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ABSTRACT 

6 .  Kyle Cooper, Doctor of Philorophy, 1980 

Major: Engineering, Department of Aeroepace Engineering 

Title of Dissertation: An Approximate Factorization Solution of 
the Navier-Stokes Equatione for Traneonic 
Flow Using Body-Fitted Coordinates with 
Application to NACA 64A010 Airfoils 

Directed by: Dr. Joe F. Thompson 

Pages in Dissertation: 110 Words in Abstract: 525 

Although aircraft have been routinely flown at transonic speeds 

for the last two decades, the designers of these machines have had 

I 
to formulate their designs almost exclusively on the basis of ex- 

perience, in contrast to subsonic or supersonic aircraft design in 

which a welter of analytical, experimental, and numerical techniques 

exist. Since this type of fluid flow is characterized by complex 

viscid-inviscid interactions, the development of fast numerical models 

of the full Navier-Stokes equations has promised to alleviate this 

situation. One such model is the approximate factorization algorithm 

introduced by beam and Warming and implemented by Steger, et al. 

This research, then, is principally concerned with an independent im- 

plementation of this numerical algorithm and initial studies of its 

ability to efficiently and accurately describe transonic flow about an 

NACA 64A010 airfoil section. 

The approximate factorization algorithm is developed from the non- 

dimensional, conservative, vectorized Navier-Stokes equations expressed 



in curvilinear coordinater. Equations of etate and tranrport coef- 

ficient rclatlonr appropriate to atmorpheric air are appended to clore 

the system of partial differential equations. An algebraic turbulence 

model due to Baldwin end L o m x  ir also incorporated into the equation 

set. The coordinate generation met!*od developed by Thompson, et a1 is 

ueed to produce the desired coordinate transformatione. Boundary con- 

ditions on the airfoil surface are formulated so as to allow auction 

andlor blowing from the surface and to emulate either an isothermal 

or adiabatic wall. Outer boundaries are placed ten chord lengt'ls from 

the airfoil and their boundary conditions formulated 80 that the in- 

flow properties can be varied and the outflow properties determined 

by extrapolation, Fourth-order artificial viscosity proves to be nec- 

essary for high Reynolds number flows. 

This algorithm was verified by investigating the flow about an 

NACA 64A010 airfoil at 0'. 2'. and 3.5' angle of attack for free-stream 

conditions of 2 x lo6 Reynolds number and 0.8 Mach number. The flow 

was initiated by either gradually decreasing the degree of fluid pen- 

etration of the airfoil from total to none, or by using a body force 

to gradually accelerate the airfoil and its attached coordinate system 

from zero velocity to free-stream values. One zero degree case was 

run as laminar flow while all the other cases used the algebraic turbu- 

lence model. Also, cases were run to verify the model's ability to main- 

tain a free-stream solution. As an aid in evaluating the results, a 

set of Mach number contour plots and coefficient of pressure graphs 

were prepared. 



Overall rerultr were in good qualitative agreement with the wind 

tunnel data aetr of Johnron and Bachalo. Unfortunately, while non- 

dimnrional times of six were attained, numerical difficulties pre- 

vented any case from reaching a true steady rtate. In the last test 

caee attempted, that at an angle of attack of 3.S0, there wae no doubt 

that a ahock wee forming on the airfoil ana that separation had occurred, 

Computer times for the 113 x 51 grid used were encouraging, averaging 

35 seconasltime-step on a Univac 1100/80 computer and 5 oecondeltime- 

step in scalar mode on the Cyber 203 (Star). It is concluded that ap- 

proximate factorization techniques, while they still need some work, 

can definitely be used to advantage in at least two-dimensional tran- 

sopic flow problems. 

v i i  

-. . . . 
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I .  INTRODUCTION 

Although the art of modeling fluid flowe has progressed to the 

point where important parameters of certain complex flows can be 

routinely and confidently predicted, there are still some inter- 

esting flowe for which current methods of analysis (experimental, 

analytical, or numerical) give approximate results at best. One of 

these difficult fluid flow problems is the description of transonic 

flow over geometries of practical interest, in particular single- and 

multi-element airfoils. This type of flow is of particular interest 

to the numerical analyst since it is of major concern to the aircraft 

industry and since it proves to be inherently too complicated o flow 

to be fully described by either pure analysis or experimental tech- 

niques. Until recently, the same could be said of the available nu- 

merical methods, however, with the appearance of improved AD1 (alter- 

nating direction, implicit) techniques, this is no longer the case. 

The major thrust of the research reported herein was to establish just 

this premise and to verify the numerical algorithm developed for this 

purpose. 

The numerical algorithm itself is based upon a finite difference 

representation of the full, Reynolds-averaged, Navier-Stokes equations 

as developed by Beam and Warming [c] and including some of the implemen- 

tation ideas due to Steger [b]. The set of equations is c1.oscd by 

using the standard approximations for atmospheric air and including an 

algebraic turbulence model developed by Ralwin and Lomax [a] from thc 

work of Cebeci Cp]. Chief among the attributes of this algorithm is 

that it is a non-iterative,second-order accurate, implicit formulation 



of the conservative form of the governing equations which remains stable 

and accurate for Courant numberr much larger than unity and which at- 

tains a steady-otate eolution inder8r*t~cl(:~\t of the time step. This 

method offers the practical advantage of being able to calculate ac- 

curate transient and steady-state solutions in time periods measured in 

minutes, rather than the hours of older methods, at the cost of re- 

quiring large amounts of data storage even for two-dimensional problems. 

Almost all recent numerical models of fluid flows are based upon 

forms of the Navier-Stokes equations expressed in curvilinear coordi- 

nates. That this should be so is apparent from the fact that most 

fluid flows of practical interest have inherently disparate length 

scales arising from the geometry and/or the equations themselves. Thus, 

curvilinear coordinates offer an automatic adjustment to these varying 

length scales and the bonus of simple boundary condition specification. 

One of the most widely used techniques for automatically generating 

such coordinates, that due to Thompson, Thames, and Yastin [dl, has been 

adapted to this research. It allows almost complete control over boun- 

dary location and provides for concentration of coordinate lines about 

the airfoil. 

Of course any new numerical algorithm and in particular any com- 

puter coded version of any numerical algorithm, needs to be extensively 

veri£ied against known solutions and/or trusted data sets. Although, 

as mentioned in the opening paragraph, there are scant theoretical so- 

lutions for the flows considered here, there have been some recent ef- 

forts at developing a systematic set of experimental data for use in 

testing numerical models. The paper of Johnson and Bachalo [m], detail- 

ing wind tunnel test results for the NACA 64A010 airfoil section, was 



pi~rticularly influential in choosing the flow ( )ditions to be modeled. 

Their results include Interferograms, calculated Mach number contours, 

and an extensive compilation of turbulence parameters for a freestream 

Mach number of 0.8, and Reynolds number of two million, for various 

angles of attack. 

The dissertation contained in this volume basically follows the 

same logical de- c..opment as the foregoing discussion. Following a sur- 

vey of the literature which this author considers to be germane to the 

topics covered, the nondimensional, Reynolds-averaged, vectorized, 

fully conservative Navier-Stokes equations are put into a form aupro- 

priate to curvilinear coordinates. Also, the equations of state and 

the functional form of the transport coefficients are presented as part 

of the development. The succeeding chapter details the transformation 

of these partial differential equations into a set of difference 

equations which form an AD1 scheme involving a non-iterative, block- 

tridiagonal inversian during each sweep. Determination of the trans- 

formed coordinates and appropriate finite difference boundary conditions 

are also included in this chapter. Next, the verification trials for 

the computer coded algorithm are set forth. Results for the NACA 

64A010 airfoil at 0°, 2O, and 3.5' angle of attack under transonic con- 

ditions are presented and checked for internal consistency. The avail- 

able experimental data is also compared with these results and appro- 

priate comments made about their degree of and/or lack of correspondence. 

Lastly, in the concluding chapter, some general and some specific con- 

clusions about the algorithm and data set are made and some recommenda- 

tions for future research work given. 



I t  i f ,  hoped that the casual reader, should there be such a person, 

w i l l  find the exposition c lear  and enlightening, and that the eerious 

etudent w i l l  find the presentation to  be ueeful,  self-contained, and 

r t imulat ing . 



11, LITERATURE SURVEY 

The purpose  of t h i o  c h a p t e r  i e  t o  acknowledge t h o s e  a u t h o r s  whose 

pub l i shed  work ha8 c o n t r i b u t e d  t o  t h i s  r c e e a r c h  i n  some way; i t  is a l s o  

in tended  t o  p rov ide  t h e  i n t e r e e t e d  r e a d e r  w i t h  some r e l a t e d  r e f e r e n c e s  

o u t s i d e  o f  t h e  narrow scope of t h i s  r e s e a r c h .  However, i n  tro way is 

t h i s  c h a p t e r  t o  be cons idered  as a d e f i n i t i v e ,  e x h a u s t i v e  o r  complete 

t r ea tment  of t h e  s i g n i f i c a n t  p u b l i c a t i o n s  d e a l i n g  w i t h  t h e  t o p i c s  

touchdd upon h e r e i n .  

Although some c u r r e n t  a n a l y t i c a l  work is being done on t h e  problem 

of  t r a n s o n i c  f low,  most of i t  is based upon t h c  t echn iques  developed 

earlier i n  t h i s  c r ~ a t u r y  b e f o r e  t h e  advent  of e l e c t r o n i c  computation.  

Landau and L i f s h i t z  rq]  i n  t h e i r  su rvey  of t h e  s t a t e  of f l u i d  mechanics 

(1959) g i v e  a  r i g o r o u s  i n t r o d u c t i o n  t o  t h e  a n a l y s i s  of t r a n s o n i c  f lows.  

Some of t h e  e a r l i e s t  numerical  work i n  t h i s  a r e a  was based on 

v a r i o u s  s i m p l i f i c a t i o n s  of t h e  f u l l  p o t e n t i a l  flow e q u a t i o n s ;  indeed,  

t h i s  approach a p p e a r s  t o  be a wel l -entrenched f i e l d  of s t u d y  f o r  a t  

l e a s t  t h e  f o r e s e e a b l e  f u t u r e .  A good s o u r c e  book f o r  some of t h e  cur-  

r e n t  (1978)  p o t e n t i a l  methods is l i s t e d  as r e f e r e n c e  [r]. 

Numerical s o l u t i o n s  of t h e  f u l l  Navier-Stokes e q u a t i o n s  became 

p r a c t i c a l  f o r  t r a n s o n i c  f lows when MacCormack [s] in t roduced  h i s  

"rapid  s o l v e r "  a l g o r i t h m ,  However, be ing  an e x p l i c i t  t echn ique ,  i t  po- 

s s e s s e s  c e r t a i n  r e l a x a t i o n  l i m i t a t i o n s .  Although i m p l i c ' ~  a l g o r i t h m s  

have a long  h i s t o r y  of development i n  t h i s  f i e l d ,  i t  was t h e  appear-  

ance of approxinlate f a c t o r i z a t i o n  type  t echn iques  which made them more 

than  of j u s t  t h e o r e t i c a l  i n t e r e s t .  These a lgor i thms  were f i r s t  advanced 

by Beam and Warming [c, f ]  and by B r i l e y  and McDonald [ t ]  independent ly .  



The Beam and Warming t o m u l a t i o n  h r r  been r u c c t r r f u l l y  applied t o  a 

var ie ty  of t ranronic  flow* by S t e g t r  [b], Pulliam and Steger Cg], and 

Steger and Bailey [n]. 

The advantage. inherent  i n  the  ure of cu rv i l inea r  coordinater  

b r e  been made read i ly  ava i l ab le  by the  pioneering work of Thompron, 

Thm86, and Martin [dl .  Recent modifications of the  o r i g i n a l  technique 

a r e  de ta i l ed  i n  reference [e , j ,n] . 
Experimental da ta  s e t s  which a r e  p a r t i c u l a r l y  adapted t o  ve r i f i ca -  

t i o n  of t ransonic  algorithmr have been developed i n  recent  times. In 

addit ion t o  the  NACA 64A010 a i r f o i l  da ta  used i n  t h i r  research (Johneon 

and Bachalo, reference [m]) , the  da ta  s e t  gathered by Seegmiller,  

Marvin, and Levy [u,v] f o r  an 18% t h i ck  c i r c u l a r  a r c  a i r f o i l  a r e  t o  be 

recomnended . 



