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ABSTRACT

This report has been developed for the George C. Marshall Space Flight Center as
a part of the Solar Heating and Cooling Development Program funded by the Department
of Energy. It is one of a series of reports describing the operational and thermal
performance of a variety of solar systems installed in Operational Test Sites under
this program. The analysis used is based on instrumented system data monitored and
collected for at least one full season of operation. The objective of the analysis
is to report the long-term field performance of the installed system and to make
technical contributions to the definition of techniques and requirements for solar
energy system design.

The solar energy system, Elcam San Diego, was designed by Elcam, Incorporated,
Santa Barbara, California to supply domestic hot water heating for a single family
residence located in Encinitas, California. The contents of this document have been
divided into System Description, Performance Assessment, Operating Energy, Energy
Savings, Maintenance and Summary and Conclusions. The system is a "Sunspot" two tank

(solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly
from_one of the two tanks, through the 65 square feet collector array and back into
the same tank. Freeze protectioun is provided by automatically circulating hot water
from the hot water tank through the collectors and exposed plumbing when freezing
conditions exist. Auxiliary energy is supplied by natural gas. The Elcam San Diego
solar energy system has three modes of operation.
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1. FOREWORD

The Solar Energy System Performance Evaluation - Seasonal Report has been
developed for the Georoe ., Marshall Space Flight Center as a part of the
Solar Heaiing and Cooling Development Program funded by the Department of
Energy. The analysis contained in this document describes the technical
performance of an Operatfonal Test Site (OTS) functioning throughout a
specified period ¢ time which is typically one season. The objective of
the analysis is to report the long-term performance of the installed system
and to make technical contributions to the definition of techniques and re-
quirements for solar energy system design.

The contents of this document have been divided into the following topics
of discussion:

System Description
Parformance Assessment
Operating Energy
Energy Savings
Maintenance

Summary and Conclusions

Data used for the seasonal analyses of the Operational Test Site described

fn this document have been collected, processed and maintained under the

0TS Development Program and have provided the major inputs used to per-

form the long-term technical assessment. This data s archiyed by MSFC for DOE.

The Seasonal Report document in conjunction with the Final Report for
each Operational Test Site in the Development Frogram culminates the
technical activities which began with the site selection and instrumen-
tation system design in April 1976. The Final Report emphasizes the
economic analysis of solar systems performance and features payback
performance based on 11fe cycle costs for the same solar system in
various geographic regions. Another document specifically related to
this system is Reference [1].

*Number in bracket designate reference found in Section 8.
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2.  SYSTEM DESCRIPTION

The Elcam San Diego Solar Energy System provides domestic hot water
heating for a single family residence located in Encinitas, California,
The system is a "Sunspot" two tank cascade type, where solar energy s
supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon
domestic hot water tank. The temperatures of the water in the collectors,
the preheat tank, and the domestic hot water tank are measured, and the
controller is programmed to pump water from either the preheat tank or

the domestic hot water tank through the collectors and back to the same
tank depending on the measured temperatures. At preset tank temperatures
or temperature differences between the tank and collector water, the con-
troller will switch the cascade valve to divert the flow to the alternate
tank until the water in that tank has reached a preset temperature or tem-
perature difference between tank and collector temperatures. Freeze pro-
tection is provided by the controller actuating the pump and circulating
hot water from the domestic hot water tank through the collectors when col-
lector temperatures approach freezing. The collector array points 15
degrees west of south at a tilt of 18.5 degrees. The collector cover is
one eighth inch tempered glass. Auxiliary energy is supplied by natural
gas.

Figure 2-1 is a schematic of the Elcam San Diego System. The sensor
designatioris are in accordance with NBS-IR-76-1137. Figure 2-2 is a
pictorial view of the Elcam San Diego site.

The Elcam San Diego Solar Energy System has the following modes of
operation:

Mode 1 - Collector-to-Domestic Hot Water Tank: This mode takes precedence
over all modes and is initiated whenever the difference in temperature be-
tween the bottom of the domestic hot water tank and collector outlet tempera-
ture exceeds 20°F and when the temperature in this tank is less than 140°F,
This mode continues until the temperature difference between tank bottom and

collector outlet drops to less than 3°F or-until the tank temperature exceeds
140°F.




Mode 2 - Collector-to-Solar Storage Tank: This mode 1s initiated whenever the
difference between the water in the bottom of the solar storage tank and the

collector outlet temperature exceeds 20°F, or when the temperature in the do-
mestic hot water tank exceeds 140°F and the collector outlet temperature exceeds
the solar tank bottom by 20°F. This mode continues until the temperature differ-
ence between collector outlet and solar tank bottom falls to 3°F, or until

Mode 1 {s initiated by the collector outlet temperature exceeding the domestic
hot water tank bottom by 20°F when domestic hot water is less than 140°F.

Mode 3 - Auxiliary: This mode is initiated whenever the temperature in
the domestic hot water tank falls below 105°F at which time energy is
then transferred to the domestic hot water tank by burning natural gas.
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Elcam San Diego Site

Figure 2-2 Elcam San Diego Pictoirmia’




2.1 Typical System Operation

The auxiliary domestic hot water (DHW! heater was set at 105°F during
the time the systems were monitored. This low auxilfary hot water set
point allowed good utilization of solar to charge both the preheat tank
and the DHW heater. The control system initiates operation when the
collector outlet temperature is 20°F hotter than either the water in
the bottom of the DHW tank or the preheat tank. Typically, the system
would bring the DHW tank up to 140°F, and then switch the cascade valve
to divert the flow to the preheat tank., At those times, such as in the
mornings, when the preheat tank was cooler than the DHW tank, the water
was circulated from the collectors to the preheat tank until the collector
outlet temperature exceeded the DHW temperature by 20°F.

June 19, 1979 has been selected as a cood day to illustrate typical
operation of the Elcam San Diego sfte. Figure 2.1-1 (a) is a plot of
solar insolation measurement, 1001. System turn-on and turn-off were at
8:51 AM and 1:45 PM respectively. The 1:45 PM turn-off was because both
the DHW tank and the preheat tank were fully charged. This shows that the
system was functioning as designed and is typical of the operation of this
site. The solar insolation was 195 Btu/ftz-hr at system turn-on ar.. 267
Btu/ftz-hr at system turn-off.

