NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



The Primer Vector in Linear,
Relative-Motion Equations

(NASA-TE-81111) THE FRINEE VECTGR 1IN REC-23096
LINEAE, BRELATIVE-BOTICE ECUATICES (NASA)
28 p BC AO3/BF AO01 CSCL 12A

Gnclas

G3/64 24456

Mission Planning and Analysis Division

January 1980

NASA

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston. Texas

N 28 s

- i

g
;
i

“LRAM

oo b

o gl Pidtad



80-F-5 JSC-16332
SHUTTLE PROGRAM

THE PRIMER VECTOR IN LINEAR, RELATIVE-#OTION EQUATIONS

)5
By Domald J. Jezeuski f;l*/
Software Development Branch

spprovec: st 77 771 2 KMlomni?
Elric N. McHenry, Chie

Software Development Branch

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center

Houston, Texas

January 1980




,,MM-

b

CONTENTS

Section
1.0 SBMMARY . . . . . ... ... .. SR O .
2.0 INTRODUCTION . . . . . -« « ¢« = ¢ = = = « = SRR IR
3.0 APPLICABLE EQUATIONS . . . . . . R A
3.1 STATE VECTOR EQUATIONS . . . . . & ¢« ¢ ¢ ¢ « a o = o & «
3.2 COSTATE VECTOR FQUATIONS . . . . . . . ¢ ¢ « ¢ ¢ o = = .
3.3 ADJOINT BRA-""§ . . . & ¢ ¢ & 4 o o v o ¢ o o « o = .
4.0 COST FUNCTION AND THE NECESSARY CONDITIONS

FOR OPTIMALITY . . . . ¢ ¢ ¢ ¢ ¢ « o« =« o = « s « &« o = s
4.1 CRITERIA FOR AN INTERMEDIATE IMPULSE . . . . . o =lls 8 e
4.2 BOUNDARY CONDITIONS . . . . . . . . . . I S 5 =
4.2.1 Fixed-End-Conditions, Two-Impulse Transfer . . . . . . .
§.2.2 Time-Open, Orbit-to-Orbit Transfer . . . . . . o s & w e
4.2.3 Rendezvous . . . . . . . . ¢ o ¢ o 0 4 s 4 o . - s & = s
5.0 EXAMPLE PROBLEM . . . . ¢ ¢ © ¢ 2 ¢ ¢ e ¢« o ¢ o R
6.0 REFERENCES . - « o o o & 5 6. s « s & 5 ® o & % & & » .

FaCERNG PAST 2UANK NOT FILMED

iii

-~ W W



&, W

FIGURES

Positions of chase and target wehicles . . ..

Clohessy/Wiltshire (C/W) rendezwvous cost . . .

Two-impulse, primer magnitude time history . .

Optimal initial coast for a two-inpulse,

C/Mrendezvous . . . . « « « »

e« o o o e ® o =

Primer mag.itude time history for a C/W, optimal,
two-impulse rewl.izvous, T = 1000 sec . . . . .

Optimal three-impulse arc time

iv

« ® e ® @ = ® e

19

21

24




sons
1.0 SeuRY

Primer vector theory is used in analyzing a set of linear, relative-motion equa-
tions - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and
necessary conditions for an optimal, N-inpulse trajectory. Since the state
vector for these equations is defined in terms of a linear systeam of ordinary
differential equations, all fundamental relations defining the solution of the
state and costate equations, and the necessary conditions for optimality, can be
expressed in terms of elementary functions. The analysis develops the analytical
criteria for improving a solution by (1) moving any dependent or independent
variable in the initial and/or final orbit, and (2) adding intermediate impulses.
If these criteria are violated, the theory establishes a sufficient mmber of
analytical equations. The subsequent satisfaction of these equations will
result in the optiksl position vectors and times of an N-impulse trajectory.

The solution is examined for the specific boundary conditions of (1) fixed-end
conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer;
and (3) a generalized rendezvous problem. A sequence of rendezvous problems is
solved to illustrate the analysis and the computational procedure.

