) considered the stresses and deformations in two perfectly
smooth, ellipsoidal, contacting elastic solids much like those shown in fig-
ure ¢. His application of the classical theory of elasticity to this prob-
lem forms the basis of stress calculation for machine elements such as ball
and roller bearings, gears, seals, and cams. The following assumptions were
made by Hertz (188l):

(1) The materials are homogeneous and the yield stress is not exceeded.

(¢) No tangential forces are induced between the solids.

(3) Contact is limited to a small portion of the surface, such that the
dimensions of the contact region are small compared with the radii of the
ellipsoids.

(4) The solids are at rest and in equilibrium (steady state).

Making use of these assumptions, Hertz (1881) was able to obtain the
following expression for the pressure within the ellipsoidal contact shown
in figure 6.

N 2}
P = Prax |1 - (3) - ('a!) (24)
If the pressure is integrated over the contact area, it is found that

3F .
pmax = Zvab (df))

Equation (24) determines the distribution of pressure or compressive stress
on the common interface; it is ¢learly a maximum at the center of the con-
tact and decreases to zero at the periphery,
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The ellipticity parameter k can be written in terms of the semimajor
and semiminor axes of the contact ellipse as

K = -g (26)

Harris (1966) has shown that the ellipticity parameter can be written as a
transcendental equation relating the curvature difference (9) and the ellip-
tic integrals of the first & and second & kinds as

L L 2F - &1+t

-1 (27)
where
"er I\ g ]le
Fs= l- (l - 7) sin"¢ do (¢8)
i k
0 -
"z ! , 112
‘- 1- (1 - -2) sinfe|  ap (29)
| k i

0
A one-point iteration method that was adopted by Hamrock and Anderson (1973)
car, be used to obtain the ellipticity parameter, where

k = kn . (30)

n+l
The iteration process is normally continued until kp+} differs from
ko, by less than 1x10-7. Note that the ellipticity parameter is a func-

tion of the radii of curvature of the solids only:

kK = f(ra (31)

x'rbx’ray’rby)
That is, as the load increases, the semimajor and semiminor axes of the con-
tact ellipse increase proportionately to each other, so the ellipticity
parameter remains constant.

Figure 7 shows the ellipticity parameter and the elliptic integrals of
the first and second kinds for a range of the curvature ratio Ry/Ry
usually encountered in concentrated contacts.

when the ellipicity parameter k, the normal applied load F, Poisson's
ratio v, and the modulus of elasticity E of the contacting solids are
known, the semimajor and semiminor axes of the contact ellipse and the maxi-
mum deformation at the center of the contact can be written from the analy-
sis of Hertz (1881) as

) \L/3
a- (9"_'%55\) (32)
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where
2
E' = - , 35
l - vZ 1 - vé ()
T

In these equations a and b are propertional to FLI3 and & is pro-
portional to FZ/3,

SUBSURFACE STRESSES

Fatigue cracks usually start at a certain depth below the surface in
planes parallel to the direction of roliling. Because of this, special
attention must be given to the shear stress amplitude occurring in this
plane. Furthermore a maximum shear stress is reached at a certain depth
below the surface. The analysis used by Lundberg and Palmgren (1947) will
be used to define this stress.

The stresses are referred to a rectangular coordinate system with its
origin at the center of the contact, its z-axis coinciding with the interior
normal of the body considered, its x-axis in the direction of rolling, and
its y-axis in the direction perpendicular to the rolling direction. In the
analysis that follows it is assumed that y = 0,

From Lundberg and Palmgren (1947) the following equations can be
written:

3F cos‘ﬁ sin ¢ sin y

o o 3F cosg sing (36)
2x - 2x (altany + blcos’e)
x = Vbl + aztanz; sin ¢ (37) %
2« atany cos (33)

The maximum shear stress amplitude is defined as

T A
X
0" |"2x]ps,

The amplitude of the shear stress 7g is obtained from
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For the point of maximum shear stress

tane = t, (39)

tan‘y = t_ - 1 (40)

‘e '/(tz— 1) (et - 1) (41)

The position of the maximum point is determined by

»

2= zO a [*D (4¢)
Z = tn*b (43)

where
. L (44)

(ta + 1) ‘/zta -1

t Zta +
t,+1 Yz, -1 (45)

Furthermore the magnitude of the maximum shear stress is given by

(2255 V7, -1 (46)
Y0 " \zab) Zr (T 1)

