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ABSTRACT

G. Kyle Cooper, Doctor of Philosophy, 1980

Major: Engineering, Department of Aerospace Engineering

Title of Dissertation: An Approximate Factorization Solution of
the Navier-Stokes Equations for Transonic

Flow Using Body-Fitted Coordinates with
Application to NACA 64A010 Airfoils

Directed by: Dr. Joe F. Thompson

Pages in Dissertation: 110 Words in Abstract: 525
Abstract

Although aircraft have been routinely flown at transonic speeds
for the last two decades, the designers of these machines have had
to formulate their designs almost exclusively on the basis of ex-
perience, in contrast to subsonic or supersonic aircraft design in
which a welter of analytical, experimental, and numerical techniques
exist, Since this type of fluid flow is characterized by complex
viscid-inviscid interactions, the development of fast numerical models
of the full Navier-Stokes equations has promised to alleviate this
situation. One such model is the approximate factorization algorithm
introduced by keam and Warming and implemented by Steger, et al.
This research, then, is principally concerned with an independent im-
plementation of this numerical algorithm and initial studies of its
ability to efficiently and accurately describe transonic flow about an
NACA 64A010 airfoil section.

The approximate factorization algorithm 1s developed from the non-

dimensional, conservative, vectorized Navier-Stokes equations expressed
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in curvilinear coordinates. Equations of state and transport coef-
ficient relations appropriate to atmospheric air are appended to close
the system of partial differential equations. An algebraic turbulence
model due to Baldwin end Lomax is also incorporated into the equation
set. The coordinate generation met!'od developed by Thompson, et al is
used to produce the desired coordinate transformations. Boundary con-
ditions on the airfoil surface are formulated so as to allow suction
and/or blowing from the surface and to emulate either an isothermal
or adiabatic wall. Outer boundaries are placed ten chord lengths from
the airfoil and their boundary conditions formulated so that the in-
flow properties can be varied and the outflow properties determined
by extrapolation. Fourth-order artificial viscosity proves to be nec-
essary for high Reynolds number flows.

This algorithm was verified by investigating the flow about an
NACA 64A010 airfoil at 0°, 2°, and 3.5° angle of attack for free-stream
conditions of 2 x 10® Reynolds number and 0.8 Mach number. The flow
was initiated by either gradually decreasing the degree of fluid pen-
etration of the airfoil from total to none, or by using a body force
to gradually accelerate the airfoil and its attached coordinate system
from zero velocity to free-stream values. One zero degree case was
run as laminar flow while all the other cases used the algebraic turbu-
lence model. Also, cases were run to verify the model's ability to main-
tain a free-stream solution. As an aid in evaluating the results, a
set of Mach number contour plots and coefficient of pressure graphs

were prepared.
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Overall results were in good qualitative agreement with the wind
tunnel data sets of Johnson and Bachalo, Unfortunately, while non-
dimensional times of ¢ix were attained, numerical difficulties pre-
vented any case from reaching a true steady state. In “he last test
case attempted, that at an angle of attack of 3.5°, there was no doubt
that a shock was forming on the airfoil ana that separation had occurred.
Computer times for the 113 x 51 grid used were encouraging, averaging
35 geconds/time~step on a Univac 1100/80 computer and 5 seconds/time-
step in scalar mode on the Cyber 203 (Star). It is concluded that ap-
proximate factorization techniques, while they still need some work,
can definitely be used to advantage in at least two-dimensional tran-

soric flow problems.
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I. INTRODUCTION

Although the art of modeling fluid flows has progressed to the
point where important parameters of certain complex flows can be
routinely and confidently predicted, there are still some inter-
esting flows for which current methods of analysis (experimental,
analytical, or numerical) give approximate results at best. One of
these difficult fluid flow problems is the description of transonic
flow over geometries of practical interest, in particular single- and
multi-element airfoils. This type of flow 1s of particular interest
to the numerical analyst since it is of major concern to the aircraft
industry and since it proves to be inherently too complicated a flow
to be fully described by either pure analysis or experimental tech-
niques. Until recently, the same could be saild of the available nu-
merical methods, however, with the appearance of improved ADI (alter-~
nating direction, implicit) techniques, this is no longer the case.
The major thrust of the research reported herein was to establish just
this premise and to verify the numerical algorithm developed for this
purpose.

The numerical algorithm itself is based upon a finite difference
representation of the full, Reynolds-averaged, Navier-Stokes equations
as developed by Beam and Warming [c] and including some of the implemen-
tation ideas due to Steger [b]. The set of equations is closed by
using the standard approximations for atmospheric alr and including an
algebraic turbulence model developed by Balwin and Lomax [a] from the
work of Cebeci [p]. Chief among the attributes of this algorithm is

that it is a non-iterative,second-order accurate, implicit formulation
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of the conservative form of the governing equations which remains stable
and accurate for Courant numbers much larger than unity and which at-
tains a steady-state solution inde-~adeiit of the time step. This
method offers the practical advantage of being able to calculate ac-
curate transient and steady-state solutions in time periods measured in
minutes, rather than the hours of older methods, at the cost of re-
quiring large amounts of data storage even for two-dimensional problems.

Almost all recent numerical models of fluid flows are based upon
forms of the Navier-Stokes equations expressed in curvilinear coordi-
nates. That this should be so is apparent from the fact that most
fluid flows of practical interest have inherently disparate length
scales arising from the geometry and/or the equations themselves. Thus,
curvilinear coordinates offer an automatic adjustment tc these varying
length scales and the bonus of simple boundary condition specification.
One of the most widely used techniques for automatically generating
such coordinates, that due to Thompson, Thames, and Mastin [d], has been
adapted to this research., It allows almost complete control over boun-
dary location and provides for concentration of coordinate lines about
the airfoil.

Of course any new numerical algorithm and in particular any com-
puter coded version of any numerical algorithm, needs to be extensively
verified against known solutions and/or trusted data sets. Although,
as mentioned in the opening paragraph, there are scant theoretical so-
lutions for the flows considered here, there have been some recent ef-
forts at developing a systematic set of experimental data for use in
testing numerical models. The paper of Johnson and Bachalo [m], detail-

ing wind tunnel test results for the NACA 64A010 airfoil section, was
2
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purticularly influential in choosing the flow ¢ ditions to be modeled.
Their results include interferograms, calculated Mach number contours,
and an extensive compilation of turbulence parameters for a freestream
Mach number of 0.8, and Reynolds number of two million, for various
angles of attack.

The dissertation contained in this volume basically follows the
same logical deve .opment as the foregoing discussion. Following a sur-
vey of the literature which this author considers to be germane to the
topics covered, the nondimensional, Reynolds-averaged, vectorized,
fully conservative Navier-Stokes equations are put into a form appro-
priate to curvilinear coordinates. Also, the equations of state and
the functional form of the transport coefficients are presented as part
of the development. The succeeding chapter details the transformation
of these partial differential equations into a set of difference
equations which form an ADI scheme involving a non-iterative, block-
tridiagonal inversion during each sweep. Determination of the trans-
formed coordinates and appropriate finite difference boundary conditions
are also included in this chapter. Next, the verification trials for
the computer coded algorithm are set forth. Results for the NACA
64A010 airfoil at 0°, 2°, and 3.5° angle of attack under transonic con-
ditions are presented and checked for internal consistency. The avail-
able experimental data is also compared with these results and appro-
priate comments made about their degree of and/or lack of correspondence.
Lastly, in the concluding chapter, some general and some specific con-
clusions about the algorithm and data set are made and some recommenda-

tions for future research work given.




It is hoped that the casual reader, should there be such a person,
will find the exposition clear and enlightening, and that the serious

student will find the presentation to be useful, self-contained, and

stimulating.
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II. LITERATURE SURVEY

The purpose of this chapter is to acknowledge those authors whose
published work has contributed to this research in some way; it is also
intended to provide the interested reader with some related references
outside of the narrow scope of this research. However, in no way is
this chapter to be considered as a definitive, exhaustive or complete
treatment of the significant publications dealing with the topics
touched upon herein.

Although some current analytical work is being done on the problem
of transonic flow, most of it is based upon thc techniques developed
earlier in this century before the advent of electronic computation.
Landau and Lifshitz [q] in their survey of the state of fluid mechanics
(1959) give a rigorous introduction to the analysis of transonic flows.

Some of the earliest numerical work in this area was based on
various simplifications of the full potential flow equations; indeed,
this approach appears to be a well-entrenched field of study for at
least the foreseeable future. A good source book for some of the cur-
rent (1978) potential methods is listed as reference [r].

Numerical solutions of the full Navier-Stokes equations became
practical for transonic flows when MacCormack [s] introduced his
"rapid solver" algorithm. However, being an explicit technique, it po-
ssesses certain relaxation limitations. Although implic’: algorithms
have a long history of development in this field, it was the appear-
ance of approximate factorization type techniques which made them more
than of just theoretical interest., These algorithms were first advanced

by Beam and Warming [c,f] and by Briley and McDonald [t] independently.




The Beam and Warming formulation has been successfully applied to a
variety of transonic flows by Steger [b], Pulliam and Steger [g], and
Steger and Bailey [n].

The advantages inherent in the use of curvilinear coordinates
ha'7e been made readily available by the pioneering work of Thompson,
Thames, and Mastin [d]. Recent modifications of the original technique
are detailed in reference [e,j,n].

Experimental data sets which are particularly adapted to verifica-
tion of transonic algorithms have been developed in recent times. In
addition to the NACA 64A010 airfoil data used in this research (Johnson
and Bachalo, reference [m]), the data set gathered by Seegmiller,
Marvin, and Levy [u,v] for an 18% thick circular arc airfoil are to be

recomended.




II1. VECTORIZED NAVIER-STOKES EQUATIONS IN CURVILINEAR COORDINATES

Although many simplified versions of the Navier-Stokes equations
have been successfully applied to various transonic problems, in
general this very complex type of fluid flow can only be adequately
described by the full set of equations. However, due to certain un-
solved problems in turbulence modeling, constraints imposed by the
numerical technique used, and the desirability of keeping the analysis
as simple as possible, a number of assumptions and restrictions are
required. For example: due to the impossibility or impracticability
of using enough grid lines to resolve the small scale eddies in turbu-
lent flow, the Reynolds averaged Navier-Stokes equations are used along
with an algebraic eddy viscosity turbulence model. This chapter, then,
will present the particular form of the Navier-Stokes equations, the
equations of state, the constitutive equations, and other subsidiary
relations which were chosen to model the transonic flow problems dis-

cussed in this paper.

A. Problem Description in Cartesian Coordinates

The governing differential equations used to model the transonic
flow of air in this work are the two-dimensional, Reynolds averaged
Navier-Stokes equations for a Newtonian fluid which obeys a Fourier
heat conduction law: This system of four partial differential equations
(continuity, x-momentum, y-momentum, and energy equations) can be ex-
pressed in the following vectorized, nondimensional form:

B(q) = -ilg [—g—; D(q,q,,a,) + —g—y» E(q,q,,9,0] (3.1)

3
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where
L ou Cov T
pu pu + p puv
q = » Aq) = » B(q) =

oV ouv pve + P

e (&P)uJ (ﬁP)v- (3.2)
rb by
(A+2u)ux + \v

D(q,q_,q ) = y
'y HV_ + Ju
X y
k
+ X .

