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FOREWORD

The papers presented herein have been derived primarily from speakers' sum-
maries of talks presented at the Flight Mechanics/Estimation Theory Sympo-
sium held October 17 and 18, 1979 at Goddard Space Flight Center. For the
sake of completeness, abstracts are included of those talks for which summaries

were unavailable at press time. Papers included in this document are presented
as received from the authors with little or no editing.
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FORMULATION AND EVALUATION OF PARALLEL

ALGORITHMS FOR THE ORBIT DETERMINATION PROBLEM

Capt. Jeffrey S. Shaver,*
United States Air Force

t

ABSTRACT

Recent advances in parallel processor computer hardware architectures hold significant promise as

a means of bringing large amounts of processing capability to bear on computationally intensive

problems, such as the orbit propagation and orbit estimation problems. However, the utility of
these new hardware architectures is heavily dependent on the structure of the computational

problems. To realize the full advantages of the new parallel processors, the algorithmic structure of

the application software must be complementary to the hardware architecture. This paper presents
a parallel orbit propagation algorithm and a parallel orbit estimation algorithm, both of which are

compatible with a single instruction stream/multiple data stream (SIMD) parallel processor architec-
ture.

The orbit propagation algorithm computes, in parallel, Chebyshev series approximations to the right-

hand members of the equations of motion over orbital arcs up to two revolutions. Analytical for-

mulae are used to directly obtain Chebyshev series representing the integrals of the equations of
motion. The algorithm uses a Picard iteration technique to obtain the converged solution. This
algorithm has been applied to the Cowell Class II equations, the high-precision Variation of Param-

eters equations and the averaged Variation of Parameters equations. Numerical comparisons with

high-precision Cowell integrations are presented for near-circular and elliptical test cases, including
varied fitting parameters, arc lengths and force models. The effects of numerical error accumulation

are demonstrated by comparison between a parallel integration of the two body problem and the
analytic solution using the Lagrange coefficients.

A Parallel Variable Metric function minimization algorithm (gradient dependent) provides a com-

patible orbit estimation capability. The cost function minimized is the weighted squares of the

observation residuals, and the solve-for parameters are the epoch state components. Analytical

expressions have been developed in terms of the equinoctial elements for the state partial derivatives

(needed for the gradient computation), which include the secular rates in the argument of perigee

and the longitude of the ascending node due to the J2 zonal harmonic. The software implementa-
tion of this algorithm is described. The performance of the Parallel Variable Metric algorithm is
compared to the standard Differential Corrections algorithm in terms of accuracy and region of con-

vergence. Speed-up ratios are calculated for both the orbit propagation and orbit estimation algo-
rithms, indicating the potential performance improvement to be achieved if the algorithms were
executed on a SIMD hardware architecture.

*Ph.D. Candidate, Massachusetts Institute of Technology
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DIFFERENTIAL CORRECTION CAPABILITY
of the

GTDS USING TDRSS DATA

S. Y. Liu* and D. G. Soskey*
Computer Sciences Corporation

and

J. Jacintho

Goddard Space FlightCenter

ABSTRACT

A differential correction (DC) capability was implemented in the Goddard

Trajectory Determination System (GTDS) to process satellite tracking data ac-
quired via the Tracking and Data Relay Satellite System (TDRSS). Configura-
tion of the TDRSS will be reviewed, observation modeling will be presented,
and major features of the capability will be discussed in this paper.

The following new types of TDRSS data can be processed by GTDS: 2-way relay
range and Doppler measurements, hybrid relay range and Doppler measure-

ments, one-way relay Doppler measurements, and differenced one-way relay
Doppler measurements. These new types of data may be combined with con-

ventional ground-based direct tracking data. By using Bayesian weighted-least-
squares techniques, the new software allows the simultaneous determination of

the trajectories of up to four different satellites--one user satellite and three

relay satellites. In addition to satellite trajectories, the following parameters

can be optionally solved for drag coefficient, reflectivity of a satellite for solar
radiation pressure, transponder delay, station position, and biases. Signal

travel time is corrected, and atmospheric refraction correction may be invoked
optionally for the space-ground link. Finally, as an option, a statistical output
report, which can be used for tracking system calibration and evaluation, will
be generated.

*Work was supported by the Mission Software Section, Code 571, Goddard
Space Flight Center, NASA, under contract No. NAS5-24300.



1.0 INTRODUCTION

Conventionally, satellite tracking data are obtained by direct observation of a

satellite from ground tracking facilities on the surface of the Earth. The field

of view, however, is limited by the local horizon. Thus, in order to have con-

tinuous tracking, it is necessary to have many ground tracking sites well dis-

tributed over the surface of the Earth. The installation, maintenance, and

operation of these ground tracking facilities is very costly. One plausible solu-

tion to this cost problem is to use geosynchronous satellites to track other

satellites. This scheme not only could eliminate all but one ground tracking

facility, but could also provide nearly 100 percent continuous coverage of a

user satellite (Reference 1).

Indeed, satellite-to-satellite tracking (SST) has been proved to be feasible after

a number of years of successful experiments using Application Technology

Satellite-6 (ATS-6, a geosynchronous satellite situated at 220 degrees East

longitude and 0.4 degrees North latitude at an altitude of 35,800 kilometers)

as a relay satellite in tracking GEOS, NIMBUS-6 and ISEE-3.

In December 1976, the National Aeronautics and Space Administration (NASA)

contracted with Western Union for 10-year leased services of the Tracking and

Data Relay Satellite System (TDRSS) to maintain its orbiting satellites. The

system is scheduled to become operational in the 1980s (Reference 1).

This paper presents a brief description of current capabilities of GTDS for

support of the TDRSS.

2.0 TDRS TRACKING SYSTEM

2.1 System Configuration of TDRSS

The system will consist of three geosynchronous satellites and one common

ground tracking facility. Two of the satellites are operational satellites and



the other is an orbiting spare satellite. The spare satellite may be converted

for use as an operational satellite or may be scheduled for service in conjunc-

tion with the two operational satellites.