111. VECTORIZED NAVIER-STOKES EQUATIONS IN CURVILINEPJI COORDINATES 

Although many rimplified verrionr of the Navier-Stoker equations 

have been ruccerrfully applied to variour tranronic problem, in 

general thir very complex type of fluid flow can only be adequately 

dercribed by the full set of equationr. However, due to certain un- 

rolved probleme in turbulence modeling, conotraintr imposed by the 

numerical technique ueed, and the deeirabilfty of keeping the analyeis 

re simple ar poseible, a number of assumptionc; and restrictions are 

required. For example: due to the impoeeibility or impracticability 

of using enough grid lineo to resolve the small ecale eddiee in turbu- 

lent flow, the Reynolds averaged Navier-Stokes equations are used along 

with an algebraic eddy viscosity turbulence model. This chapter, then, 

will present the particular form of the Navier-Stokes equations, the 

equations of state, the constitutive equations, and other subsidiary 

relations which were chosen to model the transonic flow problems dj.s- 

cussed in this paper, 

A. Problem Description in Cartesian Coordinates 

The governing differential equations used to model the transonic 

flow of air in this work are the two-dimensional, Reynolds averaged 

Navier-Stokes equations for a Newtonian fluid which obeys a Fourier 

heat conduction law: This system of four partial differential equations 

(continuity, x-momentum, y-momentum, and energy equations) can be ex- 

pressed in the following vectorized, nondimensional form: 



Y 
k ("2p)w + puu + - T 

X Y Y Pr Y I (3.4) 

In addition, since air can be assumed to be a (thermaliy and calorically) 

perfect gas for the flow studies, the following nondimensional equations 

of state were used: 

T = v[E - i(u2 + v2)] 
P 

The transport coefficients were obtained by assuming that the Prandtl 

number is effectively constant, that a Sutherland viscosity law is 

valid, and that Stokes law can be used. These relations are listed 

below in nondimensional form: 



Tho nordimsnrional  q u a n t i t i e r  appearing i n  e q w t i o n r  3.2-3.9 a r e  de- 

f i ne6  i n  t he  L i s t  of  Symbols fol lowing t h e  Table  of Contenta;  d e t a i l s  

of t h e  m t h o d  of  nondinransionalization are contained i n  Appendiv A. 

An a l g e b r a i c  turbulence model can be incorpora ted  i n t o  t h e  above 

e e t  of equa t ions  by mul t ip ly ing  t h e  v i s c o e i t y  c o e f f i c i e n t ,  v , by t h e  

f ac to r :  

1 + uT/u (3.10) 

except where i t  r ep l aces  t h e  thermal conduc t iv i t y ,  k , (equat ion 3.7);  

then t h e  f a c t o r  

must be used. The eddy v i s c o s i t y ,  vT , and t h e  tu rbulen t  P rand t l  

number, PrT , depend upon t h e  turbulence model used. Due t o  i t s  rel- 

a t i v e  s i m p l i c i t y  and i ts p r i o r  use i n  t r anson ic  flow c a l c u l a t i o n s ,  t h e  

Baldwin-Lomex [a] a l g e b r a i c  tu rbulence  model was used when requi red .  

Of course,  no problem is  f u l l y  s p e c i f i e d  u n t i l  t h e  i n i t i a l  and 

boundary cond i t i ons  a r e  s t a t e d .  However, s i n c e  t h i s  research  involved 

d i s t i n c t  problem types  ( i . e .  coue t t e  flow and t r anson ic  flow over  

multi-element a i r f o i l s )  and s i n c e  t h e  p a r t i c u l a r  boundary andlor  i n i t i a l  

condi t ions  used a r e  r a t h e r  i n t ima te ly  r e l a t e d  t o  t he  numerical s o l u t i o n  

procedure,  f u r t h e r  d i scuss ion  of  t h i s  t o p i c  w i l l  be defer red .  



Problem Dercription in Curvilinear Coordlruter 

The computational grid on which thin wet of partial differential 

equationm are solved umually doer not form a Carterian coordinate 

ry8tem. Thur it ir advantageour to re-exprarr the problem in term of 

more general curvilinear coordinater while retaining the strong con- 

rervation form of the Navier-Stoker equatione. In the notation com- 

mnly choren (ree Steger [b], for example) the following coordinate 

traneformation ir defined: 

T - t  (3.12) 

2 - S(x,y,t) (3.13) 

n = n ( ~ p ~ , t )  (3 .14)  

Using thie traneformation,equatSone 3.1-3 .4  can be written as; 

where 

q* . .L 
J 

The important details of this transformation are contained in Appendix 

B. In that, for the most part, the remainder of this work will deal 

with this generalized vector equation, the superscript "*" will be 



rupprerred except where needed fo r  c l a r i t y .  

The equrt ionr of r t a t e  (3.5 m d  3.6) and the  t ranrpor t  c o e f f i c i c n t r  

(3.7,3.8, and 3.9) a r e  not a f fec ted  by a coordinate tranrformcltion, 

except t h a t  the dependent v a r i r b l e r  murt now be in terpre ted  a r  Punctfone 

of t , ~ ,  and T (1.e. P(&,Q,T) 5 P(x(6.n.~)  ,Y(&,Q,T)  , t ( ~ ) ) )  . 
Since the  numerical algorithm which war rc lec ted  t o  solve equation 

3.15 murt t r e a t  c rorr -der iva t ivcr  rpec ia l ly ,  it  i r  necessary t o  e p l i t  

the  v i rcour  vectorr  D and E i n t o  vectorr  which contain only 5- o r  only 

Q- der iva t iver .  Thur equation 3.15 is wr i t t en  a r :  

where 



In equation6 3.15-3.26, the tr&nsformation Jacobian, J , is defined 

J - Lxny - Eypx 

The contravariant velocitiee, U and V ,  are given by: 

Also, the viscous coefficients are defined as: 



Note that except for the doubling of the number of viscous vectors, 

the curvilinear equations (3.21-3.26) are not much more complex than 

the Cartesian equations (3.1-3.4). This can be very useful in that 

some relations developed in Cartesian coordinates may be directly con- 

verted to curvilinear coordinates by maintaining the proper correspond- 

ence of terms. 

Since none of the problems investigated in this research involved 

the use of a time-dependent coordinate system, henceforth, the deriv- 

atives 5 and nt will be taken to be zero. 
t 

As was the case with the equations of state and the transport co- 

efficients equations, any boundary or initial conditions which do not 

involve spatial derivatives will remain invariant in form. However, 

there are two common types of boundary conditions which are derivative 

relations. One of these is the "adiabatic wall" assumption, or more 



general ly,  a r p e c i f i c a t i o n  of the  heat  f lux ,  it' , through m o m  por t ion  

of  the  boundary of t h e  flow domain. I n  nondimenrional form t h i r  con- 

d i t i o n  c m  be exprersed as 

k i t '  m --v T 
RePr N 

which f ollowr from t h e  Fourier  heat  conduct ion law and the  nondimcnr ion- 

a l i r a t i o n  (mee Appendix A). The symbol "VN" i nd ica tes  a de r iva t ive  

normal t o  t h e  boundary rurface.  I n  cu rv i l inea r  coordinateo t h i r  re- 

l a t  ion  becomer : 

ifl - RePr (a~,,  + BTQ/K 

where 

The o t h e r  de r iva t ive  boundary condition is one which a r i s e 6  from 

t h e  f a c t  t h a t  whereas t h e  a n a l y t i c a l  formulation of a problem only 

al lows three  of the  four dependent va r i ab les  t o  be speci f ied  a t  a 

s o l i d  boundary, the  numerical formulation requi res  a l l  four t o  be spec- 

i f i e d .  To maintain some degree of consistency with the  ana ly t i ca l  prob- 

l e m ,  t h i s  "extra" boundary condition should take the  form of an extrapo- 

l a t i o n  from t h e  i n t e r i o r  of t h e  flow f i e l d .  Thus, one of the  most 

commonly used add i t iona l  boundary condit ions is t o  specify the  normal 

pressure  de r iva t ive  i n  accordance with e i t h e r  boundary l aye r  theory o r  

t h e  momentum equations. Using the  second approach, the  momentum 

equations and cont inui ty  equation may be conbined t o  form: 



where 

vNp = (UP,, + BPOIA 

and the  primed c o e f f i c i e n t r  are the  viscous c o e f f i c i e n t s  (3.30) 

divided by the  Jacobian "J". Further  d e t a i l s  on the  development of re- 

l a t i o n  3.33 a r e  contained i n  Appendix C. 

C. Curvil inear  Coordinate System Generation 

The use of a curv i l inea r  coordinate system is  des i rab le  because, 

among o t h e r  reasons, i t  allows easy appl ica t ion  of boundary condit ions 

eince each boundary can be made t o  coincide with a coordinate l i n e ;  

i t  can concentrate coordinate l i n e s  i n  one region, p lace  a minimum 

number i n  another region, and smoothly t r a n s i t i o n  from one t o  the  o ther ;  

and it al lows numerical algoritnms t o  be r e l a t i v e l y  independent of the  

p a r t i c u l a r  geometry of a problem. However, f o r  cu rv i l inea r  coordinates 

t o  be t r u l y  useful ,  one must u t i l i z e  a method of coordinate generation 

which, i n  addi t ion  t o  providing the  advantages of t h e  previous sentence, 

must be r e l a t i v e l y  simple t o  implement, must generate "smooth" ( i .e .  

second order  and higher order  de r iva t ives  small i n  some sense) ,  s ing le  

valued coordinates,  and, a t  l e a s t  f o r  some of the  appl ica t ions  
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conridered i n  t h i r  paper, murt be capable of handling mult iple bodier 

e a r l 1  The method choren f o r  t h i r  work i r  the  "boundary-Pitted 

coordinate" algori thm due to Thompron, Thamer, and Martin [d,e], 

which achieves its purpose by solving a Poirron equation i n  t h e  curv- 

i l i n e a r  coordinates E and 0 .  

Brief ly ,  t h i e  technique requi res  t h a t  the  coordinate8 s a t i s f y  the  

e l l i p t i c  eystem: 

where normally the  boundary condit ions t o  t h i s  system a r e  speci f ied  so  

t h a t  t h e  body(ie8) l i e  along c e r t a i n  of the  r, coordinate l i n e s  with 

some des i red  d i s t r i b u t i o n  of 5 l i n e s  terminating on them. The functions 

PC and Qc a r e  spec i f i ed  so t h a t  the  coordinate spacing i n  the  i n t e r i o r  

of the  f i e l d  is an approximation of the  one desired.  In order  t o  ob- 

t a i n  t h e  ca lcu la t ion  advantages of solving these equations on a curv- 

i l i n e a r  coordinate system, they a r e  transformed s o  t h a t  it is the  x and 

y d i s t r i b u t i o n  t h a t  is determined. That is ,  the  following e l l i p t i c  

system is ac tua l ly  solved: 



In practice, the above ryrtem i r  dircretized and rolved by rtandard 

methodr of numerical analyrir, Further detail8 on the development and 

ure of thir method of coordinate gmeration and the definition of the 

paramaterr a=, 8,. y,, and Jc are contained in Appendix D. 