Figure 2.1-1 (b) is a plot of the collector absorber plate temperature
measurement (T102), collector inlet temperature (T100) and collector
outlet temperature (T150). At the 8:51 AM system turn-on, the absorber
plate temperature was 142°F, the collector inlet temperature was 117°F,
and the collector outlet temperature was 130°F. At system turn-off

the collector outlet temperature was 161°F and the absorber temperature
174°F, A few minutes after system turn-off, the absorber temperature
reached 203°F then began to drop.

Figure 2.1-1 (c) 1s a plot of collector loop flow through each of the two
flow meters. The W100 measurement indicates flow from the preheat tank
through the collectors and measurement W101 indicates flow from the
domestic hot water heaters through the collectors. For this day, the Elcam
controller allowed the preheat tank to be charged first (from 8:51 AM to
11:15 AM). For the resi of the day the system cycled between the preheat
tank and the domestic hot water heater.




—

Figure 2.1-1 (d) 1s a plot of the tank temperature for the day. The preheat
tank was 119°F at system turn-on and 156°F at turn-of® for the day. The
DHW tank was 126°F at turn-on and 159°F at turn-off.

For June 19, 1979, the system operated as designed except for the thermo-
syphoning at night. Thermosyphoning 1s the natural flow procass that occurs
when the more dense cold water in the system gravitates toward tic lm.ost
possible point in the system, displacing the warmer water. Normally a check
valve in the system prevents this thermosyphoning process, nowever, the
check valve fciled due to contamirants in the system. This will be discussed
in Section 6. For this day the incident solar energy was 148,000 Btu of
which 30,000 Btu was collected for a 21% collector array efficiency. The
preheat tank receives 22,000 Btu with 8,000 btu going to the DHW heater.
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2.2 System Operating Sequence

Figure 2.2-1 shows the operating sequence of the Eicam San Diego system

for June 19, 1979. The system cycled on and off once about 8:25 AM, and
then turned on again at 8:51 AM. Since the DHW tank was 129°F the controller
allowed the preheat tank to be charged first. At 11:15 AM the preheat tank
was at 151°F and the controller switchea the cascade valve to allow charging
the DHW tank. By 12:08 PM the DHW tank had been charged to 150°F and the
cascade valve switched back to the preheat tank. By 12:35 PM the preheat
tank was up to 156°F and the cascade valve switched back to the DHW tank.

By 1:12 PM the DHW tank water was above 159°F. The system turned off at
1:12 PM and cycled on and off three times for short durations, eventually
bringing the preheat tank up to 166°F.

For this day the system turned off with the cascade valve set to the pre-
heat tank and the thermosyphoning check valve stuck open. (This check valve
was repaired in September 1979). As the temperature outside dropped below
60°F the system started to thermosyphon backwards from the preheat tank
through the collectors. No hot water was used from 11:00 PM to 6:0C AM

the next morning. During this 7 hours the preheat tank dropped 21°F, losing
almost half the energy put into the tank during the day through the nighttime
thermosyphoning process.

12
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3.  PERFORMANCE ASSESSMENT

The performance of the Elcam San Diego Solar Energy System has been
evaluated for the March, 1979, through September, 1979, time period
from two perspectives. The first was the overall system view in

which the performance values of system solar fraction and net energy
savings were evaluated against the prevailing and long-term average
climatic conditions and system loads. The second view presents a

more in depth look at the performance of the individual subsystems.
Details related to the performance of the system are presented first in
Section 3.1 followed by the subsystem assessment in Section 3.2.

],
|
:
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3.1 System Performance

This Seasonal Report provides a system performance evaluation summary

of the operation of the Elcam San Diego Solar Energy System located in

San Diego, California. This analysis was conducted by evaluation of
measured system performance against the expected performance with long-
term average climatic conditions. The performance of the system 1is
evaluated by calculating a set of primary performance factors which are
based on those proposed in the intergovernmental agency report, "Thermal
Data Requirements and Performance Evaluation Procedures for the National
Solar Heating and Cooling Demonstration Program" [3]. The performance of
the major subsystem is also evaluated in subsequent sections of this report.

The measurement data were collected for March, 1979, through September, 1979.

System performance data were provided through an IBM developed Cential Data
Processing System (CDPS) [2] consisting of a remote Site Data Acquisition
System (SDAS), telephone data transmission lines and couplers, an IBM
System 7 computer for data management, and an IDM System 370/145 computer
for data processing. The CDPS supports the collection and analysis of
solar data acquired from instrumented systems located throughout the
country. These data are processed daily and summarized monthly into
formats which form a basis for comparative system evaluation. These
monthly summaries are the basis of the evaluation and data given in

this report.

The solar energy system performance summarized in this section can be
viewed as the dependent response of the system to certain primary inputs.
This relationship is 11lustrated in Figure 3.1-1. The primary inputs are
the incident solar energy, the outdoor ambient temperature and the system
load. The dependent responses of the system are the system solar fraction
and the total energy savings. Both the input and output definitions are

as follows:

15
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Inputs

] Incident Solar Energy - The total solar energy incident on
the collector array and available for collection.

(] Ambient Temperature - The temperature of the external
environment which affects both the energy that can be
collected and the energy demand.

() System Load - The loads that the system is designed to meat,
which are affected by the 1ife style of the user (e.g., space
heating/cooling, domestic Lot water).

OQutputs

] System Solar Fraction - The ratio of solar energy applied to
the system loads to total thermal energy requirement of the
system.

(] Total Energy Savings - The quantity of auxiliary energy (electrical
or fossil) displaced by solar energy.

The monthly values of the inputs and outputs for the total operational
period are shown in the System Performance Summary Table 3.1-1. Com-
parative long-term average values of daily incident sclar energy, and
outdoor ambient temperature are given for reference purpose. 7The long-
term data are taken from Reference 1 of Appendix C. Generally the solar
energy system is designed to supply an amount of energy that results in a
desired value of system solar fraction while operating under climatic con-
ditions that are defined by the long-term average value of daily incident
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solar energy and outdoor ambient temperature. If the actual climatic con-
ditions are close to the long-term average values, there is 11ttle adverse
impact on the system's ability to meet design goals. This is an important
factor in evaluating system performance and is the reason the long-term
average values are given. The data reported in the following paragraphs
are taken from Tables 3.1-1.

At the Elcam San Diego site for the seven month report period, the long-
term average dafly incident solar energy in the plane of the collector was
1964 Btu/ftz. The average daily measured value was 1851 Btu/ft2 which is
aboyt 6 percent below the long-term value. On a long-term basis the

good and bad months average out so that the long-term average performance
should not be adversely influenced by small differences between measured
and long-term average incident solar energy.