Satellite TDRS East will be at 41 degrees West longitude, TDRS West at 171 de-

grees West longitude, and TDRS spare at 106 degrees West longitude. These

satellites will have circular orbits around the equator at an altitude of

36000 kilometers. The antenna coverage of the TDRSS is shown in Figure 1

(from Reference 1). Above an altitude of 1200 kilometers, the coverage is

100 percent for user satellites within the TDRS antenna pointing limits. For

single-access antennas, the pointing limits are +22.5 degrees east-west and

+_31 degrees north-south. For multiple-access antennas, the field of view is a

26 degree cone (Reference 1). Below 1200 kilometers, there is a shadow zone

located between 50 degrees East longitude and 125 degrees East longitude. The

maximum amount of coverage lost due to the Earth occultation is 20 percent

for a user satellite as low as 200 kilometers.

The common ground tracking facility will be at White Sands, New Mexico, to-

cared at 106.5 degrees West longitude and 32.5 degrees North latitude. The

tracking facility includes three 18-meter, steerable antennas operated at

K-Band frequency. Each of these antennas is able to track any of the TDRSs.

The tracking equipment at the ground station is required to meet the following

specifications (Reference 2):

• Systematic range light time error shall be less than 220 nanosec-
onds (corresponding to +_6 meters).

• Maximum root-mean-square (rms) range light time noise shall be

+10 nanoseconds (or +-3 meters) for high data rate and +-20 nano-
seconds (or +-6 meters) for low data rate.

• Maximum rms phase noise for Doppler measurement shall be + 0.1
radians for high data rate and + 0.2 radians for low data rate.

A sketch of the TDRSS ground tracking station at White Sands, reproduced

from Reference 1, is shown in Figure 2.



Three TDRS antenna systems will be available for NASA use (Reference 1).

• TDRS to Tracking Station: a 2-meter antenna system operated at

K-Band frequency (15 GHz)

• TDRS to Single Target: two 5-meter steerable single-access an-

tenna systems operated at either K-Band or S-Band frequency
(2 GHz); the steering range is + 22.5 degrees in east/west direc-
tion, and +_31 degrees in north/south direction; the target can be
a user spacecraft or a ground transponder

• TDRS to Multiple Targets: a 30-element electronically steerable

multiple-access antenna system operated at S-Band frequency; the
field of view of the multiple-access antenna system is a cone of

26 degrees; a total of 20 targets can be tracked simultaneously

The TDRS spacecraft antenna configuration is shown in Figure 3, which is re-

produced from Reference 1.

2.2 Tracking Configuration of TDRSS

Basically, there are three categories of tracking configuration in TDRSS cur-

rently supported by GTDS:

• Hybrid tracking configuration

• Two-way tracking configuration

• One-way tracking configuration

For descriptive purposes, the path of the tracking signal will be defined as a

chain of nodes and legs. A NODE is either a station or a spacecraft which can

transmit and/or receive a tracking signal. A LEG is the signal path between

two nodes. The measurements related to these configurations are discussed

separately in the following subsections.

2.2.1 Hybrid Relay Range and Doppler Measurements

Using the definitions for nodes and legs, the signal path of a hybrid relay range

measurement is depicted schematically by Figure 4 (from Reference 1). The

tracking signal originates and is transmitted from an antenna at White Sands



station(node i)and is propagatedthrough the forward-linkTDRS (node2). The

signalthen arrivesat a target(node 3), isrelayedto the return-linkTDRS

(node 4), and isfinallyreceived atan antenna atthe White Sands station

(node 5). The targetbeingtracked by the TDRSS eithercan be an orbiting

user-satelliteor a ground transponder.

For a hybrid relay Doppler measurement, the signalpathis similarto thatof

a range measurement, exceptthatthere isan extra node and an extra leg. A

coherent Doppler signalistransmittedfrom the receivingantenna (node 6)and

is mixed atthe return-linkTDRS (node4)to maintainthe phase coherency with

the Doppler signaltransmittedfrom the transmittingantenna (node 1). The

mixed Doppler signalisfinallyreceived atthe receivingantenna (node 5).

Node 6 and node 5 physicallyare the same antennabut at differentpositionsin

the inertial coordinate system due to Earth rotation.

2.2.2 Two-Way Relay Range and Doppler Measurement

For a two-way relay range or Doppler measurement, the tracking signal also

originates from a transmitting antenna, is propagated via a TDRS to a target,

is retransmitted by the target back to the same TDRS, and is received by the

same ground antenna. Figure 4 shows the two-way tracking configuration in

which nodes i, 5, and 6 are physically associated with the same antenna, and

nodes 2 and 4 are associated with the same TDRS.

2.2.3 One-Way Relay Doppler Measurements

For a one-way relay Doppler measurement, the wide-beam tracking signal

originates from the target (node 3), proceeds to the return-link TDRS (node 4),

mixes with the coherent Doppler signal transmitted from the ground receiving

antenna (node 6), and is finally received by the ground receiving antenna

(node 5). Note that there are no one-way range measurements.



2.2.4 Differenced One-Way Relay Doppler Measurements

A new type of measurement is feasible with the one-way tracking configuration.

With a wide-beam antenna system, the one-way tracking signal generated by

the user satellite may be received by all three TDRSs. By differencing two

streams of one-way Doppler measurements, the oscillator frequency bias can

be largely cancelled out. This is called differenced one-way relay Doppler

measurement. With a multiple-access antenna system on TDRS, up to five

user satellites can be tracked simultaneously with this type of measurement

(Reference 1).