IV. NUMERICAL FORMULATION 

It ir an unfortunate fact that mathematical analyrir of nonlinear 

partial dif f erential equationr , ouch ar the Navier-Stoker equationr , 
can not currently provide anything like a clored form rolution to there 

equationr for general boundary conditionr. Thus, though itself more 

of on art than a 8cience. methods of numerical analyrir murt of neces- 

sity be applied to there problems if more than a qualitative deecrip- 

tion of the flow is desired. One of the more common numerical method8 

used to solve the Navier-Stokes equatione is to approximate this set 

of partial differential equations by an equivalent set of difference 

equatione in such a way that they are consistent with these differential 

equatione. In addition, their eolution algorithm must produce a se- 

quence of intermediate iterative values which converge to the actual 

solution to some estimatable degree of accuracy. From a practical 

standpoint, the iterative algorithm should possess the property of a 

rapid rate of convergence, both numerically (small number of iterations) 

and computationally (small number of operations). Thus, one of the most 

important aspects of this research was the selection and development 

of the numerical algorithm used to solve the Navier-Stokes equations 

presented in the previous chapter. 

The difference scheme chosen for this work was the approximate 

factorization algorithm due to Beam and Warming [c,f]. In the form 

used in this research, this algorithm is an implicit, second-order ac- 

curate in time, non-iterative (in the sense that each time-step is cal- 

culated once only), unconditionally stable (in the linear approxi- 

mation) , three-time-level scheme. Its "delta" formulation insures 



that, although the crorr-derivative term are treated explicitly, 

the r c h m  reminr mecond-order accurate and unconditionally atable; 

require8 only two-tho-levelr of rtorage; and producer a rteady-rtate 

molution which ir independent of the time-atep riter The moat attrac- 

tive feature of the algorithm ir that, due to itr rpatial factorl- 

zation, it form an AD1 type of schema in which each sweep involves 

the inversion of a block-tridiagonal matrix. In principle thir ap- 

proximate factorization algorithm promleer to solve complex, two- 

dimeneional fluid flow problems on current high-speed scientific com- 

puters within an aconomically reasonable time (i.a., ten to thirty 

minutes), 

The remainder of this chaptlr wPll attempt to put the assertions 

of the previous paragraph into a more concrete form. Firet the delta 

formulation is presented along with an indication of the method of 

epatial differencing. Then the techniques employed to impoee the boun- 

dary conditions are detailed. Lastly a brief discussion of the problem 

of forming the geometric coefficients is included. 

A. Beam and Warming Approximate Factorization Algorithm 

The moat general, consistent, three-time-level, linear expression 

relating the conservation variable, q , and its time-derivative, qt , 
is [f]: 

with truncation error of: 



where "A" ir the uaul forward dif fermce operator, and 8.9.9 are 

arbitrary real conrtantr. Note that mince T m t, they will be ured 

interchangeably in thir paper, Henceforth, the parameter $ will alwayr 

be taken to be zero and, to maintain recond-order accuracy, the fol- 

lowing relation ir ertablirhed between 4 and 0: 

Now the time-derivativer of the conrervation vector are evaluated 

from equation (3,21) and rubstituted into equation (4,l) with the 

rerult : 

Thie equation ie not suitable for direct use since the time-differenced 

vector. on the right-hand-side involve nonlinear functions of qn+le 

However, due to special properties of the flux vectors, (A,B,D, and El, 

under a suitable assumption on the transport coefficients, these dif- 

ferenced vectors can be expressed in terms of their Jacobion matrices 

as follows: 

(4,Sa) 

(4, Sb) 

(4.5~) 

(4.5d) 



where t h e  cromr-derivative matricer (AD2 and M I )  have been h ~ g e d  i n  

time i n  order t o  f a c i l i t a t e  the  fac to r iza t ion  dercribed l a t e r .  There 

exprerrionr are eruct t o  the  order of bt2,  and thur t h e i r  ure i n  

equation (4.4)  wi l l  not degrade t h e  accuracy of the  algorithm. Although 

not s t r i c t l y  necearary t o  t h e  development, it i r  convenient t o  a l s o  ure 

the  following exact re la t ionrh ip r  between the  f lux  vectora and t h e i r  

Jacobian matrices: 

Dl ' . D2 - Xq,, 

El - YqC , E2 = Zqn 

and 

wq m Xq - Yq = Zq = 0 (4.7) 

A de ta i l ed  der ivat ion of these equations (4 .5 ,  4 .6 ,  and 4.7)  is con- 

tained i n  Appendix E; the  e x p l i c i t  form of the  Jacobian matrices 

(P, Q, W ,  X, Y ,  and 2) a r e  contained i n  Appendix F. 

Ueing r e l a t i o n s  (4.5)  and (4 .6)  , equation (4.4)  may be re-expressed 

as: 

where "I" is  the four-by-four i d e n t i t y  matrix and the  bracketed term on 



the lef t of Aqn is underrtood to be a derivative operator. Since 

aquation (4.8) ir of order ~t~ .nd since bqn is it8elf of order At, 

thir aquation can be "appro%iPutaly factored" into the follow in^ rot 

of eqwtionr with no 108s of accuracy: 

a where Aq ir an intermodlate value and RHS (4.8) reprerantu tho right- 

hand-ride of equation (4.8). Although equation rot (4.9) reprorantr 

the baric approxiuute factorleation algorithm, the rpatial dorivativer 

murt alro be dircretized for it to be of practical utility. Uring the 

central difference approxlmationr developed in Appendix C, equation 

(4.9) can be put in the f initr difference form: 



1 BAf 1 m d  - - where R - $X+Y) rod the coefficients T T ~  OAt have been ab- 2 1++ 

vorbrd by the nutricer W, X, Y, Z and A, 8 ,  P, Q, rerpectively. 

Thir final ret of difference equationr (4.10) 8180 definer the 

baric rolution algorithm. Firrt the explicit vector RHS Ir calculated 

over the interior of the field. Then each 11-line ir swept and a 

block-tridirgonal mtrix inverted to determine the intermediate valuer 

Similarly, each 6-line is swept and the rerulting block-tridisg- Aqi,j ' 
onal matrix inverted, thus determining the difference coneervation 

vector Aqn Lamfly the conservation vector qn is determined from 
1.3 ,j 

equation (4.lOd). In essence, then, thir method ie an AD1 type of im- 

plicit algorithm in which just one iteration per time-step ie performed 

due to the direct inversion of the block-tridiagonrl matrices, For 

completenese , the block-tridiagonal inversion algorithm ie included in 
Appendix H (see also Steger [b], his Appendix 1). 

Initial Conditions ** - 
Even though it is the primary objective of most fluid flow analyses, 

including this one, to achieve a solution which is independent of the 

initial state of the fluid, thus making the boundary conditions all im- 

portant, the eminent difficulties involved in getting a numerical sim- 

ulation started at high Reynolds and Mach numbers results in the initial 
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conditlonm t.irin8 on a computational iaportanca whictr can not ba 

ne8lactcd. Indaad, tha atartin8 problm oftan dlctatam, at laart 

early on, the boundary conditionr to be urad a d  oftan modif iam the 

baric alaorithm itralf. In the raraarch raportad in thir volume, thraa 

diffarant mat@ of initial conditionr and thalr accanpanyirrg modifi- 

cation8 to tha boundary conditionr and algorithm warm triad. 

Tha mimplart initial condition, at laart from the rtandpoint of 

initial formul~tion, ir tha ro-callad impulriva rtart. In thir care 

the initial propartiar of the flow fiald are the r a m  an tha frae-rtraam 

propertier except for the valocitier on any rolid boundariar. Thir 

initial condition rpecification hrr two major disadvantages, both due 

to the umually larga velocity jump near a body. Mort daleteriour ir 

the fact that the algorithm murt be altered DO ar to rapidly diffure 

the strong velocity gradient at the body. One much alteration is to 

effectively greatly reduce the Reynolds number in the vircour Jacobian 

matrices W and Z of aquationr (4. lob and c) [g]; thir har no effect on the 

steady-rtate solution, but can drastically affect the tranrient so- 

lutions, The other shortcoming of this type of start is that intense 

compresrion and rarefacation wave8 form, which, due to the inexact 

nature of the boundary conditions used in numerical rimulations, can 

cause long term dietortion of the flow field [h]. 

A second claee of initial conditions is the same as the impuleive 

start except that the velocities at solid bodies are gradually varied 

from free-stream to the desired final values. Thie has been termed as 

a "penetration" initial condition, since, physically, this velocity 

boundary condition implies that fluid must be sucked into and/or ejected 

from the body. Initial conditions of this sort do not require a change 
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i n  tb chr rac to r  of tho rot of r q u t i o n r  (4.10). howovor, thoy do to- 

quire that thoy bo f lox ib lo  e m a h  t o  handle auction and/or blowin8 

tram t h o  bounbrrior* Simi lar  t o  tha  impulrivo r t a r t  care, the re  are 

two mJor di r rdvmtager .  OM ir that f o r  a clorod body mabodded i n  t h r  

flow f i o l d ,  ruch ar m a i r f o i l  roc t ion ,  i t  ir  extromoly d i f f i c u l t  t o  

r a t i r f y  global  conromtion lawr ; t hu r  tho e a r l y  t r a n r i e n t  ro lu t ionr  , 
even a f t e r  tho dor i red  boundary v e l o c i t i e r  are obtained, m y  be con- 

r idorably d i f t e r o n t  from oxpoctationr. Rolatod t o  tho f i r r t  po ten t i a l  

d i f f i c u l t y ,  tho o the r  problem with t h i r  c l a r r  of i n i t i a l  condit ionr i r  

tha t  i f  ruc t ion  and/or blowing i r  not  a na tu ra l  boundary condition f o r  

a problom, then, again, t h e  t r m r i e n t  ro lu t ionr  f o r  t h e  der i red  boun- 

dary condit ionr can not be obtained. 

Tho l a r t  type of I n t a a l  condit ion t o  be conriderod here i r  what 

w i l l  bo ca l led  a "grndurrl" r t a r t .  Thir  care  i r ,  i n  a senre,  the  re- 

verae of the  impulrive r t a r t  i n  t h a t  the  i n i t i a l  proper t ie r  of the  flow 

f i e l d  and the  boundarier are uniformly the  aame 88 the  der i red  boundary 

condit ion on the  r o l i d  body boundary. In mort ca re r  t h i r  meanr t h a t  the  

ve loc i ty  f i e l d  i r  everywhere zero. The r tar t -up  ir achieved by 

uniformly accelera t ing  t h e  flow f i e l d  everywhere except the  "fixed" 

body boundary. I.: erar*t ice,  the  earrieat way t o  accomplish thirr i r  t o  

add a body force term t o  the  o r i g i n a l  equation s e t  (3.1) and adjus t  

the  r e s u l t i n g  d i f ference  equation set (4.10) accordingly. Deta i l s  on 

how t h i s  modification i e  implemented a r e  i n  Appendix I. 

C. Boundary Conditions 

Since the  boundary conditions ul t imately determine the  form of the  

flow f i e l d ,  some ca re  must be taken i n  formulating t h e i r  numerical 



aquivalent. Thir tark ia erpecially complicated by problemr which have 

no counterpart in the a~logour analytical formulation. It in not cur- 

rently porrible to directly impore an "infinity" boundary condition on 

the numerical problem; thur, certain boundarier m r t  be designated aa 

inflow and outflow boundarier and their boundary conditionr determined 

ro ar to mimic the actual infinity boundary conditionr. Ar mentioned 

previourly (ree dircurrion prior to equation (3.33)), an "extra" 

boundary condition ir required on aolid boundarier which muat be deter- 

mined from the rolution and not determine the rolution. Alro, re-entrant 

boundary conditionr murt be specified ro that there computational boun- 

darier are effectively tranrparent to the flow field solution. 

Inflow boundary conditionr are the easiert to formulate mince they 

are normally placed far enough uprtreun of any solid bodier ro that the 

flow in their vicinity may be arrumed to he unaffected by their prer- 

rmce. Thur, the inflow boundary conditions are completely detennined 

by the correrponding infinity boundary conditionr. 