-(A 2u)uu, + v+ Wvug + duvy + 5 rx- (3.3)
po -
0
BV + uu i

Ba,q09) = [ * 7 i
Aux + (A+2v)vy

k

-uuvx + Avux + (A+2u)vvy + uuuy + Pr Ty_ (3.4)

In addition, since air can be assumed to be a (thermaliy and calorically)
perfect gas for the flow studies, the following nondimensional equations
of state were used:

r-ﬂf-gﬂ+v%] (3.5)

P = (y-Dle - 3 ou? + v3)] (3.6)

The transport coefficients were obtajined by assuming that the Prandtl
number is effectively constant, that a Sutherland viscosity law is
valid, and that Stokes law can be used. These relations are listed

below in nondimensional form:




key 3.7)

3/2
we [1+ (=DH28,] (=D oy (3.8)
A = -% M (3'9)

The no'idimensional quantities appearing in equations 3.2-3.9 are de-

fined in the List of Symbole following the Table of Contents; details
of the method of nondimensionalization are contained in Appendir A.

An algebraic turbulence model can be incorporated into the above

} set of equations by multiplying the viscosity coefficient, u , by the
§ factor:
g 1+ uT/u (3.10)

except where it replaces the thermal conductivity, k , (equation 3.7);

then the factor

Pr ¥p

1+ Pr, W (3.11)

must be used. The eddy viscosity, Hp and the turbulent Prandtl
number, PrT » depend upon the turbulence model used. Due to its rel-
ative simplicity and its prior use in transonic flow calculations, the
Baldwin-Lomax [a] algebraic turbulence model was used when required.

% Of course, no problem is fully specified until the initial and
boundary conditions are stated. However, since this research involved
distinct problem types (i.e. couette flow and transonic flow over
multi-element airfoils) and since the particular boundary and/or initial
conditions used are rather intimately related to the numerical solution

procedure, further discussion of this topic will be deferred.




B. Problem Description in Curvilinear Coordinates

The computational grid on which this set of partial differential

equations are solved usually does not form a Cartesian coordinate

system. Thus it is advantageous to re-express the problem in terms of

more general curvilinear coordinates while retaining the strong con-

sarvatiocn form of the Navier-Stokes equations. In the notation com-

monly chosen (see Steger [b]. for example) the following coordinate

transformation is defined:
T e t
E = E(X.Y.t)

ne N(x')'ot)

(3.12)
(3.13)
(3.14)

Using this transformation,equations 3.1-3.4 can be written as:

T S I TN O _pte wy o 1rd  we ok on ok R P I T

where

A%(q") = 31-[€tq + g A+ e B]
B*(q*) = %[ntq + n A+nB]
D*(q*,a%,ap) =3e D+ £ E]
(%% .q:> - -}[ nD + nyE]

The important details of this transformation are contained

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

in Appendix

B. In that, for the most part, the remainder of this work will deal

with this generalized vector equation, the superscript "% will be

10

e




suppressed except where needed for clarity.

The equations of state (3.5 and 3.6) and the transport coefficients

(3.7,3.8, and 3.9) are not affected by a coordinate transformation,

except that the dependent variables must now be interpreted as functions

of £,n, and v (1.e. P(E,n,T) = P(x(&yn,1),y(E,n,1),t(1))).

Since the numerical algorithm which was selected to solve equation

3.15 must treat cross-derivatives specially, it is necessary to split

the viscous vectors D and E into vectors which contain only £~ or only

n- derivatives.

8

+ $[E (q.ap) + Ep(a,a)))

T 4+ 37 AlQ) + 3= B(q) =
where
rp - ’DU -
pu pul + ﬁxP
- l A - .-l-
T=7 lov] J JovU + EyP
e | (e+P)U-£tP
0
+
D o. 1 al“g a, E
1 J
82“5 + a3v5
aluu6 2 £
0
- 1 blun + bzvn
2 J
b3u + bavn
L}aluu + b3vun +b

11

+ a,(vu, + uvg) + a,vv, + a,T
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Thus equation 3.15 is written as:

&z [D,(a,ap + Dya,a))]

-pv q

+
puV nxP

Cafo—

cwW + n P
y

(e+P)V-n P
L t .

ﬁ

3e 4°¢

uv 4+ b,vw_+ b, T

4" ' n 5n n]

(3.21)

(3.22)

(3.23)

(3.24)
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0

bluﬁ + b3vc

bzuc + bavg

bl““& + 02""5 + bsuvc + bavvc + bST

[0
clun + czvn
czun + c3vn
cluun + cz(vun + uvn) + c3vvn + c“T

J = Exny - Eynx

The contravariant velocities, U and V, are given by:

Us Et + &xu + Cyv

V=ng

+ u +
t ﬂx T)yV

Also, the viscous coefficients are defined as:

o

2 2
(A+2u)€x + uﬁy

[
N
| |

(X+u)€x5y
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ug2 + <A+zu)a§

-]
[ ]

K (2 2
4 Pr(ﬁx + Cy)
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&

n

(3.25)

(3.26)

In equations 3.15-3.26, the trunsformation Jacobian, J , is defined

(3.27)

(3.28)

(3.29)

(3.30a)

N




bl - (A+2u)5xnx + uiyny

b2 - J\Exn + uf:ynx

y
b3 - uexny + Aiynx

b4 " uExnx + (A+2u)€yny

k
b5 - ;;(Exnx + Eyny) (3.30b)

2 2
c, = (A+2u)nx + uny

c, = (Hu)nxny

- 2 2 2
Cy = unl + (+ u)ny

¢, = p(n? + n2) (3.30c)

Note that except for the doubling of the number of viscous vectors,
the curvilinear equations (3.21-3.26) are not much more complex than
the Cartesian equations (3.1-3.4). This can be very useful in that
some relations developed in Cartesian coordinates may be directly con-
verted to curvilinear coordinates by maintaining the proper correspond-
ence of terms.

Since none of the problems investigated in this research involved
the use of a time~dependent coordinate system, henceforth, the deriv-
atives Et and e will be taken to be zero.

As was the case with the equations of state and the transport co-
efficients equations, any boundary or initial conditions which do not
involve spatial derivatives will remain invariant in form. However,

there are two common types of boundary conditions which are derivative

relations. One of these is the "adiabatic wall" assumption, or more

13

|




[

generally, a specification of the heat flux, i" » through some portion

of the boundary of the flow domain. In nondimensional form this con-

dition can be expressed as

I

Q" = - 2P VNT (3.31)
which follows from the Fourier heat conduction law and the nondimension-
alization (see Appendix A). The symbol "VN" indicates a derivative
normal to the boundary surface. In curvilinear coordinates this re-

lation becomes:

k
RePr

:l" -

(aT + e're)/»’a— (3.32a)

where

= n2 2 -
a=n +n , B8 ﬁxnx + Eyn (3.32b)

y y

The other derivative boundary condition is one which arises from
the fact that whereas the analytical formulation of a problem only
allows three of the four dependent variables to be specified at a
solid boundary, the numerical formulation requires all four to be spec-
ified. To maintain some degree of consistency with the analytical prob-
lem, this "extra" boundary condition should take the form of an extrapo-
lation from the interior of the flow field. Thus, one of the most
commonly used additional boundary conditions is to specify the normal
pressure derivative in accordance with either boundary layer theory or
the momentum equations. Using the second approach, the momentum

equations and continuity equation may b~ combined to form:

14
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LA [(“x“c + "y"c) + (nxn + nyvg)v + (nxun-* nyvn)V](-Y-!-l-)(

¢ “t AT

m‘{[n (aju, + ajve), + n(aju, + ajvp),] +

["x(b + bzv ). +n (b3" + b&v ) ] +
[fi,‘(biu +bV) +n(bu +b4v)]+

[n, Ceg u, * eV, + ny(equ 4 05",,),,]} (3.33)

where

VP = (aPn + epg)/\/& (3.34)

and the primed coefficients are the viscous coefficients (3.30)
divided by the Jacobian "J", Further details on the development of re-

lation 3.33 are contained in Appendix C.

C. Curvilinear Coordinate System Generation

The use of a curvilinear coordinate system is desirable because,
among other reasons, it allows easy application of boundary conditions
since each boundary can be made to coincide with a coordinate line;
it can concentrate coordinate lines in one region, place a minimum
number in another region, and smoothly transition from one to the other;
and it allows numerical algorithms to be relatively independent of the
particular geometry of a problem. However, for curvilinear coordinates
to be truly useful, one must utilize a method of coordinate generation
which, in addition to providing the advantages of the previous sentence,
must be relatively simple to implement, must generate 'smooth" (i.e.
second order and higher order derivatives small in some sense), single
valued coordinates, and, at least for some of the applications

15
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5 considered in this paper, must be capable of handling multiple bodies
easily. The method chosen for this work is the "boundary-fitted

coordinate” algorithm due to Thompson, Thames, and Mastin [d,e],

which achieves its purpose by solving a Poisson equationlin the curv-
ilinear coordinates £ and n.
Briefly, this technique requires that the coordinates satisfy the

elliptic system:

a

+ ---£

S * By " 7 T Bl (3.35)
(]

Mex ¥ Ny = ° 5& Q (%,n) (3.36)
c

where normally the boundary conditions to this system are specified so
that the body(ies) lie along certain of the rn coordinate lines with
some desired distribution of £ lines terminating on them. The functions
Pc and Qc are specified so that the coordinate spacing in the interior
of the field is an approximation of the one desired. In order to ob-
tain the calculation advantages of solving these equations on a curv-
ilinear coordinate system, they are transformed so that it is the x and

y distribution that is determined. That is, the following elliptic

system is actually solved:

@ Xep = Zchgn + YeXnn = -(achPc + ycanc) (3.37)
acyeg - ZBCyEﬂ + chnn = -(acngc + chch) (3.38)
16
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In practice, the above system is discretized and solved by standard
methods of numerical analysis. Further details on the development and
use of this method of coordinate generation and the definition of the

parameters °c' Bc' Yoo and Jc are contained in Appendix D.

17

e s

i




SITTETR e TTTTTR T eeRT TR

IV. NUMERICAL FORMULATION

It is an unfortunate fact that mathematical analysis of nonlinear
partial differential equations, such as the Navier-Stokes equations,
can not currently provide anything like a closed form solution to these
equations for general boundary conditions. Thus, though itself more
of an art than a science, methods of numerical analysis must of neces-
sity be applied to these problems if more than a qualitative descrip-
tion of the flow is desired. One of the more common numerical methods
used to solve the Navier-Stokes equations is to approximate this set
of partial differential equations by an equivalent set of difference
equations in such a way that they are consistent with these differential
equations, In addition, their solution algorithm must produce a se-
quence of intermediate iterative values which converge to the actual
solution to some estimatable degree of accuracy. From a practical
standpoint, the iterative algorithm should possess the property of a
rapid rate of convergence, both numerically (small number of iterations)
and computationally (small number of operations). Thus, one of the most
important aspects of this research was the selection and development
of the numerical algorithm used to solve the Navier-Stokes equations
presented in the previous chapter.