SIMPLIFIED SOLUTION FOR STRESSES AND DEFORMAT IONS

The classical Hertzian solution presented in the previous section re-
quires the calculation of the ellipticity parameter k and the complete
elliptic integrals of the first and second kinds S and &. This entails
finding a solution to a transcendental equation relating k, &, and & to
the geometry of the contacting solids, as expressed in (¢7). This is usu-




ally accomplished by some iterative numerical procedure, as described by

??gzgfk ana Anderson (1973), or with the aid of charts, as shown by Jones
Brewe and Hamrock (1977) used a linear regression by the method of

least squares to obtain simplified equations for Kk, ,r, and &. That is,

for given sets of pairs of data, {Lkj, (Ry/Rx)j), J = 1, 2, ..., n},

a power fit using a linear regression by {he method of least squares re-

sulted in the following equation:

R ]r.6360
(47)

K = 1.0339 (Rl

X

The asymptotic behavior of & and S was suggestive of the functional
dependence that & and F might exhibit, As a result a logarithmic and
an inverse curve fit were tried for & and S, respectively, The follow-
ing expressions from Brewe and Hamrock (1977) provide an excellent approxi-
mation to the relationships between &, & and Ry/Ry:

0.5968
y' x

&= 1.0003 + (48)

F = 1.5277 + 0.6023 n (Ry/Rx) (49)

Values of k, &, and F are presented in table 1 and compared with the
Hamrock and Anderson (1973) numerically determined values of k, &, and
F. The agreement is good. — —

Using these simplified expressions for k, & and §F and equation
(34) gives the deformation at the center of the contact

_ 2/3
e
where
= \1/2
Kk = oK' [ —RE (51)
(75)

Note that the load-deflection constant K is a function of the geometry ind
the material properties.

The results of comparing ¥ with & are also shown in table 1. The
agreement is again quite guod, Therefore the deformation at the center of
the contact can be obtained directly from (47) to (51). This valuable ap-
proximation eliminates the need to use curve fitting, charts, or numerical
methods.

Figure 8 shows three different degrees of ball-contact conformity:

a ball on a ball, a ball on & plane, and a ball - outer-ring contact.

Table 2 uses this figure to show how the degree of conformity affects the
contact parameters. The table shows that k is not exactly equal to unity
for the ball-on-ball and ball-on-plane situations because of the approxima-
tion represented by equation (47). The diameter of the balls is the same
tnroughout, and the material of the solids s steel. The ball - outer-ring




contact is representative of a 20Y radgial bal) bearing. A 4.45-N (l-1bf)
normal load has been considered for each situation. The maximum pressure
decreases significantly as the curvature of the mating surface approaches
that of the ball. Table Z shows that the curvature of the mating surfaces
is very important in relation to the magnitude of the maximum pressure or
surface stress produced. A ball and ring of high conformity are thus
desirable from the stanapoint of minimizing the stress,

Table ¢ also shows that the area of the contact sab increases with
the conformity of the contacting solids. Although this effect minimizes
contact stresses, it can have an undesirable effect on the force of friction
since friction force increases as the contact area, and hence the area of
the shearea lubricant, increase in a bearing operating under elastohyaro-
dynamic congitions, The curvatures of the bearing races are therefore gen-
erally a compromise that takes into consigeration the stress, 10ad Capacity,
and friction characteristics of the bearing,

In equations (42) to (46) the location and magnitude of the maximum sub-
surface shear stress are written as functions of t,, an auxiliary psrame-
ter. Ffurthermore in equation (41) the ellipticity parameter is written as a
function of t,. The range for 1/k 1is 0 < l/k < 1, and the correspond-
ing range for t, is 0 < ty < (1 + VIV)/4T A 1Tnear regression by the
method of least squares was used to obtain a simplified formula for ta
in terms of Kk, the ellipticity parameter. That is, for given sets of pairs
of data {[(l - tali, (L/K)j)y J = 1, &y veuy n}. a power fit using a
linear regression 3y the method of least squares resulied in the following
equation:

1 1.8559 )
fa - 1 = 0.3044 (F) (5¢)
The sgreement between this approximate equation and the exact solution is
within #2 percent, Using equation (5¢) greatly simplifies finging the val-
ues for the location and magnitude of the maximum subsurface shear stress
expressed in equations (4¢) to (36).

