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ABSTRACT

Areas of the Canadian high plains, the Montana and North Dakota high plains and the steppes
of central Russia have been studied in an effort to determine the utility of spaceborne microwave
radiometers for monitoring snow depths in different geographic areas. Significant regression re-
lationships between snow depth and microwave brightness temperatures were developed for each
of these homogeneous areas. In each of the study areas investigated in this paper, Nimbus-6 (0.81
cm) ESMR data produced higher correlations than Nimbus-5 (1.55 cm) ESMR data in relating
microwave brightness temperature to snow depth. It is difficult to extrapolate relationships
between microwave brightness temperature and snow depth from one area to another because

different geographic areas are likely to have different snowpack conditions.




SNOWPACK MONITORING IN NORTH AMERICA AND EURASIA
USING PASSIVE MICROWAVE SATELLITE DATA

INTRODUCTION

Several stud: s have been.conducted in order to determine the utility of passive microwave
data for snowpack monitoring. Ground, aircraft and satellite platforms have been used. Results
from these studies indicate that there is a po‘teﬁtfal for utilizing passive microwave data for deter-
mining the position of the snowline, the snow depth, the onset of snowmelt, the liquid water
content of a snowpack, and the condition (wet, dry or frozen) of the underlying soil beneath a
snowpack. In this paper, areas of the Canidian high plains, the Montana and North Dakota high
plains, and the steppes of central Russia have been studied in an effort to determine the utility of
spaceborne microwave radiometers for monitoring snow depths in different geographic areas.

Analysis of microwave snow properties will be discussed, and Nimbus-5 and -6 Electrically
Scanning Microwave Radiometer (ESMR) satellite data of snow in the above listed study areas
will be presented. Each of the study areas is relatively flat and homogeneous and published data

on snow depth and air temperature are available from snow courses and meteorological stations.

MICROWAVE EMISSION FROM SNOW

The emissivity and the temperature of a snowpack affect the measured radiation which is com-
monly termed the brightness temperature (Ty). Scattering of microwave radiation by individual
snow particles causes a lowering of the Ty of the snow. Deeper and denser snow allows greater
scattering thus further lowering the T,. Mie scattering governs the scattering of radiation by snow
crystals in a snowpack and is described by Chang et al. (1976).

The condition of the ground beneath the snow will determine the intensity of the radiation
incident from below. Dry or frozen ground has a high emissivity (0.90-0.95) whereas wet ground
has a much lower emissivity (~0.70) with correspondingly lower brightness temperatures. Know-

ledge of the condition of the ground underlying the snow is important for the interpretation of




observed brightness temperatures and can generally be determined from observations using long
microwave wavelengths (Hall et al., 1978).
Many factors influence the microwave emission from the snow itself includinz snow water

equivalent, density, liquid water within the pack, and grain and crystal sizes. For example, liquid

water within the snow (1-4%) will cause a sharp increase in Ty (Chang and Gloersen, 1975). The Ty

sharply increases in response to liquid water because the water coats the ice crystals in snow thus
reducing the radiational scattering which is the major process attributed to lowering the Ty, and
emission from snow.

Different layers within a snowpack can apparently be analyzed using the multifrequency
approach. Penetration through snow can be 10-100 times the wavelength depending upon snow
conditions (Chang et al., 1976). Short wavelength radiation is scattered Ly snow crystals and
grains (~1 mm in size) which are comparable in size to the wavelength, as well as by larger scat-
terers. Longer wavelength radiation is affected by very large crystals, lenses and layers within the
snow which result from melting and refreezing of liquid water which has percolated down into the

snowpack (Shiue et al., 1978).

PREVIOUS WORK

During a six week period at Steamboat Springs, Colorado in 1977 snow varying in depth
from 26 cm to 50 cm was studied using truck mounted radiometers observing at three different
wavelengths: 0.32 cm (94.0 GHz), 0.81 c¢m (37.0 GHz) and 2.8 ¢cm (10.69 GHz). Ulaby and Stiles
(1980) found that the T, decreased exponentially with W (water equivalent of snow in cm). They
found that the T, observations reached their lowest levels at W =30 cm for the 0.81 cm radiometer
and at W =15 cm for the 0.32 cm radiometer. The 2.8 ¢cm radiometer observations continued to
decrease over the range of snow depths observed at that wavelength.

Snow wetness measurements were also taken at Steamboat Springs during February and
March 1977 (Stiles and Ulaby 1980). Snow wetness (m ), i.e., volume percentage of liquid water

in a unit of snow, was measured by the freezing calorimetry technique. It was found that T,
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increased with m, particularly at the 0.81 cm wavelength. The 0.81 cm Ty values increased 110°K
while the 2.8 cm radiometer increased only 10°K with the diurnal increase in m, (Stiles and Ulaby,
1980).

Meier (1972) analyzed data from a 1968 NASA Convair 990 aircraft flight over Mount Rainier,
Washington using a 1.55 cm wavelength (19.35 GHz) aircraft-mounted ESMR. He was able to map
the snowline based upon the 270°K Ty values. The 270°K boundary compared well with the snow-
line derived from aerial photography. The 245°K Ty boundary was found to correspond with the
transition to the cold, dry snow of the summit plateau of Mount Rainier.