Outflow boundary conditionr, on the otherhand, are much harder to 

formulate, at leaet conceptually. Similar to the inflow boundary, this 

boundary ir normally far downrtream of any bodies, but, opposite to the 

inflow boundary, i t  must not affect the flow upstream of it. That ir, 

this boundary must allow dieturbances to pass "through" it without re- 

flecting them. One comnon method of at least partially accomplishing 

this is to determine these boundary values by extrapolation from the 

flow field solution, or, equivalently, by specifying a Newann boundary 

condition. The technique chosen for this research was to use second 



order extrapolation along the coordinate line which croseeo the out- 

flow boundary. For example, if the Ith 4-line is an outflow boundary, 

then 

Re-entrant boundaries can arise either due to the analytical form- 

ulation (i.e., Couette flow) or due to the choice of coordinate system 

(i.e., polar coordinatee) . In either case a choice must be made be- 

tween treating these boundaries approximately, thus keeping the al- 

gorithm simple, or exactly. Typical of the approximdte technique [b] 

is to lag the values on tSis boundary for the solution of equation set 
I 

(4.10) (henceforth tePmed implicit boundary conditions), then to cal- 

culate these boundary values from an average of extrapolates of cor- 

responding points on the re-entrant boundary after the interior field 

values are determined (henc forth termed explicit boundary conditions). 

In symbols this method could be implemented as: 

A ,  a 4:;: (implicit) (4.12a) 

(explicit) (4.12b) 

where &he Ith S-line is a re-entrant boundary and j and J are the 

indexes of the re-entrant n-line. 

The approach taksn by this author was the more exact, but much more 

c.omplicated, technique of continuing the algorithm across the re-entrait 

boundary. For cases in which the coordinate lines that crossed the 
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re-entrant boundary were periodic (i.e., polar coordinates), this only 

affected the inversion algorithm eince the macriceo were periodic 

block-triangular inrtead of just block-tridiagonal. In all other 

casee, this "juet" mean8 taking care that a block-tridiagonal matrix 

ie formed in croseing the re-entrant boundary. In practice, the first, 

inexact, method ie preferable since it keeps the basic algorithm simple 

and much more problem independent. 

Body or wall boundsry condi'ions are the most difficult type to 

formulate, primarily because of their importance, both analytically 

and numerically, in defining the flow. Unfortunately, this task i e  

still mostly an art since a universally accepted method for treating 

the "missing" boundary condition on density does not exist. There is, 

of course, no problem in specjfying the velocity boundary conditions 

in viscous flow; these are ilways assumed to be known quantities 

(usually identically zero). Also, the temperature boundary condition 

presents little trouble if it too is assumed to be specified (isothermal 

being the easiest of these). 

It will be convenient to consider the implicit and explicit boun- 

dary conditions separately. For the implicit case, if the first 

Q-line is a body botmdary, for example, then the tridiagnoal element 

n n ( Q  + z A ,  must be re-expressed in terms of known quantities 

and/or other diffarenced conservation vectors on the same S-line. In 

general, this means determining the coefficient matrices H and K and 

the vector L in the linear combination: 



which prererver a block-tridiagonal system of equationr when rub- 

rtituted into equation (4.10~). These matricer were determined in 

this rerearch by extrapolating the denrity along the 6-line and, in 

thore cases in which the temperature was not explicitly rpecified, by 

lagging the temperature in time. The details of this technique are 

outllned in Appendix J; for other successful methods of evaluating 

these coefficient mtrtrices, see Beam and Warming [c] or Steger [b], 

After the solution of equation set (4.10) the advanced boundary 

values on the body need to be determined. If a gradient temperature 

boundary condttion is specified by equation (3.32), then a seraight- 

forward application of the appropriate difference approximations re- 

sults in the following periodic tri-diagonal system of equation: 

To determine the surface density, the pressure gradient equation (3.33) 

was used, It also forms a slightly more complicated periodic tri-diag- 

onal system: 

where the expansion of the nl and n terms is considered in Appendix C. 2 

For illustrative purposes, the body has been assumed to be coincident 

with the first 0-line in both equations (4.14) and (4.15). Note that 

for bodies whose surfaces do not form continuous segments in the tra,ns- 

formed coordinates, it was found to be advantageous to determine the 

value at the (re-entrant) end-points by the average of extrapolates 
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method outlined previously and then eolving the resultant pure 

tri-diagonal syetem of equations fox each segment. 

D. Artificial Viscosity 

It is a well-known fact that, while the approximation of spatial 

derivativee by central differences, euch as was done in developing e- 

quation (4.10). have many desirable properties, such as accuracy of 

derivative representation and simplicity of use, they make the al- 

gorithms containing them prone to nonlinear instabilities. Thus, in 

any fluid problem in which a region of very rapid change occurs rel- 

ative to the corresponding coordinate density, some means of diffusing 

the resultant high frequency components o f  the eolution must be ap- 

pended to the basic solution scheme. The technique used in this re- 

search was to alter the basic set of equations (4.10) by adding to the 

explicit equation (4.10a) the difference expression: 

everywhere except for points near boundaries where 

is used. Note that the symbol q is used in the sense of equation (3.2). 

It can be readily shown that, provided the coordinate variation is 

"smooth", equation (4.16a) adds a term proportional to the fourth power 

of the local grid spacing and equation (4.16b) adds a term proportional 

to the square of this spacing. Thus, if E is proportional to At, for a 



dense enough mesh, these artificial diffusion terms should not seriously 

degrade the accuracy of the basic method except in those regions of high 

gradient6 (relative to grid epacing) where its accuracy is suepect any- 

way. A linear stability analysis places an upper bound on the value of 

E of 1/ 12. Pulliam and Steger [g], from whom this dissipative technique 

wae derived, also make use of an implicit artificial viscosity appended 

to the W andQ matrices of equations (4. lob and c) ; however, this author 

found its use to be required only for impulsive type starts. 

R. Coordinate Derivatives 

There is a serious potential problem with developing any numerical 

algoritl~m for solving the Navier-Stokes equations in conservative form. 

This can be descerned in equation (4.10a) by considering a region of 

flow in which the deneity, velocities, and energy can be taken to be 

constant, If proper consideration of the properties of the flux 

Jacobian matrices (equation (4.7)) is taken, then the first element of 

the vector RHS" is proportional to: 
i ,j  

Thus, since similar relations develop for the other elements sf the 

vector RHS of equation (4.10a), if this algorithm is not to have spur- 

ious sources and sinks, the quantities in braces in expression (4.17) 

must be identically zero. In two dimensions, as is considered here, 

this can be assured by evaluating the coordinate derivatives (x 5' X ~ 9  

, y ) by the same difference scheme used to difference the flux vec- 
Y5 n 
tors A and B. As is pointed out in reference [b], this should be an 
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over-riding concern, even if the rerulting differences are poor repre- 

eentations of the true derivativer (i.e., analytically generated 

coordinatee should havestheir derivatives evaluated by the appropriate 

difference and not by direct differentiation). 



V. COMPUTATIONAL RESULTS 

The types of flowm modeled in thie research can be divided into 

two clarres on the basir of geometry. Couette flow, the first clare 

of flowe rtudied, wae choaen primrily because it was the simpler of 

the two test cases that Beam and Warming [c] used to verify their 

original formulation of their approximate factorization algorithm. 

Thus, it was convenient to use this flow, both as a means of debug- 

ging, the computer code form of the algorithm presented in the previous 

chapter, and as a means of verifying that the algorithm and computer 

code were consistent with the results of Beam and Warming, The other 

class of flow geometry, that of a NACA 64A010 airfoil section imbedded 

in an other wise uniform stream of air, comprises the major thrust of 

this work. The particular airfoil section studied was selected on the 

basis of the number of experimental and nunerical papers currently 

being published on transonic flow about NACA 64A010 airfoil sections 

at various angles of attack [b,j ,k,l,m]. Also, the parameters of the 

flow were chosen to be representative of the cases studies in the ref- 

erences; thus, the Mach number (M=O. 8). Reynolds number (~e-2,000,000) , 

Prandtl numbers (Pr-0.72 and PrT=0.9), ratio of specific heats (7-1.4). 

and angles of attack (a=0°,20,3.50) were all set so as to facilitate 

comparison of results. In all of the cases discussed here, the three- 

point-backward version of the basic scheme was used (i.e.,$=&). 

A. Couette Flow 

Since the main purpose of this flow calculation was to reproduce 

the results of reference [c], the coordinate system and flow parameters 
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were copied directly. The computational domain war cornpored of a six 

by eleven (6 F-liner and 11 n-liner) rectangular grid with "movable" 

wallr bounding the top and bottom rurfaccr (n-1 and 0-11) and with the 

left and right boundarier being re-entrant boundarier (i.e., 4-1 and 6-5 

are actually the same €-line), The flow parameters given by Beam and 

Warming are the Mach number (M-0.09), snd the Reynolds number (Re-6.2) 

based on distance between the opporing walls; from their discuseion, it 

was apparent that the working fluid used wee atmoepheric air, eo the 

Prandtl number (Prm0.72) and specific heat ratio (y-1.4) were set at typ- 

ical values. 

In that the coordinate derivatives (5 ,5 ,n ,n ) are differenced by 
X Y X Y  

the algorithm ueed in this research irregardless of the state of the 

fluid or boundaries, it was always felt to be important that so-called 

"free-stream" trials be made in each case. For the Couette flow, this 

meant running a case with the fluid and walls initially in a uniformly 

quiescent state, and a case with both the fluid and the walls moving, 

in the plane of the walls, with an initial uniform velocity. In both 

cases the algorithm maintained the initial state for arbitrary lengths 

of time and for arbitrary At c 1. 

For the case of developing Couette flow, in which one wall is held 

fastthe fluid is initially at rest, and Gne wall is impulsively brought 

up to the nondimensional velocity of one. The basic test case was that 

for a time step of At=0.0116, which roughly corresponds to a Courant 

number of one. The coded approximate factorization scheme reproduced 

Beam and Warming's results exactly (possibly better than exactly) for 

this case, reproducing their conclusion that this method is excellent for 

determining transient solutions if the Courant number is less than unity. 
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Similar carer were run for Courant numbars of ten and one-hundred 

(Atm0.08 and 0.8 rerpectively) with excellent rteady-rtate rerultr and 

increaringly poorer tranrient rerultr - again the rame experience am re- 
ported in reference [c]. It ir thir author'r opinion that there rerulte 

ertrblirh at leart the conrirtency of thir formulation of the general 

approximate factorization rcheme. 

B. NACA 64AO10 Airfoil Section 

The coordinate eyetem chosen for use with an airfoil with a rela- 

tively pointed trailing edge, euch ao this one, hae proven to be of 

some importance in eolving the numerical equivalent of the Navier- 

Stokes equations for the flow about the airfoil. There seems to be a 

consensus of opinion that the so-called "C1' or "wake" coordinate sys- 

tem, shown schematically in Figure 1, is most appropriate to a problem 

of this type [b, j]. Referlng to this figure, it is seen that in this 

type of coordinate transformation, the lines of conetant Q form C's 

about the airfoil, with the inner-most line collapsing onto the airfoil 

surface and onto itself to the right of the airfoil. While the lines of 

constant 5 extend from the outer Q-line (n=J) to the inner n-line 

(n-l), either terminating on the body or on the "cut" (the collapsed 

inner 0-line). If this coordinate system is to be useful, then care 

must be taken that the 6-lines which terminate on the cut pair-up with 

6-lines on the other side of the cut so that they may be considered to 

be a single line running from the upper portion to the lower portion of 

the outer n-.line. Looking now at the tranformed field, it is apparent 

that the left and right boundaries (labeled r* and I'* ) will always 
3,L 3 ,u 

be outflow boundaries, that the upper boundary (T;) will be totally an 



inflow boundary for 0' angle of attack and partially an outflow boun- 

dary otherwise, and that the portion3 of the lower boundary labeled 

r; and I': are re-entrant to each other. Although not indicated in the 

figure, thim ~ 0 0 r d i ~ t e  ryrtem formed a grid with 113 4-liner and 51 

n-liner; 20 of there n-liner being concentrated within .05X to 2% of a 

chord length from either the airfoil or the cut. 