CONCLUDING REMARKS

An assorted group of topics has been presented dealing with conformal
and nonconformal surfaces, curvature sum and difference, and surface and
subsurface stresses in elliptical contacts. Load-deflection relationships
have been developed for any type of contact., The deformstion within the
contact is a function, among other things, of the ellipticity parameter and
elliptic integrals of the first and second kinds. Simplifiea expressions
have been written that allow deformation tu be calculated quickly and, gen-
erally, with adequate accuracy. A simplified expression was also developed
that enables the iocation and magnitude of the maximum subsurface shear
stress to be written direct'y without relying on an iterative procedure,

10

ot G il




APPENDIX - SYMBOLS

semimajor axis of contact ellipse, m
semiminor axis of contact ellipse, m
ball diameter, m

pitch diameter, m .

modulus of elasticity, N/m¢

moaoaoTo
[}

l-v: l-v‘ p
effective modulus of elasticity, ¢ 7 + 4 s Nim

a b

elliptic integral of second kind with modulus (1 - llkz)l"
normal applied load, N )
elliptic integral of first kind with modulus (1 - llkz)ll‘
loag-geflection constant defined in eq. (51)
ellipticity parameter, a/b
pressure, N/m¢ )
maximum pressure within contact, 3F/Zsab, N/mé
curvature sum, m
race curvature radius, m
geometrical separation of ellipsoidal solias, m
auxiliary parameter
oz coordinate system
contact angle
curvature ditference
elastic deformatiun, m
€] strain in axial direction
€y strain in transverse qirtction
v Poisson's ratio )
0] stress in axial girection, N/m¢
1 shear stress, N/m< ,
0 maximum subsurface stress, N/m¢

3 A T S
o
b

Tt X NS DD W X X
-

(-]

Subscripts:

solid a

solig b

inner race

outer race

X, ¥,2 coordinate system

QG - Ooa

Superscript:

() approximate

1l
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TABLE 1. - COMPARISON OF APPROXIMATE AND EXACT FORMULAS

Radius Ellipticity Elliptic Integrals Deformation st Center of Contact
Ratio, - Second First
”y /l‘ K k  Per- kind kind Numerical, From Per-
cent 4 Curve Fit cent
Error & & Por- & F  Per- Equation, Error
cent cent ;
Error Error

1,000 1.00 1,03 3,00 1,57 1,60 1,81 1,57 1,53 -2,55 1.230%x10°% 1.1esx10™¢ ~5.04

2.820 1.96 200 .50 1.21 1,21 ¢ 2,15 2,15 o0 1.0 1.017 -.29
6,314 3.01 3.00 -.33 1111311 2,53 2,53 o 887 888 .22
8.3 4,01 4.00 -.25 1.07 1,07 2.680 2.80 o 814 .18 .25
11.805 4.98 5,00 .20 1,06 1.08 3.02 3.0 -2 B J752 -.53
15,897 5.87 6.00 .50 1.04 1.04 3,19 3,18 -,23 708 10 -7
19,871 6,92 7.00 1.16 1.03 1.03 3.43 3,33 o .867 .882 -.78
24.605 7.87 8.00 1.68 1.02 1,02 3.46 3.45 -.24 .836 .28 -1.28
28,576 8.80 9.00 2.27 1,02 1.02 .57 3.5 ~,22 .808 .588 -1.64
34,868 $.72 10.00 2.88 1.02 1.02 3.87 3.8 -.25 584 149 -2.28

TABLE 2. - EFFECT OF DEGREE OF CONFORMITY
CONTACT PARAMETERS

[For all three cases, E' = 2,26x1012 N/m? (steet on steel),
F=4.45N, and Tax = Tay * 6,35 mmo. For the ball -
outer ring contact, d, = 65 mm, §=0°, I, = 0.52
(assume 209 radial ball bearing).)

Contact Ball on Bail Bl on Plane Ball - Outer
Farametert Ring Contact
Thx 6,35 mm - -38.8 mm
Ty 6.35mm - -8,80 mm
R 3,69 mm 3.18 mm 7.26 mm
Ry/Rx 1 1 22.1
k 1.02 1.03 7.3%
zZ 1,60 1,80 1.03
7 1.53 1.53 3.3
i 0.0465 mn, 0.0586 mm 0,247 mm
® 0.0453 mm 0.0569 mm 0.0336 mm
rab 0.659x10"2 mm?  1,00x0"2 mm?  2.60x10"2 mm?

3 6.01x10 7  mm 487107 mm 25610 rm

1.00a0° N/m2 0,657x10% N/m? 0. 258107 N/m?




’—‘ ,~ Outer race

Figure 1, - Ball bearing components, Example of nonconforma!
surfaces,
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Figure 2, - Geometry of contacting elastic solids,




)
1
;{d
-3 N
u A
dg¢ d cos P
L
gg-d csp |l 42
—--T—-q
-¢ ,w' i - “o

Figure 3, - Cross section of ball bearing.
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Figure 4, - Equivaient ellipsoidal solids,
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Figure 5. - Contact 3reas in a ball bearing,

Figure 6. - Pressure distribution in an ellipsoidal contact.
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{c} Ball - outer-ring contact,

Figure 8 - Three degrses of confurmity,
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