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Abstract

The truncation theory as it peiiains to the calculation of geoid undulations
based on Stokes' integral, but from limited gravity data, is reexamined, Speci-
fically, the improved procedures of Molodenskii et al, (1962) are shown through
numerical investigations to yield substantially smaller errors than the conven-
tional method that is often applied in practice. In this improved method, as well
as in a simpler alternative (Meissl, 1971b) to the conventional approach, the
Stokes' kernel is suitably modified in order to accelerate the rate of convergence
of the error series. These modified methods, however, effect a reduction in the
error only if a set of low-degree potential harmonic coefficients is utilized in
the computation. Consider, for example, the situation in which gravity anomalies
are given in a cap of radius 10° and the GEM 9 (20, 20) potential field is used,
Then, typically, the error in the computed undulation (aside from the spherical
approximation and errors in the gravity anomaly data) according to the conven-
tional truacation theory is 1.09 m; with Meissl's modification it reduces to
0.41 m, while Molodenskii's improved method gives 0.46 m, A further altera-
tion of Molodenskii's method is developed and yields an RMS error of 0,33 m,
These values reflect the effect of the truncation, as well as the errors in the
GEM 9 harmonic coefficients, The considerable improvement, suggested by
these results, of the modified methods over the conventional procedure is verified
with actual gravity anomaly data in two oceanic regions, where the GEOS~-3 altim-
eter geoid serves as the basis for comparison, The optimal method of truncation,
investigated by Colombo (1977), is extremely ill-conditioned, It is shown that
with no corresponding regularization, this procedure is inapplicable,
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1. Introduction

The practical application of Stckes' solution to the geodetic boundary-value
problem (Stokes' integral formula) has been studied extensively. The principal
difficulty with this solution in practice is the formal requirement of continuous
gravity data covering the entire geoid (approximated by a sphere). The lack of
global coverage has led to the natural approximation whereby the integration is
limited to a spherical cap (''truncation’ of the integral), However, the data within
a cap do not always constitute the total input, since much of the gravity information
of the remaining exterior areas is often conveniently derived from a number of
low-degree (say, up to degree 20) harmonic constituents which are determined,
for example, by satellite methods,

The theory of this combination of satellite and terrestrial data to obtain the
disturbing potential (or geoid undulation) criginates with M, S. Molodenskii (Molo-
denskli, 1958; Molodenskii et al,, 1962). The derivation of Molodenskii's basic
theory has also been carried out by Heiskanen and Moritz (1967), and their expo-
sition is the most familiar. However, Molodenskii (1958) (see also Molodenskii
et al,, 1962) extended and refined his theory leading to significant reductions in
the truncation error (presuming a knowledge of a set of potential harmonic coeffi-
cients). In the recent literature, several authors have become aware of potential
reductions in the error (Meissl, 1971b; Dickson, 1979), but Molodenskii must be
credited with the most rigorous and comprehensive treatment. The applications of
this theory, including further possible improvements, have been studied by Hsu
Houtze (Hsu Houtze and Zhu Zhuowen, 1979),

It is the purpose of this report to bring to light Molodenskii's theory which
seems to have gone largely unnoticed by practicing geodesists and to test its appli-
cability with the current data available, Inthis respect, the gravity data inside the
cap are assumed to be error free and sufficiently dense so that numerical integration
errors can be neglected; on the other hand, errors in the harmonic coefficients of
the gravity potential are allowed and treated accordingly.

Meissl (1971b) has suggested a very simple modification (which has also been
used by Ostach (1970), see also Hsu Houtze and Zhu Zhiowen, 1979) to Stokes' func-
tion, effecting a substantial reduction in the truncation error if a higher-degree
reference field is given, Both Meissl's approach and Molodenskii's original ideas
rely on identical principles, but Molodenskii specifically builds on the premise that
the geoid undulation computation should utilize potential harmonic coefficients,
Meissl does not mention the use of harmonic coefficients and in applications his
modification is quite useless in their absence. Nevertheless, since Meissl presents
considerable mathematical insight into the truncation of Stokes' integral, his treat-
ment will also be discussed in detail. The investigations would not be complete
without mentioning the work of Wong and Gore (1969) whose method of introducing
harmonic components is, however, somewhat arbitrary. Further tests of their
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method are conducted in this report, Finally, the entirely different approach to
the truncation theory of Colombo (1977) merits investigation. Colombo's Bolution,
although yielding promising results, is only approximate because of the numerical
instability of the problem posed by him. A rigorous solution is presented here,
which however does not bypass the instability.

Most of the relevant derivations of Molodenskii, Meissl, and Wong and Gore
are reproduced in the following sections, the only intention being to make this report,
to some degree, self-contained, 1t iz aitempted to maintain a simple notation, Un-
fortunately, since a variety of kerneis adnd medifications of kerncls will enter the
discussion, the symbolism must deviate occusionally from the usual notation found
in the literature. The following will be adhered to:

Ag geoidal gravity anomaly
Ag., nth surface harmonic function of Ag
8%, estimate of Ag, based on known harmonic coefficients (which may
be subject to error)
6(Ag,) the error in A%, such that Ag, = Ak, + 6(0g,)
¢, degree variance of Ag,
6c, degree variance of §(Ag,)
N geoid undulation given by Stokes' integral
N undulation computed by integrating over a cap, and possibly using
a number of harmonic coefficients
6N  the error in N, suchthat N=§ + 6N
BN  the RMS (root mean square, global average) of 6N
SN'  the RMS error, specifically when a number of harmonic coefficients
are known
S(y) Stokes' function, y = cos §
S%y) S(y) minus its harmonics up to degree m
Se(y) the first fi + 1 harmonics of S when the latter is expanded iu the
interval [-1, yol, Vo<1
K(y) the kernel used for the integration over the cap
AK(y) the error kernel of the integral representing 6N
Q. a truncation coefficient (for any one of the kernels)

The individual modifications to the '"classic'' truncation theory are represented by
subscripts, the subscript 1 referring to the classic theory., A subscript 2 denotes
Meissl's (1971b) modification, a 3 refers to the method of Wong and Gore (1969),
and an M signifies Molodenskii's (1958) modification. Other notations are explained
in the text,




2, The Basic Problem

If N denotes the geoid undulation with respect to the mean earth ellipsoid,
and Ag Is the geoidal gravity anomaly, then, In spherical approximation, Stokes!
integral reads (see Heiskanen and Moritz, 1967, pp, 92-94):

N(B,A) = -;—“*19- Us<co- ¥)Ag(0',)) do 1)

R is the radius of the sphere which approximates the geoid; ¥ Is a mean value of
normal gravity on this sphere; 6,\ are spherical coordinates; ¥ is the central
angle between points (8,\) and (8',A'); and 0 denotes the unit sphere. Neither
N nor Ag has zero- and first-degree harmonics under the assumption that the mass
of the reference ellipsoid equals the earth's mass, that the normal potential on the
ellipsoid equals the gravity potential on the geoid, and that the ellipsoid's center
coincides with the earth's center of mass, The kernel S(cos §), known as Stokes'’
function is expandable in series form as

o 2
stv) = 2t py) (2)

where cos ¢ and its abbreviation

y = cos { (3)
will be used interchangeably throughout all derivations, The coefficients

1
b= S0Py dy, o
or -
2 _
t“:m' nz 2; to=1t, =0 4

are the Fourier coefficients of S(y) (i.e. when expanded in terms of the (orthogonal)
Legendre polynomlals P (y)). Figure 1 shows S(cos {) as a function of §.

If gravity data are not available or sufficiently accurate over the entire globe,
then the integration in (1) may be limited to a spherical cap 0 centered at the
computation point. This procedure is associated with an error; specifically

R R
6N, = iny fcfS(cos Y)sg do - W'L‘IS(COS ¢)og do (5)
[
R
= Zny fafAKl (cos ¥) &g do (6)

(Technically, this is the negative of the error, but most authors seem to prefer the
formulation in (5).) The error kernel AK, in this case is (see Figure 2)
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Figure 2, Unmodified Error Kernel 4K;(cos ¥)
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0 0<¥s o
AKy(cos §) = {S(cou w): Vo< ¥ 5m (n

where ¥, is the radius (spherical distance) of the cap 0, .

Expanding the surface function Ag into spherical harmonic components
Aguw» We may write briefly

Ag(B,A) = Z Ogna(0,A) (8)
figh

The spherical ha:monic functions Ag,, are eigenfunctions of the integral operator
of the type

“‘( *) S(cos ¥) do (9)
o

That is, this operator applied to Ag,, returns Ag,, multiplied by a constant, or
eigenvalue (depending in this case only on the degree n):

”. Agn(0',A") S(cos §3 v = 2ut,Ag  (8,)); n,m >0 (10)
()

This useful fact is readily established as follows, Explicitly, we have
Agna(8,A) = Ay, ﬁ-n-l(GOA‘) + Bpa S_nn("'\); n,mez0 (11)

where R,., S.. are fully normalized spherical harmonic functions, and A,,,
B, are constant coefficients (see Heiskanen and Moritz, 1967, p, 31). The
series expansion of S (equation (2)) is now substituted into (10), and using the
addition theorem for P,(cos ¥) (ibid, p, 33):

N

Pucos ¥) = =2 1) (Wo8,)) Kea(0', ") + Fr(6, ) (8, A]s n2 0 (12)