The outdoor ambient temperature influences the operation of the solar
energy system in two important ways. First the operating point of the
collectors and consequently the collector efficiency or eiergy gain is
determined by the difference in the outdoor ambient temperature and the
collector inlet temperature. This will be discussed in greater detail

in Section 3.2.1. Secondly the load {s influenced by the outdoor ambient
temperature. The measured average daily ambient temperature was 65°F for
the Elcam San Diego site which compares very favorably with the long-term
value of 66°F.

The system load was expected to vary in a manner roughly in inverse pro-
portion to the average monthly ambient temperature, other factors remaining
constant. For the 7 month report period, the system load fluctuated from
less than half of the design load in June to full design load in September.
From the data in Table 3.1-1 1t can be seen that the system performed very
well providing 45 to 75 percent of the hot water energy.

The system load has an important affect on the system solar fraction and
the total energy savings. If the load is small and sufficient energy is
available from the collectors, the system solar fraction can be expected
to be large. However, tne total energy savings will be less than under

19



more normal load conditions. This {is 11lustrated by comparing June, 1979,
with March, 1979. In June the sola: contribution was 68 percent with a
hot water load of only 0.39 mi111on Btu and a total net saving of 0.64
million Btu. In March the solar contribution was only 45 percent with

a hot water load of 1.38 mi1l4ion Btu and a total net savings of 1.33
mi1lion Btu,

In a two tank domestic hot water system such as Elcam San Diego, the
system load may be less than the total net energy savings. The expla-
nation to this apparent anomaly is that solar energy was delivered to
contribute to standby energy that was lost from the hot water tank.
For the total report period, .he system load was 5.857 million Btu,
but the total net savings in ..nergy were 7.182 million Btu.

Also presented in Table 3.1-1 are the measured and expected values of
system solar fraction where system solar fraction 1s the ratio of solar
enargy applied to system load to the total thermal energy (solar plus
auxiliary) applied to the load. The expected values have been derived
from a modified f-Chart analysis which uses measured weather and subsystem
load as inputs (f-Chart is the designation of a procedure that was
developed by the Solar Energy Laboratory, University of Wisconsin,
Madison, Wisconsin, for modeling and designing solar energy system [7]).
The model used ir the analysis is based on manufacturers' data and other
known system parameters. The basis for the model is empirical correlations
developed for 1iquid and air solar energy systems that are presented in
graphical and equation form and referred to as the f-Charts where ‘f' is
a designator for the system solar fraction. The output of the f-Chart
procedure is the expected system solar fraction. The measured value of
system solar fraction was computed from measurements obtained through
the instrumentation system of the energy transfers that took place
within the solar energy system. These represent the actual performance
of the system installed at the site.
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The measured value of system solar fraction can generally be compared
with the expected value s0 long as the assumptions which are implicit

in the f-Chart procedure reasonably apply to the system being analyzed.
From Table 3.1-1 the average measured value of 59 perrent solar fraction
exceeds the average expected value by 10 percent. There were two factors
that contributed to this performance:

0 Light domestic hot water load for the summer months.

() Two tank cascade configuration permitted some standby
losses to be made up by solar energy.

The two tank cascade domestic hot water system at the site permitted the
standby losses from the DHW tank to be made up by solar energy and is
appropriate for residential DHW applications. The expected performance
from the f-Chart model is predicated on a two tank system where the
standby losses are assumed to be negligible, and where auxiliary energy
boosts the solar contribution rather than switching to 100 percent aux-
{11ary when the preheat tank reached some minimum set temperature.

The total energy saving 1s the most important performance parameter for
the solar energy system because the fundamental purpose of the system is
to replace expensive corventional energy sources with less expensive solar
energy. In practical consideration, the system must save enough energy
to cover both the cost of its own operation and to repay the initial
investment for the system. In terms of the technical analysis presented
in this report thc n-.t :otal energy savings should be a significant
positive figure. The total energy savings for the Elcam San Diego

solar energy system was 7.18 mi1lion Btu or 2104 KwH which was less

than the system's performance potential due to tne 1ight loads. Much
of the energy consumed by the system went to make up standby losses.
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The system performance was adversely affected by the 1ight hot water
load and two minor hardware problems during the performance perfod.
If the load had been maintained at a vaiue close to the design load
the total net savings should have approached or even exceeded 10 mil-
1ion Btu (1.7 barrels of 0i1). The hardware problems that adversely
impacted system performance were both due to mineral deposits from the
supply water., The cascade valve that directs flow to the DHW tank or
the preheat tank stuck in the position to direct flow to the preheat
tank. The check valve, intended to prevent thermosyphoning, failed
and permitted energy stored during the day to be lost through thermo-
syphoning at night.
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3.2 Subsystem Performance

The Elcam San Diego Solar Energy Installation may be divided into
three subsystems:

1. Collector array
2, Storage
3. Hot Water

Each stbsystem has been evaluated by the techniques defined in Section 3

and {s numerically analyzed each month for the monthly performance summary.
This section presents the results of integrating the monthly data available
on the three subsystems for the period March, 1979, through September, 1979.
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3.2.1 Collector Array Subsystem

The Elcam San Diego collector array consists of two Elcam flat plate 11quid
collectors having a gross area of 65 square feet and interconnected for
parallel flow. Interconnection and flow details, as well as ither per-
tinent operational characteristics are shown in Figure 3.2.1-1 (a) and

(b). The collector subsystem analysis and data are given in the following
paragraphs.

Collector array performance is described by the collector array effi-
ctency. This is the ratio of collected solar energy to incident solar
energy, a value always less than unity because of collector losses.
The incident solar energy may be viewed from two perspectives. The
first assumes that all available solar energy incident on the col-
lectors be used in determining collector array efficiency. The effi-
ciency is then expressed by the equation:

ne = Q/Q (1)
where n = Collector array efficiency

Q = Collected solar energy

Q1 = Incident solar energy

The efficiency determined in this manner includes the operation of the
control system. For example, solar energy can be available at the col-
lector, but the collector absorber plate temperature may be below the
minimum control temperature set point for collector loop operation, thus
the energy 1s not collected. The monthly efficiency by this method s
listed in the column entitled "Collector Array Efficiency" in Table
3.2.1-1,
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Figure 3.2.1-1(a) Collector Array Arrangement (2 Single Panels)
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Figure 3.2,1-1(b) Collector Panel Liquid Flow Path

Collector Data Site Data

Manufacturer - Elcam, Inc. Location - Encinitos, Californta
Type - Liquid Latitude - 32.7°N