The difference scheme chosen for this work was the approximate
factorization algorithm due to Beam and Warming [c,f]. 1In the form
used in this research, this algorithm is an implicit, second-order ac-
curate in time, non-iterative (in the sense that each time-step is cal-
culated once only), unconditionally stable (in the linear approxi-

mation), three-time-level scheme. Its 'delta" formulation insures
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that, although the cross-derivative terms are treated explicitly,
the scheme remains second-order accurate and unconditionally stable; j
requires only two-time-levels of storage; and produces a steady-state
solution which is independent of the time-step size. The most attrac-
tive feature of the algorithm is that, due to its spatial factori-
zation, it forms an ADI type of scheme in which each sweep involves
the inversion of a block-tridiagonal matrix. In principle this ap-
proximate factorization algorithm promises to solve complex, two-
dimensional fluid flow problems on current high-speed scientific com-

puters within an economically reasonable time (i.e., tem to thirty

minutes).

The remainder of this chapt r will attempt to put the assertions
of the previous paragraph info a more concrete form. First the delta
formulation is presented along with an indication of the method of
spatial differencing. Then the techniques employed to impose the boun-
dary conditions are detailed. Lastly a brief discussion of the problem

of forming the geometric coefficients is included.

A. Beam and Warming Approximate Factorization Algorithm

The most general, consistent, three-~-time-level, linear expression

relating the conservation variable, q , and its time-derivative, qp s

is [£]:
aq™ = A8 2 (aq™) + +v=q™H] + b pqtl (4.1)
q 1+¢ at acq G T+9°4 '
with truncation error of:
(b0 + 6-7)Bt2qh, + 0(at?) (4.2)
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vhere "A" is the usual forward difference operator, and 6,¢,V are
arbitrary real constants. Note that since v = t, they will be used
interchangeably in this paper. Henceforth, the parameter ¢ will always
be taken to be zero and, to maintain second-order accuracy, the fol-
lowing relation is established between ¢ and 6:

1

S=t+3 (4.3)

Now the time-derivatives of the conservation vector are evaluated

from equation (3.21) and substituted into equation (4.1) with the

result:
AD,+AD AE,+AE
n 1 2.0 ) 1 2
oq IMA:[ SE(-0A + —=—5)" + an(-zm )
D,+D E +E
1 2n 3, L _2,n ¢ ,.n-1
l+¢[ E( A+ 50, 8n( B+~ )] + T+g 24 (4.4)

This equation is not suitable for direct use since the time-differenced
vectors on the right-hand-side involve nonlinear functions of qn l
However, due to special properties of the flux vectors, (A,B,D, and E),
under a suitable assumption on the transport coefficients, these dif-

ferenced vectors can be expressed ir terms of their Jacobian matrices

as follows:

bA" = -a%A“ 8q" = P"aq" (4.5a)
AB" = -3%3“ Aq" = Q"aq" (4.5b)
n 9 .n n - n,.n
aD| = [aqgn1 8q7], = (Waq), (4.5¢)
n 2 .n nq n, n-1
oD, = [Ea’;”z Aq J (X"aq™ ) (4.5d)
20
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o] = Es%;n? Aqnle - (Y"Aq“")E (4.5¢)
n 9 n n n, n
OE, = E&i‘“z Aq ]n = (2'4q )E (4.5¢)

where the cross-derivative matrices (AD2 and ABl) have been lagged in
time in order to facilitate the factorization described later. These
expressions are exact to the order of At?, and thus their use in
equation (4.4) will not degrade the accuracy of the algorithm. Although
not strictly necessary to the development, it is convenient to also use
the following exact relationships between the flux vectors and their
Jacobian matrices:

Dy = ¥Wq; » D = Xq

E, = qu » Ey = an (4.6)
and

Wq = Xq=Yqg=2q=0 (4.7)
A detailed derivation of these equations (4.5, 4.6, and 4.7) is con-
tained in Appendix E; the explicit form of the Jacobian matrices
(P, Q, W, X, Y, and Z) are contained in Appendix F.

Using relations (4.5) and (4.6), equation (4.4) may be re-expressed

I 1 32 3, 1232 n, n
1+¢[( §;525'W)+ (3nQ Re an? z)]1a

At 1 9 1 n
At 3r A4 e(an + an)] + 33[- B + Re(YqE + an)])

1+¢ 3E
oAt 1 32 n-1 <_g_
+ — T+6 e a;an[(x”) Aq ) + 1+¢ (4.8)

where "I" 1is the four-by-four identity matrix and the bracketed term on
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the left of Aq“ is understood to be a derivative operator. Since
squation (4.8) is of order At} and since Aq“ is itself of order At,
this cquation can be "approximately factored" into the following sot

of sequations with no loss of accuracy:

éate d 1 n
“*Fﬁ%i"ﬁ}g"h Q" = RHS(4.8) (4.9a)
1 3 ., n_ TN
{1+ -—{ - e 357 211" ta” = aq (4.9b)
™ . "+ ag” (4.9¢)

wh.r-<Z;“ is an intermediate value and RHS (4.8) represents the right-
hand-side of equation (4.8). Although equation set (4.9) represents
the basic spproximate factorization algorithm, the spatial derivatives
must also be discretized for it to be of practical utility. Using the
central difference approximations developed in Appendix G, equation

(4.9) can be put in the finite difference form:

n

1 {3
RHS; 4 ® [x1+1.,1“'1+1 PR R Xi-1,1(25- 1,341 = 93-1,3-1)

n n
Y T Q.41 " ,5 109341, 4-1 “1-13 )
lr,.n, n-1 n, n-1
+ LR g ge1 m BB Dy
n- l n, n-l
- RUQT g gep R0y ]

n n
- (wiﬂ,j +Wi1,429,4]

]

lp.n n n
T LA CHREPIL VIR

( n

len n n
T WL CHI L TR I CTO R 2y Ji- 1)“1.3

lp 0 " n-1
oLy, = A1o1,p) * ®F 44 - B} 0]+ Ty ey (4.100)
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- n ron - n —
(MDY 1,9 831, + (VMG Dlay g & (B, g Bayyy g = RHS]

(4.10b)

- n n n n n n a Al
(Q"z’m-l Aqm_l + (1-0»221.3)“1“1 + (Q-z)m,H Aqidﬂ Aqi.J

(4.10¢)
ntl _ n n
93,4 = 94, + Aq‘.J (4.10d)
vwhere R = -%(x-m and the coefficients -g-_%% ft!o' and "zl"%%% have been ab-

gsorbed by the matrices W, X, Y, Z and A, B, P, Q, respectively.

This final set of difference equations (4.10) also defines the
basic solution algorithm. First the explicit vector RHS is calculated
over the interior of the field. Then each n-line is swept and a
block-tridiagonal matrix inverted to determine the intermediate values
232'1. Similarly, each £{-line is swept and the resulting block-tridiag-
onal matrix inverted, thus determining the difference conservation
vector Aq:.j. Lastly the conservation vector q:.J is determined from
equation (4.10d). In essence, then, this method is an ADI type of im-
plicit algorithm in which just one iteration per time-step is performed
due to the direct inversion of the block-tridiagonal matrices. For

completeness, the block-tridiagonal inversion algorithm is included in

Appendix H (see also Steger [b], his Appendix 1).

B. Initial Conditions

Even though it is the primary objective of most fluid flow analyses,
including this one, to achieve a solution which is independent of the
initial state of the fluid, thus making the boundary conditions all im-
portant, the eminent difficulties involved in getting a numerical sim-

ulation started at high Reynolds and Mach numbers results in the initial
23
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conditions taking on a computational importance which can not be
neglected. Indeed, the starting problem often dictates, at least
early on, the boundary conditions to be used and often modifies the
basic algorithm itself. In the research reported in this volume, three
different sets of initial conditions and their accompany!ung modifi-
cations to the boundary conditions and algorithm were tried.

The simplest initial condition, at least from the standpoint of
initial formulation, is the so-called impulsive start. In this case
the initial properties of the flow field are the same as the free-stream
properties except for the velocities on any solid boundaries. This
initial condition specification has two major disadvantages, both due
to the usually large velocity jump near a body. Most deleterious is
the fact that the algorithm must be altered so as to rapidly diffuse
the strong velocity gradient at the body. One such alteration is to
effectively greatly reduce the Reynolds number in the viscous Jacobian
matrices W and Zof equations (4.10b and c)[g]; this has no effect on the
steady~state solution, but can drastically affect the transient so-
lutions. The other shortcoming of this type of start is that intense
compression and rarefacation waves form, which, due to the inexact
nature of the boundary conditions used in numerical simulations, can
cause long term distortion of the flow field [h].

A second class of initilal conditions is the same as the impulsive
start except that the velocities at solid bodies are gradually varied
from free-stream to the desired final values. This has been termed as
a "penetration" initial condition, since, physically, this velocity
boundary condition implies that fluid must be sucked into and/or ejected

from the body. Initial conditions of this sort do not require a change
24
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in the character of the set of equations (4.10), however, they do re-
quire that they be flexible enough to handle suction and/or blowing
from the boundaries. Similar to the impulsive start case, there are
tvo major disadvantages. One is that for a closed body embedded in the
flow field, such as an airfoil section, it is extremely difficult to
satisfy global conservation laws; thus the early transient solutions,
even after the desired boundary velocities are obtained, may be con-
siderably different from expectations. Related to the first potential
difficulty, the other problem with this class of initial conditions is
that if suction and/or blowing is not a natural boundary condition for
a problem, then, again, the transient solutions for the desired boun-
dary conditions can not be obtained.

The last type of intial condition to be considered here is what
will be called a "gradual" start. This case is, in a sense, the re-
verse of the impulsive start in that the initial properties of the flow
field and the boundaries are uniformly the same as the desired boundary
condition on the solid body boundary. In most cases this means that the
velocity field is everywhere zero. The start-up is achieved by
uniformly accelerating the flow field everywhere except the '"fixed"
body boundary. I.. .:iactice, the easiest way to accomplish this 1is to
add a body force term to the original equation set (3.1) and adjust
the resulting difference equation set (4.10) accordingly. Details on

how this modification is implemented are in Appendix I.

C. Boundary Conditions

Since the boundary conditions ultimately determine the form of the

flow field, some care must be taken in formulating their numerical
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equivalent, This task {s especially complicated by problems which have
no counterpart in the analogous analytical formulation. It is not cur-
rently possible to directly impose an "infinity" boundary condition on
the numerical prnblem; thus, certain boundaries must be designated as
inflow and outflow boundaries and their boundary conditions determined
80 as to mimic the actual infinity boundary conditions. As mentioned
previously (see discussion prior to equation (3.33)), an "extra"

boundary condition is required on solid boundaries which must be deter-

i mined from the solution and not determine the solution. Also, re-entrant
boundary conditions must be specified so that these computational boun-
daries are effectively transparent to the flow field solution.

i Inflow boundary conditions are the casiest to formulate since they

| are normally placed far enough upstream of any solid bodies so that the
flow in their vicinity may be assumed to he unaffected by their pres-
sence. Thus, the inflow boundary conditions are completely determined

by the corresponding infinity boundary conditions.