2n+1 .29
we obtain
[[pem@rnseoswydo = T Dt Lo [ 1A, B8, M) +B,, 50,1 -
o ' o

r

* L, [Rra(8 ) Rea(BL 1) +51o(8,)) Sy (B4A)] do 5 mym= 0 (13)
Invoking now the orthogonality of spherical harmonic functions, we get
”8(cos V) Agn(8", A)do =4 t, {A,,.R',,.(e.)\)”ﬁﬁ.(el X)do + B, S48, A)u[' dfg,g(e», A"do)
y = %t,,' 4 Ag, (0, A}o = 2mt,Ag,.(8,A); n,m2 0‘7 (14)
thus proving equation (10), This result holds in general for any kernel function
depending only on ¥ and will be used repeatedly. It conveniently provides for

the immediate conversion of an integral over the sphere 0 to a series of harmonics.
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Therefore, t: expansion of the error ON, Iuto spherical harmonics is
simply achleved by first expanding the error kerel (equation (7));

BKy(y) = ,.go 2023 Qu, Py y) (15)

where y =cos § and the Q,, are the Fourier coefficicnts of this expansion:
= [ 8Kuy) Pty dy (16)
= j'_yism P(y) dy (7

Here, y;=cos Yn. As above, we note that the constunts 2+ Qy, are the ecigen-
values of the integral operator in (6), Then substituting (8) into (6) ylelds

6N, = 4"7 Z de Al\;(COS ¥) 4B dO

R )
] 2% !§. Oy ARy

5 R

or N, = o “; Qu Og: (18)

where  4g, = L Agn (19)
| §:3%

(Recall that by assumption Agy= 0; also Ag, ~0.) The coefficients Q, ., being
functions of ¥y, are gencrally known as Molodenskii's truncation coefficients (or
functions). The rigorous evaluation of Q,; according to (17) has been undertakey,
e.g., by Paul (1973) who developed an accurate recursion formula (see also
Hagiwara, 1976), Hsu Houtze and Zhu Zhuowen (1979) have derived approximate
formulas for Q,, when n s large; see also Ganeko (1977), Thus, the errvor in
the undulation committed by neglecting gravity anomalies Ag outside the cap 0
can be computed according to (18). Usually, for numerical studies such as in this
report, the error is estimated by a global average of 0N,, i.c., the root mean
square (RMS) value 0N, :

(M) = -;’;fz L Qi e, (20)
n=a

where the quantities ¢, are degree variances of Ag, given on the geoid (sphere of
radius R). The derivation of (20) may be found in Heiskanen and Moritz (1967, p.
261), The degree variances c,, not known to a very high degree, are often evalu-
ated according to a model (see Tscherning and Rapp, 1974),
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Formula (20) has been applied frequenly in practice, for example, by Rapp
and Rummel (1975) who used a slightly modified version, taking into account a
higher-degree reference field (see section 3); also Wong and Gore (1969) and
Fell (1978) have Investigated its characteristios, In each instance, it was observed
that the RMS error, paradoxically, does not always decrease as a larger fleld of
anomalies is integrated (cap size is Increased) (sce Figure 5), Mathematically,
this phenomenon Is ecasily explained, Recall that Q,, is a function of v~, and if
Yo ™ cos ¥n, then

‘%er = ~gin WO""QJ,M n™>0, Ys¥ 0 (21)
Assuming that the function Q,, has a minimum value, it must occur when %;- Qun= 0,
From (17) W

:;l'l—'yo(hn = §(ya) PalYody, 1n>0, yo#1 (22)

This is zero for all n if S(yg = 0. Consequently, if the RMS error 337 (equation
(20)) has minima, they are at the zeros of S(cos ¥), namely at §, = 38"962073 and
Yo = 117766153, as seen in Figure 5. This strong dependence of the error on the
kernel is the motivation for the discussions of Melssl (1971h) and Is the basis for
any modification to the kernel, the objective being to reduce the e¢rror,

In summary then, the geold undulation, formally the result of an integration
over the entire sphere, is computed by limiting the integration to a spherical cap,
thus incurring an error, The following scctions review the modifications to the
error kernel as proposed by various authors, The error kernel s, in theory,
modified only in its definition over the cap, requiring of course a corresponding
change In the kernel of the integral of gravity anomalies in order to preserve the
integrity of the original Stokes' formula (1),

A strong analogy cxists between this idea and the concept of window functions
in spectral analysis. By restricting the integration to a cap, we "see! merely a
portion of the global gravity information, as if through a window, Thus, a change
in the kernel, i.e. in the weights of the integration (applying a different window
function; e,g. giving less weight to the Ag near the edge of the cap) can, under
certain circumstances, lead to a better approximation of the true undulation.
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3. Meissl's Modification

The following formulas, which form part of Meissl's (1971b) derivation of a
recurrence formula for the Q;, coefficients, hold for any kernel function. Here,
they are specialized to Stokes' function,

-

Let f, g be two functions, twice differentiable and square integrable; then
, the derivation of the following analogy to Green's second identity may be found in
r Meissl (1971a, p. 43):

L} (1% - gv°1) do =6[(f'6g -g71)+0 a6 (23)
] B

where B Is any sub-area of the unit sphere o, 6B is the houndary of B, and

, U s a unit vector tangent to B and normal to 6B such that it Is directed away
from B (see Figure 3), 9° and 7 are the Laplacian and gradient operators,

# respectively, both formulated in the spherical coordinate system r, 8, )\, holding
r constant (=1). For example,

a2 o °f 1 3°f 1 °f 2  cotl >f
VIR P B X Trart P o0 =9
which if r = constant =1 becomes
_ 2°f 1_°f Af
2 = -—
v (f'"") Y- 316 3¢ + cot@ 6 (25)
Figure 3. Region B on Unit Sphere ¢
O \
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The reformulation of equation (17) for Q,, using Green's second identity
as expressed in (23) will enable us to study the asymptotic behavior of these co-
efficients. Without loss in generality, the pole of the spherical coordinate system
may be rotated to coincide with the point at which the undulation is computed.
) Then ¥ is the co-latitude and both S(cos¥) and P(cosy) are independent of

: the second variable, say the azimuth o, In equation (23), we may identify f(@, )
with S(cosy), Vg(,a) with P(cosy), B with 0 -0, and 6B with 8 which
denotes the circle bounding the cap © - 0. Then (23) becomes

Izn J‘ " [S(GOB w) Pn (COBw) —V-apn(cos d}) V? S(COB ‘p)] sin{ dv da
0= ¢ *:*o ‘26)

= J‘ [Sicos $) 7 (v B,(cos¥)) -v™ P, (cos ¥) VS(cos )] *+ T df
(-]

where V-2 is the inverse Laplacian operator, i.e, V2 (VZf)=f=v2(V?f),
Now with y =cos¥, (25) is transformed into (with ¢ =8, A =aa)

5°f af 1 2t
-5~ 23y * 17 a7

d of 1 L §
5 (P 5) + o s @

i}

V3£ le=1)

n

Since S(cosy) and P,(cosy) are independent of &, the second term in (27)
vanishes. The following are familiar formulas for P,(y) (Hobson, 19656, pp. 32-33):

(M+1) By oY) +nPiy(y) = (2n+])y B(y), n>1 (28)
(1-y3 B'(y) = n(RB_y(¥) -y B(y) , nz1 (29)
| y B(y) - Bl=y(y) = nB(y) , nx1 (30)
(Cn+1) Bi(y) = Bly(y)-Blyy) » n=z1 (31)

(the primes denote differentiation with respect to the argument y ). Using (29), (30)
and (27), it is easily verified that

V2R(y) = -n(n+1) B(y) y n>0 (32)

sothat VT R(Y) = Tarn B(Y) y mz1 (33)

i , The boundary B is the circle ¥ = Yo with (linear) radius sinyo; and hence the

i differential arc element is df = sin{pda, where 0@ < 2n, Also, the unit
vector U is in the direction of decreasing ¢, implying that Vf+T, being the
directional derivative of f in the direction of T, is simply

=10~
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- -Af - af ,
VLD = Y and 'a—w'('u = +8iny f'(y) (34)

With these considerations, (26) reduces to

Yo 1 , -1 an
FTL BRI + Ty BV 9IS Idy = ST, ISV Bl(yo - Py 9l 1-ydhda
-2 (1-yH)
- nr(er) [S(Yo) P'(Yo) = Po(yo)S'(yo)]s m > 1 (35)

where the operator v? is given by (27). Our original aim to reformulate the
expression for Q,, Is achieved by recalling (17):

-1 Yo 1-
Q, = n(n+1)J_1 P,,(y)V"’S(y)dy - ,ﬁ[s( Yo B'(Yo) = By(yo)S'(yo ]y n=2 1 (36)

This, in essence, is equation (B.50) of Meissl (1971b).

Now if n - =, as Meissl notes, the first and third terms of (36) approach
zero as 1/n° while due to B, y) such rapid convergence is not guaranteed for
the second term (see (29)). Thevefore, the condition S(y,) =0 accelerates the
approach of the coefficients Q,, to zero and the convergence rate of the series
for ON; (equation (20)) is increased, This observation is the basis for Meissl's
strategy to reduce the error '5-1"11 .