Number of Collectors - Two Collector Tilt - 18.5

Flow Path - Eight Longitude - 117.2°%

Flow Rate - 2 GPM Azimuth - 15° West of South

Cover - Single 1/8 inch tempered glass

Figure 3.2.1-1 Collector Array Schematic
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The second viewpoint assumes that only the solar energy incident on the
collector when the collector loop is operational be used in determining
the collector array efficiency. The value of the operational incident
solar energy used is multiplied by the ratio of the gross collector area
to the gross collector array area to compensate for the difference between
the two areas caused by installation spacing. The efficiency is then ex-
pressed by the equation:

N = Q/(Q4 x A"/Aa) (2)
where Neo ° Operational collector array efficiency

QS = Collected solar energy

Qoi = Operational incident solar energy

Ap = Gross collector area (the product of

the number of collectors and the
envelope area of one collector)

A = Gross collector array area (total area
including all mounting and connecting
hardware and spacing of units)

The monthly efficiency computed by this method is listed in the column
entitled "Operational Collector Array Efficiency” in Table 3.2.1-1.

In the ASHRAE Standard 93-77 [4] a collector efficiency is defined in
the same terminology as the operational collector array efficiency.
However, the ASHRAE efficiancy is determined from instantaneous evalua-
tion under tightly controlled, steady state test conditions, while the
operational collector array efficiency is determined from actual dynamic
conditions of daily solar energy system operation in the field.

27



The ASHRAE Standard 93-77 definitions and methods often are adopted
by collector manufacturers and independent testing laboratories in
evaluating collectors. The collector evaluation performed for this
seasonal report analysis uses long-term field measurements and is
described in subsequent paragraphs. A laboratory data curve is not
avafilable for this model of collector, consequently the comments
comparing the field data curves and the laboratory data curve ire
general in nature and are based on experience. When the laboratory
data curve for the collector that is tested according to ASHRAE 93-77
differs from the long-term field data curve, there are two primary
reasons for the differences:

) Test conditions are not the same as conditions
in the field, nor do they represent the wide
dynamic range of field operation (i.e. inlet and
outlet temperature, flow rates and flow distri-
bution of the heat transfer fluid, insolation
levels, aspect angle, wind conditions, etc.)

(] Collector tests are not generally conducted with
units that have undergone the effects of aging
(f.e. changes in the characteristics of the glazing
materfal, collection of dust, soot, pollen or other
foreign material on the glazing, deterioration of the
absorber plate surface treatment, etc.)

Consequently field data collected over an extended period will generally
provide an improved source of collector performance characteristics for
use in long-term system performance definition.

The operational collector array efficiency data given in Table 3.2.1-1
are monthly averages based on instantaneous efficiency computations
over the total performance period using all available data. For de-
tafled collector analysis it was desirable to use a 1imited subset

of the available data that characterized collector operation under
"steady state" conditions. This subset was defined by applying the
following restrictions:
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(1) The measurement period was restricted to collector
operation when the sun angle was within 30 degrees
of the collector normal.

(2) Only measurements associated with positive energy gain
from the collectors were used, i.e., outlet temperatures
must have exceeded inlet temperatures.

(3) The sets of measured parameters were restricted to
those where the rate of change of all parameters of
interest during two regular data system intervals* was
Timited to a maximum of 5 percent.

Instantaneous efficiencies (“j) ccmputed from the "steady state"
operation measurements of incident solar energy and collected solar
energy by Equation (2)** were correlated with an operating point
determined by the equation:

< = Ti - T
J I (3)
where xj = Collector operating point at the jth
instant
Ti = Collector inlet temperature
Ta = Outdoor ambient temperature
I = Rate of incident solar radiation

The data points ("j’ xj) were then plotted on a graph of efficiency
versus operating point and a first order curve described by the slope-
{ntercept formula was fitted to the data through linear regression
techniques. The form of this fitted efficiency curve is:

*The data system interval was 5-1/3 minutes in duration. Values of
all measured parameters were continuously sampled at this rate
throughout the performance period.

**The ratio Ap/Aa was assumed to be unity for this analysis.

e




where

"

b - mX (4)

Collector efficiency corresponding to the
3" instant

Intercept on the efficiency axis
Slope

Collector operating point at jth
{nstant

The relationship between the empirically determined efficiency curve
and the analytically developed curve will be established in subsequent

paragraphs.

The analytically developed collector efficiency curve is based on
the Hottel-Whill{er-Bliss equation

where

F (ta) = Fl, {Ii__;_la_) (5)

Collector efficiency

Collector heat removal factor
Transmissivity of collector glazing
Absorptance of collector plate

Overall collector energy loss coefficient
Collector inlet fluid temperature
Outdoor ambient temperature

kate of incident -solar radiation
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The correspondence between equations (4) and (5) can be readily seen.
Therefore by determining the slope-intercept efficiency equation from
measurement data, the collector performance parameters corresponding to
the laboratory single panel data can be derived according to the follow-
ing set of relationships:

b = FRm
and (6)
m = FRUL

where the terms are as previously defined

The discussion of the collector array efficiency curves in subsequent
paragraphs is based upon the reiationships expressed by Equation (6).

In deriving the collector array efficiency curves by the linear re-
gression technique, measurement data over the entire performance period
yields higher confidence in the results than similar analysis over shorcer
periods. Over the longer periods the collector array is forced to operate
over a wider dynamic range. This eliminates the tendency shown by some
types of solar energy systems* to cluster efficiency values over a narrow
range of operating points. The clustering effect tends to make the

linear regression technique approach constructing a line through a single
data point. The use of data from the entire performance period results

in a collector array efficiency curve that is more accurate in long-term
solar system performance prediction. The long-term curve, and the curve
derived from the Marshall Space Flight Center (MSFC) data evaluations [8]
shown in Figure 3.2.1-2. The MSFC curve is derived through techniques
similar to those described in preceding paragraphs and is shown for
reference. However, the MSFC data base is limited to a shortar period of
time, which accounts for the small difference.

*Single tank hot water systems show a marked tendency toward clustering
because the collector inlet temperature remains relatively constant and
the range of values of ambient temperature and incident solar energy during
collector operation are also relatively restricted on a short-term basis.
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Table 3.2.1-2 presents data comparing the monthly measured values of solar
energy collected with the predicted performance determined from the long-
term regression curve and the laboratory single panel efficiency curve.
The predictions were derived by the following procedure:

1. The instantaneous operating points were computed using
Equation (3).

2. The instantaneous efficiency was computed using Equation
(4) with the operating point computed in Step 1 above for:

3. The long-term 1inear regression curve
for collector array efficiency

b. The laboratory single panel collector
efficiency curve (when available)

3. The efficiencies computed in Steps 2a and 2b above
were multiplied by the measured solar energy available
when the collectors were operational to give two pre-
dicted values of solar energy collected.