2.3 Ground Transponder Tracking of TDRS

Theoretically, the target being tracked by TDRSS can either be in the sky (user

satellite) or on the ground (ground transponder) for all configurations. The

software design in GTDS does not impose any restrictions on a target in this

regard. In practice, however, a ground transponder usually employs a highly

directional antenna. Therefore, when a ground transponder is tracked with a

TDRS, only a two-way tracking configuration is anticipated. This mode of

tracking, using precisely surveyed ground locations of transponders, is pri-

marily used for determining TDRS trajectories for calibration of TDRSS.

With a multiple-access antenna system, the TDRS can track up to 10 ground

transponders almost simultaneously because it has the capability to electroni-

cally steer the antenna beam from one transponder to another essentially in-

stantaneously.

For hybrid and differenced one-way tracking configurations, the target must

transmit with a wide-beam antenna so that more than one TDRS can pick up the

signal to complete the configuration. Therefore, in practice the target is ex-

pected to be a user satellite instead of a ground transponder.
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3.0 GTDS OBSERVATION MODELING

3.1 Modeling of Range Observation

The TDRSS range observation is obtained by measuring the time delay for a

reference time marker (pseudorandom code phase) to travel from the White

Sands ground tracking station, to the TDRS, to the target, and then back to the

same TDRS or a different TDRS and to the ground station. The measuring

process only gives the fraction part of a pseudorandom (PN) code period. The

ambiguity, i.e., the whole number of PN periods, must be resolved by the

orbit determination process. The actual range measurement is halved by a

data preprocessor before it is input to GTDS for modeling.

In GTDS, the time tag associated with a measurement is treated as the receive

time of the tracking signal at the receiving station. Therefore, the backward

signal trace method is used in determining the time the signal is transmitted

from each node and the position of the node at the moment the signal is trans-

mitted. During the course of signal tracing, signal delay time for propagation

at the speed of light is iteratively corrected for each leg. After the actual

transmit time is determined at node 1, one half of the distances (legs) between

nodes are summed as the computed range observation. This computed range

observation is compared with the observed ambiguous range to resolve the

range /mbiguity. Transponder delay, atmospheric refraction on ground-to-

space legs, measurement bias, timing bias, or station geodetics bias can be

invoked optionally during modeling. The formulation of the relay range meas-

urement and the associated partial derivatives are given in Figures 5, 6, and 7.

A more complete description of the relay range measurement is contained in

Reference 3.

3.2 Modeling of Doppler and Differenced Doppler Observations

Doppler measurements in TDRSS include hybrid, two-way, one-way, and dif-

ferenced one-way. The raw data of the measurement consists of a nondestruct

ll



Doppler count of a nominal bias frequency, 240 MHz, over a fixed time inter-

val. The count is cumulative since the counter is not reset to zero between

measurements.

A hybrid or a two-way Doppler measurement is performed by transmitting a

signal at K-Band from the ground transmit station to a forward-link TDRS.

The TDRS coherently translates the signal to the user spacecraft's tracking

frequency in S- or K-Band and transmits it to the user spacecraft. The user

coherently retransmits signal to the return-link TDRS at a ratio of either

240/221 for S-Band or 1600/1469 for K-Band. The TDRS then translates the

signal to K-Band and transmits it to the ground receiving station (Reference i).

The one-way Doppler measurement can be generated from either an autonomous

spacecraft or a ground transponder. In the case of an autonomous spacecraft,

the navigation might be performed over several days without commands from

the ground. Any 10 of the 20 multiple-access service antennas of the TDRS

may be simultaneously used for one-way Doppler measurements. Although the

individual one-way Doppler measurements are dominated by oscillator fre-

quency bias, a wide-beam antenna system on the autonomous spacecraft will

allow the signal to be received by all three TDRSs with the same frequency

bias being observed in each measurement. In differencing the measurements,

this bias can be cancelled out. Thus, the tracking of a spacecraft can be as

accurate as two-way measurements (Reference 1). The formulations of the

relay Doppler and differenced Doppler measurements and their associated

partial derivatives are given in Figures 5, 6, and 7. A more complete descrip-

tion of the Doppler measurements is contained in Reference 3.

4.0 DC CAPABILITIES

4.1 DC Solve for Parameters

Currently GTDS can solve for up to four satellite trajectories simultaneously,

including one user satellite (target) and up to three TDRS relays in the TDRSS
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observationprocessing mode ofthe DifferentialCorrection (DC) Program.

GTDS has the abilityto solvefor the followingparameters simultaneously

usingany combinationofthe TDRSS measurement types in additionto the con-

ventionalground-based directtrackingdata ofthe TDRSs and the target:

• State vector of one user satellite

• Statevectors ofup to three TDRSs

• Drag on user satellite

• Reflectivityofthe user satellite

• Reflectivityofthe TDRSs being solved

• Measurement biases

• Time delay ofground transponder

• Time delay of satellite transponder

• Timing bias

• Geodetic locationoftracking stationand ground transponders

• Coefficientsof geopotentialharmonics

A Bayesian weighted-least-squarestechniqueis employed by GTDS to process

the observationdatainthe differentialcorrectionprocess. This isthe same

techniqueused in GTDS for allDifferentialCorrectionProgram runs regard-

less ofthe type oftrackingdatabeingprocessed. The fundamentalsof differ-

entialcorrectionand the theory of estimationcan be found inReference 4.

4.2 IntegrationTechniques for Equations of Motion

The equationsofmotion for allsatelliteswillbe numerically integratedusing

the 12thorder Cowell integratorinGTDS. The Cowell sums and accelerations

willbe storedon GTDS ORBIT Files from which positionand velocitycompo-

nents willbe reconstructedduringthe processing of TDRS observationdata.

The relay ORBIT Files can optionallybe createdpriorto a DC Program run

and storedfor use by allGTDS program users, alleviatingthe need to generate

the reference orbitsfor the TDRS relaysduring each DC Program run.