From equations (1) and (5), we may write

N = II[S(cosda) - SolAg do + ON, + “‘soAg do (37)
o o'
where S, = S(cos {s) and where the error is now
6N, = 6N, + ffsoag do = IIAK;;(COS y)dgdo (38)
o; o
with the error kernel (see Figure 4)
AKa(cos §) = {So  » 0 < sy, (39)

S(cosib). Vo< ¥ s
AKz(cos ) can be expanded in a series of Legendre polynomials:

MKoy) = L 2Bl my) (40)

h=0

where the Q,, are the Fourier coefficients:

i

Qs flAKaw)Pn(y)dy. n =0 (41

il

) ¥
So fipn(y) dy + I:(S(y) - SclPy(y) dy

-11-
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Qm = 0+ ’:’(sm-sol P(y)dy, n=21 (42)

which follows by th:: orthogonality of Legendre polynomials. Proceeding as before,
the constants 21 Q;, are the eigenvalues of the integral operator in (38), and the
RMS error Kﬁa is given by
— w % ’
5N, = B 3 13
Na 2y[n§; ancn] (43)

Applying the kermel Kz(y) =S(y) - So to equation (35) and cousidering (42), we
obtain

- Yo 1-y&
Q= garD L RTS dy -G 0By Gal na 1

since V%(S(y)-S0) =v*S(y), S(yo) -So=0, and gvls(Y)'So] |, =y, =S'(Yo)» Therefore
as n-«, the coefficients Q;,, lacking the second term in (36), approach zero
faster than the Q,,. A comparison of the functions AK,(y) and AK,(y) (Figures
2 and 4) makes this cqually evident. AK,(y) is a continuous function, while AK,(y)
has a jump-discontinuity at y =yo. Since each of the partial sums of the expansion
(15) of AK,; is a continuous function, the series converges rather hesitantly to the
discontinuous function. Particularly in the neighborhood of y, (if y, is not a zero
of S(y)), the partial sums exhibit considerable oscillations in their attempt to
accommodate the discontinuity (Gibbs phenomenon - see any textbook on Fourier
series) and in the limit converge to So/2 at y =y,. It is therefore also obvious
that the series for the continuous function AK, enjoys a much improved rate of
convergence, This rate is further enhanced by removing also the discontinuity of
the first (and higher) derivative at y = yo; however, this is not pursued here (see
Meissl, 1971b, p. 52; cf. Hsu Houtze and Zhu Zhuowen, 1979). It must be notcd
that the convergence rate is not a critical issue in the computation of the RMS error
with today's computers. The upper limit of the sum (equation (20) or (43)) is casily
taken to 2000 or 3000 which is normally sufficient for at least millimeter accuracy
(somewhat less for o= 0°) in the approximation of the error series by a finite sum.

Although the coefficients Qg, convergc to zero more rapidly than Q,,, this
does not ensure an EMS error ON,, that is smaller than ON, (see equations (20) and
(43)). In fact, for cap radii §, less than 40°, the error 6_1%2 exceeds ON,, as
clearly seen in Figure 5. Table 1 lists values of Qz, versus Q,, for ¥, =10°
verifying the accelerated convergence of Q,, to zero, but also showing that more
"power' is shifted to the low-degree harmonics of the error kernel AK,, whence
the larger error, Evidently, the error ON; is significantly smaller than 6N, for
a value of ), such as 65°; but considering the current state of world-wide gravity
data, caps with radii larger than 20° or 30° are usually deficient in coverage that is
both dense and accurate.
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Table 1. Truncation Coefficients of the Error Kernels
AK;, AKa, AKy (Yo = 10°)

n @y Qan Qm (m =20)

0 -.414 -.201 .034

1 -.411 it ] 201 e 051

2 1.593 1,801 . 032

3 .599 . 802 .030

4 274 <471 . 027

5 .118 . 307 .025

6 ,030 . 210 .021

7 -,023 . 147 ,017

8 -.056 .103 .013
9 -, 076 .072 8,36 x 10°°
10 -.086 .049 3,46 x 103

15 -.073 -3,65 x 102 -, 023

20 -.025 -.012 -, 047

5 .013 -7,80 x 10~2 .020
30 .026 ~1,65 x 10™3 4,38 x 10 *
50 -,013 -1,33 x 10™* 2,05 x 1073
100 3,80 x10™% | -1,54x10"* | -3,79 x10°*
150 | -7.46 x 10™% 9,80 x10°® | -1,78x 10"
200 | -5.91x10"* | -4,73 x10™° 1,41 x 10~*
300 | -8.77x107* 3.51 x10™° 1.22 x 10™*
500 4,10 x 10™* 8.48 x10™7 | -6,00 x 107°
1000 1.27x10™* | -4.61x10™7 | -1,78x107®
1500 2.72x10°° | -3,13x10”7 | -3.55x10°°

Meissl's modification of the kernel therefore has practical applicability if the low-
degree harmonic components of the gravity field are known (not necessarily perfectly);
the corresponding terms then do not contribute to the truncation error. I.et m denote
the maximum degree of the available potential harmonic coefficients. Then one may
compute according to the conventional approach

A
N,

with an error

6N,

=R

27n=2

Z Qi S(Ag) + g—

20

| ]
R R A
— S(cos Agdo+ =~ A
dmy qur ( V) Ag 27“22 Qi Ay

L Qu A8

n=841

(45)

(46)

(assuming no errors in the data of the cap 0¢), or by removing the discontinuity of
the truncated kernel:
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- B - 2 A
v LI[S(cu 0)-Sol a5 do + 55 T Qun Ok, (47
with an error
[+ ]
GNB' = —l"— 2 Qﬂn 6(Agﬂ) + E an Ag'n (48)
2Y \=a 27

nazmnd

The quantities A?;,, are the harmonic functions computed from the coefficients, The
corresponding error is

6(Ag,) = A - &gy 25nsm (49)

The RMS estimates of ON,' and ONJ are given by
[ ]

AN = B 2 N
P 6N1' 2.}, [nz an 6cn + n=-¥+1 an cn_i (50)
: 8——' R 2 = 2 "!%
| and N, = 5y ,,§a Qz° O, + L Qan c,,_' (51)

where Oc, Is the degree variance of the errors in the harmonic components of
degree n. The validity of (50) and (51) follows immediately under the hypothesis
of zero correlation between the errors in the coefficients and the harmonics above
degree m,

Wong and Gore (1969) adopted a conceptually different method (with no claims
to reduce the error) in which the first m - 1 harmonic components are subtracted

; from the kernel (see aiso Fell (1978)). Recalling (2), let
Z 2 n +1

nes A4}

; S"(cos ) = t, B, (cos ) (52)

then the computation of the undulation according to

A

= B .
N = iny _L;"S (cos ) Ag do (53)

is associated with an error

; , 0N, = z%[ .LIS(COSl/)) Ag do - £!S'(cosw) Ag do']
= ;—g—;[‘[afS(cosw)ﬂZQAgndc+ US(cosab) Agr do +

+ J‘J‘S.(cos,p) Agdo - jjs'(cosw) Ag da]

Z-?—;[i J.S "cosy)sgdo + JIS(cosw) E Ag,do + (54)

+ ‘”[S(cosw) SYcos ¥)lagdo - ”.S "cos ) Z Agndd]
-16-
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where  Ag* = L Ag, (55)

nsp$}

The last two terms in (54) vanish by the orthogonality of harmonic functions, since
S(cos{) - S"(cos{)) possesses no harmonics beyond degree m and S" has none
below degree m+1, Equation (54) can therefore be rewritten as

ON, - I YLJ :S%cos{)Agdo + J-&'(cou qb)ngatx g.do + ‘US(cos w)? z:.a.ﬁg,, d o] (56)

Given potential coefficients to degree m (subjcct to exrors 8(Ag,)), the second and
third terms of (56) may be included in the evaluation of the undulation, Hence we
calculate

R [ e

N, = T‘",,r JS *(cos ) Ag dtH 2 (Qan+ t) A% (57)

with an error
" ©
o = 50 L (Qu+ ) 808 435 L Qus 08, (58)

where

, v o )

Qan = 18.()') Puy(y) dy ’ n=10 (59)

are the Fourier coefficients of the expansion of the error kernel (cf. equation (56)):

- 0 0<¥ =Y
! - ;
'K, (cos i) {S"(cosw). Vo< ¥ % m (60)
and the coefficients t, are given by (4). Numerical values of Q,, for Yo = 10°
are listed in Table 1, The RMS error 8N, from (58), is

%

- B[y ¥
ON,' = -27[,12.:2 (Qm *+ ty )a bc, + n}:ﬂ ana cn] (61)
Note that AK,, expanded in the interval [~1,1] as a series of Legendre polynomials,
contains all harmonics from degree zero to infinity. The constants 27Q,, are also
the eigenvalues of the integral operator in (56), whence the results (57) and (58)
follow easily (see section 2),

This section is concluded with a numerical comparison of the three alternative
RMS errors in the urdulation that are caused by the lack of complete and global gravity
data, as well as the errors in the harmonic coefficients. Specifically, these error
estimates are given by equations (50), (51), and (61), Equation (50) is the RMS
error if Stokes' function S(cosy) is applied to the cap 0;; equation (51) corres-
ponds to the use of S(cos{)-So in 0:; while (61) represents the error when
S*cos ), as defined In (52), is used.

-17-
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The gravity anomaly degree variances are modelled according to Tscherning
and Rapp (1974):

. 325.28(n-1) _n+a
Cp (n-2)(n+24) 8""° mgal, ne3 (62)

where s = ,009617; and the degece variances Oc, are determined from
O, = ¥*(m-1*¢,, n2 2 (63)

where the £, are the degree variances of the errors 8C,, 0S,, In fully normalized
harmonic coefficients of degree n. The formula for £, is
n

& = .zo “w-nl)".'(o-snu)alo nz2 (64)

The estimates of £,, as listed in Table 2, were obtained by substituting into (64)
the standard deviations of the coefficients of the GEM 9 (20, 20} solution (Lerch et al,,
1977).