The error data in Table 3.2.1-2 were computed from the differences between
the measured and predicted values of solar energy collected according to
the equation:

Error = (A-P)/P (7)
where A = Measured solar energy collected
P = Predicted solar energy collected

The computed error is then an indication of how well the particular prediction
curve fitted the reality of dynamic operating condition in the field.
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The values of "Collected Solar Energy” given in Table 3.2.1-2 are not
necessarily identical with the values of "Collected Solar [ rgy"
given in Table 3.2.1-1. Any varfations are due to the differences in
data processing between the software programs used to generate the
monthly performance data and the component level collector analysis
program. These data are shown in Table 3.2.1-2 only because they
form the references from which the error data given in the tabie are
computed.

The data from Table 3.2.1-2 fllustrates that for the Elcam San Diego

site the average error computed t-om the difference between the mea-

sured solar energy collected and the predicted solar energy collected
based on the field derived long-term collector array efficiency curve
was 18.8 percent.

The histogram of collector array operating points for September, shown
in Figure 3.2.1-3, {1lustrates the distribution of instantaneous values
as determined by Equation (3) for the entire month. The histogram was
constructed by computing the instantaneous operating point value from
site instrumentation measurements at the regular data system intervals
throughout the month, and counting the number of values within continuous J
intervals of width 0.01 from zero to unity. The operating point histogram

shows the dynamic range of collector operation during the month from which

the midpoint can be ascertained. The average collector array efficiency

for the month can be derived by projecting the midpoint value to the

appropriate efficiency curve and reading the corresponding value of

efficiency.
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Table 3.2.1-1 presents the monthly values of incident solar energy,
operational incident solar energy, and collected solar energy from
the 7 month performance period. The collector array efficiency and
operational collector array efficiency were computed for each month
using Equation (1) and (2).

Additional information concerning collector array analysis in general

may be found in Reference [£]. The material in the reference describes
the detai. > collector arrzy analysis procedures and presents the results
of analyses pertcrmed on numerous collector array installations across the
United States.



3.2.2 Storage Subsystem

Storage subsystem performance 1s described by comparison of energy to
storage, energy from storage and change in stored energy. The ratio of
the sum of energy from storage and change in stored energy to energy to
storage {s defined as storage efficiency, ng. This relationship is ex-
pressed in the equation

"Is = (AQ + Qso)/Osi (8)
where:

AQ = Change in stored energy. This is the difference in
the estimated stored energy during the specified
reporting period, as indicated by the relative
temperature of the storage medium (either positive
or negative value).

= - ‘Energy from storage. This is the amount of energy
extracted by the load subsystem from the primary
storage medium.

Q = Energy to storage. This is the amount of energy
(both solar and auxiliary) delivered to the primary
storage medium.

Evaluation of the system storage performance under actual system
operation and weather conditions can be performed using the para-
meters defined above. The utility of these measured data in evaluation
of the overall storage design can be illustrated in the following
discussion.

Table 3.2.2-1 summarizes energy suppiied to storage and taken from storage
during the reporting period. The average storage efficiency over this
period was 61 percent. This high value of storage efficiency is attributed
to good utilization of the solar energy. This means that the energy

put into storage contributed mainly to the load instead of being dis-
sipated in standby losses.
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3.2.3 Hot Water Subsystem

The performance of the hot water subsystem is described by comparing
the amount of solar energy supplied to the subsystem with the energy
required to satisfy the total hot water load. The energy required to
satisfy the total load consists of both solar energy and auxiliary
thermal energy.

The performance of the Elcam San Diego Hot Water Subsystem is presented

in Table 3.2.3-1. The value for auxiliary energy supplied in Table
3.2.3-1 is the gross energy supplied to the auxiliary system. The value
of auxiliary energy supplied multiplied by the auxiliary system efficiency
gives the auxiliary thermal energy actually delivered to the load. The
difference between the sum of auxiliary thermal energy plus solar energy
and the hot water load is equal to the thermal (standby) losses from the
hot water subsystem.

The measured solar fraction in Table 3.2.3-1 is an average weighted value
for the month based on the ratio of solar energy in the hot water tank

to the total energy in the hot water tank when a demand for hot water
exists. This value is dependent on the daily profile of hot water usage.

For the 7 month period from March, 1979, through September, 1979, the solar
energy system supplied a total of 4.576 million Btu to the hot water sub-
system. The total hot water load for this period was 5.857 million Btu,
and the weighted average monthly solar fraction was 61 percent.

The monthly average hot water load during the reporting period was 0.837
million Btu which is based on an average daily consumption of 53 gallons,
delivered at an average temperature of 138°F and supplied to the system
at an average temperature of 74°F.

40



For each month an average of 0.654 million Btu of solar energy and 0.601
millfon Btu of auxiliary electrical erergy were supplied to the hot water
subsystem. Since the average monthly hot water 1oad was 0.837 million
Btu, an average of 0.418 million Btu was, therefore, lost from the hot
water tank each month,

For the March, 1979, through September, 1979, time period the hot water 1o
was adequate for the analysis. The final hot water temperature was main-
tained at a level for efficient solar usage and the solar fraction was
acceptable for a system of this type.

Mineral deposits from the supply water caused two hardware problems which
reduced the performance of the system. The cascade valve which directs
the flow to the DHW tank or preheat tank from the collectors stuck in

the position to direct flow to the preheat tank. In addition the check
valve intended to prevent thermosyphoning failed and permitted energy
stored during the day to be lost at night. Both these problems affected
the system to some extent throughout the performance period.
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4. OPERATING ENERGY

Operating energy is defined as the energy required to transport solar
energy to the point of use. Total operating energy for the Elcam

San Diego Solar Energy System consists only of the energy required

to perform Solar Energy Collection and Storage (ECSS) operations
using the collector loop pump (EP100 - Figure 2-1, System Schematic).
Operating energy for the system performance evaluation period are
presented in Table 4-1.

Operating energy 1s further defined to include electrical energy that

1s used to support a subsystem without affecting its thermal state. Due
to the cascade design with a single pump there is no separate hot water
subsystem support requiring an expenditure of operating energy. The
only operating energy in the system is the operating energy for the
single pump (EP100) which is allocated against ECSS and total system
operating energy.