Ar dircurred in the Couette flow care, free-stream trials were felt 

to be an important teat of both the eolution algorithm and the coor- 

dinate system. For thir coordinate rystem, runs were made for flow 

field initial velocitiee of either zero or free-stream (including 

the body boundary, that is, the flow was forced to "petretrate" the air- 

foil). In both cares angleo of attack were oet at either 0' or 2', and 

the time step at At-0.01. Free-stream conditions were maintained for 

extended periode of time (t>l in all cases), within the truncation error 

limits, provided that the cautions of section 1V.E were followed. That 

is, if the coordinate derivatives and the algorithm derivatives were not 

all of the same type (i.e., central differencee), then free-strearu, and - 
indeed a stable solution, could not be maintained. In particular, both 

tests of fourth-order differencing of the trailing edge coordinate de- 

rivatives and of the convective terms in the cxplicit portion of the al- 

gorithm (see equation (4.10a)) proved to be destabilizing. 

The flow results obtained for the NACA 64A010 airfoil can be divided 

into several classifications based upon tire method of starting the solu- 

tion process (impulsive, penetration, or gradual), the turbulence model 

(laminar or algebraic Baldwin and Lomax model), and the angle of attack 

( 0 ° ,  2', or 3 .5* ) .  Initial cases were all run as laminar flows at zero 



degreer  ang le  of a t t a c k ,  t h u r  on ly  being d i r t i n g u i r h e d  by t h e  type  of 

rtart u t i l i z e d .  La te r  carer were a11 s t a r t e d  andlor  changed g radua l ly  

and employed t h e  a l g e b r a i c  tu rbulence  model a f t e r  an i n i t i a l  laminar 

r t a r t i n g  per iod ;  t h u r  t h e r e  carer a r e  d i s t i ngu i shed  only  by t h e  angle  

of a t t a c k  choren. 

One of  t h e  f i r s t  r t a r t i n g  techniques t r i e d  war t h e  impulsive s t a r t  

method. S imi l a r  t o  t h e  r e r u l t s  of  S teger  and Bailey [n], numerous 

t r i a l r  e s t a b l i s h e d  t h a t  a d d i t i o n  of on ly  e x p l i c i t  a r t i f i c i a l  v i s c o s i t y  

t o  t h e  numerical a lgor i thm war no t  s u f f i c i e n t  t o  overcome t h e  non- 

l i n e a r  i n a t a b i l i t i e s  produced by t h e  sharp  g rad i en t s  generated by t h i s  

type of  s t a r t .  Although Steger  and Bai ley were ab l e  t o  succees fu l ly  

u t i l i z e  t h i s  technique by a l s o  inc luding  i m p l i c i t  a r t i f i c i a l  v i s c o s i t y ,  

i t  was t h e  experience of t h i s  au thor  t h a t  no combination of e x p l i c i t  

and i m p l i c i t  a r t i f i c i a l  v i s c o s i t i e e  would l ead  t o  suppression of t h e  in -  

s t a b i l i t i e s  inheren t  i n  t h i s  method of s t a r t i n g  t h e  f l u i d  flow. I t  is  

conjec tured  t h a t  t h i s  is  due t o  t h e  d i f f e r e n c e s  i n  t h e  meshes i n  e i t h e r  

case;  a l though both were "C" type  coord ina tes ,  t h e  ones used i n  t h i s  

work had much smaller c e l l  s i z e s  near  t h e  l ead ing  edge. Thus t h e  

courant number was apprec iab ly  l a r g e r  i n  t he  lead ing  edge region i n  t h i s  

research  as compared t o  t h a t  of S teger  and Bai ley.  I f  t h i s  conclusion 

is  c o r r e c t ,  then use of a  smaller i n i t i a l  t ime-step, A t  , should a l l e v -  

i a t e  t h e  problem. However, t h i s  was no t  attempted s i n c e  a  primary goal  

of t h i s  p r o j e c t  was t o  develop techniques which allow t h e  use nf l a r g e r  

t ime-steps.  

F igure  2 i l l u s t r a t e s  t h e  t r a n s i e n t  behavior of t h e  flow f i e l d  f o r  

t h i s  t ype  of s t a r t .  Notice t h a t  even f o r  t h i s  l a t e  a time (0.6 non- 

dimensional t i m e  u n i t s )  t h a t  t h e  f l o w ,  o u t s i d e  of a  very t h i n  reg ion  
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near the  a i r f o i l  and t h e  wake cen te r - l i ne ,  i r  e r r e n t i a l l y  undisturbed. 

The except ionr  being t h e  vake expanrion at  0.6 of a chord from t h e  

t r a i l i n g  edge and t h e  compreraion wave e m a n a t i n g  f r m  t h e  leading  edge. 

Alro note  t h e  onre t  of f a t a l  nonl inear  i n a t a b i l i t y  i nd ica t ed  hy the  

"wiggler" i n  the Mach 0.75 contour  denot ing the  camprerrion wave. 

A more r u c c e r r f u l  r t n r t i n g  technique war t h e  pene t r a t ion  r tart ,  

A8 ou t l i ned  e a r l i e r  i n  t h i r  paper,  t h i s  r t a r t  war accomplirhed by ur ing  

a f i f t h -o rde r  p o l y ; ~ ~ i a l  t o  reduce t h e  s u c t i o n  and blowing a t  the  air- 

f o i l  r u r f a c e  from free-r t ream va luer  t o  no-sl ip  va lues  i n  one nondimen- 

a iona l  time un i t  (one-hundred time-steps a t  the  s tandard time-step 

used throughout t h i s  work of At=0,01). Th i s  mathod was f u l l y  succeer- 

f u l  i n  g e t t i n g  the  flow e t a r t e d ,  however, a e  noted previously,  i t  had 

t h e  disadvantagee of r equ i r ing  non-simple body boundary condi t ions  and 

of  causing e a r l y  boundary l a y e r  s epa ra t ion  over t h e  a f t  por t ion  of t he  

I a i r f o i l .  Ult imately,  t h i s  approach was abandoned s i n c e  i t  was f e l t  t h a t  

t h e  last mentioned def ic iency  of t h i s  method could lead  t o  a v a l i d ,  but 

undesired, s teady-s ta te  so lu t ion .  That is ,  s i n c e  the  f l u i d  flow i t s e l f  

can take on a v a r i e t y  of s teady  flow s t a t e s  f o r  i d e n t i c a l  boundary con- 

d i t i o n s  depending s o l e l y  on t h e  i n i t i a l  condi t ionn [o], i t  was f e l t  

t h a t  the  e a r l y ,  forced sepa ra t ion  of t he  boundary l a y e r  due t o  t h i s  

technique could l ead  t o  a s t eady- s t a t e  no t  found under normal f l i g h t  con- 

d i t i ons .  Also s i n c e  t h e r e  were more g r i d  po in t s  on the  forward s e c t i o n  

of the a i r f o i l  than  t h e r e  were on the  a f t  s ec t ion ,  the lack  of g loba l  

conservat ion of flow p r o p e r t i e s  a l luded t o  i n  a previous chapter  pro- 

duced by t h i s  s t a r t i n g  technique lead  t o  extreme cool ing of t he  t r a i l i n g  

edge reg ion  which took an undes i rab le  number of t ime-steps t o  r e l ax .  



Figure 3 and Pilure 4 prercnt the Mach number contourr of the 

tranrient flow developed midway through and at the end of the penetration 

rtart, terpectively. Comparing there filurer with the impulrive rtart 

Mach contourr in Figure 2, it ir immdiatuly apparent that the pene- 

tration rtart allowr a much larger rcgion of the flow field to devel- 

op for the r a m  time increamnt. Alro note that the vrriour expected 

flow regionr are already well-developed by the end of the ntart-up 

period. However, it ir almo well to notice that the forwrrrd decelcr- 

rted flow region and the rurface accelerated regionr are both dirtorted 

in the downrtoeam direction; and that the wake containr an appreciable 

highly decelerated region in it8 core. 

In that the ringlc laminar flow case treated by this author was 

initiated by the penetration start method, the gradual start technique 

will be discursed following the presentation of the laminar flow re- 

eulte. Theoe results are cummarlzed in the Mach contour plots, Figurer 

4 through 9. Several interesting observations can be made by an in- 

epection of thie flow's time history. First note how the retarded flow 

region expands from its downstream skew due to the penetration start, 

to an overshoot upstream skew, and then contracts to the expected, 

slightly elliptical contours. Looking at the aft boundary layer and 

near wake, it should be noted that these regions first thin out from the 

thickness induced by the blowing during the start-up; then, between non- 

dimensional times two and three, separation occurs resulting in a pro- 

gressively thicker separated region and near wake region. Coincident 

with the occurance of separation, the accelerated regions start to 

split-up into two zones of maximum Mach numbers. Within each zone, the 



Mach nuplterr decreare  w i th  tiw, al though tile p o r t i o n  of t h e  f l w  wi th in  

each tone  r enu in r  r e l a t i v e l y  con r t an t  am t h e  o u t e r  Mach contour r  

"pinch-off". The t o w a r d  tone p rog re r r e r  toward t h e  lead ing  edge ar t h e  

a f t  zone l i f t r - o f f  wi th  t h e  r epa ra t ed  boundary l a y e r .  

The cccurance of t h e r e  later phenomena can be explained a s  l o g i c a l  

conrequencer of t h e  r t rong ly  r epa ra t ed  flow. The flow f i e l d  o u t s i d e  of 

t he  boundary l a y e r  and repara ted  reg ion  "seer" t h e  a i r f o i l  as i f  t h e  

repara ted  region were a con t inua t ion  of t he  a i r f o i l  r u r f ace ;  t hu r  t h e  

o u t e r  flow murt f i r r t  accelerate around t h e  lead ing  edge region and then 

over t h e  r epa ra t ed  region.  S imi l a r ly ,  t h e  genera l  drop i n  maximum Mach 

number, from a high of 1.15 before  s epa ra t i on  occured t o  1.05 i n  Figure 

9, and t h e  con t r ac t i on  of t h e  Mach contours  d e l i n e a t i n g  t h e  acce l e r a t ed  

region,  can be a t t r i b u t e d  t o  t he  separa ted  boundary l a y e r  g iv ing  t h e  

a i r f o i l  t h e  appearance of  a t h i n  wedge t o  t h e  o u t e l  flow, Unfortu- 

na t e ly ,  t h i s  au tho r  was unable t o  o b t a i n  any conlparative s tv ,d ies  f o r  

t h i s  case (not  t o  say t h a t  some might not  e x i s t ) .  

The gradual  s t a r t i n g  method i n  a l l  ways turned out  t o  be an almost 

p e r f e c t  flow i n i t i a l i z a t i o n  technique,  I t  only requi red  a modeet amount 

of e x p l i c i t  a r t i f i c i a l  v i s c o s i t y ,  smoothly acce l e r a t ed  t he  a i r f o i l  

a t  0.0 and 3.5 degrees  angle  of a t t a c k  from rest t o  Mach 0.8 wi th in  a 

nondimensional time of one, and even provided t h e  bonus c a p a b i l i t y  of 

changing t h e  angle  of a t t e c k  i n  mid-solution. Best of a l l ,  i n  t h i s  

au tho r ' s  op in ion ,  i t  al-dws the  most r e a l i s t i c  s t a r t i n g  procedure of a l l  

those considered i n  t h i s  research  ( inc luding  some not  a c t u a l l y  u t i l i z e d ,  

such a s  p o t e n t i a l  flow  solution^). I n  a l l  a p p l i c a t i o n s  t h e  same f i f t h -  

o rder  polynomial a s  t h a t  used i n  t h e  pene t r a t i on  s t a r t  t o  vary t he  



airfoil rurfaco velocitier war ured to vary the free-rtream velocitiee 

from zero .o the derired rteady-atate valuer (this was handy and also 

allowr rome compariron of the penetration and gradual starts to be made). 