2.0 INTRODUCTION

In the early 1960's, the solution of an optimal trajectory, based on the assump-
tion that the thrusting acceleration is replaced by an impulse, receivad oonsid.
erable attentior as a method of performing mission analysis studies. Lawden
(ref. 1) developed the necessary conditions for an optimal impulsive trajectory.
He examined the limiting conditions on an optimal finite thrust solution where-
in the thrust magnitude was unconstrained but bounded between a maximum and mini-
mum value. These résults are known as Lawden's necessary conditions for an opti-
mal impulsive trajectory. They specify the conditions that must be satisfied by
the primer vector and its derivative on a candidate impulsive trajectory.

Lion and Handelsman (ref. 2) later established the criteria and necessary opti-
mal conditions for a fixed-time, impulsive trajectory whereby a referencze
trajectory could be improved (i.e., the cost function or the sum of the magnitudes
of the applied impulses could be decreased).

Jezewski and Rozendaal (ref. 3) combined the Lion and Handelsman (ref. 2, re-
sults with a conjugate gradient iterator (ref. 4) to produce an algorithm that
generates optimal impulsive trajectories in an efficient and rapid manner.

In the middle 1970's, Jezewski (ref. 5) extended this analysis to generate

a general differential cost function for the two-body problem. This function
defines the gradient structure and cost function for (1) any set of boundary
conditions when the applicable constraints are specified, and (2) equality
and inequality constraints on both the state and control variables. By this
means, completely general, two-body, N-impulse, optimal trajectories can

be generated for any set of constraints that can be expressed mathematically.

This study applies primer vector theory to a set of relative motion equations
- the C/W equations - to determine the necessary conditions for an optimal,
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N-impuise trajectory. In previous studies, Prussing (ref. 6) applied primer
vector theory to the problea of obtaining multiple impulse, fixed-time rendez-
vous solutions between coplanar circular orbits. Jones (ref. 7) used an element
formulation to determine a general optimml set of impulses for every rendezvous,
as long as the linear assumptions were not violated. These and other similar
studies construct primer vector rendezvous solutions that satisfy the necessary
conditions by choosing and iterating directly on the constants of the solution.

In this study, completely general, optimal, M-impulse transfers between given
boundary conditions are obtained for the linear system of equations. The gen-
eral rendezvous problem is just one subset of these solutions. The technique
for achieving a solution differs from those previously mentioned and is similar
to the method cutlined in reference 5. A general differential cost function is
developed in terms of a set of all possible independent parameters. The spe-
cific problem to be solved is selected from this set; the coefficients of the
specific set of parameters are required to be zero to achieve an optimal solu-
tion. This general method has proved to be highly successful in the nonlinear
problem (ref. 5).

In the primer vector theory, the solution of the state and costate equations is
used along with a scalar function known as the adjoint equation to develop the
criteria and necessary conditions for a candidate trajectory to be optimal.
Since the C/M differential equations are a linear system of ordinary differen-
tial equations, they can be analytically integrated in terms of elementary
functions. Also, the costate differential equations (the coscate vector is
canonically conjugate to the state vector) are also linear and can be integrated
in terms of elementary functions. Hence, all fundamental relations defining the
state, costate, and necessary conditions for optimality are known analytically
in terms of elementary fnctions.

Section 3.0 will proceed to define the differential equations for the state and
costate vectors in a convenient form and to integrate these equations in terms
of elementary functions. A scalar function known as the adjoint equation will
be developed from these differential equations, which will be used in the subse-
quent development of the necessary conditions for optimality.

In section 4.0, a cost function is defined and, after taking its variation and
using the ad joint equation, a general differential cost function is developed

for the C/W equations. This function defines the necessary conditions to be
satisfied by the C/W equations for an N-im,.lse trajectory for any changes in

(1) the initial and final orbits, (2) the initial and final times, and (3) the
times and position vectors of any intermediate impulses. The criteria for an in-
termediate impulse is developed in section 4.1, and subsequent analysis is
performed to determine the position vector for this impulse.

Finally, the general differential cost function is examined for the specific
boundary conditions of (1) fixed-end conditions, two-impulse, time-open trans-
fer; (2) orbit-to-orbit transfer; and (3) a generalized rendezvous problem.