Outflow boundary conditions, on the otherhand, are much harder to
formulate, at least conceptually. Similar to the inflow boundary, this
boundary is normally far downstream of any bodies, but, opposite to the
inflow boundary, it must not affect the flow upstream of it. That is,
this boundary must allow disturbances to pass 'through'" it without re-
flecting them, One common method of at least partially accomplishing
this is to determine these boundary values by extrapolation from the
flow field solution, or, equivalently, by specifying a Neumann béundary

condition. The technique chosen for this research was to use second
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order extrapolation along the coordinate line which crosses the out-

flow boundary. For example, if the Ith £-line is an outflow boundary,

then
n n n
= 2A - .
AquJ qI"ltJ AqI'zoJ (4 11a)
n+l n n
- + R
1,5 7 91, ¥ Yy (4.110)

Re-entrant boundaries can arise either due to the analytical form-
ulation (i.e., Couette flow) or due to the choice of coordinate system
(i.e., polar coordinates). 1In either case a choice must be made be-
tween treating these boundaries approximately, thus keeping the al-
gorithm simple, or exactly. Typical of the approximate technique [b]
is to lag the values oq‘this boundary for the solution of equation set
(4.10) (henceforth termed implicit boundary conditions), then to cal-
culate these boundary values from an average of extrapolates of cor-
responding points on the re-entrant boundary after the interior field

values are determined (henc forth termed explicit boundary conditions).

In symbols this method could be implemented as:

n n-1 .
AqI,j AqI,j (implicit) (4.12a)
n 1lr, n _ n SR n
dap 4= = glday 4o = 2(ap g+ Lap g + 8] 5]

(explicit) (4.12b)
where (he Ith f{~line is a re-entrant boundary and j and J are the
indexes of the re-entrant n-line,
The approach taksn by this author was the more exact, but much more
complicated, technique of continuing the algorithm across the re-entra:t

boundary. For cases in which the coordinate lines that crossed the
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E re-entrant boundary were periodic (i.e., polar coordinates), this only

| affected the inversion algorithm since the matrices were periodic
block-triangular instead of just block~tridiagonal. In all other

| cases, this "just" means taking care that a block-tridiagonal matrix

é is formed in crossing the re-entrant boundary. In practice, the first,
inexact, method is preferable since it keeps the basic algorithm simple
and much more problem independent.

E Body or wall boundeary condi“ions are the most difficult type to

formulate, primarily because of their importance, both analytically

and numerically, in defining the flow. Unfortunately, this task is

still mostly an art since a universally accepted method for treating

the "missing" boundary condition on density does not exist. There is,

of course, no problem in specifying the velocity boundary conditions

in viscous flow; these are ailways assumed to be known quantities

(usually identically zero). Also, the temperature boundary condition

presents little trouble if it too is assumed to be specified (isothermal

being the easiest of these).

It will be convenient to consider the implicit and explicit boun-

dary conditions separately. For the implicit case, if the first

n-line is a body boundary, for example, then the tridiagnoal element

-(Q?’1 + Zg:l)qu’l must be re-expressed in terms of known quantities

and/or other differenced conservation vectors on the same £-line. In

general, this means determining the coefficient matrices H and K and

the vector L in the linear combination:

n = n n
bay ) = Hiqy , + Kbqy 5+ 1L (4.13)
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which preserves a block-tridiagonal system of equations when sub-
stituted into equation (4.10c). These matrices were determined in
this research by extrapolating the density along the £-line and, in
those cases in which the temperature was not explicitly specified, by
lagging the temperature in time. The details of this technique are
outlined in Appendix J; for other successful methods of evaluating
these coefficient matrices, see Beam and Warming [c] or Steger [b].
After the solution of equation set (4.10) the advanced boundary
values on the body need to be determined. If a gradient temperature
boundary condition is specified by equation (3.32), then a straight-
forward application of the appropriate difference approximations re-

sults in the following periodic tri-diagonal system of equation:

8 - 8
Q@ Ty, Myt Q)

1,1

1
Ti+1’1 11’3 - 4T1’2 - 2RePr(k¢E) 9,

To determine the surface density, the pressure gradient equation (3.33)

was used, It also forms a slightly more complicated periodic tri-diag-

onal system:

8
-(;) P

- '-B- = -
i1 111 + (m 3)1'1’1 + Q) P1+1,1 P 4P + 7, (4.15)
14

1,1 i,3 i,2 2

where the expansion of the ™ and Ty terms 1is considered in Appendix C.
For 1illustrative purposes, the body has been assumed to be coincident
with the first n-line in both equations (4.14) and (4.15). Note that
for bodies whose surfaces do not form continuous segments in the trans-
formed coordinates, it was found to be advantageous to determine the

value at the (re-entrant) end-points by the average of extrapolates
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method outlined previously and then solving the resultant pure

tri-diagonal system of equations for each segment.

D. Artificial Viscosity

It is a well-known fact that, while the approximation of spatial
derivatives by central differences, such as was done in developing e-
quation (4.10), have many desirable properties, such as accuracy of
derivative representation and simplicity of use, they make the al-
gorithms containing them prone to nonlinear instabilities. Thus, in
any fluid problem in which a region of very rapid change occurs rel-
ative to the corresponding coordinate density, some means of diffusing
the resultant high frequency components of the solution must be ap-
pended to the basic solution scheme, The technique used in this re-
search was to alter the basic set of equations (4.10) by adding to the

explicit equation (4.10a) the difference expression:

€
"Ei’J[(q1+2,3 " Adgr,g PO,y T Yy Y 9,y

n
* Qg g T Mg g 8y T by g ey )] (Ge6a)
everywhere except for points near boundaries where
£ 0 -2 + ) + ( -2, ,+4q )1 (4.16b)
T, %41, 7 4,5 T Y1, 94,4+1 1,3 7 %4,3-1

1,3

is used. Note that the symbol q 1s used in the sense of equation (3.2).
It can be readily shown that, provided the coordinate variation 1is

"smooth", equation (4.16a) adds a term proportional to the fourth power
of the local grid spacing and equation (4.16b) adds a term proportional

to the square of this spacing. Thus, if ¢ is proportional to At, for a
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dense enough mesh, these artificial diffusion terms should not seriously
degrade the accuracy of the basic method except in those regiona of high
gradients (relative to grid spacing) where its accuracy 1s suspect any-
way. A linear stability analysis places an upper bound on the value of
e of 1/12. Pulliam and Steger [g], from whom this dissipative technique
was derived, also make use of an implicit artificial viscosity appended
to the W andQ matrices of equations (4.10b and c); however, this author

found its use to be required only for impulsive type starts.

E. Coordinate Derivatives

There is a serious potential problem with developing any numerical
algorithm for solving the Navier-Stokes equations in conservative form.
This can be descerned in equation (4.10a) by considering a region of
flow in which the density, velocities, and energy can be taken to be
constant. If proper consideration of the properties of the flux
Jacobian matrices (equation (4.7)) is taken, then the first element of

the vector RHS? j is proportional to:
1 4

u{[(yn)i+1’j - (yn i-1 j] [(y )1 ,j+1 - (YE)i,j-l]}

) B} (4.17)

AL g = Oy LD gy - B0y g

Thus, since similar relations develop for the other elements of the
vector RHS of equation (4.10a), if this algorithm is not to have spur-
ious sources and sinks, the quantities in braces in expression (4.17)
must be identically zero. In two dimensions, as is considered here,
this can be assured by evaluating the coordinate derivatives (xg, xn,
yg, yn) by the same difference scheme used to difference the flux vec-

tors A and B, As is pointed out in reference [b], this should be an
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over-riding concern, even if the resulting differences are poor repre-
sentations of the true derivatives (i.e., analytically generated
coordinates should have their derivatives evaluated by the appropriate

difference and not by direct differentiation).
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V. COMPUTATIONAL RESULTS

The types of flows modeled in this research can be divided into
two classes on the basis of geometry. Couette flow, the first class
of flows studied, was chosen primarily because it was the simpler of
the two test cases that Beam and Warming [c] used to verify their
original formulation of their approximate factorization algorithm.
Thus, it was convenient to use this flow, both as a means of debug-
ging the computer code form of the algorithm presented in the previous
chapter, and as a means of verifying that the algorithm and computer
code were consistent with the results of Beam and Warming. The other
class of flow geometry, that of a NACA 64A010 airfoil section imbedded
in an other wise uniform stream of air, comprises the major thrust of
this work. The particular airfoil section studied was selected on the
basis of the number of experimental and numerical papers currently
being published on transonic flow about NACA 64A010 airfoil sections
at various angles of attack [b,j,k,l,m]. Also, the parameters of the
flow were chosen to be representative of the cases studies in the ref-
erences; thus, the Mach number (M=0.8), Reynolds number (Re=2,000,000),
Prandtl numbers (Pr=0.72 and PrT-O.9), ratio of specific heats (y=1.4),
and angles of attack (a=0°,2°,3.5°) were all set so as to facilitate
comparison of results. 1In all of the cases discussed here, the three-

point-backward version of the basic scheme was used (i.e.,$=l).

A. Couette Flow

Since the main purpose of this flow calculation was to reproduce

the results of reference [c], the coordinate system and flow parameters
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were copied directly. The computational domain was composed of a six

by eleven (6 t{-lines and 11 n-lines) rectangular grid with "movable"
walls bounding the top and bottom surfaces (n=1 and n=1!) and with the
left and right boundaries being re-entrant boundaries (i.e., E=] and £=5
are actually the same £-line). The flow parameters given by Beam and
Warming are the Mach number (M=0.09), and the Reynolds number (Re=6,2)
based on distance between the opposing walls; from their discussion, it
was apparent that the working fluid used was atmospheric air, so the
Prandtl number (Pr=0.72) and specific heat ratio (y=1.4) were set at typ-
ical values.

In that the coordinate derivatives (Ex.gy,nx,ny) are differenced by
the algorithm used in this research irregardless of the state of the
fluid or boundaries, it was always felt to be important that so-called
"free-stream" trials be made in each case. For the Couette flow, this
meant running a case with the fluid and walls initially in a uniformly
quiescent state, and a case with both the fluid and the walls moving,
in the plane of the walls, with an initial uniform velocity. 1In both
cases the algorithm maintained the initial state for arbitrary lengths
of time and for arbitrary At < 1.

For the case of developing Couette flow, in which one wall 1s held
fast,the fluid is initially at rest, and cne wall is impulsively brought
up to the nondimensional velocity of one. The basic test case was that
for a time step of At=0,0116, which roughly corresponds to a Courant
number of one. The coded approximate factorization scheme reproduced
Beam and Warming's results exactly (ﬁossibly better than exactly) for
this case, reproducing their conclusion that this method is excellent for

determining transient solutions if the Courant number is less than unity.
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Similar cases were run for Courant numbers of ten and one-hundred
(0t=0.08 and 0.8 respectively) with excellent steady-state results and
increasingly poorer transient results - again the same experience as re-
ported in reference [c]. It is this author's opinion that these results
establish at least the consistency of this formulation of the general

approximate factorization scheme.