The firrt application of this method war to the NACA 64A010 air- 

foil at zero angle of attack, am illustrated by Figures 10 and 11. A 

compariron of the three starting techniques, impulsive, penetration, and 

gradual (Figures 2, 3, and 10) is instructive, but note that the free- 

otream Mach number of the flow plotted in Figure 10 is 0.73 rather than 

the Mach number of 0.8 for the other two. Contrasting the Mach con- 

tours of Figures 4 and 11, which indicate the flow fields at the end of 

the penetration and gradual starts, respectively, one sees that the 

flowe are very similar except in the aft boundary layer and near wake 

regions. Here the gradual start produces a much thinner boundary layer 

and near wake, except for the Mach 0.75 contour which has the bubble 

shape characteristic of experimental results [ml. 

Immediately after the completion of the gradual start (i.e., at 

nondimensional time of one), the Baldwin and Lomax turbulence model was 

turned on and the solution continued out to a non-dimensional time of 

six, as with the laminar case. A comparison of the turbulent results 

(Figures 12 through 16) with the laminar results (Figures 5 through 9) 

proves to be enlightening. First of all, note that the forward decel- 

erated region develops almost identically in both cases, which is as 

would be expected. Also, the location and intial slopes of the upstream 

accelerated flow Mach contours 0.85, 0.90, 0.95, and 1.00 remain in good 

agreement between the two flows until after the nondimensional time of 

four, Even after this point, the first three contours agree in upstream 



location and initial slope near the airfoil as far as both case8 were 

taken. This particular behavior of both the decelerated and accelerated 

region6 can be attributed to the fact that the turbulence model, as im- 

plemented by thie author, doea not become effective until slightly down- 

stream of the first minimum outface pressure location (i.e., turbulent 

transition ie modeled), thur, upstream of thie point one would expect 

laminar and turbulent flows to behave similarly at leest for early 

times and at the freestream Mach number chosen (0.8). A final obvious 

contrast is the presence and non-appearance of separated flow in the two 

cases, which reflects the elementary experimental and theoretical pre- 

cept that turbulent flows can tolerate an adverse pressure gradient 

much better than laminar flows. 

In comparing the turbulent Mach contour results it is first of 11 

apparent that the near wake reaches a quasi-steady state very early, the 

only subsequent significant changes being the thickening and ultimate 

closure of the middle wake re,ion. This last result is somewhat puz- 

zling, especially since the entire wake shows practically no change at 

all between nondimensional times of four and five. Also note how the 

accelerated flow Mach contours progressively expand out from the airfoil 

and gradually shift toward the leading edge. Their initial downstream 

skew also tends to turn into an almost symmetrical appearance by the 

last time step plotted (Figure 16). The Mach one contour never be- 

comes normal to either the chord line or the airfoil surface and the 

spacing of the downstream Mach contours never take on a crowded appear- 

ance. Thus it is hardly justified to claim that a shock develops on 

the airfoil; however, it appears from the interferogram of reference [m] 



t h a t  i n  t h e  experimental  c a s e  t h e  shock is r a t h e r  weak. None-the-less, 

i t  was decided a t  t h i s  po in t  that t h e  a b i l i t y  of t h e  numerical a lgor i thm 

t o  c o r r e c t l y  develop ehocko needed t o  be g iven  a less ambiguous test. 

Refer r ing  t o  e i t h e r  r e f e r ence  [k] o r  [m], i t  is c l e a r  t h a t  i n  ex- 

per imental  s t u d i e s  of t h i s  a i r f o i l ,  a moderately s t rong  shock appears  

on the  upper s u r f a c e  f o r  a n  ang le  of a t t a c k  of  two degrees .  Thus, t h i s  

angle  of a t t a c k  was chosen f o r  t h e  next test case  which used t h e  pre- 

vious r e s u l t s  a t  nondimensional time of f o u r  f o r  i n i t i a l  condi t ions .  

The gradua l  start method was used t o  change t h e  ang le  of a t t a c k  from 

zero t o  two degrees ,  e f f e c t i v e l y  by causing t h e  a i r f o i l  t o  " f a l l "  a t  a 

speed s u f f i c i e n t  t o  produce t h i s  change (no te  t h a t  t h i s  is not  t h e  same - 
a s  r o t a t i n g  t h e  a i r f o i l ,  and thus ,  w i l l  produce d i f f e r e n t  t r a n s i e n t  

s t a t e s  and could produce a d i f f e r e n t  s t eady  s t a t e ) .  Then t h e  s o l u t i o n  

was continued out  t o  a nondimensional time of seven, a t  which poin t  t h e  

so lu t ion  process  was terminated due t o  t h e  f i n a n c i a l  s u i c i d e  of t h e  

u n i v e r s i t y ' s  computer c e n t e r .  

F igures  17, 18, and 19 con ta in  Mach contour  p l o t s  s i m i l a r  i n  n a t u r e  

t o  those discussed previously.  It is immediately n o t i c e a b l e  t h a t  t h e  

flow i n  a l l  reg ions  is no longer  symmetrical about t h c  chord l i n e .  The 

progress ive  changes i n  t h e  dece l e r a t ed  flow region and t h e  wake region 

are a s  i n  t h e  zero  degree angle  of a t t a c k  c a s e  except f o r  t h e i r  respec- 

t i v e  skew i n  t h e  upstream and downstream d i r e c t i o n s .  More notably d i f -  

f e r e n t  is  t h e  evidence of much more s t rong ly  acce l e r a t ed  flow along t h e  

upper s u r f a c e ;  however t h e  form and dens i ty  of  t h e  Mach contours  s t i l l  

don ' t  sugges t  t h a t  a shock is  presen t .  To c l a r i f y  t h i s  l ack  of an ex- 

pected f low phenomina, t he  Mach contours  p l o t  i d e n t i f i e d  a s  Figure 20 



was made with the range of Mach numbers being 0.96 to 1.04 and the in- 

crement being 0.01 rather than the range and increment used in the other 

Mach contour plots. As can be reen, there is a pronounced difference 

between the upper and lower contour groups, aa expected. However, the 

angle and density of the upper groups downstream foot are not as would 

be expected for even a rather weak shock. Although, as mentioned pre- 

viously, it was not possible to continue this solution sa as to check 

this hypothesis, it was conjectured that much of the spread in tbese 

Mach contours was due to the relatively large amount of explicit art- 

ificial viscosity used. This was reasoned from the fact that the so- 

lution showed no signs of "wiggles", which is unusual for numerical 

solutions of flows containing shocks. 

A valuable check of the internal consistency of the numerical 

solution, as well as an additional means of comparing the results with 

the available experimental data, can be obtained from a density contour 

plot such as Figure 21. First of all, comparison of these contours 

with those of reference [k] reveals at least good qualitative agreement 

with the "set" angle of attack of two degrees data set. Although ref- 

erence [m) does not present results for this particular angle of attack, 

the density contours of Figure 21 do seem to represent a case between 

the angles of attack of 0 and 3.5' that are shown. These comments must 

be tempered with the fact that both references clearly show a shock on 

the upper surface of the airfoil whereas the Mach nuniber and density con- 

tour plots of the algorithm used by this researcher clearly do not show 

such a shock. 

Some interesting observations can be made in comparing the density 



contourr of Pigure 21 with the Mach contour~ of Figure 19 which lmve 

rome bearing on tho interpretation of experimentally determined density 

contours obtained by interferometer, such a@ those of reference [m]. If 

one mkee the eame assumption as ueed in the cited reference, that the 

flow ir Isentropic everywhere except in the boundary layer and across 

any ehocke, then one can obtain the following relationship between non- 

dimensional density and Mach number: 

where for this equation only, M is the local Mach number and Mo is the 

reference Mach number (0.8 in this case). (For the convenience of the 

reader, a rough rule of thumb summarizing this equation for the current 

application is that a change in density of 0.05 - one density contour 
of Figure 21 - results in a change of Mach number of about 0.06 to 

0.08). Using this relation, it is easy to see that there is good agree- 

ment between the two sets of contours except for four flow regions. The 

most puzzling discrepancy is the lack of alignment of the Mach 0.75 and 

density 1,05 contours upstream of the leading edge, since this region 

would seem to be nearly isentropic. Possibly this is due to the fact 

that the flow has not quite reached steady state, Similarly, the lack 

of agreement between the innermost accelerated region contours of the 

two plots could be attributed to a combination of nearness to the non- 

isentropic boundary layer and the transient nature of the flow; however, 

these arguments are not convincing. More importantly, note how the 

downstream intersection of the accel.erated flow region density contours 

with the boundary layer are shifted upstream and are more nearly normal 

to the surface than the corresponding Mach number contours. Also note 



t h e  almort to ta l  lack of r i rn i l a r i ty  of the  Mach 0.75 and denoity 1.05 

contourn near (or  in)  the  wake - c l e a r l y  due t o  the  non-isentropic 

na ture  of t h e  wake region. 

The last ca re  coneidered war t h a t  of the  same NACA 64A010 a i r f o i l  

a t  an angle  of a t t a c k  of t h r e e  and one-half degrees. This case was con- 

s idered due t o  its moderately strong shock development and because of 

t h e  excel lent  s e t  of wind tunnel  da ta  gathered f o r  t h i s  configurat ion 

by Johnson and Bachalo [m]. The r e s u l t s  f o r  t h i s  case a r e  i n  many ways 

t h e  most successful  of those attempted i n  t h a t  a d i s t i n c t  shock i s  seen 

t o  form; however, the re  e x i s t  a number of unresolved problems connected 

with t h i s  solut ion.  Most disappoint ing of which was the  unexpected on- 

set of numerical i n s t a b i l i t y  around a nondimension time of s i x .  

Figures 22 through 27 i l l u s c r a t e  the  Mach number contours generated 

at  various time increments by t h i s  so lu t ion .  Again, t h e  gradual s t a r t  

method was used, completing a t  nondimensional time of one. I n  t h i s  

case,  though, the  a i r f o i l  As i n i t i a l l y  a t  an angle of a t t ack .  Comparing 

t h e  progression of the  Mach contours, one is  s t ruck by a s i m i l a r i t y  be- 

tween a l l  of the  cases  s t u d i e s  i n  t h i s  work; t h a t  is  t h a t  a l l  of the  

flow regions tend t o  expand from the  s t a r t  unti l .  sometime between non- 

dimensional times four and f i v e ,  a t  which point  they s t a r t  t o  cont rac t ,  

except f o r  possibly the  accelerated region on the  shock s ide  of the  a i r -  

f o i l .  The reason f o r  t h i s  sure ly  has something t o  do with the  r ap id i ty  

of the s t a r t ;  i t  i s  doubtful  t h a t  the  outer  boundaries cont r ibute  t o  

t h i s  phenomina s ince  they a r e  ten chord lengths away from the  a i r f o i l  

leading edge i n  a l l  d i r ec t ions .  

Since much of the  descr ip t ion  of the  r e s u l t s  f o r  t h i s  case para- 

l l e l s  t h a t  of the  previously presented cases,  t h i s  presentat ion w i l l  

46 



concentrate on the two distinctive reeult~ of this solution. The most 

heartening of these is the development of what can only be described as 

a ehock on the upper surface of the airfoil. The Mach contoure on the 

upper rear portion of the airfoil section are clearly crowding together 

into a thin bundle which is normal at least to the chord line. This 

shock formation can also be observed from the coefficient of pressure 

plots (Figures 28 through 33) in that the downstream portion of the up- 

per surface curve progressively steepens. Lastly, the obvious signs of 

boundary layer separation on the upper airfoil surface near mid-chord, 

also gives support to the development of a shock-like pressure gradient. 

The other distinctive feature peculiar to this solutlon is the appear- 

ance of the wake "bubble" contour just off the trailing edge. While no 

definitive expla~lation of this effect can be put forward, it is specu- 

lated that this anomaly is either due to the onset of boundary layer 

separation, a "bug" in the coded algorithm, or the unexpected, but ac- 

tual way a flow of this type would physically occur, Unfortunately, as 

a comparison of the Mach contours and coefficient of pressure plots 

with each other and with the experimental results of reference [m] in- 

dicate (see Figure 33). this flow is approaching, but has not yet 

reached, steady state. However, due to the aforementioned stability 

problem and the deplection of the time allotted to this research, this 

work must end on a promising, yet frustrating note. 