The Elcam two tank cascade design is unique in domestic hot water
systems for small residential applications. The cascade design allows
the replenishment of standby thermal losses with solar energy which is
not possible in most two tank systems. For March, 1979, through
September, 1979, the period covered by this report, a total of 0.443
million Btu of operating energy was consumed. During the report
period, a total of 4.576 mi11ion Btu of solar energy (Table 3.2.1-1)
was supplied to the total system load. Therefore, for every one mil-
11on Btu of solar energy delivered to the load, 0.10 million Btu

(29 Kwh) of electrical operating energy was expended.
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5. ENERGY SAVINGS

Solar energy system savings are realized whenever energy provided by
the solar energy system is used to meet system demands which would
otherwise be met by auxiliary energy sources. The operating energy
required to provide solar energy to the load subsystems is subtracted
from the solar energy contribution. The resulting energy savings are
then adjusted to reflect the thermal conversion efficiency of the aux-
{11ary source being supplanted by solar energy. For Elcam San Diego
the auxilfary source being supplanted 1s a natural gas DHW heater with
the commonly assumed 60 percent conversion efficiency of gas to thermal
energy for such devices.

Energy savings for March, 1979, through September, 1979, are presented i
Table 5-1. For this performance evaluation time period, the average
hot water subsystem monthly savings were 1.089 million Btu. After the
Energy Collection and Storage Subsystem (ECSS) operating energy was
deducted, the average net monthly electrical savings were 1.026 million
Btu, or 301 Kwh. For the overall time period covered by this report
the total net savings were 7.182 million Btu or 2104 Kwh. The energy
savings due to the solar system were significant.
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6.  MAINTENANCE

This section includes only the solar energy system majntenance performed
during the seasonal report period, March, 1979, through September, 1979,
Maintenance data on the instrumentation system is not included in this
report,

September 1979 The cascade valve which directs flow to either the
DHW tank or the preheat tank, and the check valve
which prevents thermosyphoning stuck. These
problems were probably due to mineral deposits

] from the supply water. These valves were repajred

| during the September site maintenance visit. In

addition, the unions used on the plumbing were galva-

nized iron and presented a potential corrosion problem
due to dissimilar metals. These unfons were changed
out. Valves with teflon seats may allfevate the
mineral deposit problem. However, a check of the
critical system components should be periodically
scheduled to prevent performance degradation.

47




7.  SUMMARY AND CONCLUSIONS

For the report perfod March, 1979, through September, 1979, the averac.
measured dafly incident solar energy in the plane of the collector

was 1851 Btu/ft2 which was about 6 percent below the long-term value.
The average daily outdoor ambient temperature was 65°F which is come
parable with the long-term average of 66°F. Consequently, weather
conditions at the site had 1{ttle adverse influence on system operation.

The incident solar energy for the 7 month period totaled 25.63 million
Btu. Incident solar energy while the collector loop was operating was
17.85 mil1ion Btu and collected solar energy totaled 7.19 million Btu.
This gives a collector operational efficiency of 40 percent. The 30
percent difference between the incident and operational incident solar
energy is an acceptable value which indicates the control system is
operating in the expected manner. Collector analysis data indicates
the collector is operating at the expected efficiency.

Electrical energy savings at the site were a net total value of 7.18
million Btu (2104 Kwh) after the 0.44 million Btu of operating energy
required to operate the collector loop circulating pump were subtracted.
The energy savings due to solar were less than the system's potential
due to the 1ight load. On an average twice as much hot water could

have been used which would have had the effect of significantly in-
creasing the system solar fraction.

Mineral deposits from the supply water caused the cascade valve and check
valve in the collector loop to stick. This was the only problem noted
with the Elcam San Diego site during the time this data was taken. The
problem was reportedly corrected in September, 1979, but reoccurred and
should be checked on occasion.
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APPENDIX A

DEFINITION OF PERFORMANCE FACTORS AND SOLAR TERMS

COLLECTOR ARRAY PERFORMANCE

The collector array performance is characterized by the amount of :olar energy
collected with respect to the energy available to be collecced.

o  INCIDENT SOLAR ENERGY (SEA) is the total insolation available on the
gross collector array area. This {s the area of the collector
array energy-receiving aperture, including the framework which is
an integral part of the collector structure.

o  OPERATIONAL INCIDENT ENERGY (SEOP) is the amount of solar energy
incident on the collector array during the time that the col-
lector‘loop ts active (attempting to collect energy).

° COLLECTED SOLAR ENERGY (SECA) is the thermal energy removed from
the collector array by the energy transport medium.

) COLLECTOR ARRAY EFFICIENCY (CAREF) is the ratio of the energy col-
lected to the total solar energy incident on the collector array.
It should be emphasized that this efficiency factor is for the
collector array, and available energy includes the energy incident
on the array when the collector loop is inactive. This efficiency
must not be confused with the more common collector efficiency
figures which are determined from instantaneous test data obtained
during steady state operation of a single collector unit. These
efficiency figures are often provided by collector manufacturers
or presented in technical journals to characterize the functional
capability of a particular collector design. In general, the
collector panel maximum efficiency factor will be significantly
higher than the reported collector array efficiency.
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ENERGY COLLECTION AND STORAGE SUBSYSTEM

The Energy Collection and Storage Subsystem (ECSS) is composed of the
collector array, the primary storage medfum, the transport loops betwe:
these, and other components in the system design which are necessary t
mechanize the collector and storage equipment.

INCIDENT SOLAR ENERGY (SEA) is the total insolation available
on the gross collector array area. This 1is the area of the
collector array energy-receiving aperture, including the fra
work which is an integral part of the collector structure.

AMBIENT TEMPERATURE (TA) is the average temperature of the o
environment at the site.

ENERGY TO LOADS (SEL) is the total thermal energy transporte
from the ECSS to all load subsystems.

AUXILIARY THERMAL ENERGY TO ECSS (CSAUX) is the total auxili:
supplied to the ECSS, including auxiliary energy added to thi
storage tank, heating devices on the collectors for freeze-
protection, etc.

ECSS OPERATING ENERGY (CSOPE) is the critical operating ener
required to support the ECSS heat transfer loops.
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STORAGE PERFORMANCE

The storage performance is characterized by the relationships among the energy
delivered to storage, removed from storage, and the subsequent change in the
amount of stored energy.

e  ENERGY TO STORAGE (STEI) is the amount of energy, both solar and
auxiliary, delivered to the primary storage medium.