B. NACA 64A010 Airfoil Section

The coordinate system chosen for use with an airfoil with a rela-
tively pointed trailing edge, such as this one, has proven to be of
some importance in solving the numerical equivalent of the Navier-
Stokes equations for the flow about the airfoil. There seems to be a
consensus of opinion that the so-called "C" or "wake" coordinate sys-
tem, shown schematically in Figure 1, is most appropriate to a problem
of this type [b,j]. Refering to this figure, it is seen that in this
type of coordinate transformation, the lines of constant n form C's
about the airfoil, with the inner-most line collapsing onto the airfoil
surface and onto itself to the right of the airfoil. While the lines of
constant £ extend from the outer n-line (n=J) to the inner n-line
(n=1), either terminating on the body or on the "cut" (the collapsed
inner n-line). If this coordinate system is to be useful, then care
must be taken that the £~lines which terminate on the cut pair-up with
£-lines on the other side of the cut so that they may be considered to
be a single line running from the upper portion to the lower portion of
the outer n--line. Looking now at the tranformed field, it is apparent
* and I'* ) will always

3,L 3,U
be outflow boundaries, that the upper boundary (F;) will be totally an

that the left and right boundaries (labeled T
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inflow boundary for 0° angle of attack and partially an outflow boun-
dary otherwise, and that the portions of the lower boundary labeled
Pz and P; are re-entrant to each other. Although not indicated in the
figure, this coordinate system formed a grid with 113 £-lines and 51
n-lines; 20 of these n-lines being concentrated within .05% to 2% of a
chord length from either the airfoil or the cut.

As discussed in the Couette flow case, free-stream trials were felt
to be an important test of both the solution algorithm and the coor-
dinate system. For this coordinate system, runs were made for flow
field initial velocities of either zero or free-stream (including
the body boundary, that is, the flow was forced to 'penetrate" the air-
foil). In both cases angles of attack were set at either 0° or 2°, and
the time step at At=0.0l. Free-stream conditions were maintained for
extended periods of time (t>1 in all cases), within the truncation error
limits, provided that the cautions of section IV.E were followed. That
is, if the coordinate derivatives and the algorithm derivatives were not
all of the same type (i.e., central differences), then free-stream, and
indeed a stable solution, could not be maintained. In particular, both
tests of fourth-order differencing of the trailing edge coordinate de-
rivatives and of the convective terms in the ( splicit portion of the al-
gorithm (see equation (4.10a)) proved to be destabilizing.

The flow results obtained for the NACA 64A010 airfoil can be divided
into several classifications based upon the method of starting the solu-
tion process (impulsive, penetration, or gradual), the turbulence model
(laminar or algebraic Baldwin and Lomax model), and the angle of attack

(0°, 2°, or 3.5°). Initial cases were all run as laminar flows at zero
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degrees angle of attack, thus only being distinguished by the type of
start utilized. Later cases were all started and/or changed gradually
and employed the algebraic turbulence model after an initial laminar
starting period; thus these cases are distinguished only by the angle
of attack chosen.

One of the first starting techniques tried was the impulsive start
method. Similar to the results of Steger and Bailey [n], numerous
trials established that addition of only explicit artificial viscosity
to the numerical algorithm was not sufficient to overcome the non-
linear instabilities produced by the sharp gradients generated by this
type of start, Although Steger and Bailey were able to successfully
utilize this technique by also including implicit artificial viscosity,
it was the experience of this author that no combination of explicit
and implicit artificial viscosities would lead to suppression of the in-
stabilities inherent in this method of starting the fluid flow. It 1is
conjectured that this is due to the differences in the meshes in either
case; although both were "C" type coordinates, the ones used in this
work had much smaller cell sizes near the leading edge. Thus the
courant number was appreciably larger in the leading edge region in this
research as compared to that of Steger and Bailey. If this conclusion
is correct, then use of a smaller initial time-step, At , should allev-
iate the problem. However, this was not attempted since a primary goal
of this project was to develop techniques which allow the use of larger
time-steps.

Figure 2 illustrates the transient behavior of the flow field for
this type of start. Notice that even for this late a time (0.6 non~

dimensional time units) that the flow, outside of a very thin region
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near the airfoil and the wake center-line, is essentially undisturbed.
The exceptions being the wake expansion at 0.6 of a chord from the
trailing edge and the compression wave emmanating from the leading edge.
Also note the onset of fatal nonlinear instability indicated ty the
"wiggles" in the Mach 0.75 contour denoting the compression wave.

A more successful starting technique was the penetration start.
As outlined earlier in this paper, this start was accomplished by uasing
a fifth-order poly.uowial to reduce the suction and blowing at the air-
foil surface from free-stream values to no-slip values in one nondimen-
sional time unit (one-hundred time-steps at the standard time-step
used throughout this work of At=0,01). This method was fully success-
ful in getting the flow started, however, as noted previously, it had
the disadvantages of requiring non-simple body boundary conditions and
of causing early boundary layer separation over the aft portion of the
airfoil. Ultimately, this approach was abandoned since it was felt that
the last mentioned deficiency of this method could lead to a valid, but
undesired, steady-state solution., That is, since the fluid flow itself
can take on a variety of steady flow states for identical boundary con-
ditions depending solely on the initial conditions [0], it was felt
that the early, forced separation of the boundary layer due to this
technique could lead to a steady-state not found under normal flight con-
ditions. Also since there were more grid points on the forward section
of the airfoil than there were on the aft section, the lack of global
conservation of flow properties alluded to in a previous chapter pro-
duced by this starting technique lead to extreme cooling of the trailing

edge region which took an undesirable number of time-steps to relax.
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Figure 3 and Figure 4 prescnt the Mach number contours of the
transient flow developed midway through and at the end of the penetration
start, respectively. Comparing these figures with the impulsive start
Mach contours in Figure 2, it is immediately apparent that the pene-
tration start allows a much larger region of the flow field to devel-
op for the same time increment. Also note that the various expected
flow regions are already well-developed by the end of the start-up
period. However, it is also well to notice that the forward deceler-
ated flow region and the surface accelerated regions arz both distorted
in the downstream direction; and that the wake contains an appreciable
highly decelerated region in its core.

In that the single laminar flow case treated by this author was
initiated by the penetration atart method, the gradual start technique
will be discussed following the presentation of the laminar flow re-
sults. These results are summarized in the Mach contour plots, Figures
4 through 9, Several interesting observations can be made by an in-
spection of this flow's time history. First note how the retarded flow
region expands from its downstream skew due to the penetration start,
to an overshoot upstream skew, and then contracts to the expected,
slightly elliptical contours. Looking at the aft boundary layer and
near wake, it should be noted that these regions first thin out from the
thickness induced by the blowing during the start-up; then, between non-
dimensional times two and three, separation occurs resulting in a pro-
gressively thicker separated region and near wake region. Coincident
with the occurance of separation, the accelerated regions start to

split-up into two zones of maximum Mach numbers. Within each zone, the
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Mach numters decrease with time, although the portion of the flow within
each zone remains relatively constant as the outer Mach contours
"pinch-off". The forward zone progresses toward the leading edge as the
aft zone lifts-off with the separated boundury layer.

The cccurance of these later phenomena can be explained as logical
consequences of the strongly separated flow. The flow field outside of
the boundary layer and separated region '"sees' the airfoil as if the
separated region were a continuation of the airfoil surface; thus the
outer flow must first accelerate around the leading edge region and then
over the separated region. Similarly, the general drop in maximum Mach
number, from a high of 1.15 before separation occured to 1,05 in Figure
9, and the contraction of the Mach contours delineating the accelerated
region, can be attributed to the separated boundary layer giving the
airfoil the appearance of a thin wedge to the outer flow. Unfortu-
nately, this author was unable to obtain any comparative studies for
this case (not to say that some might not exist).

The gradual starting method in all ways turned out to be an almost
perfect flow initialization technique. It only required a modest amount
of explicit artificial viscosity, smoothly accelerated the airfoil
at 0.0 and 3.5 degrees angle of attack from rest to Mach 0.8 within a
nondimensional time of one, and even provided the bonus capability of
changing the angle of atteck in mid-solution. Best of all, in this
author's opinion, it al._ws the most realistic starting procedure of all
those considered in this research (including some not actually utilized,
such as potential flow solutions). 1In all applications the same fifth-

order polynomial as that used in the penetration start to vary the
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airfoil surface velocities was used to vary the free-stream velocities
from zero .o the desired steady-state values (this was handy and also
allows some comparison of the penetration and gradual starts to be made).

The first application of this method was to the NACA 64A010 air-
foil at zero angle of attack, as illustrated by Figures 10 and 11. A
comparison of the three starting techniques, impulsive, penetration, and
gradual (Figures 2, 3, and 10) is instructive, but note that the free-
stream Mach number of the flow plotted in Figure 10 is 0,73 rather than
the Mach number of 0.8 for the other two. Contrasting the Mach con-
tours of Figures 4 and 11, which indicate the flow fields at the end of
the penetration and gradual starts, respectively, one sees that the
flows are very similar except in the aft boundary layer and near wake
regions. Here the gradual start produces a much thinner boundary layer
and near wake, except for the Mach 0.75 contour which has the bubble
shape characteristic of experimental results [m].

Immediately after the completion of the gradual start (i.e., at
nondimensional time of one), the Baldwin and Lomax turbulence model was
turned on and the solution continued out to a non-dimensional time of
six, as with the laminar case. A comparison of the turbulent results
(Figures 12 through 16) with the laminar results (Figures 5 through 9)
proves to be enlightening. First of all, note that the forward decel-
erated region develops almost identically in both cases, which is as
would be expected. Also, the location and intial slopes of the upstream
accelerated flow Mach contours 0.85, 0.90, 0,95, and 1.00 remain in good
agreement between the two flows until after the nondimensional time of

four. Even after this point, the first three contours agree in upstream
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location and initial slope near the uirfoil as far as both cases were
taken. This particular behavior of both the decelerated and accelerated
regions can be attributed to the fact that the turbulence model, as im-
plemented by this author, does not become effective until slightly down-
stream of the first minimum surface pressure location (i.e., turbulent
transition 1s modeled), thus, upstream of this point one would expect
laminar and turbulent flows to behave similarly at least for early

times and at the freestream Mach number chosen (0.8). A final obvious
contrast is the presence and non-appearance of separated flow in the two
cases, which reflects the el:mentary experimental and theoretical pre-
cept that turbulent flows can tolerate an adverse pressure gradient

much better than laminar flows.

In comparing the turbulent Mach contour results it is first of 11
apparent that the near wake reaches a quasi-steady state very early, the
only subsequent significant changes being the thickening and ultimate
closure of the middle wake re,ion., This last result is somewhat puz-
zling, especially since the entire wake shows practically no change at
all between nondimensional times of four and five. Also note how the
accelerated flow Mach contours progressively expand out from the airfoil
and gradually shift toward the leading edge. Their initial downstream
skew also tends to turn into an almost symmetrical appearance by the
last time step plotted (Figure 16). The Mach one contour never be-
comes normal to either the chord line or the airfoil surface and the
spacing of the downstream Mach contours never take on a crowded appear-
ance. Thus it is hardly justified to claim that a shock develops on

the airfoil; however, it appears from the interferogram of reference [m]
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that in the experimental case the shock is rather weak. None-the-less,

it was decided at this point that the ability of the numerical algorithm

to correctly develop shocks needed to be given a less ambiguous test.
Referring to either reference [k] or [m], it is clear that in ex~

perimental studies of this airfoil, a moderately strong shock appears

on the upper surface for an angle of attack of two degrees. Thus, this

angle of attack was chosen for the next test case which used the pre-

vious results at nondimensional time of four for initial conditioms.
? The gradual start method was used to change the angle of attack from
| zero to two degrees, effectively by causing the airfoil to "fall" at a
speed sufficient to produce this change (note that this is not the same
as rotating the airfoil, and thus, will produce different transient
states and could produce a different steady state). Then the solution
was continued out to a nondimensional time of seven, at which point the
i solution process was terminated due to the financial suicide of the
university's computer center.