A number of example rendezvous problems are solved to illustrate the analysis,



3.0 APPLICABLE EBQUATIONS

3.1 STATE VECTOR EQUATIONS

The development of the linear, relative-motion differential equations can be
obtained from reference 8. A particular form of these equations, known as
Hill's equations (ref. 9) or the Clchessy-Wiltshire (C/W) equations, are:

X-20=0
¥+ 20k - Wy =0
Z+Ww2z =0 (1)

where ® is the constant angular velocity of a coordinate system, assumed to be
located in a circular orbit of a given radius magnitude. These equations, which
describe the motion of a particle with respect to this coordinate system, can be
analytically integrated such that the solution is described in terms of the
boundary conditions on the trajectory and the solution time.

Defining a state vector as

sT = (rT,vT) (2)

where

RT

(X,Y,z) ) V = é

and the superscript T refers to the transpose. The solution to equation (1)
can be expressed as

S(T) = A(T,0) s(0) (3)

where the relative time T is the difference in the absolute times t (for ex-
ample, Tq{ = tp - t1 ) and the matrix A (a function only of W and T) maps the
state at one time into another time. If ajj(i,j = 1,2,...,6) are the elements

of this matrix, then the only nonzero terms are



ajq = 1 ap =8 - 3¢ aj3 =¢
a2 = 6(wr - ) axy = 2(e - N/w a3 = s/w
ayy = (8s - 3ut)/w ax = s/w
ag3 = -ws

a5 = 2(1 = e)/w

as2 = 3us age = ¢
ayy = 6w(1 - e) agy = -2s
ayy = e o 3 ass =c
aus = 28

where 3 and c¢ are the sin(yr) and cos(yt), respectively. If we write
equation (1) in first-order form using equation (2), the C/W diffecential
equations can be expressed as

§ = F(R,V) (4)
where the vector F is defined as:
FT = (nyvytvzvzmvyyadzy - vax"wzz) (5)

Equation (4) will be used in sections 3.2 and 3.3 tn develop the costate
equations and the adjoint equation, both of which will be used to subsequently
develop the necessary conditions for an optimal N-impulse C/W trajectory.

3.2 COSTATE VECTOR EQUATIONS

The costate equations, or the Lagrange multiplier equations, are a system

of equations adjoint to the state equations. In differential form, they
are defined as

. F\T
5 = -(:—S) \ 6)

wheirc the vector F 1is given in equation (5).
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Developing these differential equations, we obtain

X,:o X;.:-ha-zms
xz s -3m2x5 XS = -Az = Z‘ﬂu
f3 = wlg Rg = A3

Since these equations are linear, they can be immediateiy integrated to obtain

-a1/30
Q = |agc + G3s + 2(0y + Aqt) (7a)
w(ags - age)
:-z(uzé + 03s) = (ay + aqt)/w
3w
P = | (Ops - Qzc - 20¢/w)/3w (7p)
; Gge + Ogs

where the vectors Q and P (primer vector) are defined by the relation

AT = (QT,pT) (8)

and the constant coefficient ®5(i = 1,2,...,6) are bcundary conditione
computed as follows. From reference (5), the primer vector at the time of
an impulse is defined as a unit vector in the direction of the impulse, or

Av

If we designate PqT = PT(tq) = (11,12,13) and similarly,
PoT = PT(tp) = (mq,mp,m3) , then the in-plane elements of the coefficient
vector @ in equation (7) are determined as
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(a4 [ 14]
Qa 1l
2 = B~ - (10a)
03 m4
%4, | B2 ]

where the only nonzero elements bij(i,J = 1,2,...,4) of the matrix B
(determined from eq. (7b)) are

b2 = -2/3w bpq = bi2/w
by = =1/w b23 = =1/
b3 = -t/w by1 = bz
b3y = -2¢/3w bys = -b23s
b33 = -28/3w byy = bpze
b3y = byy

Since the differential equations for the state vector are uncoupled in the
z-direction, the out-of-plane elements of the coefficient vector a are
cetermined as

a5 = 13
ag

(10b)

(m3 - 13c)/s

Note that the out-of-plane solution is not valid for wt = nw, n =0,1,...

Knowing the value of the vector a , the primer vector P and its companion
vector Q can be determined analytically from equation (7) for any time t.

The costate differential equations could also have been obtained from a
Hamiltonian approach. If we define a Hamiltonian H as

H = PTV + QTR (1)

then the state and costate C/W differential equations can be obtained from
the canonical form
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Taa-—a ,vT=a-
aQ aP
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In later sections, we will have occasions to use not only the concept of a
Hamiltonian, but also its mathematical definition (eq. (11)).