° ENERGY FROM STORAGE (STEO) is the amount of energy extracted by
the load subsystems from the primary storage medium.

o  CHANGE IN STORED ENERGY (STECH) is the difference in the estimated
stored energy during the specified reporting period, as indicated
by the relative temperature of the storage medium (either positive
or negative value).

. STORAGE AVERAGE TEMPERATURE (TST) is the mass-weighted average
temperature of the primary storage medium.

° STORAGE EFFICIENCY (STEFF) is the ratio of the sum of the
energy removed from storage and the change in stored energy
to the energy delivered to storage.
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AUXILIARY ELECTRICAL FUEL (HWAE) 1s the amount of electrical
energy supplied directly to the subsystem.

ELECTRICAL ENERGY SAVINGS (HWSVE) is the estimated difference
between the electrical energy requirements of an alternative
conventional system (carrying the full load) and the actual
electrical energy required by the subsystem.

SUPPLY WATER TEMPERATURE (TSW) s the average inlet temperature
of the water supplied to the subsystem.

AVERAGE HOT WATER TEMPERATURE (THW) is the average temperature of
the outlet water as it is supplied from the subsystem to the load.

HOT WATER USED (HWCSM) is the volume of water used.
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HOT WATER SUBSYSTEM

The hot water subsystem is characterized by a complete accounting of the
energy flow to and from the subsystem, as well as an accounting of in-
ternal energy. The energy into the subsystem is composed of auxiliary
fossil fuel, and electrical auxiliary thermal energy, and the operating
energy for the subsystem. In addition, the solar energy supplied to the
subsystem, along with solar fraction is tabulated. The load of the sub-
system is tabulated and used to compute the estimated electrical and
fossi) fuel savings of the subsystem. The load of the subsystem is
further {dentified by tabulating the supply water temperature, and the
outlet hot water temperature, and the total hot water consumption.

° HCT WATER LOAD (HWL) s the amount of energy required to heat
the amount of hot water demanded at the site from the incoming
temperature to the desired outlet temperature.

o  SOLAR FRACTION OF LOAD (HWSFR) is the percentage of the load
demand which 1s supported by solar energy.

®  SOLAR ENERGY USED (HWSE) is the amount of solar energy supplied
to the hot water subsystem.

o  OPERATING ENERGY (HWOPE) is the amount of electrical energy re-
quired to support the subsystem, (e.g., fans, pumps, etc.) and
which is not intended to directly affect the thermal state of
the subsystem.

0 AUXILIARY THERMAL USED (HWAT) is the amount of energy supplied
to the major components of the subsystem in the form of thermal
energy In a heat transfer fluid, or 1ts equivalent. This term
also includes the converted electrical and fossil fuel energy
supplied to the subsystem.
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ENVIRONMENTAL SUMMARY

The environmental summary is a collection of the weather data which is
generally instrumented at each site in the Development Program. It is
tabulated in this report for two purposes (1) as a measure of t 2 conditions
prevalent during the operation of the system at the site, and (2) as a
historical record of weather data for the vicinity of the site.

. TOTAL INSOLATION (SE) is the accumulated total solar energy inci-
dent upon the gross collector array measured at the site.

o  AMBIENT TEMPERATURE (TA) is the average temperature of the
environment at the site.

0 DAYTIME AMBIENT TEMPERATURE (TDA) is the temp:-ature during the
period from three hours before solar noon to three hours after
solar noon.
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APPENDIX B

SOLAR ENERGY SYSTEM PERFORMANCE EQUATIONS FOR
ELCAM SAN DIEGO

I.  INTRODUCTION

Solar energy system performance is evaluated by performing energy balance
calculations on the system and its major subsystems. These calculations
are based on physical measurement data taken from each subsystem every
320 seconds. This data 1s then numerically combined to determine the
hourly, daily, and monthly performance of the system. This appendix
describes the general computational methods and the specific energy
balance equations used for this evaluation.

Data samples from the system measurements are numerically integrated

to provide discrete approximations of the continuous functions which
characterize the system's dynamic behavior. This numerical integration
is performed by summation of the product of the measured rate of the
appropriate performance parameters and the sampling interval over the
total time period of interest.

There are several general forms of numerical integration equations which
are applied to each site. Examples of these general forms are as follows:
The total solar energy available to the collector array is given by

SOLAR ENERGY AVAILABLE = (1/60) £ [1001 x AREA] x At
where 1001 is the solar radiation measurement provided by the pyranometer
in Btu/ftz-hr. AREA is the area of the collector array in square feet,

at 1s the sampling interval in minutes, and the factor (1/60) 1s included
to correct the solar radiation "rate" to the proper units of time.
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Similarly, the energy flow within a system is given typically by
COLLECTED SOLAR ENERGY = £ [M100 x AH] x At

where M100 1s the mass flow rate of the heat trunsfer fluid in Ibm/min and
AH 1s the enthalpy change, in Btu/lbm. of the fluid as 1t passes through
the heat exchanging component.

For a 11quid system AH 1s generally gfven by
oH = Cb AT
where C; is the average specific heat, in Btu/(1b -°F), of the heat
transfer fluid and AT, in °F, is the temperature differential across

the heat exchanging component.

For an air system aH is generally given by

oH = Hy(Toue) = Ha(Typ)

where Ha(T) is the enthalpy, in Btu/1b, , of the transport air
evaluated at the inlet and outlet temperatures of the heat ex-
changing component.

Ha(T) can have various forms, depending on whether or not the humidity ratio

of the transport air remains constant as it passes through the heat ex-
changing component.
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For electrical power, a general example is
ECSS OPERATING ENERGY = (3413/60) £ [EP100] x at

where EP100 is the measured power required by electrical equipment in
kilowatts and the two factors (1/60) and 3413 correct the data to Btu/min.

These equations are comparable to those specified in "Thermal Data
Requirements and Performance Evaluation Procedures for the National

Solar Heating and Cooling Demonstration Program." This document, given

in the 11st of references, was prepared by an inter-agency committee of
the government, and presents guidelines for thermal performance evaluation.