13



4.3 TDRSS ObservationSelectionCapabilities

GTDS provides the user with a flexibleobservationselectioncapabilitytoproc-

ess both TDRS observationdata and conventionaldirectground trackingdata in

the same DC Program. The followingcriteriacan be used in combinationfor

data selection:

• SatelliteID: Data can be selectedand processed accordingto the

satelliteidentifierforthe user satelliteand any, or all,ofthe

TDRS relay satellitesincludedina DC Program run

• Tracking Mode: Data to be processed can be conventionaldirect

tracking,TDRS relay tracking,or a combinationofboth

• TDRS measurement identifiersincludingthe following:

- return-linkTDRS identifiernumber

- forward-linkTDRS identifiernumber

- ground transponder identifier(ifa ground transponder

istracked)

- equipment mode (selection based on whether the relay-
to-user link is operating in the S- or K-Band)

• Tracker Type: Select data according to tracking station type (i.e.,
GRARR, C-Band, TDRSS, etc.)

• GTDS Measurement Type: Select data according to unique GTDS
measurement number assigned to each supported measurement
type

• ObservationTime Span: Startand end times

• Data Rate

The data selection capabilities are made possible by the construction of an ob-

servation data working file created within the GTDS. This working file in-

cludes, for each observation, a self-contained data record consisting of the

following information;

• Observationreceive-time tag

• Satelliteidentifiernumber

• Transmit and receive station index number

14



• Actual measurement of GTDS measurement type

• Doppler count interval (if applicable)

• Data sampling information

• Observation validity flags

• Observation correction flags

• TDRSS observation information including:

- forward-link TDRS identifier number

- return-link TDRS identifier number

- ground transponder identifier number (if applicable)

- user-to-relay frequency

- single access or multiple access antenna identifier

5.0 DC PROGRAM FLOW

The basic DC Program flow was maintained in GTDS for processing TDRSS

observation data. (For a complete description of the DC flow see Reference 5).

A major design change was made in the handling of up to four simultaneous

satellite ephemerides. The normal mode of observation processing in GTDS

is to integrate the equations of motion of a single satellite during the point-by-

point processing of observation data in each DC iteration. The TDRSS proc-

essing mode creates up to four GTDS ORBIT Files (Reference 5) prior to the

DC program execution or prior to each DC iteration. The state vector and

transition matrix for each satellite involved in an observation is retrieved

from the appropriate ORBIT File during the point-by-point observation data

processing. The DC program flow remains the same as the previous GTDS

flow aider the retrieval of the satellite state vector and the transition matrix.

Figure 8 shows the overall DC flow for processing TDRSS data in GTDS.

Upon completion of the DC program, as an option, a Statistical Output Report

(SOR) can be generated. This report contains observation-dependent infor-

mation, including weighted observation residuals, observation edit status,

15



standard deviations, associated orbit plane angles, and other pertinent infor-

mation used for tracking system evaluation, validation, and calibration. An

SOIl can be generated for the input vector (first DC iteration) and/or the final

vector (last DC iteration).

6.0 FUTURE TDRSS CAPABILITIES IN GTDS

In the future, the DC program will be able to use either the Brouwer or

Brouwer-Lyddane orbit generators in GTDS to create satellite ephemerides

for the user (target) satellite, thus removing the present restriction of the use

of the Cowell orbit generator for all satellites. A logical extension will be the

use of any GTDS orbit theory for integrating the equations of motion for the

user satellite.

Observation processing for the TDRS RF Beam angles, spatial beam direction,

and spacecraft orientation angles is currently being implemented in GTDS.

These angular measurements will be used to make observation corrections due

to the center of mass to antenna offset.

The interactive graphics capability of GTDS is being enhanced to provide oper-

ational satellite missions support with TDRSS configuration tracking data.

The use of GTDS ORBIT Files in the DC Program to process TDRSS observa-

tions allows for the creation of the relay ORBIT Files prior to a DC program

run. These files, which contain precision satellite ephemerides for all TDRS

relays will be concatenated over a specific time span (e.g., one month) and

stored for retrieval by all GTDS program users. This alleviates the need to

create satellite ephemerides in each DC program run, and it allows GTDS to

treat the TDRS relays as if they were ground-based tracking stations with pre-

cisely known positions while solving for the trajectory of the user satellite.

The SOR will be modified to process the statistics for the RF Beam angle

measurements and for the associated orientation angle information.
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Figures i through 8, which were cited in the preceding text, are presented on

the following pages.
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RECEIVE TIME T

c : SPEED OF LIGHT
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Figure 7. Definition of Symbols
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COVARIANCE ANALYSIS OF TDRS APPLICATIONS

REQUIRING TDRS STATE PREDICTIONS

James M. Leahy

Martin Marietta Aerospace

ABSTRACT

This paper presents an initial look at the results of error analysis of TDRS applications requiring
TDRS state prediction. Such a need might arise for a TDRS user requiring near-real-time ephemeris

processing in the absence of available TDRS tracking data. Analysis thus far has considered several

near-earth users in performing a standard covariance analysis of weighted least squares orbit deter-
mination. Results include plots of TDRS and user state errors as well as comparisons of varying

parameter estimation scenarios.
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A STUDY OF THE EFFECTS OF STATE
TRANSITION MATRIX APPROXIMATIONS

Janet A. May

Goddard Space Flight Center

ABSTRACT

This paper investigates the effects of using an approximate state transition matrix in orbit estima-

tion. The approximate state transition matrix results when higher order geopotential terms in the
equations of motion are ignored in the formation of the variational equations. Two methods of

orbit estimation were considered: the differential correction procedure (DC) and the extended
Kalman filter (EKF). The system used for the study was the Research & Development version of

the Goddard Trajectory Determination System (R&D GTDS). The effects of the approximation

were analyzed on a number of orbits. These include orbits of various inclinations and semimajor

axes. Other parameters studied include geopotential models and DC arc length.
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introduction

Tilestate transitionmatrix plays an importantrole in orbit

determination. It relatesperturbationsin the state at time t to

perturbationsin the state at epoch. Rice (4) suggeststhat divergence

in orbit estimationmethodsmight be linked to the use of an approximate

state transitionmatrix. The objectiveof this projectis to study the

effects of approximatingvariationalequationson orbit estimBtion

methods.