Table 2, Estimates of Degree Variances of GEM 9
Potential Coefficient Errors

n | g x10" n | £, x10"%
2 . 000037 12 . 004471
3 . 000341 13 . 006040
4 .000205 14 . 005048
5 . 000964 15 . 006343
6 . 000656 16 . 005538
7 +002130 17 . 006873
8 .001522 18 + 007575
9 + 003536 19 . 006482
10 . 002940 20 . 007038
11 | .005949

The Molodenskii truncation coefficients Q;, can be computed, for example,
by the recursive formulas of Paul (1973). Then with relatively little additional
effort the coefficients Qz, are obtained from (36), (44), and (29) as

Qan = Quv + 2= [Ba(¥) - YoB(¥o)], 0 =1 (65)
where S, =8(cosi,), yo =cos{y. Finally, the coefficients Q,, can also be

modified to yield the coefficients Qj,. Substituting (52) into (59) and considering
(2), we have

~18-
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[ ) p
Qw = Qun - )_: '%ﬂb I_’f R(y)R(y)dy, nx0 (66)
~q, -} 2,
where "y
&, = j_fP-(y)P..(y) dy, r,nz0 (67)

Then Hobson (1965, p. 38) gives

1
" (r=-n)(r+n+1l)

(R B(Yo) Paza(Yo) = F Bi(Y0 Pras(Yo) +Yo(P-mP(yo) Pr(yo)l, (68)
r#n, r,n>0

&yn = gogg [ PrerVo) = Pralye)l, £ >0 (69)

eO.o = 14 Yo

Oryr = Ei-'l'ﬁ'l(zr-l)er-z.r.ﬁyo(l’?(yo) +PLy(Yo)) = 2P (Y9 Pra(ya)ls >0 (70)

€rp
Also

Equation (69) is obtained by inserting (31) into (67) and noting that P;(-i) = (~1)',
Equation (70) is derived in Appendix A, The values R = 6371 km and ¥ = kM/R® =
982026, mgal (where kM = 398601 km®/sec® is the product of the gravitational
constant and the earth's mass) were used in all computations,

Figure 6 shows the RMS errors for cap radili ¢o=0°,...,40° with the assump-
tion of no errors in the harmonic coefficients up to degree m = 20; f.e., 6c, =0,
n=2...,20, Clearly exhibited is the substantial difference in magnitude between
the BN,' and ON.' truncation errors, even for smaller caps. For example, at
Yo=10°, ON,'=,82m, ON;'=.26 m, and 3N, = .82 m, Both the unmodified
error kernel and the kernel of Wong and Gore (1969) produce similar truncation
errors; but the introduction of errors into the reference field causes the two
corresponding RMS errors to diverge considerably, as seen in Figure 7. This
characteristic is attributable to the coefficients t, in equation (61) which are
independent of the cap radius Y ; and therefore, SN. reflects primarily the
large error due to the erroneous harmonic cocfficients (e.g., an RMS contribution
of 1.61 m for Yo = 20%.

Of the three alternative methods, considered in this section, to compute un-
dulations, Figure 7 evidently favors (for Yo 2 4°) the simple modification elaborated
upon by Meissl (1971b). Furthermore, the feasibility of integrating caps of radius
between 5° and 10°, and yet achieving half-meter accuracy (assuming a 20-degree
reference field such as GEM 9 and neglecting integration and gravity data errors),
is manifestly demonstrated, Figure 7 gives, for example at i), = 10°, ON,' =1.09 m,
BN, =0.41m, and 535:; =1,67 m, It may be noted, again, that the improved
convergence rate of N2  does not produce a corresponding reduced magnitude for
Yo < 4.
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4, Molodenskii's Improvement

Molodenskii's approach to reduce the truncation error, originally (Molodenskii,
1058) devised as the determination of the most rapidly converging error series, adds
sophistication to the concept of section 3 as more than a mere constant term is sub-
tracted from Stokes' function. Recapitulating the problem, the error in the undulation
derived from an intogration of gravity anomalies over a spherical cap (radius o),
using Stokes' function as the kernel, may be represented by an integral over the entire
sphere where the error kernel is zero over the cap (sce section 2). When this error
Is expanded in a series, the coefficients converge to zero slowly as a resalt of the
L. rnel's discontinuity at ¥ =¢, ., However, if the error kernel were to be redesigned
80 as to eliminate not only its discontinuity, but also the discontinuities a* ¥, of all
its derivatives, then we should have the smoothest error kernel possible with the
most rapidly converging error series. This modification cf the error kerncl amounts
to an analytic continuation over the cap of the truncated Stokes' function (i,e., from
Y=0 to ¥=4ig). Butthen we would encounter a dilemma since Stokes' function itself
is analytic for 0 < ¢ s n, and the error kernel continued thus would coincide with
Stokes' function exactly for 0 < § < n , That is, an analytic function is determined
uniquely by the values of it and all its derivatives at a single point - in our case, these
values are already specified for all points in the interval [¢,, m]. Consequently, as
easily recognized from equations (71) and (72) below, the kemel for the integration
over the cap would be zero, nullifying the contribution of the gravity anomalies in o .

A viable alternative (and this {s how Molodenskii proceeded) is to approximate
Stokes' function in the interval {{o, 7] by a finite sum of Legendre polynomials.
This new kernel enjoys all the properties of being analytic over the entire interval
[0, ), but an additional error is introduced since it does not coincide exactly with
Stokus!' function for Yo ¥ < . Specifically, let the undulation be computed according
to A R

N = any JOJ Kn (cos ) Ag do (71)
where Ku(cos§) = S(cosy) - Szi(cos¥), 0 = & s ¥ (72)

and the function

2n+1

n
Sa(y) = L
h=0
is to be defined by the coefficients s, so as to render the '"best" approximation to
S(y) for Yo = Y = n (see Figure 8). This is not to be confused with the approach
followed by Wong and Gore (1969) since s, # t, - the concern here is only, with the
interval [is, m] (see below for the determination of s,). The errorof N is

- B R IP -0
N-R = g ” S(cos ¥)Ag do 41_{),%}: [S(cos 1) - Sx(cos¥)) Ag do
= R P d R S¢ Ag d 74
41175;(5(008‘1))[-\& o + 4nch (cosy)ig da (74)
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Figure 8, Stokes' function vs, its approximation
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N = B - S _R_ a ¥
N-N= —— yof_j([,cs(cos ¥) - Sp(cosy))Ag do + e Ugn (cos l.b)ﬂg3 Ag.do (75)

The last equality follows by the orthogonality of harmonic furctions, since 3“( y)
contains no harmonics above degree B, The first term in (75) represents the
error due to the discrepancy bctween S(y) and S.-(y) in (Yo, ). (U n ~» =,
then this term is zero since S,r(y) = S(y); but this is true forall y in [-1,1),
so that also '3 ~0,) If potential coefficients to degree m are available (with
possible errors), then we may set it = m, thereby essentially eliminating the
second term of the error (equation (75)). Thus, the undulation is computed accor-
ding to

Y - B - & (008 U] R ¢
N = - Jo;r[S(costb) Sicos ) agdo + L )_; (76)

with an error

]
on' = 2 fis(cosw) - Sucoslogdo + BT s 0008) ()
Vg0, 27 n=a

where, obviously by (73), the constants 2ns, are also the eigenvalues of the second
integral operator in (75),

Before proceeding to further simplify (77), S. must be determined explicitly,
Recall that S,, being a finite sum of polynomials, is to approximate S as closely
as possible in the interval [§,, m]. In the recent papers which explore this method
of reducing the error (Dickson, 1979; Fell and Karaska, 1979; cf. Hsu Houtze and
Zhu Zhuowen, 1979) the function S. is determined through a "least squares adjust-
ment'. More precisely, by quantifying the concept of closeness through the definition
of a norm, a well known and powerful theorem of Fourier analysis yields the desired

result, Let f(x) be a function, square integrable in the interval [-1,1]; then the
norm of f may be defined as tke square root of

1
lele = [ o) ax (78)

Now change the variable y (= cos¥) to

y =kx+k—1; k =Cosag = %7(1"'0054’0) (79)

As y ranges from -1 to y,, X varies from -1 to 1, We note that while the
Legendre polynomials P,(y) do not form an orthogonal basis in the interval {-1, y,]},

such a bas!s is formed by the polynomials P,(x). S.(y) given by (73) (with i =m)
is a polynomial of degree m and can equally well be expanded in terms of P,(x):
»
o~ 2r+1
Suy) = L =5 w p(x) (80)
roe=

where, formally, the Fourier coefficients u, are given by

-4 -




t
w = [ Bukxsk-nrn ax = [P 8 n (5 )ays k4o, rz0 @)

The '"best' approximation of §. to S in the interval [-1, yo], or equivalently for
-1 s x < 1, Is then obtained by minimizing the norm of the difference:

1 -~
[ s -Sup)Pax = min, (2)
or Jy'ts(y)-g.(y)de = min, (83)

The minimum condition (82) is fulfilled if (Davis, 1975, Theorem 8,51, p. 171)
the coefficients of S,(kx+k=-1) (a finite sum of polynomials P;(x)) are the Fourier
coefficients of S(kx+k-1);

= [ 800 By ax (84)

Considering equation (77), let

. . _ [0 y 0 <Y s @
AKy (cos ) = {S(COW) ~Bucos ¥) s Vo< s (89)

which may be expanded in a series
| S 2n+1
BKu(y) = L S5 @u Puly) (86)

The coefficients are given by
!\ y

Qn = 18O - 8a(¥) 1 Po(y) dy (%7)
= an - Q, (88)

where ~ Yo =
Q = Sa(y) Py(y) dy (89)

-]
and the Q,, are the usual Molodenskii truncation coefficients given by (17), In
view of (84) and (80), S,(y) is the truncated expansion of S(y) in the interval
{1, yo]. The immediate consequence is that
Qwm = 0, 0<nsm (90)
Indeed, from (87), (80), and (79), and for n < m, we have

'Qn

k [1 [S(kx+k-1) = Sy (kx+k - 1)] Py(k x+k - 1) dx

|

kL( ¥ 2”1 U Pe(X) ) Pa(kx+k-1) dx (91)

r=a+l
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Now P(kx+k=-1) is a polynomial in x of degree n s m, which is also expressible
as a finite sum of Legendre polynomials P,(x), 0 =8 < n (see section 5), Therefore
Py(kx+k -1) contains no harmonics above degree m; also S(kx+k -1) - Sy(kx+x-1)
has none below degree m (i.e,, rzm+1 in (91)) - the orthogonality of Legendre
polynomicals ensures the result (380). The remaining coefficients Qy, (n~>m),
characterizing the error (see below), are expected to be relatively small in magni-
tude, this depending also on the cap radius Yo.

