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1. INTRODUCTION

The computer simulation of picture-element (pixel) data sets in remote
sensing protlems is an important method for testing proposed methods of

data analysis. In such simulations the distribution of the number of pixels
to be assigned to a rare signature or crap iype can be modeled by a Poisson
process. Unfortunately, Poisson pseudo-random generators for moderate mean
rates (~50) tend to te either slow or ina ~urzte. This technical memorandum
proposes an alternative method of generation to partially overcome these
problems.




2. APPROXIMATELY POISSON PSEuUDO-RANDOM VARIABLES

A Poisson-distributed random variable x with probability e'AAx/x

has mean and variance .. Because of the impartance of Poisson processes,
computational procedures for generating pseudo-random Poisson-distributed
numbers have received some attention in the literature {Snow 1968, Schaffer
16570). The methods described tinére work guite satisfactorily for A small,
but involves a sequence of calculstion: of duration order A. Thus, as A
becomes large, the time required to generat- a single Poisson variate may be
prohibitive. The IMSL program library {(IMSL 1979) which implements the

above procedures replaces them with a normally distributed random variable
with A mean and v mce for a»50. As wii: be seen later, this approximation

is not particularly good.

The criterion for a qood approximation Lo a particular distribution will be
the ~-metric

max | x)-F(x)|where F(x) is the cummulative distribution

X Fapprox(
function of the rancdom variable to be approximated. Since satisfactory
procedures exist t. generate normal pseudo-random variables, we will use
aporoximations of the following form:

dist

f * = ]
[f ¢ “=<"" Normal (0,1), then R T(pu+oZ)

where T is an appropriate one-one transformation and p and o are constants
depending on T and A. Thus, if ¢ is the normal (0,1) cumulative distribution

function,

= LT (x)-u)/0)

F
approx

The Edgeworth exsansion (Abramovitz and Stegun 1970) of the function T-](x)
(where x is Poisson distributed) shows that the highest order correction
term to the normality of T'](x) is the skewness Y, = p3/o3 (where My is the
third central moment) times a function of x independent of T. Thus, we wish
to find a T such tnat T-](x) has skewness as small as possible.




3. POWER TRANSFURMATIONS

The family of functions T'] which we will explore will be the powers

x2, a>0, which are all defined since x Poisson > 0. This

choice of family is suggested by the well-known "variance-stabilizing"
transformation\J; wnose variance is coastant to corder x']. This has been
useful in analyzing Poisson-count data since after transformation the
separate counts may be treated 3s hemesredastic.

This corresponds to our case a = 1/2. To estimate the skewness of xa,

-x Poisson, we write
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and using the binomial theorem
2 3
i} AaE(l " alil . a(g-l[ (555) 5 aga-lgfa-ZQ (iii)

+ a(@‘]‘igailié:ll (x’\)a v ...)

N

then using standard results about the central moments of a Poisson variable

a, afa-1) ja-1 a(a—l)(;;Z)(3a-5) 1a-2

5 + L.

Manipulation of this expansion gives us
uxa )\a + a—(-a-;—l)- Aa-] + ...

a-1/2 2,a-3/2 .

0. = al + 3/4a(a-1)"x

Yx? = a(3a-2)k-]/3 + ...

Thus, by choosing a = 2/3, x? s asymptotically unskewed as A becomes large.
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4, A GENERATION ALGORITHM

The random number generation scheme suggested by this result is as follows:

Generate a normal (0,1) pseudo-random variate #. Muitiply it by

2/3 1/3

o= 2/% + 171807778 and add w = A% - 19
then raise the result to the 3/2-power. Th¢ Poisson variate x is taken to be
the non-negative integer nearest to this value.

In table 1, the w=-metric error for this approximate scheme is tabulated

for various values of A, along with the error for the usual untransformed
(a = 1) normal approximation. It is apparent that the 3/2-scheme is
enormous 1y more accurate; for A as small as 2 it is already better than

the usual procedure at X - 50. Aisos, a5 *» increases the 3/2-scheme becomes
better as A-], whereas the old scheme becomes better as A']/Z. Prichard
(1980) has implemented this scheme on a programmable calculator with very

Tittle difficulty.

The disadvantages of the scheme include the extra computation involved in
calculating p and o, which may be negligibie if a number of variates are
to be calculated, and the overhead involved in taking a 3/2 power for each
variate. The higher accuracy may well compensate for this. In mixed
exact-and-asymptotic for small and large A schemes, speed may actually be
enhanced because the asymptotic approximation can be tolerated for much
smaller A's.
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TABLE 1.—COMPARISON OF MAXIMUM ERRORS IN TWO APPROXIMATIONS
TO THE POISSON DISTRIBUTION

Max Error In

Normal (t‘éorma])3/2

A Approx. Approx.

2 .044 .0077

5 L0790 .00293
10 .0208 .00744
15 .0170 .00095
20 .0148 .000695
25 .0132 .000556
30 L0121 .000457
40 L0105 .000341
50 .000938 .000271
75 .00766 .000178
100 .00664 .000132
150 .0049¢ .000072
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5. EXTENSIONS

As a further application of the results of this memorandum, we may construct
a goodness-of-fit test for categories that are believed to have independent
Poisson processes as generators. Let Oi, i=1, ..., n be the observed
counts and Ei be the expected couats (x's). Then

n (0 2/3 W )\2

2: i 2/3'7i') S

. 2 Xq

i=1 02/3(E1)
where the approximation 1y much ¢ lgser for small (1‘5 than is the Pearson
x2. Linear constraints, however, are no longer iinear 50 this test warrants

further investigation.
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