We startwith the equationof state:

which represents n-nonlinear simultaneous equations. An initial state

vectorX(to)=X 0 is associated with (I), file state transition matrix is

described by the matrix differential equation

g

where B(t_)=Iand Fx(X,t)is a matrix of partial derivationsof F(X,t)

evaluatedalong a particulartrajectorysatisfyingequation (1).

The force model, F(X,t),used for this study includesperturbations

involvingonly gravitationalharmonics;other perturbations,such as drag,

low thrust,etc., have been ignored. Specifically,the force functionlooks

like

•_=zK,o (3)
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withf(X,t)being the point mass gravitationalforce causedby the central

body, __._ _ 9_ _JG_ the perturbationdue to the nonspherlcltyof the

central body. The transcendentalfunctionsg_(X,t)are extremelycomplex

for i 7]3. Based on this force model,equation (2) has the form

Due to the complexityof gt(X,t),the terms g_x(X,t)become very cumbersome.+

The questionthis study addressescan now be stated as: What is the effect

on orbit determinationmethods when M is strictlyless than N even though

the resultingmatrix Fx(X,t) is still to be evaluatedalong a trajectory

satisfyingequation (3)? The main objectivefor settingM(N in (4) is a

reduced cost in time and space in programmingand evaluatingthese equations.

Relationshipto Orbit Estimation

Orbit estimationis the processof solvingfor the values of a set of

parameters from the observationalmodel which will minimizethe difference

between a computedand an observedtrajectory. The ResearchVersion of the

Goddard TrajectoryDeterminationSystem (R&D GTDS) uses two methodsof orbit

estimation: A classicalweighted least squaresestimator (differentialcorrection

procedure)and a sequentialestimator (Kalmanfilter).

The observationalmodel is a nonlinearregressionfunctionof the

state and time:

(.-C): C+'CX,+.)+r,

+ Baker in Astrodynamics: Applications& AdvancedTopics devotesAppendixE
to "Partial Derivativesof Total Acceleration."
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where n denotes random noise. The system is mxl, m being the number of

observations. When least squares estimation is considered, the value of X

which minimizes the weighted sum of the squares of the observational

residuals is sought. The function to be minimized is called the loss

function. It has the form:

(6)

The initial estimate of the state is XO. Equation (6) will be minimized

_ (__-0 Since <_
when _ _->_ will be nonlinear, Q(X) is first linearized

by expanding G(X,t) in a truncated Taylor's series about XO. The linearized

problem is now solved and the nonlinear problem is solved recursively vla a

Newton-Raphson iterative scheme to give the minimum difference between computed

and observed trajectories. This briefly describes the differential correction

process where a "batch" of m observations are processed simultaneously. The

state transition matrix is utilized in" the linearization of G(X,t).

The sequential estimator, or filter, handles the problem from a continuous

process point of view. Rather than handling the data in batches as in

differential correction, the filter processes new data immediately upon

collection to yield an improved estimate of the state.

In this approach, observations from times t O and tk are used to determine

an estimate of the state residual from a reference trajectory X(tk) and a

covariance matrix Pk. An observation from time tk+ 1 is added to this set.

Values of the estimated state at tk+ I, X(tk+l), and the covariance matrix at

tk+l, Pk+l, are to be found. The filter used for this study is the Extended

Kalman Filter (EKF) as programmed in R&DGTDS. The EKF corrects the reference

trajectory to the most recent state estimate, which reduces the nonlinearities
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of the original system and is desirable in real-time solution. In the EKF,

the covariance matrix is propagated via the state transition matrix.

S.tudy Results

This study has attempted to address the question of approximate state

transition matrices by initially investigating a parameter, R, formulated by
I

, r,

Rice (4). Mr. Rice defines a single parameter to monitor the state transition

matrix. He presents a statisticalJargumen.t to show that the-_luani;ity ,.

I_: _ , where is an element of the transition matrix {_, can be
I /

/ 5z/

interpreted as a 1_asure of "error growth rate." Rice_'glves P(t)=(_P(O)_ T

as a propagation formula for the covariance matrix, where .L

' } is commonly used asand states that the square root of the trace of Pit

a statistical measure of position errors. Hence,

/

The signature of R suggested using the GTDSestimators with several parameters

to be varied. These included arc length, geopotential modeling of state

and var.iational equations, inclination and eccentricity. Being observed

were the signature of R, the convergence/divergenceof the estimat'or, and

the rate of convergence. ,
/

As a starting point, three cases discussed in Mr. Rice's paper were

compared. Case one used a force model based solely on the point mass force

for both the .state a_nd state transition matrices, which will be>denoted (Jo,Jo)'.
• /

Case two included the "d2" harmonic term in both the equations of state and

the variational equations, denoted (J2,J2), whileca_e three included the J2
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harmonic term in the eo,uations of state but only the point mass model in the

variational equations, (J2,Jo). The comparison of these three cases was

based on a parameter of the state transition matrix and behavior (in terms of

convergence/divergence) of the two estimators in R&DGTDSdiscussed above.