Performance factors are computed for each hour of the day. Each numerical
integration process, therefore, is performed over a period of one hour.
Since long-term performance data is desired, it is necessary to build
these hourly performance factors to daily values. This 1s accomplished,
for energy parameters, by summing the 24 hourly values. For temperatures,
the hourly values are averaged. Certain special factors, such as ef-
ficiencies, require appropriate handiing to properly weight each hourly
sample for the daily value computation. Similar procedures are required
to convert daily values to monthly values.
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EQUATIONS USED IN MONTHLY PERFORMANCE REPORT

NOTE: MEASUREMENT NUMBERS REFERENCE SYSTEM SCHEMATIC FIGURE 2-2

AVERAGE AMBIENT TEMPERATURE (°F)
TA = (1/60) x £ T0O1 x at
DAYTIME AVERAGE AMBIENT TEMPERATURE (°F)
TOA = (1/360) x £ TOO x At
FOR + 3 HOURS FROM SOLAR NOON
INCIDENT SOLAR ENERGY PER SQUARE FOOT (BTU/FTZ)
SE = (1/60) x £ 1001 x At
OPERATIONAL INCIDENT SOLAR ENERGY (BTU)
SEOP = (1/60) x £ [1001 x CLAREA] x at
WHEN THE COLLECTOR LOOP IS ACTIVE
SOLAR ENERGY COLLECTED BY THE ARRAY (BTU)
SECA = SEC + SEC2
SECT = £ [M100 x HRF x (T150 - T100)] x a7
SEC2 = £ [MI101 x HRF x (T150 - T100)] x &t
ENTHALPY FUNCTION FOR WATER (BTU/LB)

TZ i
HWD (T, Ty) "I CP (T)dT !
T
THIS FUNCTION COMPUTES THE ENTHALPY CHANGE OF WATER AS IT
PASSES THROUGH A HEAT EXCHANGING DEVICE.
SOLAR ENERGY TO STORAGE (BTU)
STEI = SEC) = £ [M100 x HWD(T150, T100)] x At
SOLAR ENERGY FROM STORAGE (BTU)
STEO = SEST » & [M300 x HWD(T204, T300)] x At
AVERAGE TEMPERATURE OF STORAGE (°F)
TST = {1/60) x £ [(T200 + T201)/2] x At j
ENERGY DELIVERED FROM ECSS TO LOAD (BTU)
CSEQ = HWSE = SEC2 + SEST
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SYSTEM OPERATING ENERGY (BTU)
SYSOPE = CSOPE
CSEOP = EPCONST X EP101
HOT WATER CONSUMED (GALLONS)
HWCSM = £[WD300]x at
HOT WATER LOAD (BTU)
KWL = £ [M300 x HWD(T202 - T300)] x at
HOT WATER SUBSYSTEM AUXILIARY ELECTRICAL FUEL ENERGY (BTU)
HWAE = EPCONST X EP300
HOT WATER SUBSYSTEM AUXILIARY FOSSIL FUEL ENERGY (BTU)
HWAF = FCONST X FA00C
SUPPLY WATER TEMPERATURE (°F)
TSW = T300
HOT WATER TEMPERATURE (°F)
THW = T202
BOTH TSW AND THW ARE COMPUTED ONLY WHEN DHW FLOW EXISTS IN THE
SYSTEM, OTHERWISE THEY ARE SET EQUAL TO THE VALUES OBTAINED
DURING THE PREVIOUS FLOW PERIOD.
INCIDENT SOLAR ENERGY OM COLLECTOR ARRAY (BTU)
SEA = CLAREA x SE
COLLECTED SOLAR ENERGY (BTU/FT)
SEC = SECA/CLAREA
COLLECTOR ARRAY EFFICIENCY
CAREF = SECA/SEA
CHANGE IN STORED ENERGY (BTU)
STECH = STECH1 - STECH 1
WHERE THE SUBSCRIPT | REFERS TO A PRIOR REFERENCE VALUE
STORAGE EFFICIENCY
STEFF = (STECH + STEO)/STEI
SOLAR ENERGY TO LOAD SUBSYSTEMS (BTU)
SEL = HWSE
ECSS SOLAR CONVERSION EFFICIENCY
CSCEF = SEL/SEA
AUXILIARY THERMAL ENERGY TO HOT WATER SUBSYSTEM (BTU)
HWAT = 0.6 X HWAF
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HOT WATER SOLAR FRACTION (PERCENT)
KWSFR + 100 X HWTKSE/(HWTKSE + HWTKAUX)
WHERE HWTKSE AND HWTKAUX REPRESENT THE CURRENT SOLAR
AND AUXILIARY ENERGY CONTENT OF THE HOT WATER TANK
AUXILIARY FOSSIL FUEL (BTU)
HAF = F400
SYSTEM LOAD (BTU)
SYSL = HWL
SOLAR FRACTION OF SYSTEM LOAD (PERCENT)
SFR = HWSFR
SYSTEM OPERATING ENERGY (BTU)
SYSOPE = CSOPE
AUXILIARY THERMAL ENERGY TO LOADS (BTU)
AXT = HWAT
AUXILIARY FOSSIL ENERGY TO LOADS
AXE = HWAE
TOTAL ELECTRICAL ENERGY SAVINGS (BTU)
TSVE = -CSOPE
TOTAL FOSSIL ENERGY SAVINGS (BTU)
TSVF = HWSVF
TOTAL ENERGY CONSUMED (BTU)
TECSM = SYSOPE + AXF + SECA
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APPENDIX C
LONG-TERM AVERAGE WEATHER CONDITIONS

The environmental estimates given in this appendix p-ovide a point of
reference for evaluation of weather conditions as reported in the Month y
Performance Reports and Solar Energy System Perfo. nance Evaluations issued
by the Solar Heating, Cooling and Hot Water Development Program. As such,
the informatfon presented can be useful in prediction of long-term system
performance.

Environmental estimates for this site include the following monthly averages:
extraterrestrial insolation, insolation on a horizontal plane at the site,
insolation in the tilt plane of the collection surface, ambient temperature,
heating degree-days, and cooling degree-days. Estimation procedures and data
sources are detailed in the following paragraphs.

The preferred source of long-term temperature and insolation data is "Input
Data for Solar Systems" (IDSS) [1] since this has been recognized as the

solar standard. The IDSS data are used whenever possib.c in these environ-
mental estimates for both insolation and temperature related sources; however,
a secondary source used for insolation data is the Climatic Atlas of the
United States [2], and for temperature related data, the secondary source

s "Local Climatological Data" [3].

Since the available long-term insolation data are only given for a horizontal
surface, solar collection subsystem orientation information is used in an
algorithm (4] to calculate the insolation expected in the tilt plane of the
collector. This calculation is made using a ground reflectance of 0.2.
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[3]
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