The error 0N,/ (equation (77)) is now more suitably written as

0

_ R ¢
6Nq' - E;n; By G(Agn) + on 27 =Z QMn Agn (92)
""he corresponding RMS error i8
n [} %
N = BT 2 2. F
ONy 2y '—nga s, Oc, + n=¥+1 Qun” Cn | (93)

The second term in (93) arises from the difference bhetween S\(y) and S(y) for
-1sy< y,. However, we cannot choose n arbitrarily large, anticipating a re-
duction of the truncation error beyond significance, unless we have an equally large
arsenal of known harmonic coefficients. For example, if we let 1 > m in equation
(75), then without difficulty, one can deduce

3

[ T )

— R 2 2 2

6 ' = === 6 + r
NM" 2 ')/[ nga Sn Cn n=§+1 Sn cn * n=§+1 QM‘ C,‘:I (94)

where ﬁm is given by (76) with S.(cos¥) replaced by Sy(cos¥). Alternately,

if @ <m, then it follows just as easily that

\IM,-a e yfr[S(coslb)- Si(cos¥)] Agdo + -237
C

with an RMS error

»
A R
sn Ag, + "2-.,','n Z+1QMn AAgn (95)
=T

nL"J =)

D’J
:’m
&g
+
™=
-3
£
et

6N s = -—-L Qn cn] (96)

n=g2g n=T+1 ’ n=

+1

The results of a numerical comparison of (93), (94), and (96) are presented in
section 5,

Assume, for the moment, that 6(Ag,) =0, n=2,,..,,m, so that the appli-
cation of Schwartz's inequality (Davis, 1975, p. 134) to (77) yields

on] = —R—(j%[sm -’“.<y>12dy) (”(Ag) do)
0-0;
< (I [8(y)- S-(Y)lzds'> -

where, forall 6, ), drﬁAg (6',)"))°do = I'? = constant, and where |« ]|
o-0:
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denotes the absolute > value, We see that implicit in the attempt to minimize the
ditference between S,(y) and S(y) in the interval [-1,y,] is the minimization,
in some sense, of the error O6Ny'. The original objective to obtain the most
rapidly converging error series is inconsequential as far as equation (93) is con-
cerned (if 6c, =0), since the error s not characterized solely by the coefficients
of the analytic function S,(y) . Only in (94), where i > m, do the s, play a

part in the truncation error. Nevertheless, the point must be stressed that an
increased convergence rate does not imply a decrease in the error (see section 5),
Molodenskii et al, (1962) adopt the approach which starts with equation (77) subject
to the conditicn (83), and no mention of convergence rates needs to enter the dis-
cussion,

Interestingly, the error kernel AKpy, given by equation (85 is discontinuous
at ¥ = Yo ! The discontinuity is relatively "small"; nevertheless, Meissl's
strategy is immediately called to mind ~ subtract from the error kernel its value
at ¥, and thus increase the rate of convergence of the error series, Table 3
shows the subsequent increase in the RMS truncation error (6c, =0, fi =m = 20),
as the improved convergence rate is not realized until n is very large (n > 170,
for Yo =10°, see Table 3a)., Ina different approach, Hsu Houtze and Zhu
Zhuowen (1979) propose that the function S he determined by simultaneously
removing the discontinuitics of AK» and its first derivative at ¥ = ¢{,. This they
accomplish by subjecting the minimum condition (83), through the use of Lagrange
multipliers, to the constraints S(yq) = ,(yo) and S'(yo) = St (Yo)s Whether
this method finally produces smaller truncation errors is not clear since the
difference between S(y) and §,(y) in the interval [-1, yo], as measured by
the norm (78), must necessarily increase under the above constraints; and it
was shown already (equation (75)) that the truncation error is directly influenced
by this difference in the functions.
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Table 3, RMS errors in N, assuming errorless potential coefficients
to degree m = 20, using Molodenskii's kernel and his kernel
modified by removing its discontinuity*. (Errors in meters,)

*O Eiu Ir';‘
1° 1,93 2,53
2° 1.13 1.74
5° .28 .47

10° .03 .05

* using the error kernel AKny(y) = ! S(Yo)=Sa(¥o)y yo Sy < 1
¢ o(¥) LS(y) -8u(y)s -1 5y <¥o

Table 3a, Coefficients Qy and Qugz of the error kernels
AKy and AKws (see Table 3); Yo = 10°,

n Qu Qua
30 | -5.98x10"* -1,28 x 102
100 4.97 x 107° -5,37 x 107°
200 -2,50 x 10~° -1,15 x 107°
300 -2,05 x 10" ¢ 1.29 x 10°°
1500 6.00 x 10”7 -8,11 x10°°
=28
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5. Computational Procedures and Results

The previous section dealt primarily with Molodenskii's theory on the reduction
of the truncation error when the undulation is obtained by Integrating Ag over a cap
0. and from harmonic coefficients, In this section, the theory is implemented and
all necessary working formulas are derived, The essential guantities to be deter-
mined are the coeffic fents s, of the function Sx(y), since they are required in
both the calculation of Ny (equation (76)) and the estimation of the error (equation
(93)). The expansions for §1(y) are repeated for convenience:

Suy) = LS55 s Pu(y) (98)
LY
Sr(y) = PZO 2"2” u: Pr(x) (99)

where

y = kx+k-1, x =LKL g ke (100)

The Fourier coefficients Q,, Q., S,, U are given by

%

Qi = f_lS(y)Pn(y)dy y n>0 (101)

~ ’yo Laind

Q =] Ss(y) Py)dy, n=0 (102)
1 ~

s, = [ Bvpdy, 0snss (109)
1

u, = f 1S(y) P(x)ds , O0sr=+nm (104)

Changing variables from x to y in (104) yields
175 y-k+1 o -
u, = k-[.1 S(y)P,.< " >dy, (Vo+ 1), 0sr=n (105)

Now, P.((y-k+1)/k) is a polynomijal in y of degree r. Furthermore, it is
defined for all y, in particular in the interval [-1,1]. Therefore, P.((y-k+1)/k)
can be expanded ac a linear combination of the orthogonal (independent) polynomials
P(y), 0 s ns r, which generate the space of all (real) polynomials of degree r

defined in [ -1,1]:
r
P, /..V;Eil) _— 3%»_1 he, Pu(y) (106)

neo

where the coefficients h., are given by
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1
by = [ B (L) Py)dys mmzo (107)
-]
We note that by the orthogonality of Legendre polynomials,
hey =0 if n>r (108)

since P,((y-k+1)/k) has no components beyond degree r. Substituting (106) into
(105) results in

.
w =& p 2021 ,.,J °S(y) Pa(y) dy

n=0

r
=l22_'ﬁ.1.h,an, 0<r<n (109)
k=0 2

Using the expansion (99) in equation (103), we obtain

2r+1 -k+1
8, = f_, rgo 'P'(y k )p"‘y’dy
2
= 2 ;Hurhm. 0snsT% (110)
r=n
where (108) has been used. Finally, from (98) and (102)
~ o o 2r+1
%= . L 2te piy) Pany oy
X
2r+l
= rgo_'z__'sr €ny NZ0 (111)

where sujtable working formulas for e, are given by (68) to (70).

The truncation coefficients @Q;,, required in the computation of s, and Qu»
have been studied extensively, and efficient and accurate recursive formulas exist in
the literature, Hagiwara's (1976) elegant solution is used here, A recursive re-
lationship among the h,, is established using equation (31) and several integrations
by parts (cf. Appendix B). The final result is

2 +1 hr na h
s = oy + 25 Bt Beres] e )
k 2-k 2-k
hi o= 7| Ps1 \™) - Proy \™3 ’
’ 2r+1[ ( k ( k )] (112)
2 21
hoo = 25 hyo =¢(1-kK; hy, = 3k
h, =0, n>r
/
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Fornmula (112) is numerically unstable (at least for ¥, < 30°) and is useless in
practice, Instead, we resort to a computationally more burdensome and time
consuming closed expression for h,, that was developed by Molodenskii (1958):

4
by, = 2n+n K" :z-:o('i)) (‘:) (1-k)!*', O0=m<r
p=r-n-1, q=r+n (113)

h,, K’ rzo0

- 2
2r+1

where, €e.g., (?)denotea the binomial coefficient Tr%é'm' » Some care must
be exercised when calculating these coefficients on a élgltal computer, The com-
putational accuracy of (113) can be tested using equation (106). This has been
done by the author to degree r = 80 with completely satisfactory results (for

o = 10°, 16-digit accuracy at degree 0 deteriorated to 11-digit accuracy at degree
80),