The first orbit considered was a circular (e:O.O), equatorial (i=O.O °)

orbit with semi-major axis a=6550.524 kin; this orbit will be referred to as

SATORBI. The EPHENERISGENERATION(EPHEM)PROGRAMwa._used in the calculation

of the quantity R. EPHEMis used to compute an ephemeris from a given set

of initial conditions and, optionally, will compute the elements of the

state transition matrix by numerically integrating the variational equations

(Eq(4)). Using this option, the quantity R can be printed at any dcsired

interval. The first results obtained printed the value of R every 5 minutes

for the above--mentioned orbit with the modeling of cases I, 2, and 3. Over

48 hours, little difference was observed between the corresponding values of

!q_o _L,o,o ,_o/' ; ,

I

°o I t I
! I
I I ,

cJ :.,_ I

I

tl i

_oucs

GRAPHI
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R in case 1 (Jo,Jo) and case 2 (J2,J2). Ho,vever, the (J2,Jo) case was vastly

different. While in cases I and 2, R grew almost linearly with time, in case

3, R exhibited an approximately periodic behavior. Repeating the EPHEMruns

with the same set of initial conditions but a different force model made the

above comparisons even more striking. In this case, a 4xO geopotential field

was used in the equations of state. When generating the partial derivatives,

4xO, 2xO, and OxO force models were used. It is worth repeating at this time that

the matrix of partial derivatives is always to be evaluated along a trajectory

of the full equations of motion. Time histories of R for cases (J4,J4) and

(J4,J2) were very similar to those of cases (J2,J2) and (Jo,Jo). Values of R for

(J4,Jo) followed the same oscillating behavior as (J2,Jo). (See Graph I.)

These results suggest that when using a model for state with the format of

eq(3), a simplified force model in the variational equations might be acceptable

provided that the "J2" geopotential term is explicitly included.

To test the effects of truncation on batch estimation, a 5-day simulated

observation file was generated on tape via the GTDSDATASIMprogram. Range

and range rate observations were made of SATORBI,where an ephemeris of

SATORBIwas created with J2 included in the state force model. The measurement

standard deviations for range and range rate were 15 meters and 2 cm/sec,

respectively. With a=6550.625 km, e=.O0012, i=.O02O,_:_=N=O.O as an initial

estimate of the state, DC runs were made for cases (J2,J2) and (J2,Jo) over 24

hours. In the (J2,J2) case, the DC procedure converged* to the correct solution

in 4 iterations. The (J2,Jo) case diverged.

These runs were repeated over a 6-hour and 12-hour arc. For the (J2,Jo)

case, 6 hours was the time at which the parameter R reached its maximumand

* The criteria for converge:_ce of the DC are based on the iterative reduction
of the RMS(square root of the r_an square of the observation residuals;

where _;--_-_(R) are the observation residuals, and m is the number of
observations. When RMSi+1 _ RMS_ , the solution is considered converging.
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hence the time at which R started to decrease in value. In other words,

for the initial 6 hours, R is monotonically increasing _Jhich more accurately

reflects the "error growth rate" expected in the state transition matrix.

The period of SATORBI was about 90 minutes, so that a 6-hour arc covers about

4 orbits. When the DC program was used with (J2,Jo) to correct over the 6-hour

arc, it converged in 9 iterations; the 12-hour correction diverged. In other

words, a short term (where 4xP, P being the period of the orbit, might be a

guideline for shoFt term) cort'ection might be possible with a point-mass

force n_del for the variaticnal equations with a loss of speed in convergence.

It has been demonstrated that using an approximate state transition

matrix can be a detriment to the differential correction process. A logical

question at this point might be "how much, if any; of an approximation to the

variational equations can be tolerated by the DC?" The behavior of the parameter

R when (J4,J4), (J4:J2) end (J_.,Jo) epherlerides are compared hints that a

truncation is pez_ss±ble, provided J2 is explicitly included in the va'_iational

equations. To test this hypothesis, simulated observations were made ;,;itiL

SATORBI elements using a 5x5 geopotential field in the equations of motion.

Five DC runs were made with Jo, J2, J33, J_, and j5 models for the variational

equations and the same initial estimate of the state as mentioned above. The

DC pro qrams converged in 4 iterations for cases (J_,J_), (j_,d4)and (J_,J_).

Convergence wa_ achieved in 5 iteratior_s for the (J_,J2) case. (J_,Jo) diverged.

Table 1 lists RMS values for the last two iterations of these cases as an

indication of how little is lost when a truncati(;n from j5 to J2 for the

variational equations is used.
/

5 3 5,a ),Iteration # (J_,J_) (j_,j4) (j5,j3) (05
/

3 I.1273519 l.0687897 l.7389176 2.1896022 ,

4 .99626079 .99626079 .99631702 .99647488

5 .99626083

TABLE l
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The above runs were all made with a 24-hour arc. The (J_,jO)DC case did

convergein 9 iterationswhen used for the short (6 hour) term correction.

By lookingat a typical term of the matrix of partialderivatives,it becomes
M i

clear that the.J2 term dominatesthe term i=_2_=_ikgikx(X,t) . From
Baker,

the followingterm is the term added to the 2-body partial derivativewhen

forming for i=2,3 and K=O:

To begin with, the term J2 is three orders of magnitudelargerthan Ji, i_ 3.

Also, Ji is divided by ri, rapidlydecreasingthe relativemagnitudeof each Ji

term for i increasing. In other words, the term J2 will reflectthe vast

majorityof theperturbation due to the asphericityof the earth. Hence, it
N _"K_ tC

is not at all surprisingthat the terms._Z_ i_i can be truncatedwhen forming

the partialderivativeswithout Jeopardizingconvergencein the DC.

Other orbits were used to test (he relationshipbetween inclinationand

behaviorof the DC in the (J2,Jo)case. SATORB2had initialelementsa=6550.524km,

e=.O, i=30o, _=m=M=O. A DC programwas run for a 24-hour arc with an initial

estimateof the state as a=6550.624km, e=.O0012,i=30.002oand _=m =M=O.

Again, the (J2,J2)case convergedin four iterationsand (J2,OO)diverged.

Again, using SATORB2elementswith 5x5 geopotentialfield in the equationsof

motion, a (J ,J2) DC run over 24 hours will convergein six iterations. These

results supportthe suggestionthat an approximatestate transitionmatrix might

be acceptableprovidedthe J2 potentialterm is included.