3.3 ADJOINT EQUATION

y
We need one further mathematical relationship before we can proceed with the de-
velopment of the criteria for improving a C/W trajectqry and the necessary condi-
tions for an optimal, N-impulse solution. A functional relationship is required
between the costate vector and the perturbations, in the state.

From equation (4), the differential equation for the variation in the state
vector can be expressed as

. oF
éS = (—) &S (12)

where § represents the contemporaneous variational operator. Note that
because the vector F is linear in the state vector, equation (12) represents
the exact variational differential equation and not a truncated expansion.
Premultiplying equation (12) by )T and equation (6) by ST and adding,

we obtain

. ; F F\T
ATes + 6sTh = 2T (3- §s - §sT (9-) A
3s 28

.

The right hand side of this equation can be easily verified as zero. The
left-hand side of this equation can be expressed as the exact differential,

d
— (\Tgs) = 0
v (A16S) =
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which implies that on any C/W arc, the scalar product of the costate vector and
the variational state vector is a constant, or
AT§S = constant (13)

Equation (13) will be referred to as the adjoint equation for the C/W &tions.

4.0 COST FUNCTION AND THE NECESSARY CONDITIONS FOR OPTIMALITY

The cost function, J, is defined as the sum of the magnitudes of the applied
impulse vectors. Let us assume that the solution consists of three impulses

with the following notation: at the time tq, the impulse vector is AV4y; at
the time tp, the impulse vector is AVy; and at an intermediate time tp, ﬁ
(ty < tp < tp), the impulse vector is AVy. A three-impulse solution has been
assumed for the analysis because the results can be (1) easily reduced to a
two-impulse solution by the removal of the intermediate impulse, and (2) readily
extended to more than three impulses by additional intermediate impulses. This
three-impulse cost function is

= |AVy| + |aVg| + |AVp| (14)

where AV = V* = V= and the superscribt minus and plus refer to the evaluation
immediately before and after an event, respectively. To determine the necessary
conditions for optimality, we shall examine a particular perturbation - a con-
temporaneous variation - of the cost function. Taking the variation of equation
(14), we obtain

T . (AVq) + aVa” (AVg) + ave” (AV>)
5 § (avy § (aVg) + —— & (aV2
| av| |AVm| |ava|

Using equation (9), evaluated at the times ty, tp, and tp in this equation,
and taking the variation of the individual impulses, we have

69 = PyT(gVe* - 6V1™) + PpT(gVy* - 6Vgp~) + PT(8Vo* - §Vo-) (15)

The terms P,T§Vi* and P,T§V,~ can be eliminated from this equation by
evaluating the aAJoint equation (eq. (13)) on the two arcs separating the im-
pulse:



( -V (P“’ GV1’) z (%-! 6&-) + (P-’ 6'-.) - (Q"p 6‘1’) -

)
e ©

(P2, 6¥57) = (Qg*, SRa*) + (Pg*, SVg*) - (Qp, SRp~) ‘
where for the convenience of notation, we shall use interchangeably the notation {

(x,Y) = xTy e
Using these relations in equation (15), we obtain

83 = = (Q1, 6Ry*) = (Pq, 8V4-) + (Q2s 6Rz™) + (Pp, V%) @
(16)
+ (Qp~, ORg") - (Qg*, SRg®)

l
The terms involving the vector Py in equation (15) have been cancelled since the ©3
primer vector is continuous at the intermediate impulse; i.e., Py~ = Pu* = Py.
To the first order, the variation in the position and veloj.ty vectors are

f GR = dR - th e
i
&= av - vat
. Evaluating these equations at the times f:]"', ta™y tp*, and ty- and's%g .
= the results in equation (16), we obtain i
8J = - (Q4TdRy + P1Tdvy) + (QTdRy + PoTavy)
+ (QTvy* + PqTYm)dt = (QRTVo~ + PoTV,*)dt, an .
+ (Hp* - By~)dty - (Qq* - Qp™)T dRy '
L 1
8
& .