In the winter of 1976 and 1977 aircraft measurements of snow in Colorado were obtained
using the Multifrequency Microwave Radiometer (MFMR) on-board the NASA P-3 aircraft (Hall
et al,, 1978). The MFMR consists of four different wavelengths: 0.81 cm (37.0 GHz), 1.4 cm
(22.2 GHz), 1.7 cm (18.0 GHz) and 21.0 cm (1.4 GHz) and was pointing at an angle of 48° forward
of the aircraft. Results showed that a decrease in Ty accompanied increasing snow depth and this

was best exemplified at the 0.81 cm wavelength.

Both Nimbus-5 and Nimbus-6 EMSR satellite data have been used to analyze dry snow over
large areas in the United States and Canada. Rangoetal., (1979) studied the Canadian high plains
area (Fig. 1) using both 1.55 ¢m (19.35 GHz) data from the Nimbus-5 ESMR, and 0.81 cm (37.0
GHz) horizontally and vertically polarized data from the Nimbus-6 ESMR (Nimbus-5 ESMR
records only horizontally polarized data). The instantaneous field of view of these instruments
from the satellite is about 25 km (at nadir); therefore, only large. homogeneous areas can be studied
using these satellite data. Inhomogeneity of the surface underlying the snow can cause differences
in Ty values, so a relatively uniform prairie area was selected for the study.

Correlations between T, and snow depth were found to be significant (at the 0.001 level) for the
Nimbus-5 data where R =0.76 (Fig. 2), and for the Nimbus-6 vertically polarized data where R*=0.86
(Fig. 3). Analysis of the horizontally polarized Nimbus-6 data produced results essentially similar to
the vertically polarized data. Multiple regression approaches using brightness temperatures from both

Nimbus-5 and 6 as predictor variables provided no marked improvement in the relationships.
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STUDY AREAS

It is the purpose of this paper to expand on the work discussed above by Rango et al., (1979).
Two additional geographical areas were selected to study the relationship between snow depth and
microwave Tg. These areas are the steppes of central Russia ¢ Figure 4) and the high plains of Mon-
tana and North Dakota (Figure 5). The vegetation, topography, climate, and latitude in both of
these areas, and the high plains of Canada as well, are comparable and each area covers about 2.33
X 10° km? (9.00 X 10* mi?). The vegetation is predominately a variety of grasses and the
topography although generally flat, is broken by low hills. Each of these areas experiences
very cold winters with snow covering the ground during much of December, January, February, and
March. Elevations in the Russian test site for the most part are less than 305 m (1000 ft.), whereas
elevations in the Canadian and U.S. test sites range between 610-1524 m (2000-5000 ft.). Nimbus-5
and 6 data and snow depth values from a network of meteorological stations were obtained on 20
sanuary 1976, for the central Russian steppes. For the Canadian and U.S. test sites Nimbus-5 and
6 data were obtained on 14 and 15 March 1976, respectively. (Only vertically polarized Nimbus-6
data were used in this paper.) Snow depths in Canada were reported at snow course sites and
meteorological stations on 15 March 1976, but in the U.S., due to a limited number of snow courses
on the high plains of Montana and North Dakota, snow depths were usually recorded at city air-
ports, also on 15 March 1976. Air temperatures in each of the study areas, before and during the
satellite passes, were below 0°C (32°F) with little chance of significant melting and, as a result,
dry .now conditions were assumed. Temperatures were somewhat colder in central Russia, and
somewhat warmer in Montana-North Dakota, than in the Canadian study area. Nimbus-5 data
over the Canadian and U.S. study areas were obtained during nighttime passes. Nimbus-5 data
over central Russia and Nimbus-6 data for each of the three study areas were obtained during daytime
passes. For each of the three study arcas snow depth values were used to draw isonivals which
were then averaged over 1° latitude by 1° longitude grid blocks. Brightness temperatures were
also averaged over the same grid blocks so that snow depth and T could be compared and used in

regression analysis.




RESULTS AND DISCUSSION

Snow depth and T data from each of the 1° by 1° grid blocks were plotted for all three
areas combined. Figures 6 and 7 show the Nimbus-5 and-6 Ty versus snow depth scatter plots and
resulting regression relationships, respectively. Both regressions are significant at \he 0.005 level
with R? values of 0.55 for the Nimbus-5 data and 0.51 for the Nimbus-6 data. The fact that
these R? values are lower than those reported in the previous work by Rango et al. (1979) pre..ably re-
sults from combining the various geograpnical areas with associated differences in snowpack chai-
acteristics and underlying soil properties causing a greater scatter in the Tys. ™ should be noted,
especially in the Nimbus-6 plot (Figure 7), that the Canadian data seem to be well separated
from the Russian and U.S. data. Because the data plots from each of the study areas are not
scattered randomly in Figures 6 and 7, further regression runs were performed on each of the
data sets as was done originally in the Canadian study.