Severalmore inclinationswere tried: I=60o,i=90o, _=98o, i=120o. At

this point, differentresultswere achieved. The initialorbitalelements

used are listed in Table 2. Simulatedobservationswere made for each orbit.
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a e i _n. _) M

SATORB3 6550.524 0 60o 0 0 0

SATORB4 6550.524 0 90o 0 0 0

SATORB5 6550.524 0 980 0 0 0

SATORB6 6550.524 0 120o 0 0 0

TABLE2

For the initial estimate of the state in each DC run, the same error

was added to the orbital elements: I00 meters added to the semi-major axis,

eccentricity was increased to .000]2, .002o added to the inclination and no

error added to.o_,_ and M. Rapid convergence occured for all (J2,J2) DC

runs. With computed observations based on an ephemeris of SATORB3,the

(J2,Jo) DC run showed a definite trend toward convergence. After 12 iterations,

the current state was given as a=6550.257, e~O(-6), i=60.00003 °, _+_+M)=720 °.

DC runs based on simulated observations of SATORB4,SATORB5,and SATORB6were

also converging in the (J2,Jo) case, though at a slower rate than SAIORB3.

The results are summarized in 'Fable 3.

Value of State

No. of
Iterations a e i

SATORB4 20 6550.534 .4578xi0-4 89.99754

SATORB5 27 6550.525 .2398xi0 "5 98.00005

SATORB6 24 6550.252 .6327xi0 "6 120.0

TABLE3
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Table 4 comparesthe RMS value for variousiterationsfor SATORB3,4,

5, and 6 (J2,Jo). This serves as a monitor for the ratesof convergence.

RMS Values (J2'Jo)

Iteration # SATORB3 SATORB4 SATORB5 SATORB6

I 2084.7695 226I.6206 1766.1576 2307.2376

6 74.458092 I175.0753 742.93831 103.57066

12 57.808147 521.06515 260.84572 I12.82074

TABLE 4

As one might expect, since cos_T_r=Icos_I and sin-_'__= sin_K

the RMS values are most similar for i=60° and i=120°, (SATORB3and SATORB6).

In these two cases, the first 12 iterationsalternatedbetween convergingand

diverging,with large decreasesof RMS value in convergentiterations.

(This accountsfor RMSI2)RMS6 in SATORB6.)

In order to examine the sensitivityto inclination,it is helpful to

look at first order perturbations. In Methodsof Orbit Determination,Escobal

devotes a chapter to "SecularPerturbations,"where the term secular describes

variations"associatedwith a steady nonscillatory,continuousdrift of an

element from the adoptedepoch value."* He representsthe perturbingpotential

as A_=I-V where _" is the potentialdue to an asphericalearth and V is the

potentialof a sphericalearth. He segregatesfrom A those terms which

will contributesecular variationsin the elementsand arrivesat

where K2m=n2a3. Note that this is a first order expressionin J2 and for the

sake of this analysis,the Ji, i_/ 3, terms have been neglected. Littleis lost

* Escobal,P.R., 1965, p. 362.
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by neglecting Ji, i_ 3 as the J3 term is approximately I0 orders of magnitude

smaller than the J2 term and the relative magnitude of Ji and J2 beconms even

more drastic for i7 3. Expression (7) is then averaged over one revolution,

resulting in:

(8)

Using this as the perturbing function due to J2, it is easy to see that the

secular effect of J2 is eliminated in the equations of motion when i=54.7 o

(since I/3-I/2 sin 2 54.7°=0). In other words, at this specific inclination,

the satellite, in a secular sense, perceives the earth as approximately (i.e.,

to first order J2) spherical.

With the aid of the above model for the perturbing function, Escobal

develops the following equations representing the gradual drift of the classical

elements from their adopted epoch values. Note that only-EL_ and M experience

this drift and a, e and i are taken to be constant. (It might be worthwhile to

state again that this is only a first order secular perturbation theory.)

Anomalistic m_an motion:

Mean Anomaly:

Longitude of the ascending Node:

Argument of Perigee:
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Between these critical inclinations of 54.7o and 125.3 o , the rate of the

secular variations of the elements is smaller than outside of this region.

This accounts for convergence in the DC procedure with (J2,Jo) modeling

for orbits with inclinations between 54o and 125o .

To conclude the differential correction section of this study, two more

orbits were considered. These orbits were elliptical with a greater

semi-major axis. Simulated observations were made of these orbits. The

initial states are given in Table 5.

a e i 4) I M

SATORB7 7278. 360 .1 0 0 0

SATORB8 9357. 89143 .3 0 0 0

TABLE5

A larger value for a will decrease the effect of J2 which is readily seen in

equation (8). However, the effect of J2 is not absent from these two orbits

and the graph of the parameter R with (J2,JO) modeling suggests that the DC

procedure will have trouble converging over a 24 hour arc, which it indeed does.

But the period of SATORB7and 8 is increased to 103 minutes arld 150 minutes,

respectively. Because of its period, it is not surprising that SATORB8converges

in II iterations over a 12-hour span with the (J2,Jo) modeling. With SATORB7,

P=I03 minutes so that 7 hours (_4xP) should be a reasonable time arc in the

(J2,Jo) DC. Whena 6-hour arc is used, the (J2,JO) DC converges to SATORB7

elements in iI iterations with rapidly decreasing RMSvalues. With a 12-hour

arc, convergence was still not achieved after 30 iterations.

The results obtained using the FILTER as an orbit estimator are more

difficult to examine than the results from the DC. As input to the FILTER

program, the user supplies an initial estimate of the state along with an
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initial estimate of the covariance matrix.* The a priori covariance

matrix contains the state standard deviation and correlations, hence

points the filter in the right direction•

For this study, the observational residuals were used to monitor

filter performance, with decreasing residuals within a pass and modestly

larger residuals appearing after a data gap indicating convergence. The

arc length used in the filter portion of this study was 18 hours.