where H is the H:miltonﬁfunction defined by equation (11). Equation (17)
will be known as the gene differential cost function for the C/W equations.
{ The first two terms on the right of this equation represent the variations in 8
the cost function due to changes in the initial and final state, raspectively.
We shall have more to say about these two terms “hen we deal with specifi@ound-
ary conditions., The third and fourth terms in equation (17) are the variations "
in the cost function because of changes in the initial and final times, respec- &
tively. If we are departing the initial orbit at the optimal time and arriving <
on the final orbit at the optimal time, and there are no other constraints, the
coefficients of dtq and dt, (respectively) will be zero. The last two terms

Py

sSes

o ° ]
| e s bk Sl S =) . =
;iﬁin..m.a_~;._‘__-__ I o I G- % = RO | A R R\ = R Wy = 7 T2 O d..i o ‘ i y - y 9 &
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in equation (17) are the variations in the cost function because of changes in
the intermediate impulse times and position vectors, respectively. For this lin-
ear problem, there can be no more than four intermediate impulses (ref. 10).

Note that on an optimal trajectory, the Hamiltonian and the vector Q must be
continuous across the intermediate impulses. The vector P has already been
required to be continuous by virtue of its definition (eq. (9)).

As previously stated, equation (17) defines the general differential cost func-
tion for the C/W equations. From this expression, it can be determined how any
two-impulse trajectory or any two-impulse segment of an N-impulse trajectory can
be improved: by changes in (1) the initial state vector or time, (2) the final
state vector or time, or (3) the intermediate impulse times and position vectors.

4.1 CRITERIA FOR AN INTERMEDIATE IMPULSE

Consider a reference trajectory J, consisting of two impulses between fixed
boundary conditions. Consider a perturbed trajectory J' between the same
boundary conditions but consisting of three impulses - the intermediate impulse
occurs at a time tp and at a position vector Rp + 6Rp. The vector 6Rp is
the perturbation from the reference trajectory at the time tp. We shall
attempt to use a comparison between these two trajectories to determine under
what conditions will the perturbed trajectory (the one with three impulses)
have a lower cost than the reference trajectory. From equation (14), the
difference in cost between the two solutions can be expressed as

aJ = J' = J = 83 = P{T8V 1+ + |8V - 8Vy~| - P TSV, (18)

since 6Vy~ and &V,o* are zero by definition of the boundary conditions.
Evaluating the adjoint equation (eq. (13)) on the two segments of the perturbed
trajectory, we have

(P1, 6V1*)

(Qm-l 6Rm-) + (Pm-y va-)

(P2, 8Vo-)

(Qm*, Gnm*) + (Pm+, GVm+)

since 6Rq = 6Rp = 0 by virtue of the boundary conditions.

Using these relationships in equation (18), we have

8d = (Qm-g 5Rm') = (Qm+, Ghm‘) + IGVm* - va-l
(19)
+ (Pm-, GVm-) - (Pm+, GVm+)

10
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But the costate vectors P and Q are evaluated on the reference trajectory
and hence are continuous, or

Pp= = Ppt*

"
"

Pm

%0

Q™ Qn

Also, the variations in the position vector at the intermediate times are

SRp~ = dRp - Vp—dtg

Using these results in equation (19), we obtain

83 = |8Vgp* =~ 8Vgp~| - PpT (8Vp* - 8Vp~) (20)

since dty is zero by definition of the perturbed trajectory.

Equation (20) is homogenous in the intermediate impulse vector &Vp+ - &Vp~
for if we define a scalar V and a unit vector L as

V = IGVE'.‘ - GVm-I
GVm* -, GVm-
L = e————

\Y

then equation (20) may be expressed as

8J = v (1 - PplL) (21)

The criteria for an intermediate impulse can now be established: if |Pm| > 1,

then 6J <0, and J > J'; or, the reference trajectory cost is greater than
the perturbed trajectory cost. The reference trajectory cost can be improved
by applying an intermediate impulse at the time tp in the direction of Py.

The greatest decrease in cost will occur if the intermediate impulse is applied

at the time when |Pp| is a maximum.