As an afterword to those who may wish, for whatever reason, to re- 

produce or continue this work: in addition to the fixed flow param- 

eters mentioned at the first of this chapter, all cases were attempted 

under the adiabatic wall assumption, with the non-dimensional time-step 

always fixed at At=O.Cl, with the explicit artificial viscosity 



coefficient set at c=BAt except for the last two-hundred time-stepe of 

the last study where c-4At was used, and with the coordinate system 

generated by Dr. Joe Thompson, Aerospace Department, Missiesippi State 

Univerrity, Miseiopippi 39762. 



VI. CONCLUSIONS AND RECOMMENDATIONS 

On the whole, the prfmary objective of thie research work was 

obtained, although eomet subeidiary goals must be left to future inves- 

tigations. An approximate factorization algorithm modeling the full, 

Reynolds-averaged, Navier-Stokes equations was successfully developed 

and Implemented in a general-purpose computer code. This computer pro- 

gram includes the desired features of an algebraic turbulence model, 

penetration and gradual start-up routines, variable inflow option, 

variable body surface velocity capability, body surface heat flux or 

temperature distribution specifications, implicit and/or explicit 

artificial viscosity options, and translational rigid body motion 

capability. In addition, the basic algorithm was formulated in con- 

servation form on a body-fitted curvilinear coordinate system. 

The amount of computer time required per time step averaged 

35 seconds on the Univac 1100/80, and 4.5 seconds on the CDC Cyber 203 

(this works out to approximately 8 houra and 1 hour total computer 

time for a complete time-history of the flows considered here), How- 

ever, although the cases studied are indicative of the full capability 

of the algorithm as conceived by this researcher, further work is 

clearly required in the area of model verification. 

Of the multitude of observations that can be drawn from the body 

of this research, it is felt that the following are most worthy of 

attention. While the body-fitted coordinate technique was fundament- 

al to the implementation of this algorithm, two areas in which im- 

provements are urgently needed can be identified. These involve the 



development of rational and efficient means for determining coord- 

inate line spacing and placement and for dynamically concentrecing 

coordinate lines in the region of developing shock waves. Ae ncted 

earlier in the text, and related to the last topic, the standing prob- 

lem of how to expreee truncation errors in curvilinear coordinates in 

ae concise and meaningful a manner as the "order of" method of Car- 

teeian coordinatee, should be resolved if differencing in transformed 

coordinates is ever to have a rational basis. Boundary condition 

problems tended to dominate the difficulties encountered in application 

of this algorithm. In particular, the much-.neglected downstream 

boundary condition requires more thought than has been given it to 

date-in fact, the entire problem of replacing "infinity" boundary 

conditions by finite distance boundary conditions needs a firmer theo- 

retical basis. In using the adiabatic boundary condition in this re- 

search, numerical evidence seems to indicate that, at least in the im- 

plicit portion of thc algorithm, either the density or the temperature 

can be extrapolated into the field, but not both together if nonlinear 

instabilitieo are to be avo!.ded. This points to the whole unsatisfac- 

tory situation in which there is no firmly established "fourth" body 

boundary condition - a topic which needs some more fundamental re- 
searcii efforts. Lastly, the results of this research indicate that 

construction of Mach number contours from experinlentally determined 

density contours may not always accurately reflect the true Mach number 

contours. Thus, it is suggested that published experimental results 

include the density contour tracings in place of, or along with, the 

calculated Mach number contour plots. 



a. Physical Field 

b. Transformed Field 
Figure 1 .  Wake Type Coordinate System 
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Figure 28. Pressure Distribution - Gradual Start,  
a = 3 . s 0 ,  t = 0.6 
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Figure 29. Pressure Distribution - Gradual S t a r t ,  

a = 3.5', t = 1.0 
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Figure 30. Pressure Distribution - Gradual Start, 
a = 3.5', t = 2 .0  



Figure 31. Pressure Distribution - Gradual Start, 
o = 3.5', t 3.0 







APPENDIX A 

Nondimenrionalization 

Although the uac of nondimenaional equatione ham many wall-known 

advantagea, it has the major draw-back that there is no unique dimen- 

sionless form for any given set of equations. Thus, two otherwise 

formally identical eetcs of equatione may appear to be different eolely 

due to the nondimeneionalizat ion ueed. Sin ce, in this author ' s exper- 
ience, the only coneistent criteria for nondimensionalizing the 

Navier-Stokee equations is that the Reynolds number (Re) and Prandtl 

number (Pr) should appear in certain traditional locations, this has 

been taken as the primary objective of the nondimensionalization used 

in this work. The advantage of this criteria is that it keeps the set 

of partial differential equatione from becoming cluttered; on the other 

hand, the suppressed dimensionless ratios now show up in the auxiliary 

algebraic relations and the boundary conditions. 

All of the dimensionless variables and ratios ultimately are ref- 

erenced relative to the following characteristic parameters: 

Parameter - Name 

Q Length 

Dimensions 

L 

Velocity L/T 

Density M/L 

Shear Viscosity M/L-T 

Thermal Conductivity M-L/~-T~ 

Specific Heat at Constant L~/B-T 
Pressure 

Specific Heat at Constant L , ~ / ~ - T  
Volume 



Parameter - Name Dimensionlr 

co Speed of Sound L/T 

where the dimensionr are length (L), time (T), mass (M), and temp- 

erature (6) .  The ipeed of sound, Co , i. used only in eituations 

where the Mach number would be more natrjtal then a dimensionless temp- 

erature. There reference .idantities are then used to form the following 

lirt of nondimaneional variables or constants: 

E,ondimeneional Variable 

% B Y  

u,v 

P 

P,A 

k 

t 

P, e 

T 

i" 

Reference Quantity 

with the Sutherland reference temperature, So , appended to the charac- 

teristic parameter list, the following nondimensional characteristic 

flow parameters can be formed: 

Re - eo/~u0l Reynolds number 

Pr = C p /k Prandtl number 
P O  0 

M I uO/Co Mach number 

Y - cp/cV Ratio of specific heats 

2 Sl rn CpSo/u0 Sutherland reference temperature 



APPENDIX B 

Coordinate Trursformation 

It ie widely accepted that any finite difference approxlwtion to 

the Navier-Stokes equatione should retain the global coneervation prop- 

ertiee of the integral form of these equations. This feature can be ob- 

tained, for usual differencing, only if the traneformed equations retain 

the same general form as the differential Navier-Stokes equations in 

Carterian coordinates. In this paper, this was accompliehed in trans- 

forming equation (3.1) into equation (3.15) by use of the following re- 

lation (note the Einstein summation convention is used): 

where 

a A i  a ~ i  - = J- 
ax, as, 

and J is the Jacobian of the coordinate transformation. For the ap- 

plication under consideration, the vector components, Ai , and the co- 
ordinates, xi and , can be identified as: 

and the Jacobian, J , is: 

since T E t. 



Now relation (8.1) can be rrtablirhed by firrt developing the 

following chain of equalitiee: 

where Car ie the cofactor of the t,k clement of the Jacobian determinant 

(B.4) and the firet equality ie proved in moat atandard tenror treatments 

(e, g. Sokolnikof f [I], page 103). Then expansion of the right-hand-side 

of equation (B.1) giver: 

(B-6) 

which on use of the last equality of (B. 5) reproduces equation (B. 1). 



APPENDIX C 

Normal Prerrute Derivative 

The particular form of the normal presrure derivative equation 

used in thir work (equation (3.33)) can moat earily be developed from 

the Navier-Stoker equation8 in curvilinear coordinatee, equations 

(3.21) through (3.26). Firrt the x- and y- momentum equations ore 

expanded to: 

where p*  - p / J  and RI, R2 are the unexpanded viscous terms of the x- 

and y- momentum equations respectively. Now the first term in both 

equations (C.1) and (C.2)vanishes due to the continuity equation; thus, 

if equation (C.1) is multiplied through by 0, and equation (C.2) by 
Y 

and then added, the result is: 

Finally, if this equation is multiplied by J/& and the equation of 

state, P (y-l)p~/y , is used, then equation (3.33) results. 

The finite difference form of equation (3.33). the normal pres- 

sure derivative equation, used in this research, equation ( 4 . 1 5 ) ,  was 

put into the particular form chosen so as to facilitate the use of a 

common solution algorithm for pressure and temperature when the normal 



prermure derivative ir rpecified (0.8 equation (4.14)). The n termr, 

evaluated at 1.1 are: 

The derivativeo are approximated by the appropriate finite difference ex- 

preclrion from Appendix G and evaluated prior to the aolution of equation 

(4.19) 



APPENDIX D 

Boundary Fitted Coordin*. 

Since all of the problem conridered in thir paper porrerr single 

body, two-dimenrional geematrier, and aince thir clarr of coordinate 

generation problem has been extenrivcly examined in the literature (see 

[d,e,h,f], for example), this appendix will be devoted to clarification 

of equation8 (3.37) and (3.38) and a r*rmmary of the coordinate contrac- 

tion technique discusecd more completely in reference [j]. The symbole 

ured Ln the aforementioned equations are defined to be: 

The boundary conditions on the coordinate generation equations 

(3.37) and (3.38) are determined by specifying the 5 and q distribution 

on the body and the inflow and outflow boundaries. As mentioned in the 

text, normally this is done so that each boundary is a line of constant 

5 or n. The system of partial differential equations is then solved by 

approximating all derivatives by "second order" central differences (see 

Appendix G) and using a point successive over-relaxation iteration scheme 

to determine the solution of the resulting nonlinear simultaneous dif- 

ference equations. 

Of course, before the coordinate generation equations can be solved, 



t h e  coord ina te  l i n e  a t t r a c t i o n  func t ion r ,  PC and QcD must be rpec i f i ed .  

The gene ra l  e f f e c t  t h a t  theme func t ionr  can have on t h e  r e r u l t i n g  co- 

o r d i n a t e  ryrtem, and caut ion8  about t h e  formr they can taka are f u l l y  

developed i n  re ference  [dl ;  i t  i r  enough t o  note  here  that t h e r e  a t -  

t r a c t i o n  func t ion r  can have a dramatic  e f f e c t  on t h e  coord ina te  rpacing 

near a boundary, Since t h e  h i ~ h  Reynoldr number flowr considered i n  

thim work are very dependent on boundary l a y e r  i n t e r a c t i o n s ,  It war de- 

r i r e d  t h a t  t h e  coordinate  rpacing be very denre  i n r i d e  t h e  boundary 

layero  and, t h u r  , near t h e  body boundary. As noted i n  r e f  erencem [j , k], 

t h i s  can be r e a d i l y  accomplirhed by tak ing  t h e  appropr ia te  a t t r a c t i o n  

func t ionr  (Qc i f  t h e  body ru r fnce  i r  a l i n e  of con r t an t  s) as: 

where t h e  spacing p a r a ~ a t l x  K is determined from: 

The parameters i n  t h i s  last  expression a r e  def ined uo t h a t  i f  t h e  body 

~ u r f a c e  co inc ides  with t h e  f i r s t  s - l i ne ,  then r l  is  t h e  r ad ius  of a 

c i r c l e  which circumscribes i t ,  and i f  t h e  o u t e r  boundary l i e s  on t h e  J t h  

n-line, then rJ is the  r ad ius  of a c i r c l e  which is tangent t o  i t .  This  

s e t  of equat ions has t he  e f f e c t  t h a t  t h e  Nth n-line w i l l  be approximate- 

l y  a d i s t a n c e  rN-r1 from t h e  body su r f ace  when they a r e  used i n  the  co- 

o rd ina t e  genera t ion  scheme. In t h i s  s tudy,  t h e  2nd o-l ine was spec i f i ed  

t o  be one-hundredth of t h e  boundary l a y e r  th ickness  from t h e  body. So, 

by approximating t h e  boundary l aye r  th ickness  from t h e  laminar Blas ius  



flat-plate boundary layer rolution, thir i r  equivalent to: 

4 m O . O l ~  + r  



APPENDIX E 

Flux Vectorr m d  Their Jacobisn Mhcricet 

Since che dynamic flux vvrtorr (A and 8) and the vircaur flux vec- 

torr (DleDZ'llt and EZ) are rimilar in for. within each clarr, let the 

vectorm A and D be reprerentative of each clarr in thc following dir- 

currion. If for the prermt, the tranrfonaed coordinates ( t  and n) are 

taken to be conrtant in time, then the chain-rule m y  be ured to form 

the following identitier: 

At = Pqt (E. 1) 

where the Jacobian mtrlcer P, n ,  and W are defined to be 

Now the second identity (E.2) can be put in the form: 

If the viecous coefficient (i.e., M timer expreraions (3.10) and 

(3.11)) are taken to be locally constant in time, which ultimately intro- 

cudes an error proportional to their first time derivative times ~ t ~ ,  

then it can be shown by direct evaSuation that a-W , and from equation C 
(E.4) : 

Equations (4.5) then directly follow from 

AA 2 AtAt = PqtAt = PAq + (i(dt2) (E.6) 



Under the r a m  8,;mption 88 ured in ertablirhing equation (E.S), 

equation retr (4.6) m d  (4.7) can alro be confirmed by direct evalu- 

ation. It ir intererting to note that for any flow in which the vir- 

cority is roleYy a function of temperature (such ar laminar flow with 

a Sutherland vircority law), then the flux vectorr are howgtneour 

functionr of variour degrees in the conrervation vector, q , and itr 
first derivativer; thur equationr (4.6) and other intererting relation- 

s h i p ~  can be esnily shown. 