In Figures 9 and 10 the RMS errors corresponding to Molodenskii's modifica-
tions to the error kernel are compared only with Meissl's case. Figures 6 and 7
already Indicate strikingly that through a proper modification of the kernel the
truncation error can be reduced significantly, Therefore, the question is whether
to choose Meissl's almost trivial modification or to adopt the computationally more
elaborate method of Molodenskii. Of all the alternatives shown in Figure 9 (based
on errorless harmonic coefficients to degree 20 (GEM 9)), Molodenskii's modifi-
cation (l.e. T =m = 20) yields the smallest truncation error for most ¥, . The
modifications defined by the condition @ # m, as suggested in section 4 (equations
(94) and (96), here with T =25 and 1 = 10, re%&e'ctively; and 6c, = 0), although
giving truncation errors slightly smaller than ON;, show no improvement over
the case when B =m =20, From Figure9 (8c,=0) andfor ¥ = 10°, 6Ny =.03 m,
0N = .09 m, 6Ny = .15 m, and 6N.=,26 m. Introducing the errors (standard
deviations) of the GEM 9 20-degree reference ficld (see section 3), but still neglecting
integration and gravity data errors, the simple modification of Meissl for . > 6°
emerges as an effective means to reduce the total RMS error, surpassing even
Molodenskii's method (see Figure 10). However, the alternative modification rep-
resented by equations (95) and (96), with T = 10, yields consistently the smallest
errors for all Y. For example, at o = 10°, 8Nz =.33 m, ON; =.41m,
ON) =,46 m, and 6Ny, =.54 m.
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6. Numerical Tests with Actual Gravity Data, and the Atmospheric Correction

The computations of the geoid undulation according to the familiar un-
modified case (equation (43)), as well as with Meissl's modification (equation (47))
have been carried out with actual gravity data by Rapp (1980) for two oceanic
areas, cach spanning 30° in hoth latitude and longitude: Tonga Trench Area and
Indian Ocean Area, The (point) undulations were determined on a 1°~grid from
an integation of 1°x 1° mean gravity anomalies within a cap of radius Y, = 10°
(these were determined from a combination of terrestrial and altimetric anomalies)
and from the GEM 9 potential coefficients, Subsequently, these computed undulations
were compared to the GEOS-3 altimeter geold for which Rapp (1980) gives average
accuracies of 0,61 m (Tonga Trench Area) and :£0,71 m (Indian Ocean Area),
Table 4 lists the corresponding mean and RMS differences between the computed
and altimeter geolds (ibid, p. 6 and p, 9). With the same data as described above,
Molodenskii's modification (equation (76)), as well as the alternative method with
fi = 10 (equation (95)) were tested similarly; the results are also shown in Table 4.,
Any of the modified kernels yields a geoid that agrees better with the altimeter
geoid by almost 50% than the geoid determined using the unaltered Stokes' function,
The RMS differences between the geoids based on the modified kernels and the
altimeter geoid approach the quoted accuracy of the latter, It i therefore not
possible to rate one modified kernel better than the other from these tests,

The set of gravity anomalies used for the integration, as mentioned above,
was derived from both terrestrial anomalies (obtained on the actual geoid) and
altimetric anomalies (acquired through collocation from altimetry). In determining
the precise relationship between these two types of anomalies, one must heed the
effect of the atmosphere (see also Rapp, 1979). The details of this relationship are
explained below (cf. Rapp and Rummel, 1975), While these elaborations constitute
a digression from the main text, the final results do pertain to the application of
truncation theory.

To simplify the discussion, the sea surface is assumed to be a stationary,
equipotential surface, which then serves as the geoid, by definition, Moreover, we
suppose that the geoid encloses all terrestrial masses, but not the surrounding
atmosphere. Accordingly, the gravity potential on the geoild, Wy, is that potential
which would actually be observed, The altimeter measurement, being purely geo-
metric, provides directly the geoidal surface as defined above. In this respect, it
is necessary to define only the size, shape, and position of the reference ellipsoid.
Let the ellipsoid be centered at the geoid's center of mass and aligned with the
earth's rotational axis. For subsequent convenience, however, the scale of the
ellipsoid will be obtained dynamically be equating the ellipsoidal mass with the
geoidal mass plus the mass of the atmosphere and by further defining the normal
potential on the ellipsoid, U,, to equal Wo. Given the ellipsoid's flattening and
rotational rate, its semimajor axis is then uniquely determined (see Heiskanen and

Moritz, 1967, p. 110).
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Before the undulations from altimetry can be processed further into gravity
anomalies (via the inverse Stokes' formula, or collocation - in essence, solutions
of the boundary-value problem), theory demands that the atmosphere which envelops
the geoid be removed. According to Moritz (1974), this is conveniently achleved by
redistrbuting all atmospheric masscs (assumed to be spherically symmetric) above
the ellipsoid (including fictitious atmospheric masses between the geoid and ¢llipsoid)
inside the geoid, in & manner which leaves the center of mass unchanged. The intro-
duction of mass Into the geokd results in a cogeold (see Heiskanen and Moritz, 1967,
P 141)3

N® = N - AN (114)

where AN s the indirect effect produced by the change In potential 8W, due to this
redistribution:

AN = % oW, (115)
From (Moritz, 1974, p. 13) we have
%
6w, = -k | %ﬁ’lﬁ (116)
rmf

where k Is the gravitational constant, and M(r') is the mass of the atmosphere above
the sphere of radius r'. 6W, is the difference between the potential due to the utmos-
phere lying above the geoid and the potential of the atmosphere redistributed below the
geold. This difference is rather small, resulting in an indirect effect, AN, of approx-
imately 6 mm (Rummel and Rapp, 1976). The corresponding change in gravity on the

geoid is
o8, '%;(OWA)IM - -k“—'%?—’ (117)

that is, the (negative) attraction of the atmosphere (which is now inside the geoid).
Note that (under the simplification of spherical symmetry) the atmosphere, when
situated above the geoid, has no effect on the geoidal gravity; and hence, the re-
distribution affects gravity more substantially (8g, = -.87 mgal at the geolid, see
Moritz (1974)). Moritz has chosen the signs such that the potential and gravity
anomaly on the original geoidal surface become, respectively,

u

W = w, - 6w, (118)
and Ag® = Ags ~ &g, (119)

where Ag; Is the geoidal gravity anomaly prior to redistribution of the external
masses., Observe that the gravity potential on the cogeoid is W, and that the
reference ellipsoid has undergone no changes in the process of redistributing the
atmospheric masses, From our definitions, the normal potential on the ellipsoid
equals the gravity potential on the cogeoid and both surfaces enclose the same mass,
Therefore, the cogeoid undulations have no bias (Heiskanen and Moritz, 1967, p. 101),
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The indirect effect, AN (~6 mm), in practice is evidently neglected, The
altimeter undulations may thus be identified as undulations of the cogeoid (with no
external masses), having n global average equal to zero, and which therefore are
dhicctly usable in collocation to estimate gravity anomalies, However, the resulting
anomalies must be correctly interproted as anomalies on the cogeoid referring to
an cllipsoid containing both the terrestrial and atmospheric masses, These altimetric
anomalies, Ag,, , are consistent with Ag (neglecting the indirect sffect of 6 mm on
the value of gravity). The terrestrial anomalies, Agr.., on the other hand, are
obtained on the actunl geoid (with no Internal atmospheric masses), but also refer
to an ellipsoid containing the atmosphere (assume it is the reference ellipsoid defined
above), The two types of anomalies Agr. and Ag,; are rendered compatible, accor-
ding to (119), by either subtracting the atmospheric correction 8g, from Ag:. :

28’ = ABre - 8% - consistent with Agase (120)

or adding 0g, to the altimetric anomalies:

At sea level, the correction &g, is a constant, Hence, for convenience, the
set of gravity anomalies which enter the truncated Stokes' integral was obtained by
merging anomalies Age (equation (121)) and Agr.r, and subsequently corrected by

-O8g, so that the integral is validly applied, Regarding the integration, this constant
part can be treated separately,

Substituting (119) into any of the equations for the undulation (45), (47), (57),
(76), or (95), we have

N = 4ny.”K(cos¢)Agedo + R - 4,,,,6&.’. K(cos ¥)do  (122)

where N' represents the contribution to N from the harmonlc coefficients, which
are already based on a geoid (cogeoid) that contains the mass of the atmosphere, Let
the last term in (122) be denoted by ON,. This is the correction to be applied to the

computed integral (the first term), 1If the kernel K is the usual Stokes' function S,
then

- 1
oN,, = E%ﬁs.f S(y)dy = 6&[]‘ S(y)dy - f S(y)dy] ﬁgA(O Qy,0)
Ye
= E%OQA Q1,0 (123)

Similarly, fbr Kiy(y) = S(y) -So, using (41)

N3, = ""; bg, [I (5(¥) = Sopdy = (Qay0 - ZSO)] 6gAQ2 (124)
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And for Ky(y) = S(y)-gi(y). we obtain with (99)

- 1 ~ -
6N = 53 0a [ (S(y) - 8ry)) dy - Quo ] = T2 b1 (0 - 8- 0)

= -.-11- 8
275& 0

For %- lOc, 6N1A = 1,17 m, ONQA =0,57 m, GNHA 'x.ao = 0,43 m, and
8Ni | 5=10= 0,60 m, These values should be added to (R/4 1 y) fgfK(cos Y)Ag:do + N
(equation (1?2)) to obtain the cogeoidal (or geoidal, since the indirect effect is negligible)

undulation N,

Table 4, Computed Geoid undulations (¥ = 10°, m = 20) minus

GEOS-3 Altimeter Undulations: Mean and RMS Differences

in meters,
Tonga Trench Area Indian Ocean Area
Mean RMS Mean RMS
Stokes' function Difference | Difference Difference Difference
Unmodified 0.8 2,2 0.8 1,6
Melssl's Mod., 0.4 1,1 0,2 0.7
Molodenskii's mod. 0.3 0.9 0.1 0.6
n=m=20
Molodenskii's mod, 0.4 1.1 0.3 0.7
n=10, m=20
=37~
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7. Colombo's Method

This section is devoted to the method developed by Colombo (1977), whose
essential strategy is not to modify the error kernel in order to speed up the con-
vergence rate of the error series, but to simply determine a kernel for the integra-
tion over the cap which minimizes the truncation error, Under the condition of a
"band-limited" gravity field (that is, one with a finite nmuber of harmonic compo-
nents), the problem thus posed reduces to the solution of a finite number of unknown
parameters from an equal number of linear equations, The (square) matrix to be
inverted is extremely ill-conditioned, especially for the cap sizes of interest
(Vs = 30°); nevertheless, Colombo (1977) achieved the desired result of significantly
smaller truncation errors through a regularization of this matrix, In the following
elaborations, analytic (recursive) expressions are derived for the decomposition of
the matrix into lower and upper triangular matrices, leading further to analytic
(recursive) expressions for the unknown quantities to be solved, The near singu-
larity of the system is thereby not eliminated, but it will be shown that rigerously,
without any form of regularization, the problem as stated above cannot be solved
satisfactorily,  addition, if the gravity field is not 'band-limited", then the error
(without regularization) is far from minimal.