1"
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Finaliy, if a reference trajectory exists for which |Py| > 1 at some time tg.
how much should this trajectory be perturbed, and in which direction, such tha
the perturbed trajectory has a lower cost? From equation (3), evaluated on the
two segments of the perturbed crajectory, we have

S*(t1) = A(tq, tp) S-(ty)
S‘(tz) = A(th t'u) s*(tm)

Partitioning the matrix A as

¢11 412
A=
b1 $22

The position vectors on the two segments can be expressed as
Ry = 011(tq, tn) Ry + &12 (b1, tm) Vo~
R2 = 911(t2, tm) Rp + &12 (t2, tn) Vn*
Solving for the vector V. * and Vp~, we have
Vot = 9127 (t2, tp)(Rp - $11(t2, ty) Ry)
Vo~ = 9127 (ks tp)(Ry - 19(tq, tn) Rp)

where it can be ascertained that ¢12'1 exists if Wt £ n2n, n = 0,1,...

Subtracting the two velocity vectors at the time t,, we obtain

Pp

Vm"'-'lm':AVm=02-D1+MRm=\)F—I
m

(22)

where

12
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Py = 12=1(tq, tp) Ry
Py = 012'1(t2, tm) Ro
and the matrix M 1is

M= 012-1(tq, tg) &19(ty, ty) - 61271 (tn, ty) q9(t2, ty)

Solving for the intermediate position vector Ry from equation (22), we have

Pp
M.;H-1 V]-;-T+D1-92 (23)
m

The only unknown is this equation in the scalar v - the magnitude of the inter-
med.ate impulse. A second-order technique could be used to obtain an accurate
value for V; however, experience has indicated that the actual value is not sig-
nificant to the final solution, as long as it remains small relative to the

cost J.

4.2 BOUNDARY CONDITIONS

4,2.1 Fixed-End-Conditions, Two~Impulse Transfer

Consider the problem of finding the optimal two-impulse transfer trajectory be-
tween fixed initial and final state vectors. Because intermediate impulses are
excluded, ty and Ry are fixed and therefore,

dtm = dRm = 0

Also, because the initial state vector (Ry, V1~) and the final state vector
(Rp, Vp*) are rixed, we have

dRqy = dVq = dRp = dVy = 0

Using these results in equation (17), the differential cost function reduces to

8J = Hydtq - Hpdtp

13
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But because we are dealing with a two-impulse trajectory, the Hamiltonian is con-
tinuous, or
H-l = HZ s H
Also, if we define the transfer time as

T=1=t -t

the differential cost function for a time-open, two-impulse transfer between
fixed initial and final states is

8J = -Hdt (24)

Equation (24) indicates that the cost function J will be an extremal when
H=0. Since H is defined in terms of elementary functions (eq. (11)), the op-
timal time to transfer can be readily computed. The results of this solution
will agree with those obtained in reference 11.

4,2.2 Time-Open, Orbit-to-Orbit Transfer

Consider the problem of transferring between two orbits, both fixed in shape and
orientation, in which the transfer time and the departure and arrival times from
the initial to the final orbits (respectively) are free, What are the necessary
conditions for optimality to be satisfied for this solution?

The differentials of the initial and final state vectors can be expressed as
dRq = Vs=d1g dRy = Vot+dtp
dvq= = Vq=d1g dVo* = Votdrp

where 19 and 1Tp are time measurements in the initial and final orbits, re-
spectively. Using these results in equation (17), the differential cost func-
tion can be expressed as

8J = -H1"dTg + Ho*dTp + Hy*dty - Hp~dt

(25)
+ (Hp* - Bp™)dty - (Qp* - Q)T dRy

14
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Since all the differen.ials in this equation are independent and nonzero,

the cost function J will be an extremal when all the coefficients of the
differentials are zero. For an N-impulse problem, there are U(N-1) equations
in terms of U4(N-1) unknowns. The optimal solution can be readily computed
since all the coefficients are expressible in terms of elementary functions.