Figures 17, 18, and 19 contain Mach contour plots similar in nature
to those discussed previously. It is immediately noticeable that the
flow in all regions is no longer symmetrical about the chord line. The

progressive changes in the decelerated flow region and the wake region

are as in the zero degree angle of attack case except for their respec~

tive skew in the upstream and downstream directions. More notably dif-
% ferent 1s the evidence of much more strongly accelerated flow along the
1 upper surface; however the form and density of the Mach contours still

don't suggest that a shock is present. To clarify this lack of an ex-

pected flow phenomina, the Mach contours plot identified as Figure 20
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was made with the range of Mach numbers being 0.96 to 1.04 and the in-
crement being 0.01 rather than the range and increment used in the other
Mach contour plots. As can be seen, there is a pronounced difference

between the upper and lower contour groups, as expected. However, the

angle and density of the upper groups downstream foot are not as would

be expected for even a rather weak shock. Although, as mentioned pre-
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viously, it was not possible to continue this solution so as to check
this hypothesis, it was conjectured that much of the spread in these
Mach contours was due to the relatively large amount of explicit art-

ificial viscosity used. This was reasoned from the fact that the so-

lution showed no signs of "wiggles", which is unusual for numerical
solutions of flows containing shocks.

A valuable check of the internal consistency of the numerical
solution, as well as an additional means of comparing the results with
the available experimental data, can be obtained from a density contour
plot such as Figure 21. First of all, comparison of these contours
with those of reference [k] reveals at least good qualitative agreement
with the "set" angle of attack of two degrees data set. Although ref-
erence [m] does not present results for this particular angle of attack,
the density contours of Figure 21 do seem to represent a case between
the angles of attack of ( and 3.5° that are shown. These comments must
be tempered with the fact that both references clearly show a shock on
the upper surface of the airfoil whereas the Mach number and density con-

tour plots of the algorithm used by this researcher clearly do not show

ol

such a shock.

Some interesting observations can be made in comparing the density
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contours of Figure 21 with the Mach contours of Figure 19 which have

some bearing on the interpretation of experimentally determined density

contours obtained by interferometer, such as those of reference [m]. If
one makes the same assumption as used in the cited reference, that the f
flow is isentropic everywhere except in the boundary layer and across

any shocks, then one can obtain the following relationship between non-

dimensional density and Mach number:

oYt = 1+ Bhae2 - m2) (5.1)

where for this equation only, M is the local Mach number and Mo is the
reference Mach number (0.8 in this case). (For the convenience of the
reader, a rough rule of thumb summarizing this equation for the current
application is that a change in density of 0.05 - one density contour

of Figure 21 ~ results in a change of Mach number of about 0.06 to
0.08). Using this relation, it is easy to see that there is good agree-
ment between the two sets of contours except for four flow regions. The
most puzzling discrepancy is the lack of alignment of the Mach 0.75 and
density 1.05 contours upstream of the leading edge, since this region
would seem to be nearly isentropic. Possibly this is due to the fact
that the flow has not quite reached steady state. Similarly, the lack
of agreement between the innermost accelerated region contours of the
two plots could be attributed to a combination of nearness to the non-
igsentropic boundary layer and the transient nature of the flow; however,
these arguments are not convincing. More importantly, note how the i
downstream intersection of the accelerated flow region density contours
with the boundary layer are shifted upstream and are more nearly normal

to the surface than the corresponding Mach number contours. Alsc note
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the almost total lack of similarity of the Mach 0.75 and density 1.05
contours near (or in) the wake - clearly due to the non-isentropic
nature of the wake region.

The last case considered was that of the same NACA 64A010 airfoil
at an angle of attack of three and one-half degrees. This case was con-
sidered due to its moderately strong shock development and because of
the excellent set of wind tunnel data gathered for this configuration
by Johnson and Bachalo [m]. The results for this case are in many ways
the most successful of those attempted in that a distinct shock 18 seen
to form; however, there exist a number of unresolved problems connected
with this solution. Most disappointing of which was the unexpected on-
set of numerical instability around a nondimension time of six.

Figures 22 through 27 illusurate the Mach number contours generated
at various time increments by this solution. Again, the gradual start
method was used, completing at nondimensional time of one. In this
case, though, the airfoil is initially at an angle of attack. Comparing
the progression of the Mach contours, one is struck by a similarity be-
tween all of the cases studies in this work; that is that all of the
flow regions tend to expand from the start until sometime between non-
dimensional times four and five, at which point they start to contract,
except for possibly the accelerated region on the shock side of the air-
foil. The reason for this surely has something to do with the rapidity
of the start; it is doubtful that the outer boundaries contribute to
this phenomina since they are ten chord lengths away from the airfoil
leading edge in all directions.

Since much of the description of the results for this case para-
llels that of the previously presented cases, this presentation will
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concentrate on the two distinctive results of this solution. The most
heartening of these is the development of what can only be described as
a shock on the upper surface of the airfoil. The Mach contours on the
upper rear portion of the airfoil section are clearly crowding together
into a thin bundle which is normal at least to the chord line. This
shock formation can also lie observed from the coefficient of pressure
plots (Figures 28 through 33) in that the downstream portion of the up-
per surface curve progresslvely steepens. Lastly, the obvious signs of
boundary layer separation on the upper airfoil surface near mid-chord,
also gives support to the development of a shock-like pressure gradient.
The other distinctive feature peculiar to this solution is the appear-
ance of the wake "bubble' contour just off the trailing edge. While no
definitive explanation of this effect can be put forward, it is specu-
lated that this anomaly 1s either due to the onset of boundary layer
separation, a "bug" in the coded algorithm, or the unexpected, but ac-
tual way a flow of this type would physically occur. Unfortunately, as
a comparison of the Mach contours and coefficient of pressure plots
with each other and with the experimental results of reference [m] in-
dicate (see Figure 33), this flow is approaching, but has not yet
reached, steady state. However, due to the aforementioned stability
problem and the deplection of the time allotted to this research, this
work must end on a promising, yet frustrating note.

As an afterword to those who may wish, for whatzver reason, to re-
produce or continue this work: in addition to the fixed flow param-
eters mentioned at the first of this chapter, all cases were attempted
under the adiabatic wall assumption, with the non-dimensional time-step

always fixed at At=0.Cl, with the explicit artificial viscosity
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coefficient set at e=8At except for the last two-hundred time-steps of
the last study where e=4At was used, and with the coordinate system
1 generated by Dr. Joe Thompson, Aerospace Department, Mississippi State

University, Missioeippi 39762.
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VI. CONCLUSIONS AND RECOMMENDATIONS

On the whole, the primary objective of this research work was
obtained, although some subsidiary goals must be left to future inves-
tigations. An approximate factorization algorithm modeling the full,
Reynolds-averaged, Navier-Stokes equations was successfully developed
and implemented in a general-purpose computer code. This computer pro-
gram includes the desired features of an algebraic turbulence model,
penetration and gradual start-up routines, variable inflow option,
variable body surface velocity capability, body surface heat flux or
temperature distribution specifications, implicit and/or explicit
artificial viscosity options, and translational rigid body motion
capability. In addition, the basic algorithm was formulated in con-
servation form on a body~-fitted curvilinear coordinate system.

The amount of computer time required per time step averaged

35 seconds on the Univac 1100/80, and 4.5 seconds on the CDC Cyber 203
(this works out to approximately 8 hours and 1 hour total computer
time for a complete time-history of the flows considered here). How-
ever, although the cares studied are indicative of the full capability
of the algorithm as conceived by this researcher, further work is
clearly required in the area of model verification,

Of the multitude of observations that can be drawn from the body
of this research, it is felt that the following are most worthy of
attention. While the body-fitted coordinate technique was fundament-
al to the implementation of this algorithm, two areas in which im-

provements are urgently needed can be identified. These involve the
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development of rational and efficient means for determining coord-
inate line spacing and placement and for dynamically concentracing
coordinate lines in the region of developing shock waves, As ncted
earlier in the text, and related to the last topic, the standing prob-
lem of how to express truncation errors in curvilinear coordinates in
as concise and meaningful a manner as the "order of" method of Car-
tesian coordinates, should be resolved 1if differencing in transformed
coordinates is ever to have a rational basis. Boundary condition
problems tended to dominate the difficulties encountered in application
of this algorithm. In particular, the much-neglected downstream
boundary condition requires more thought than has been given it to
date - in fact, the entire problem of replacing "infinity" boundary
conditions by finite distance boundary conditions needs a firmer theo-
retical basis. In using the adiabatic boundary condition in this re-
search, numerical evidence seems to indicate that, at least in the im-
plicit portion of the algorithm, either the density or the temperature
can be extrapolated into the field, but not both together if nonlinear
instabilities are to be avofded. This points to the whole unsatisfac-
tory situation in which there is no firmly established "fourth'" body
boundary condition - a topic which needs some more fundamental re-
searcii efforts. Lastly, the results of this research indicate that
construction of Mach number contours from experimentally determined
density contours may not always accurately reflect the true Mach number
contours. Thus, it 1s suggested that published experimental results
include the density contour tracings in place of, or along with, the

calculated Mach number contour plots.
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Figure 28. Pressure Distribution - Gradual Start,

a=3.5°, ¢ = 0.6
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Figure 30. Pressure Distribution - Gradual Start,
a=3,5%, t=2.,0
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APPENDIX A
Nondimensionalization

Although the use of nondimensional equations has many well-known
advantages, it has the major draw-back that there is no unique dimen-
sionless form for any given set of equations. Thus, two otherwise
formally identical sets of equations may appear to be different solely
due to the nondimensionalization used. Sirce, in this author's exper-
ience, the only consistent criteria for nondimensionalizing the
Navier-Stokes equations is that the Reynolds number (Re) and Prandtl
number (Pr) should appear in certain traditional locations, this has
been taken as the primary objective of the nondimensionalization used
in this work. The advantage of this criteria is that it keeps the set
of partial differential equations from becoming cluttered; on the other
hand, the suppressed dimensionless ratios now show up in the auxiliary
algebraic relations and the boundary conditions.