The undulation i{s decomposed as follows

N = Znﬂ;- fS(coslP)Agdo
- B B ff
= Iny c’E[‘Kt-_(cosw)Agdc7+ iny £JAKc(COSw)Ang (126)

where by definition (the reason for this choice will be apparent below)

2n+1
o 2

w3

Ke(y) = Vo Po(Y) (127)

n
so that, evidently, we must have

_[S(cos¥) - Kc(cosp), 0 <Y s
AKc (cos¥) = L S(cos ¥) , Vo< S m (128)
The unknown coefficients v, are to be determined under the requirement of a
minimum error. This error is given by the second integral in (126), which in view
of (128) becomes

R R
6N, = Iny LfS(cos$)Ag do - any L{Kc(cosw)z\gdo (129)
o) R 2
= 2y nga bAg -5y nga 9 A8n (130)
-38~

e



The coefficients 2nt, are the eigenvalues of the first integral operator in (129)
(see section 2), while the q, are the Fourier coefficients of the kernel

R = {1, 028 <
that is,
1
) = J:Kc(&’)Pn(Y)d}’- 0snsH (132)
(o]

Then clearly the eigenvalues of the second integral operator in (129) are 2nq,.
The result (130) is finally establ'shed by recalling our assumptions that Ago = 0 = Ag;.
More compactly, we have

[+]

R
6N: = 'é'; nga(tn - qp) Agy (133)

Considering (127) and (132), the coefficients q, are functions of the parameters
V!

2r+1 b -
adn = Z 2 \{3 er Pr(y) P(y)dy, O0sns<i (134)
0

r=0

For the moment, assume that the gravity field is composed of a finite number of
harmonic components; i.e. there exists an integer n such that

Ag, =0, n>n (135)

This bounding degree @i is also used in the definition of K.. Then from (133)

Nr = 55 ): (t = an) O (136)
Ne=

This is identically zero (the smallest possible error) if

t, = q,, OSn=m (137)

which with (134) becomes
Z 2r + 1

Ve I Pe(y) Po(y)dy, 0<n<H (138)
The (known) quantities t, are given by (4). In matrix notation (138) is
T =AYV (139)

where the positive definite matrix A (see Colombo (1977)) has elements
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1
ap, = 2“2"'1‘;' P(y) P(y)dy; r,n=0,...,7 (140)
/

Q
and the vectors T, V contain elements t, (n=0,..,,f) and v, (r=0,...,0),
respectively, Theoretically, under the condition (135), the system (139) of T + 1
equations ean be solved for the T + 1 parameters v,, ylelding a kernel K; for
which the truncation error 8Ny is zero. The gravity field in reality is described
by an infinity of harmonics, but this only prevents the error from being absolutely

zero. It Is hoped, if (135) Is approximately true (say, if fi = 180), that the
actual erorr

_R ¥ 3
oN = 35 ;H(tn ) Og, (141)

=

remains smull,

Proceeding with the derivation of a recursive formula for the coefficients v,
we note that from (127)

1
v = [ Ke(y) By @y (142)

K: can also be expanded in the interval[yo, 1), where y, =cos ¥, ; this requires
a corresponding orthogonal basis, Let

| y=L8z-4+1, where £ = sing-g—" (143)

then

: s 1 ['p, ry+e-1 y+4-1 2/(25+1) If 5=t
fipﬂ(Z)Pt(Z) dz p J;bpn\ ) )Pt( 7 )dy = { 0 if s#t

That is, the functions P,((y+£=-1)/4) form an orthogonal basis for polynomials
defined in [yo, 1]. Therefore, the expansionof K. in [yo, 1] is

(144)

e e T T

L3
Ki(y) = Ke(tz- 4+ 1) = ], 2Ly pyaz)

n=0

(145)

This sum is finite since K: is a polynomial of degree m in y, and hence in z,
The Fourier coefficients are

1
Wy = flxcuz-“l) Pz)dz, 0<nsh (146)

which upon inserting (127) become

1 X
3 w, = f Z -z—r-ilv, Pr(fz - £ +1) Pyz)dz

; -] Fz=0 2
L 21‘2+1 grn vl" , 0 < n < ?1 (14:{)

where
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1 -
grn = J'lp,uz-zu) Py(z)dz; rmn=0,,..,0 (148)
Since P24z ~ £+ 1), when expanded in terms of P,(z), has no components beyond
degree r, the orthogonality of Legendre polynomials guarantees that (cf. equation
(108))

g =0, n>r (149)
7
2r+1 -
Hence w, = an 5 B Ve, O0%nsTH (150)

If we stipulate that ON;rx = 0, then from (137) and (132)

1
to= [ Kety) Puy) dy
(-}
1
= 4 f Ke(£2 - 4+ 1) Py(bz = £ +1) dz (151)
-1

Substituting (145) yields

|

1 n
z‘[ z 2r+1wr Pz) Py(dz=~-4+1)dz

tn 1r®0 2

S 2r+l
Z—z—gm. W,y 0=5nsH (152)

-

r=0

where (149) has been used. Let W be a vector of dimension (% +1) containing the
coefficients w,, and further let the (R+1) x (fi+1) triangular matrices L and U
be defined by

go,0 30 cereee 0
gl.o E 8'1’} ss v 0
4

L]
3 ¢ 2F+1 !
".O -z-g'ﬁ.vl R EY) ) Bz

=
i
™

(163)

3 241
o = gl’(} tses e 1] gﬂ' o]
g 241 0
2 g1'1 s 2000 'rgﬁ’l
.'- . : (154)

6 0 .-o»o.o.aﬁ_g_léﬁ'.ﬁ

In matrix notation, equations (152) and (150) can then be written concisely as
T=LW, W=UV or T =LUV (155)

With equation (139), we arrive at the desired result
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A=1LU (158)

thus achleving a decomposition of matrix A into lower and upper triangular matrices.

To determine the kernel K. it is sufficient to solve only for W (see equation
(145)). Inverting equation (152), it is easily verified that

+1 - 'S 2n+1 \ =
Wy = (2; Zgn) (tr -4 nZ n Bra W /’ 0<rsn

wo = 47t

(157)

Therefore, given values for t., r=0,,,.,T (equation (4)) and a method to accurately
compute g.,, equations (157) furnish (recursively) all coefficients w,. The following
closed expression for g., (cf. equation (113)) can be proved, e.g., by mathematical

induction:

o 1+
gra = (<17 247 Z M De-v 0sner (158)
p=r-n-1, g=r+n+l
24"
Brr = sr+l’ T 20 (159)

However, because (£ - 1) *' is close to unity in magnitude (for the cap radii of
interest; e.g. Yo= 10° = £~ ,0076) and oscillates in sign, the summation in (158)
on a digital computer is associated with a considerable loss in significant digits,

A more suitable method to compute the g., in this case utilizes a recursion formula
which is derived in Appendix B:

2r+1
Br+iyn = Bregn + Zm (Brp=1 = Bryn+1)y 0 <n = r+1}
Bryo = 7_2—!_-{ (Prey(Yo) = Prsy(Yo)) » r>0
(zr+d) g(160)
oo = 23 B0 = 2(1-0); By = 24
grp =0, m>r )

Since £ << 1, g. (equation(139) is an extremely small quantity for large r, while
the values of g.,, are quite stable in magnitude as r increases; the values of g,
vary between these bounds for 0 < n < r, Consequently, the coefficients w, accor-
ding to (157) are difficult to compute, being themselves large in magnitude and oscil-
latory in sign. A considerable moderation in the extreme range of values of g., is
effected by introducing a scaling factor £~ ", Let

Ern = z’-n Brn b r,n 20 (161)
Then the recursive relationship (160) transforms into
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- - 2r+l1 - -
Brayn = Bran 2n+l (8r,na1 27 Broner)s 0 S r+1 )

1

o = Tremy (Pe-a(¥o) = Pra(Yol)s £ >0 16

Boo = 2; Byo = 2(1-4); Bp = %

Er,n =0, n>r J
Now (159) becomes g, = 2/(2r+1), r = 0, and with

W, = L"w,, n=20 (163)
equation (157) changes simply to

Pel
- o -} - 2n+1 - - -
Wr L™t ngo 2 €rn Wiy 0<r<mn (164)

Wo = 27 ¢ty

The scaling described above does not alleviate totally the nume rical difficulties
since the values of ., still vary over a broad range of magnitudes, For example,
if Yo =10°, T =36, then