Figures 8 and 9 respectively present Nimbus-5 and -6 Tys plotted versus snow depth for
the steppes of central Russia. The regression using Nimbus-5 data in Figure 8 has an R? value of
0.52 and is significant at the 0.005 level, whereas the Nimbus-6 regression in Figure 9 has an R?
of 0.60, significant at the 0.001 level. Between Figures 6 and 7 and Figures 8 and 9 very little change
in regression fit was noted except for a uniform decrease in the standard errors (SE) in Figures
8 and 9. R? values decreased slightly for the Nimbus-5 data and improved somewhat for the
Nimbus-6 data. When compared to the earlier Canadian study results, the R? values of the Russian
data are much lower (Canadian Nimbus-5 R? = 0.76 versus Russian Nimbus-5 R? = 0.52; Canadian
Nimbus-6 R? = 0.86 vs Russian Nimbus-6 R? = 0.60). The poorer correlations found in the Russian
study area are probably largely a result of lower quality ground data used in the analysis. Very
little information about snow depth measurement technique, time of observation, and standardi-
zation between measuring stations was available for this analysis. In addition, much less was known
about study site characteristics than in either the Canadian and U.S. sites, and, as a result, the
Russian area could be much less homogeneous than assumed. Snow and climatic conditions before

the satellite passes were difficult to quantify so they were assumed to be similar to the other two




data sets. Unusual snowpack metamorphism could be a cause of a difference between the fit of
the various data sets.

Nimbus-5 and -6 Ty s versus snow depths on the high plains of Montana and North Dakota
are illustrated in Figures 10 and 11. The Nimbus-5 data (Figure 10) has a R? of 0.81 and the re-
gression is significant at the 0,001 level. The Nimbus-6 data (Figure 11) has a R? of 0.88 and is
also significant at the 0.001 level. These correlations are much higher than those found on the
central Russian steppes but comparable to those found on the high plains of Canada. This may be
attributed to thc fact that the Ty and snow depth data were obtained on the same days for the
Canadian and U.S. study areas. In addition, because of their proximity, these two areas are
apparently more sir..ilar to each other than they are to the steppes of central Russia. There are
some slight physical differences between the two areas, such as temperature, precipitation, vege-
tation and soil, that might cause the regression equation form (slope and intercept) to differ con-
siderably. As a result it would be difficult to extrapolate results from any one study area to each
of the other two.

When each study area is considered separately, the Nimbus-6 R? values are consistently higher
than the Nimbus-5 R? values (when the data are lumped together, however, the Nimbus-5 R? is
slightly greater than the Nimbus-6 R?). To a large degree this general pattern can be associated
with the fact that the shorter wavelength of 0.81 cm for Nimbus-6 does not sense emission from as
deep in the snowpack as the somewhat longer wavelength of 1.55 cm for Nimbus-5. As a result the
Nimbus-6 data are less sensitive than the Nimbus-5 data to the variable nature of the underlying
ground conditions. The Ty signal recorded by Nimbus-6 would then be expected to be more highly
correlated with snow depth, and the Nimbus-5 T signal to be degraded by variable emission from
subsurface characteristics. The combination of three separate data sets into one apparently tends

to nullify this general trend.




CONCLUSIONS

1. Variations in snow accumulation and depletion at specific locations cause variations in passive
microwave brightness temperatures observed from Nimbus satellites. Qualitative monitoring
of snowpack build-up and disappearance during the winter appears feasible in a given area.

2. In relatively homogeneous areas of the Canadian high plains, the Montana and North Dakota
high plains, and the steppes of central Russia, significant regression relationships between
snow depth (criterion variable) and microwave brightness temperature (predictor variable)

were developed. The estimation of snow depth under dry snow conditions in these study

areas is thus a prssibility using microwave data. A greater range of Ty and snow depth need
to be acquired for estimation purposes.

3. In each of these three study areas investigated in this paper, Nimbus-6 (0.81 cm) ESMR data
produced higher correlations than Nimbus-5 (1.55 cm) ESMR data in relating microwave
brightness temperature to snow depth. The shorter wavelength 0.81 cm data appear to be
more sensitive to the structure and condition of the snow than does the longer wavelength
1.55 cm data which is additionally affected by underlying soil conditions.

4, Because different geographic areas are likely to have different snowpack conditions, ground
cover, underlying soil conditions and surface temperatures, it is difficult to extrapolate relation-
ships between microwave brightness temperature and snow depth from one area to another.
Specific relationships must be derived for individual areas and should be useful in improving

assessment of snowpack conditions over large areas.
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Y = Snow depth (inches)

205 210 215 220 225 230 235 240 245 250 255

X = 1.55 cm mi brigh (K)

Figure 6. Nimbus-5 microwave brightness temperatures for the Canadian, U.S., and Russian study areas versus snow depth.
Nimbus-5 data from nighttime pass on 14 March 1976 and daytime pass on 20 January 1976 summarized by one degree
latitude-longitude grid ; snow depth data from 15 March 1976 and 20 January 1976 summarized over same grid.

R? = coefficient of determination A data from Canadian high plains
SE = standard error % data from central Russian steppes
SD = standard deviation e data from Montana and North

n = number of grid observations Dakota.
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