All of the dimensionless variables and ratios ultimately are ref-
erenced relative to the following characteristic parameters:

Parameter Name Dimensions

) Length L

u, Velocity L/T

Py Density M/L3

M Shear Viscosity M/L-T

k, Thermal Conductivity M-L/e-T3 i

c Specific Heat at Constant L2/6-T

P Pressure

c, Specific Heat at Constant [2/6-T

Volume
84




Parameter Name Dimensiona
co Speed of Sound L/T

where the dimensions are length (L), time (T), mass (M), and temp-
erature (6). The speed of sound, C° » 18 used only in situations

where the Mach number would be more natural than a dimensionless temp-
erature. These reference uantities are then used to form the following

1ist of nondimensional variables or constants:

Mondimensional Variable Reference Quantity
X,y L
u,v u,

P po
HyA uo
k k

o

t 2/u
o

2

P,e pou°

2

T uO/Cp
" 3

q Po%

with the Sutherland reference temperature, So , appended to the charac-
teristic parameter list, the following nondimensional characteristic

flow perameters can be formed:

Re = uo/puol Reynolds number
Pr = CpuO/ko Prandtl number
M =u /C Mach number
o' "o
y = Cp/Cv Ratio of specific heats
S1 = CpSo/u§ Sutherland reference temperature
85
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APPENDIX B

Coordinate Transformation

It is widely accepted that any finite difference approximation to
the Navier-Stokes equations should retain the global conservation prop-~

erties of the integral form of these equations. This feature can be ob-

tained, for usual differencing, only if the transformed equations retain

the same general form as the differential Navier-Stokes equations in
Cartesian coordinates. In this paper, this was accomplished in trans-
forming equation (3.1) into equation (3.15) by use of the following re-

lation (note the Einstein summation convention is used):

0A4 BAI
— I J-——- (Bal)
axi 851
where * _ 1364
Ai 3 axj Aj (B.2)

and J is the Jacobian of the coordinate transformation. For the ap-
plication under consideration, the vector components, A1 , and the co-

ordinates, Xy and Ei , can be identified as:

Al,xq xl-t gla-r
Az =A+D X, = X 52 = f (B.3)
A3 = B + E Xq 7Y €3 =n

and the Jacobian, J , is:

t X y £ £
= = x y = - .
J Et Ex Ey : . Exny Eynx (B.4)
X y
Ne Ny ny
since 1t = t.
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Now relation (B.1) can be established by first developing the

following chain of equalities:

3J 32 3 32
= " C, 50—, =C £ g
axj Ak axjaxk 2 _k 3xk i aeiaxj L
2 2
. J6 3 S Ly (B.5)

YR EL rvarvelk
i2 aaiaxj 2 aE*ax.1 i
where czk is the cofactor of the %,k element of the Jacobian determinant
(B.4) and the first equality is proved in most standard tensor treatments

(e.g. Sokolnikoff [1], page 103). Then expansion of the right-hand-side

of equation (B.l) gives:

Y RN . B _82 3
aei(J Ao, &) 7 Tt sEox, 1t B, A

A¥ = 7
1 5 3 3

7 -82—1
(B.6)

which on use of the last equality of (B.5) reproduces equation (B.l).
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APPENDIX C

Normal Pressure Derivative

The particular form of the normal pressure derivative equation
used in this work (equation (3.33)) can most easily be developed from
the Navier-Stokes equations in curvilinear coordinates, equations
(3.21) through (3.26). First the x- and y- momentum equations are

expanded to:

Wy ® * * 1 -
ulop+(e™) . + 0™V) 1 + o*lu tUu4vu 1 + SlE P 4n P T=Rr (C.1)

* ® %, * ..l; -
v[pt+(p U)€ + (p V)n] +p [vt+Uv€+an] + J[Eypé+nypn] R, (C.2)

where p* = p/J and Rl' R2 are the unexpanded viscous terms of the x-
and y- momentum equations respectively. Now the first term in both
equations (C.1) and (C.2)vanishes due to the continuity equation; thus,
if equation (C.1) is multiplied through by n, and equation (C.2) by n

y
and then added, the result is:

1 *

<[P + + + + + v

ler, aPn]+((nxut+nyvt) (nugn veUt(n u 4n v ) I

=nR, + nsz (c.3)
Finally, 1if this equation is multiplied by J//a and the equation of
state, P = (y-1)pT/y , is used, then equation (3.33) results.
The finite difference form of equation (3.33), the normal pres-

sure derivative equation, used in this research, equation (4.15), was

put into the particular form chosen so as to facilitate the use of a

common solution algorithm for pressure and temperature when the normal
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B

pressure derivative is specified (see equation (4.14))., The v terms,

evaluated at 1,] are:

- -L -z— ¢
" (y-l)(al‘)[("xut+nyvt)+("xue+ nyvz)v-r ("xun+ nyvn)V] (C.4)
=23
m, = 2 a("xnl+"yk2) (c.5)

The derivatives are approximated by the appropriate finite difference ex-

pression from Appendix G and evaluated prior to the solution of equation

(4.15).

e R e T T R 7 T o7
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APPENDIX D

Boundary Fitted Coordinates

Since all of the problems considered in this paper possess single
body, two-dimensional geometries, and since this class of coordinate
generation problem has been extensively examined in the literature (see
[d,e,h,3], for example), this appendix will be devoted to clarification
of equations (3.37) and (3.38) and a summary of the coordinate contrac-
tion technique discussed more completely in reference [j]. The symbols

used Iin the aforementioned equations are defined to be:

a, = x§ + yﬁ (d.1)
Be ™ XgXn* V¥ (D.2)
Y " "% + V% (p.3)
J = J ' = XY, - XY, (D.4)

The boundary conditions on the coordinate generation equations
(3.37) and (3.38) are determined by specifying the £ and n distribution
on the body and the inflow and outflow boundaries. As mentioned in the
text, normally this is done so that each boundary is a line of constant
E or n. The system of partial differential equations is then solved by
approximating all derivatives by "second order" central differences (see
Appendix G) and using a point successive over-relaxation iteration scheme
to determine the solution of the resulting nonlinear simultaneous dif-
ference equations.

Of course, before the coordinate generation equations can bhe solved,
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A

the ccordinate line attraction functions, Pc and Qc’ must be specified.
The general effect that these functions can have on the resulting co-
ordinate system, and cautions about the forms they can take sre fully
developed in reference [d]; it 1s enough to note here that these at-
traction functions can have a dramatic effect on the coordinate spacing
near a boundary. Since the high Reynolds number flows considered in
this work are very dependent on boundary layer interactions, it was de-
sired that the coordinate spacing be very dense inside the boundary
layers and, thus, near the body boundary. As noted in references [j,k],
this can be readily accomplished by taking the appropriate attraction

functions (Qc if the body surface is a line of constant n) as:

. - $24n20K)
Qc(e'n) (14nink) inK (2.5

where the spacing pararat.r K is determined from:

N
| 2n(iiq (D.6)
5

The parameters in this last expression are defined so that if the body
surface coincides with the first n-line, then r, is the radius of a
circle which circumscribes it, and {f the outer boundary lies on the Jth
n-line, then r, is the radius of a circle which is tangent to it. This
set of equations has the effect that the Nth n-line will be approximate-
ly a distance rN-rl from the body surface when they are used in the co~
ordinate generation scheme. In this study, the 2nd n-line was specified

to be one-hundredth of the boundary layer thickness from the bedy. So,

by approximating the boundary layer thickness from the laminar Blasius

91




flat-plate boundary layer solution, this is aquivalent to:

S
" 0.01 m+ T,

92
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APPENDIX E

Flux Vectors and Their Jacobian Mu.rices

Since cthe dynamic flux vectors (A and B) and the viscous flux vec-
tors (Dl.Dz.El and Ez) are similar in form within each class, let the
vectors A and D be representative of each class in the following dis-
cussion. If for the present, the transformed coordinates (£ and n) are
taken to be constant in time, then the chain-rule may be used to form
the following identities:

A, = Pq, (E.1)

Dt - 7q, + qut (E.2)

where the Jacobian matrices P, n, and W are defined to be

8 P 2D (E.3)

PR3 ""q YT

Now the second identity (E.2) can be put in the form:

Dt - (n-wg)qt + (th)g (E.4)

1f the viscous coefficient (i.e., u times expressions (3.10) and
(3.11)) are taken to be locally constant in time, which ultimately intro-
cudes an error proportional to their first time derivative times At?,
then it can be shown by direct evaluation that n-wi, and from equation
(E.4):

D, = (th)g (E.5)
Equations (4.5) then directly follow from

BA = A At = Pq At = PAq + 0(At?) (E.6)

AD = D At = (th)

~ 2
t ® (WAq)E + 0(at ,utAt) (E.7)

£
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Under the same a..umption as used in establishing equation (E.5),
equation sets (4.6) and (4.7) can also be confirmed by direct evalu-
ation. It is interesting to note that for any flow in which the vis-
cosity is solely a function of temperaturc (such as laminar flow with
a Sutherland viscosity law), then the flux vectors are homogensous
functions of various degrees in the conservation vector, q , and its
first derivatives; thus equations (4.6) and other interesting relation-
ships can be easily shown.

As a final note, if the transformed coordinates are known functions
of time, or at least are advanced in time prior to solving for the flow
variables, then it can be shown that if the derivatives (€t.€x.£y.nt.
nx.ny) are evaluated at time (n+6)At, where 0 is as introduced in e-
quation (4.1), then these derivatives can be treated as if they were
local'y constant with time without degrading the accuracy of the ap-

proximate factorization scheme.
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APPENDIX F :

Explicit Form of the Jacobian Matrices

These matrices are found by a straight-forward, if rather tedious,

e e e A h et s 3 Lt s €At kA tn e s sm ke e ks

process of re-expressing the vectors of equations (3.22) through (3.26)
explicitly in terms of the conservation variables (ql - p/J, 9, = pul/J,
94 * pv/J, and 9, " e/J, and then preforming the differentiations in-

dicated by equations (4.5). They are:

C 9
Cc Ex Ey 0
£ _%-ul U-(y=2)§_ u Eu-(y=1)g.v (y=-1)¢
P = x x y X % (F.1)
Ey@-vU Exv-(y—l)cyu U-(y-Z)Eyv (Y-l)Ey
_FO-T.)U CxT.-(y-l)uU CyTB-(y-l)vU YU J
v ‘1
0 "y ny 0
n o=uV V=-(y=-2)n_u nu=(y=1)nv (y-1)n
Q= X x y x X (F.2)
nyo-vv nxv-(v-l)nyu V-(y-Z)nyv (Y—l)ny
i.(cb-'I‘B)V nxTB-(y-l)uV nyTs-(y-l)vV YV i
| K 0 0 0 4
|
: -(a,u+a,v) a a 0
Z P -(a2u+a3v) a, a, 0
--(w42u+w43v+848) -(w21+a“u) -(w3l+aav) ai
_0 0 0 0
-(b,u+b,v) b b 0
X ..i "2 1 2 (F.4)
—(b3u+b4v) b3 b4 0
L—(X42u+xl’3v+bsE) -(Y21+b5u) -(Y 31+b5u) b_i
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0 0 0 0]
-(b,u+b,v) b b 0
Y _.% 1773 1 3
-(b2u+b4v) b2 bd 0
L.x“ -(x2 1-O-bsu) -(x31+b5v) b;”_
0 0 0
7 - 1 -(c1u+c2v) ¢, <,
Pq.
(c2u+c3v) c, Cq
;(Z“2u+243v+c48) -(221+cau) -(Z31+c4v)

[

4)

(F.5)

(F.6)

where the contravariant velocities, U and V, are given by equations

(3.28) and (3.29) and the viscous coefficients are the same as those de-

fined by equations (3.3G). The subscripted Jacobian matrix symbols in-

dicate the appropriate element in their explicit expansion (e.g., W,, =

21

-(a1u+azv)). The other symbols introduced here (¢, Ts and E) are de-

fined to be:

o = %(q~l)(u2+v2)
TS = yE-d

E = e/p

96
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APPENDIX G

Difference Approximations

The finite difference expressions used in this work are pre-
sented below. 1In all cases the functions a(§,n) and £(£,n) are dusmy
functions representing typical actual derivative expressions encount-
ered in the development of the text. Equations which have an obvious
analog when the variable of differentiation or the order of differen-

tiation is changed have not been repeated.