Ar a final note, if the tranrformed coordinater are known functionr 

of time, or at leart are advanced in time prior to solving for the flow 

v~riabler, then it can be rhovn that if the derivative@ (Fc,F,,ty,nt, 

rl , Q ) are evaluated at time (n+B)At, where 8 ir a8 introduced in e- 
x Y 
quation (4.1), then there derivatives can be treated as if they were 

local?y conrtant with time without degrading the accuracy of the ap- 

proximate factorization echeme. 



APPENDIX F 

txplicit Form of the Jacobian Matricer 

There matricer are found by r rtrriyht-forward, if rather tcdiour, 

procerr of re-exprerring the vectorr of equationr (3.22) through (3.26) 

explicitly in terms of the conrervation variablcr (ql - p/J, q2 - pu/J, 
q j  - PV/J. and q4 = ~ I J ,  and then preforming the differentiations in- 

dicated by equations (4.5). They are: 



where the contravariant velocities, U and V, are given by equations 

(3.28) and (3.29) and the viscous coefficients are the same as those de- 

fined by equations (3.30). The subscripted Jaeobian matrix symbols in- 

dicate the appropriate element in their explicit expansion (e.g., "2 1 
D 

-(alu+a2v)). The other symbols inrroduced here (a, Ts and E) arc de- 

fined to be: 



APPENDIX C 

Difference Approximation8 

The finite difference exprce~ions ueed in this work are pre- 

sented below. In all case8 the function8 a(C,n) and f(6,n) are dummy 

function8 repreeenting typical actual derivative exprecwione encount- 

ered in the development of the text. Equations which have an obvious 

analog when the variable of differentiation or the order of differen- 

tiation is changed have not been repeated. 

Central Differences: 

1 
f ~ n  - -(f 4 i+l,j+l-fi+l - l f  i l l  + f i-1, j-1 ) (G. 1) 

( f ( f (afn)E frai+l,j i+l, j+~-~i+l, j-l)-ai-l, j i-1, j+~-~i-l, j-l ) 1 
One-Sided Differences: - 



Extrapolations: 

fi = Zfi+l-fi+2 = 2fi-l-fi-2 

Although all of these expressions, except the last one, are in 

the form which is traditionally termed "second order accurate", since 

the coordinate transformation is always chosen so that A(=bn=l ,  the 

assignment of an order of accuracy to these expansions becomes ambig- 

uous at best. For example, the central difference first herivative ap- 

proximation has as its leading term in the truncation error the quan- 

1 tity: - BfSSF ; but, by itself, this does not give a meaningful ap- 
proximation of the truncation error. There have been some attempts to 

develop estimates of the truncation error in curvilinear coordinates 

which are dnalogous to the well-known Cartesian error est imstes [b , h] , 

but more work is needed in this area. 



APPENDIX H 

Block-Tridiagonal Inversion Algorithm 

This algorithin is basically id..,lr lc,tl to the one presented by 

S teger [b] in his Appendix 1. Since ! i.1. method is widely available in 

the literature, it is sketched out below purely for the convenience of 

the reader. 

Given the block tridiagonal system of equations: Bu = f, or 

explicitly: 

where each Ai, Bi, and Ci symbol represents a k x k matrix and the vec- 

tors u and f are k-dimensional, the solution may be obtained by a sys- i i 

tematic application of Gaussian elimination without pivoting. The 

solution scheme can most clearly be developed by splitting the matrix B 

up into a product of a lower block triangular matrix L and an upper block 

triangular ~iatrix U of the following form: 



and then finding the solution to the set of matrix equationo: 

Lr = f 

Thio can be efficiently accomplished by use of the following recursive 

algorithm: 

Forward Sweep 

1) U1 = B;~C~ 

rl = ~ i l f ~  

2) for i = 2 to i = N-1 

Gi - Bi - AIUi-l 
Ui = G ; ~ c ~  

Back Sweep 

G N - B N - % u N - l  

= ~-l(f 
U~ N N - V N - ~ )  

2) for i = N-1 t:o i 1 



A r  Steger pointr  out i n  the  previourly c i ted  reference, thir 

a18orithm can accamm~odatr the  addit ion of reveral  r t r ay  matricer off of 

the t r l d i a g o ~ l  r t r i p  of t he  matrix B, but only a t  the  coot of more 

than doubling the operation count. Afro, following tho recamendation 

of Stegar, the k x k (here 4 x 4) matrix inverrion involved i n  the  above 

rolutlon rch.me c m  be e f f i c i en t ly  calculated by application of the  

r m e  rys temi~ed  Gauroi8n elimination rcheme a r  ured i n  t h i s  algorithm. 

Suppose the matrix equation GS - M i r  t o  be rolved fo r  S, where 

G, S, and M a r e  a l l  4 x 4 matricer. Let A and B be lower and upper tri- 

angular matricee, respectively, 60 tha t  

Then, s imilar  t o  equation (H.3), the s e t  of equation6 

AR = M 

BS = R 

can be so lved  by the following algorithm: 



I 

t 
i a44 844 - b14a41 - b24a42 - 34 a 43 
I 
I Repeat for each column of M matrix ( j = 1 t o  j - 4 i n  t h i s  case  ) :  

rlj - mljlall  

r2j  = (m2j - a21r1j)/a22 





APPENDIX I 

Body Force Modification8 of Algorithm 

Inclurion of a body force term ie readily dona by adding the vector 

to the right-hand-ride of equation (3.1) and the corresponding vector 

(i* - CIJ to the right-hand-side of equation (3.15). Where gl and g2 

are nondimeneional acceleration parameters whose effect is to accelex- 

ate the flow field in the positive x- and y-coordinate directions, or 

equivalently, to accelerate the body and its attached coordinates in 

the negative x- and y-coordinate directions. The generalized tirne- 

differenced Navier-Stokes equations (4.4) are then accordingly modi- 

fied by adding the term 

where the superscript "*" has been dropped. The Jncobian matrix cor- 

responding to the body force vector G is: 

( I .  3)  



So i f ,  am is d i r cu r red  i n  Appendix E i n  regard t o  t h e  coord ina te  der iv-  

a t i v e r ,  t h e  acce lera t ion ,  p a r a r t e r r  g1 and gt e r e  eva lua ted  a t  time 

A t  a (n+e)At, than  a q w t i o n  (4.8) i r  modified by adding C t o  t he  r i g h t  

hand r i d e  and - -& P B b g n  to  t h e  l e f t  hand aide.  The f i n a l  a lgori thm 

exprerred i n  equritionr (4.9) can now be ad ju r t ed  t o  t ake  t h e  following 

form: 

where, it  should be emphasized t h a t  t h e  a c c e l e r a t i o n  f a c t o r s  g l  and g2 

ore t o  be evaluated a t  time (n+O)At i n  t h e  vec to r  c". 

The last s e t  of equat ions  may not  seem t o  d i r e c t l y  fol low from t h e  

modified form of equat ion (4.8); t h a t  i t  does,  and t o  t he  same order  of 

accuracy, can be Been from t h e  following d iscuss ion .  Consider the  

symbolic form of equat ion (4.8) a s  modified by the  body fo rce  term: 

where M, P, Q, and R represent  the  body fo rce ,  [ -der iva t ive ,  r\-deriv- 

a t i v e ,  and right--hand-side terms, r e spec t ive ly .  Now, i t  was considered 

t o  be d e s i r a b l e  t o  f a c t o r  equat ion (1.5) i n  such a way t h a t  t he  body 

f o r c e  mat r ix  M would have an equivalent  e f f e c t  on the  i m p l i c i t  mat r ices  

f o r  both t h e  5- and n-direct ions.  This  can be obtained i f  equat ion 



(1. 5) i. multiplied by the matrix 8 - (1 + AtH) , rerulting in the 
equrt ion t 

which can then ba factored into the ret of eqwtionr 

(I + A ~ S P ) ~  - SR (1. 78) 

(I 4- AtSQ)Aq y. Ej (I. 7b) 

to order of At3. Finally, multiplying there equations by S-I remults 

in: 

[I + At(M + Q)]A~ (I + A~M)Z (I. 8b) 

But these last equation8 are seen to be the eymbolic form of equatlon 

(I.4a and b). 

A8 a final note, although the author was unable to prove this, it 

was felt that the magnitude of the acceleration parameters should be 

such that strong diagonal dominance of the implicit matricee is pre- 

served. This reeulte in tile criteria 

which tended to be confirmed by numerical experimentation. Note that 

this criteria, if correctly conceived, means that large accelerations 

require small time steps and goes some way toward explaining the great 

difficulties encountered in impulsive starts. 



APPENDIX J 

Body Boundary Value Fonuulation 

In  do ta rp in ing  t h o  artricer of equat ion  (4.13) i t  i r  convenient t o  

con r ide r  t h o  vec tor  of dopmdont v a t i a b l e r ,  dqn , a component a t  a 
i , l  

two The f i r r t  component, bpn , was rimply ex t rapola ted  along line. 
i .1  

of E t o  o b t a i n  t h e  "recond o r d e r  accurate" exprer r ion :  

(Note t h a t  p and l irr t h i r  Appendix should proper ly  be w r i t t e n  as p / J  

and e / J )  . T h i r  boundary condi t ion  on dens i ty  war f e l t  t o  be an accura te  

approxinut ion mince t h e  ri-line rpacing was alwaysr very small nea r  tho 

r o l i d  bodier  r tud ied  i n  t h i r  rocrearch. The x-. and y-mc~mentum d i f  fe rcn-  

c a r  c m  be exac t ly  re-cxpreseed as :  

S imi l a r ly ,  t h e  t o t a l  energy can be exac t ly  expressed a s :  

where t o r  t h e  case  i n  which temperature on t h e  body su r f ace  i e  speci-  

f i e d ,  t h e  q u a n t i t i e s  e/p can be evaluated from the  equat ion of s t a t e  

(3.5). For a l l  o t h e r  thermal boundary condi t ions ,  equat ion (5.4) can be 

re-expressed as: 



Now on rubmtituting relation ( J .  1) into the other equationr, the 

following form for the H and K matricer and the L vector of equation 

(4.13) developr r 

where 

and E and AE are lagged in time unless the surface temperature has been 

ryecif led. 

Although, in a sense, thie treatment of the implicit boundary con- 

ditionr ir rather cavalier, it is this author's experience that the 

rtability end, in particular, the accuracy of the algorithm is not very 

sensitive to these boundary conditionc (that's ~lo_t ta  eay that the 

etability and accuracy can not be affected by inappropriate choice of 

the boundary condition). In fact, Steger [b,g] has had good success 

with merely lagging the entire difference vector, Aq , in time. 
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