4.2.3 Rendezvous

As a final example, let us determine the necessary conditions for an optimal,
N-impulse, C/W rendezvous trajectory. This problem can be characterized

as a time-open transfer; however, one thut is functionally dependent on the
motion in the initial and final orbits. That is, the coasting times in the
initial and final orbits, tp and 1y (resnectively) are not independent of the

departure and arrival times, t{ and t2 (respectively), but are constrained by
the relationships:

dtg = dty
dtp = dtp

Using these relationships in equation (25) and the definition of the Hamiltonian
from equation (11), we obtain
80 = QqT(V4* = V47) dtq + QT(Vo* = V™) dt)
+ (Hp* = Hp™) dty - (Qp* - Qp~)TdRy
But the vectors Vi* - V4= = |AV{|Pq, Vo* - V3= = |AV,|P; and the generalized
differential cost function for a C/W rendegvous is
6J = |avq|(PqTQq)dtq + |av,| (PoTQp) dt o

(26)
+ (Hp* - Hp~)dty - (Qp* - Qp~) TdRy

Note that for an optimal departure and arrival time from the initial and firal
orbit (respectively), the primer vector P and its companion vector Q must be
orthogonal. The vector Q, however, is not the negative derivative of the
vector P, as can be verified in equation (7).

5.0 EXAMPLE PROBLEM

As an example to illustrate the analysis and computational procedure, a sequence
of rendezvous trajectories will be computed. The target T is assumed to be at

15
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rest and at the origin (fig. 1) of a coordinate system located in a oirocular
orbit with an altitude of 267 n. mi. at a time <. The chase vehicle C is

at rest, (with respect to the target) and displaced 10 n. mi. along the negative
y-axis at a time 0. Thus, the boundary conditions for the problea are

RT(0) = (0, =10 n. mi., 0) , vI(0) = (0, 0, 0)
RT(1) = (0, 0, 0) ; vI(t) = (0, 0, 0)

Let us now examine a sequence of rendezvous trajectories between these bourdary
conditions for various rendezvous times 1. In figure 2, the cost of these solu-
tions is indicated by the curve labeled Jp(NC) (the sum of the magnitudes of

the two impulses with no initial coast). The costate variables P and Q, and
specifically the primer magnitude |P|, for any one of these solutions can be
computed from equation (7) and may appear as illustrated in figure 3. From equa-
tion (9), the magnitude is unity at each of the impulse times and in general

will be less than unity on the interval (0, t). However, if the coefficient of
dtq (eq. (26)) is computed, it will be determined to be nonzero and for this
problem it will also be positive. This implies that the cost of the solution

can be reduced by a negative coast of duration tp computed from the zero of a
function f given as

f(t9) = |avq| (P4TQq) = 0

In figure 2, the two-impulse cost function with an optimal initial cost Jo(WC)
is also plotted. Note that the cost has been significantly reduced by the intro-
duction of an optimal initial coast. In figure 4, the optimal initial coast

time 1p is plotted against the rendezvous time +t. Note that the rendezvous
time has been maintained; i.e., Tp + T{ = T where T1 1is the transfer time be-
tween the two impulses.

The question now arises, is it possible to further improve the optimal two-
impulse trajectory? I we examine the primer magnitude time history for one of
these optimal two-impulse solutions; i.e., T = 1000 seconds, the primer magni-
tude will appear as illustrated in figure 5. The primer magnitude is unity at
the two-impulse times t4 = 0, tp = 19 = 1450.3 seconds and is noted to be
greater than unity on the interval indicating the criteria specifying (eq. (21))
that this solution can be improved by adding an impulse at the time where the
primer magnitude is a maximum (ty = 926.3 seconds). The starting position
vector {or this impulse is given in equation (23). Hence, a three-impulse solu-
tion can be computed and the optimal values for the coast time, arc times, and
intermediate position vector can be computed from the zeroes of the coefficients
of the respective variables in equation (26).

The optimal three-impulse trajectory cost with an optimal initial coast J3(WC)
is also plotted (dashed curve) in figure 2. Note that the optimal three-impulse
cost is always less than or equal to the optimal two-impulse cost, but that
these solutions may not always exist. In figure 2, note that for rendezvous

16
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times prior to 655 seconds, three-impulse solutions do not exist. For this prob-
lem, when three-impulse solutions did exist, the cost was a constant value of
134.7 fps. The arc times between the three impulses are illustrated in figure 6.
Note once again that the rendezvous time is maintained; i.e., Tp + Tq ¢+ T2 = T,

Finally, a significant observation about rendezvous trajectories is that the

large variations in cost with rendezvous time can be essentially eliminated by
the introduction of optimal coast and the optimal number of impulses.

17
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Primer magnitude, |P|

Figure 3.- Two-impulse, primer magritude time history.
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