Central Differences:

£p = 5(EE )

A T AT s S

fen " '%(f1+1,3+1'f1+1,3-1'f1-1,3+1+f1-1,j-1) (G.1)
(af), = gllay, ta ) (€ -E)=(aboy ) (E~€, D]

(af Dg = '%[“1+1,j(f1+1,j+1'f1+1,j-1)‘“1-1,j(f1-1,1+1‘f1-1,j-1)]

One-Sided Differences:

1
£ = (g _pm4fy (¥3E) = - 2(f1+2 1+173Ey)
. -(fi_3-4fi_2+5fi_1—2f ) = - (E 4 #5E, m2E,)
1
] +3f
@fpdn = 3l geamegrt30p) (Fpapmd85P38y)

aj(fj+3 4f 2+Sfj+1-2fj)
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1
@f)e = = 300, 570000, 9 (g ga2m4E 34138y )

tag gL 12 411 y)
-(f1_1'1+2-0f1_1.j+l+3fi_l.j)])
(G.2)
1
(afe) = = 300ay gyp=doy gy¥30y D(E, =€ )
+ “1.3[(f1+1,j+2"‘fi+1.j+1+3fi+l,j)
R ST TS FIRTRTRL . IR R )
Extrapolations:
£y =2 e = 2y
1
£y =2ty )
1 (6.3
By = m gy 2E 72y M)
1
TR S PP L LIS ot FERR S FEPY

Although all of these expressions, except the last one, are in
the form which is traditionally termed 'second order accurate", since
the coordinate transformation is always chosen so that Af=An=1l, the
assignment of an order of accuracy to these expansions becomes ambig-
uous at best. For example, the central difference first cerivative ap-
proximation has as its leading term in the truncation error the quan-

tity: but, by itself, this does not give a meaningful ap-

1
- =f .
6 EEE °
proximation of the truncation error. There have been some attempts to
develop estimates of the truncation error in curvilinear coordinates

which are analogous to the well-known Cartesian error estimates [b,h],

but more work is needed in this area.
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APPENDIX H

Block-Tridiagonal Inversion Algorithm

This algorithia is basically id..iicil to the one presented by
Steger [b] in his Appendix 1. Since !ti. method is widely available in

the literature, it is sketched out below purely for the convenience of

the reader.

Given the block tridiagonal system of equations: Bu = f, or

explicitly:
o - - - - -
B, ¢ uy £
A, B, G uy £,
A3 33 c3 ?3 - f3 (H.1)
An-1By-1Sn-1 Un-1 fn-1
B £

where each Ai’ Bi’ and C, symbol represents a k x k matrix and the vec-

i

1 and fi are k-dimensional, the solution may be obtained by a sys-

tematic application of Gaussian elimination without pivoting. The

tors u

solution scheme can most clearly be developed by splitting the matrix B

up into a product of a lower block triangular matrix L and an upper block

triangular matrix U of the following form:

99

N




and then finding the solution to the set of matrix equations:

¢,
Ay G
A, Gy
BelLlUs ..
Ay-1%-1
Ay GHL

Lr = f
Uu=r

(1.2)

(H.3)

This can be efficiently accomplished by use of the following recursive

algorithm:

Forward Sweep

-1

D U =B
-1

r, = B°g

2) for 1 = 2 to i = N-1

Gy =By = A0

-1
Ui - Gi Ci

-1
ry =G (fy - ATy )

Back Sweep

D Gy = By - AUy,

-1
uy = Gy (fy = AyTy-1)
N-ltoil=1

N
~
"
o
L]
(%
L]

u =y - Uiuin

100

(H.4)




As Steger points out in the previously cited reference, this
algorithm can accommodate the addition of several stray matrices off of
the tridiagonal strip of the matrix B, but only at the cost of more
than doubling the operation count. Also, following the recommendation
of Steger, the k x k (here 4 x 4) matrix inversion involved in the above
solution scheme can be efficiently calculated by application of the
same systemized Gaussian elimination ascheme as used in this algorithm.

Suppose the matrix equation GS = M is to be solved for S, where
G, S, and M are all 4 x 4 matrices. Let A and B be lower and upper tri-

angular matrices, respectively, so that

ap 0 0 07T by, by, by
a a 0 0 0 1 b b
G= AB = 21 %22 23 "24 (H.5)
331 833 833 0 | [0 0 1 by,
| %41 %42 %3 % [ 0 0 1
Then, similar to equation (H.3), the set of equations
AR = M
(4.6)
BS = R

can be solved by the following algorithm:
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r s —

832 = 287
832 = b8y
842 ~ D128
8)5/8

(83 = b1385))/8y)

833 = b
B4y = P
8147811

13831 ~ P23%32

13%1 ~ P23842

(894 = 1482107897

(844 = Pyy83y = bpye3a)/a3y

844 ~ 14241

each column of M matrix ( § = 1 to J = 4 in thie case ):

= my/apy

b

24842 ~

(myy = ap)714)/3y

= Ty = P38y

= Y23 7 PaySay "

b

23534

b

= (my, - 83,7y = 83Ty ) a5,

= (myy = 84Ty " 349Tpy " 243T35) /3y,
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APPENDIX I

Body Force Modifications of Algorithm

Inclusion of a body force term is readily done by adding the vector
981

G= (r.1n
982

pug, + PVBy

to the right-hand-side of equation (3.1) and the corresponding vector
G* = G/J to the right-hand-side of equation (3.15). Where g, and g,
are nondimensional acceleration parameters whose effect is to acceley-
ate the flow field in the positive x- and y-coordinate direcrions, or
equivalently, to accelerate the body and its attached coordinates in
the negative x- and y-coordinate directions. The generalized time-
differenced Navier-Stokes equations (4.4) are then accordingly modi-

fied by adding the term

0At n At n

WAG +mG (1.2)

where the superscript '"*" has been dropped. The Jacobian matrix cor-

responding to the body force vector G is:

"0 0 0 O]

W= 26 . g 0 00 (1.3)
8q g, 0 0 0
LO g1 89 0
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So if, as is discussed in Appandix E in regurd to the coordinate deriv-
atives, the acceleration parameters 8 and 8, are evaluated at time
(n+8)4t, then equation (4.8) s modified by adding 1o ® to the right
hand side and - fﬁ: HM'6 ® to the left hand side. The final algorithm

expressed in equations (4.9) can now be adjusted to take the following

form:

OAt[ yoto, 3 = LI n]}A

(1.4a)

GAt +0 n 1 32 .n n+o, . n
l+¢[ MY 2 ek’ 11aq" = (1-M""Vyag"  (1.4b)
q“+1 = q“ + Aqn (I.4c)

where, it should be emphasized that the acceleration factors 81 and 8,
are to be evaluated at time (n+0)At in the vector G".

The last set of equations may not seem to directly follow from the
modified form of equation (4.8); that it does, and to the same order of
accuracy, can be seen from the following discussion. Consider the

symbolic form of equation (4.8) as modified by the body force term:

[1 + ac(MP+Q)Joq = R (1.5)

where M, P, Q, and R represent the body force, {-derivative, n-deriv-
ative, and right--hand-sid2 terms, respectively. Now, it was considered
to be desirable to factor equation (I.5) in such a way that the body
force matrix M would have an equivalent effect on the implicit matrices

for both the £~ and n-directions. This can be obtained if equation
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(1.5) 1s multiplied by the matrix S = (I + atM) ! , resulting in the

equation:
[1 + at(sP + sQ)]aq = SR (1.6)

which car then ba factored into the set of equations

(I + AtSP)Aq = SR (1.7a)
(I + AtSQ)Aq = &g (I.7b)
to order of At?3, Finally, multiplying these equations by !5-l results
in:
[1+atM+P)Jaq =R (1.8a)
[1+2tM+Q)Jag = (1 + atM)Aq (1.8b)

But these last equations are seen to be the symbolic form of equation
(I.4a and b).

As a final note, although the author was unable to prove this, it
was felt that the magnitude of the acceleration parameters should be
such that strong diagonal dominance of the implicit matrices is pre-

served. This results in the criteria

Max(|g]| , |g)])< ¢ (1.9)

At

which tended to be confirmed by numerical experimentation. Note that
this criteria, if correctly conceived, means that large accelerations
require small time steps and goes some way toward explaining the great

difficulties encountered in impulsive starts.

106




APPENDIX J

Body Boundary Value Formulation

In determining the matrices of equation (4.13) it is convenient to
consider the vector of dependent variables, Aq2 ] + @ component at a
1 ]
time. The first component, Ap: | » vas simply extrapolated along lines
1]

of £ to obtain the "second order accurate" expression:
no_ n _,n
Api.l 2A°1.2 Api'3 J.1)

(Note that o and e in this Appendix should properly be written as p/J
and e/J). This boundary condition on density was felt toc be an accurate
approximation since the n-line spacing was always very rmall near the
solid bodies studied in this research. The x- and y-mementum differen-

ces can be exactly re-expressed as:

n ntl n n n

Alpu)y y = uy g Boy gy Uy, .2
n n+l n n n

Blov)y | = vy Beg 1 ey By (3.3)

Similarly, the total energy can be exactly expressed as:

n (e)n+l n

n n e
Beg = Qg 1%y teg 1 80 (J.4)

where for the case in which temperature on the body surface is speci-
fied, the quantities e/p can be evaluated from the equation of state
(3.5). For all other thermal boundary conditions, equation (J.4) can be

re-expressed as:

nooLe" n n & 2
Aei,l (p)i’l Api‘l + Py A(p)i,l + 0(at?) (J.5)
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Now on substituting relation (J.1) into the other aquations, the

folloving form for the H and K matrices and the L vector of equation

(4.13) develops:

2
2u
He
2v
_ZB
where

0 ntl
0
y K=
0
o- i,1
e w—
E p Y

-1 0 o ¢] ™!
-u 0 0 O

’
-v 0 0 0O
£ 000,

T + %{uz + v2)

_pAE

plu

olv

(J.6)

i,1

J.7)

and E and AE aie lagged in time unlese the surface temperature has been

snecified.

Although, in a sense, this treatment of the implicit boundary con-

ditions is rather cavalier, it is this author's experience that the

stability and, in particular, the accuracy of the algorithm is not very

sensitive to these boundary conditions (that's not to say that the

stability and accuracy can not be affected by inappropriate choice of

the boundary condition).

In fact, Steger [b,g] has had good success

with merely lagging the entire difference vector, Aq , in time.
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