Zae,0 = ~0.119; Fasiz = 1.82%10% ; Fae 24 = 5.11x10*° ; Fas 2a = 0.0274
and Wa= =1,17X10%; Wy, =-4.20x10°; W,, =8.02x10™; Wss = 7.51x10°"

The kernel K. (equation(145)), in turn, acquires enormous oscillations, a charac-
teristic that is both undesirable and detrimental to the actual truncation error. This
error (equation (141)), as well as an indication of the computational accuracy of
equations (162) and (164) are both provided through the evaluation of the coefficients
Q. Substituting (143) and (145) into (142) results in

1 &
q, = ¢ 2T+l v pi(z) Py Lz-i+]) dz
-1 r=0
& 2r+1
= LPZOTwrgnr' nz0o (165)

Or, considering (161), (163), and (149)

© 2r+l
q, = 4 z —EZ—_EM'WP’ nz0 (166)
re=0
where M =min (n,}). For 0 < n =T, we musthave t, =q,, where t, is given
by equation (4), Using the IBM System 370, model 168 with an AMDAHI, 470 V16-II
processor at The Ohio State University, Columbus, Ohio, with extended precision
(more than 30 significant digits), the differences q, - t, were obtained with {, = 10° ’
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fi=36. Equal to zero for n =0, these differences deteriorated progressively until
Qye— tas = 2.3 x 10"°%; but then qu, - ty, = 2,2 X 10°°, The latter is essentially the
first term in the truncation error. Therefore, while equations (137) are satisfied
with at least seven digits of accuracy, the resulting strong oscillations of the kernel
Kc are clearly reflected in the power spectrum of the error kernel, that is, the RMS
truncation error, thus apparently ruling out any application of this method without
some type of regularization of its ill-conditioned character,

The determination of the coefficients v, is numerically even more unpleasant,
since from (160) and (169) we have

v, = 47" i-wn"‘ ﬁ ‘?-u.'l'grnvr.]

rEntl 2

i

)
1w, - ) 2Ll v, 0snsF-1 (167)

PN

with ve = 47wy

Hence, these coefficients are excessively large (Yo=10°, =5 - lv,,l is on the
order of 10°° to 10°%).

The rigorous solution for the coefficients v, (or w,) as described above does
not take into consideration the actual error ON: (equation (141)) once the v, are
determined, Consider the RMS value of ON; (equation (133)):

@ %
o= g5 [ L, (b - ae] (168)

This quantity, which is to be minimized, resembles the square root of the sum of
squared and weighted residuals in a typical least squares solution, To make the
analogy strictly correct, the series in (168) is terminated at degree m >n . Then
the coefficients to=t, =0, t,=2/(n-1), 2 s n £ M serve as the observations;
the coefficients q,, 0 = n ¥ T constitute the mathematical model ("adjusted
observations'), being linear functions of the parameters v,, 0 s n <, The
degree variances c, may be interpreted as weights, Note that the case m =1

was discussed above. The degree of variability which enters the solution by allowing
m > n may, through the minimization condition, have a mitigating influence on the
magnitudes of the unknown parameters v,. That is, the system of equations for the
case m =1 is known to be unstable, and the introduction of additional equations
could have a regularizing effect on the system, since it is then overdetermined.
However, the results of several computational experiments with m = 300, T = 50
seem to indicate that the near singularity of the original system is not avertible
with this approach.
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8. Summary and Conclusjon

The geoid undulation can be derived from a combination of gravity anomalies in
a spherical cap (truncated Stokes' integral) and a (finite) set of harmonic cocfficicents,
The resulting truncation error depends strongly on the kernel that is used for the
integration, Several modifications to the kernel, as proposed by various authors,
are scntinized numerically in this report. These modifications are primarily
designed to accelerate the convergence of the series which represents the error,
thereby attempting to reduce its magnitude, It is found that these methods can claim
such a reduction only if a number of low-degree harmonics (whose magnitudes are
not directly controlled by the modifications of the kernel) can be deleted from the
error and incorporated in the computation of the undulation, This is not an absolute
requirement since the error is also a function of the cap radius { (see Figure 5);
however, for small caps (5° < Yo = 30°), this seems to be the general rule
(Figures 6, 7, 9, 10),

The various numerical investigations amply demonstrate that the integration
of gravity anomalies in a cap of radius as small as 5° or 10°, supplemented by
potential coefficients (e.g. GEM 9), can yield geoidal accuracies below the 1 meter
level. For example, in Figure 10 (where integration and anomaly errors are neglected,
but errors in GEM 9 are included), Meissl's (1971b) simple modification of the kernel
gives an RMS error of 0.41 m for §,=10°; while a variation of Molodenskii's method
(H=10) produces an RMS error of 0,33 m (¥p= 10°). Geoid undulations, computed
from a combination of actual gravity data in caps with Yo = 10° and the GEM 9 har-
monic coefficients, have been compared to the corresponding GEOS-3 altimeter
undulations which, in the areas considered, have an average accuracy of better than
1 meter, While not directly verifying the results of Figure 10, this comparison
does substantiate the significant (50%) improvement over the conventional method
that can be achieved by suitable modifications of Stokes' function., It should be noted
that the RMS errors of Figures 5, 6, 7, 9, and 10 are average global estimates that
are based on the Tscherning and Rapp (1974) gravity model and a spherical approxi-
mation of the geoid, the latter being no longer valid at the 20 cm to 30 em level of
accuracy, Furthermore, the errors of the gravity data, as well as errors associated
with the numerical integration have been neglected entirely.

Colombo's (1977) method of treating the truncation of Stokes' integral is included
to show a different avenue of approach. Some numerical tests have been conducted,
but this method requires further development and analysis.
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Appendix A
# e = [°P*y)dy, r=0, then
-1

(2r+1)e, = (2r-1) ey, *+ YolPr(Yo)+ Prly(Yo)) =2 B(YaPr-y(yo)s ¥>0 (A1)
€0 = 1+Yo
Pproof:

The case r =0 is easily verified by noting that B(y)=1, forall y,
Suppose that r > 0 , then with (30) we have

re, = J_:opr(Y) rP(y)dy = I—:OPr(Y)[yP.!(y)-p:,l(y)] dy (A.2)

Let a, = [®B(y)yPUyIdy, rao0 (A.3)

-1
E An integration by parts yields

o = y B - [P Py 1y Biy) + Pyl dy

|
| Hence
[ 28, = yo Pr(Yo) + Pr(-1) - e (A.4)

Putting (A.3) Into (A.2), we obtain

| )
rew = a - [OP(y) Pla(y) dy (A.5)
E -1

/
Also  (r+Deseer = Bry = [° Pea(y) P(Y) dy
o §

= By = Pey) B0 |3 + [Py Py dy (A6)

The last step follows from an integration by parts, Now add equations (A.5) and
(A. 6), and substitute (31): ,

Ter + (F+l)€ryyrey = 8 +8r41 = Pryo(Yo) Pr(Yo) + Pryy(=1) Pr(-1) + (2r+1) LYSP»?(Y) dy
& With (A.4) and P.(-1) = (~1)', tiats becores
(r+14%) ey = (-r-B42r+1)en +Byo PAyo) + 343y, Po (vo) +4 +
= Prya(¥o) Pr(Vo) = 1
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which simplifies to

L Zetlen +2yo [P2(¥o) + Pras(Yo)) = Pr(Yo) Prax(Yo)

Equation (A, 1) follows immediately,

Appendix B
pb
I g = J_;P,(!,z-wl) P(z)dz, rmnz20 (B. 1)
then Breagn ® Breipn + ‘%ﬁ—:(sr.n-x' Bryns1 )y {g 23 =r+l (B.2)
B0 = T(2r7T [ P-il¥o) = Proslyoll s £>0 (3.9
Bouo = 25 B = 2(1=4) i B ™ F4 (B.4)
grpn =0, m>r (B.5B)

Proof:

(B. 5) has already been established in section 7, and equations (B. 4) are easily
verified, Using y=£z - L4+ 1 and (31)

_ 1t 1
8ro = 7 j}bmw dy = gy (PraalYe) = Proa(Yoll » ¥ >0

thus proving (B. 3).

1
Consider the integral J P:(y) B'(z) dz ., Integrating by parts, we obtain
-1

|

1 1
[ Pty B2y @2 = 1= B2t 1-0"- 8 Pdiy) Rz 4z (B.O

1l 1
L Proy(Y) Bi(2) dz = 1= Pyy(-20+1)(-1)" - tJP_IPr!.x(y)Pn(Z) dz  (B.7)

where the primes always denote differentiation with respect to the argument of the
function. Subtracting (B.7) from (B.6) and substituting (31) gives

1 .
j‘ [Pras(¥) = Proa( Y)IBN(2) 02 = -Pryn(-2441)=1)" +P; y(-24+1(~1)"~(2r +1) Lgrn
-1 (B.8)
40«
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Also, if (31) is substituted into (B, 1), then

1
Brezy = '5;;!;'1' f_ 1Pr+1(Y)an'+x(z) - Biy(2)) dz (B.9)
= -—-l-—JAP (y) (P, (z)-l’,f (2)) dz (B. 10)
gr-l,n an+l ., r -1 Y ne1 51 ] .

Subtract (B. 10) from (B.9) and insert (B, 8), then

1 ,
Bredn =Braiyn ™ 3aat J_f Prial¥) = Pr o Y Pron(2) = Bl 2)) dz

= -2-'-‘-171-[ “Pray(=2L 4+ 1)(=-1)" 1 4 Py (<224 1)(=1)"* = (2r+1) LG ey +
= (=P (=244 1)(=1)"" + Bro y(-2441)(-1)"™ = (2r+1) L8 py)]

L(2r+1
= '—2(;,,._1_)(&,»-1 - Brner ]

thus proving also (B, 2).
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