Whentesting the effect of approximating the state transition matrix

in the filter, only the SATORBIorbit was used. With i=O.Oo and e=O.O,

this orbit is particularly susceptible to perturbations due to the earth's

J2 nonsphericity. As will be demonstrated below, the filter has an added

dimension of sensitivity, that being the a priori covariance matrix. Because

of this and tirne constraints,_the use of the filter was restricted to this

orbi t.

The first offset imposed en the state was the same as that used for

the DC:_a=lOOm,_e=.OOOl2,ai=.O02O,_ =_=M=O.O. With this offset,

the cartesian elements at t O are x=6549.8379 km, y=z=O.O km, x=O km/sec,

y=7.801531422 km/sec and z=-.0002723 km/sec. At t O, the true cartesian elements
o

are x=6550.524 km, y=z=O.O km, x=z=O.O km/sec and y=7.8006548 km/sec. Four

different a priori covariance matrices were tried in the filter with this

initial state estimate. All four covariance matrices were diagonal, implying

there was no correlation among the errors in the state estimate• The first

covariance matrix exactly reflected the errors in the state:

The DC procedure has an a priori covariance matrix default value of
infinite magnitude so that its inverse is the null matrix. In the DC
procedure it is this inverse which is an additive term to the loss function
(eq(6)); however, it has been omitted in eq(6) as it is the null matrix.
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0-" x=.68 km,_"y=O_z=.l x 10-4 km,C-k=.l x 10-4 km/sec,O'_=.87 x 10-3 km/sec

and (T-_:,27 x 10-3 km/sec.

The results obtained for (J2,J2) and (J2,Jo) were very similar, both cases

converging. Table 6 below lists, for the last 6 passes, the largest

residual in meters within a pass for both cases:

Pass Number

(02,00 ) max IO-CI 23 2120 - 291 21 19 31

(J2,02) max IO-CI 31 _43 22 27 21 30

TABLE6

These results change greatly when a different a priori covariance

matrix is used. With _=d-y=.l km,d-z=.Ol km andd_=d_:o_=.l x I0 -4 km/sec,

the (J2,Jo) case failed to converge. This covariance matrix fails to

recognize the error in the y component,ay=.O0087 km/sec, so that the actual error

in y is 87 times larger than is reflected in the standard deviation associated

with it: d-_=.l x 10-4 km/sec. The largest residual in the last 6 passes is

listed below. Note that the (J2,J2) case fares much better than (J2,Jo) and

is considered converging.

Pass Number

19 20 I 211 22 I 23 24   , o maxlOC,
(J2,J2) max IO-CI 35 72 illll 521 8 I 45 81

TABLE7

If the standard deviation of _ is increased to_y=.O0004 so that _y is

approximately 20 tin_s larger than is reflected in the standard deviation,
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the (J2,Jo} case responds a little better. However, it is not considered

converging. The residuals during the first 9 hours suggestthe filter

has a ha_dle on the correct state. The next 9 hours shows increasing

residualsas the filter drifts away from the possiblesteadystate.

Lastly,the standard deviationof y was increasedagain to(Ty=.00015or 5 times

smallerthan the error on y. Here the (J2,J0)case did as well as the

(J2,J2)case. Table 8 summarizesthe results for 0-_=.0004and

6-#=.00015,with IFx=O-y=.l,(I-z=.Ol,O-_=_-_=.lx 10-4.

Pass Number

19 20 21 22! 23 1 24

I(FD =.00004 km/sec I I

, (J2,J0)max _0-C_ 190 226 230 220 i 242 1_ 227

Io-ct 2a 39 22 2s i , 41

i ,c'_ =.000}5 km/sec

i

(J2,J0) ma,x lO-Cl 32 23 3l 33 I 29 ! 47

(02,02) max IO-C_k 28 37 23 28 '1 '14 38

TABLE8

Although these results are far from conclusive,some inferencescan

be drawn from them. It has been demonstratedthat for this case the filter

responds_,ellwith an approximatestate transitionmatrix providedthe a

priori covariancematrix reflectsthe state errors within five standarddeviations.

The test cases used for this study suggestthat when the error is between20

and 90 ti_es larger than the standarddeviation,the (J2,Jo)case fails,yet
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the (J2,J2)case is able to reach a steady state solution. This suggests

that when the a priori covariancematrix is consideredan accurateindicatio_

of the state error, truncatedvariationalequationsmight not harm the per-

formanceof the filter. On the other hand, when the initialcovariancematrix

somewhatinaccuratelyreflectsthe state error, the full partialderivatives

are needed to help steer the filtertoward steady state. (The term "somewhat"

is used here as a precaution;a totallyinaccuratea prioricovariancematrix

can easily cause a (J2,J2)filter case to diverge.) This sensitivityto the

initial covariancematrix makes it difficultto draw conclusionsregarding

the filter'sperformanceas a functionof the state transitionmatrix.

Conclusions

This paper has attemptedto evaluatethe effectsof an approximate

state transitionmatrix on the differentialcorrectionprocedureand the

filter procedureas used for orbit estimation. The I)Cresults fall into

four categories: the effectsdue to (1) extent of the approximation,

(2) orbitalinclination,(3) length of time arc, and (4) orbital

eccentricity. Coincidingwith these categoriesis the behaviorof the

parameter_, C_¢_I_J _
(_3_;_'. R can be used to "predict" convergence/divergence

in the DC and its behavior suggested these four categories as meaningful

avenues to investigate. Whenusing a force model for the state which

includes the jm harmonic term, it has been shown that it is a safe practice

to approximate the variational equations provided that the J2 term is

included. When this approximation is made, the DC process will still

converge as it would with the full variational equations with only a
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negligible loss of speed. A total truncation of the harmonic terms in

the variational equations will, in general, cause divergence in the DC.

One e>'ception to this is orbits with inclinations between 54.7 o and 125.3 °

In this range of inclination, the effect of the nonsphericity of the earth

is minimized. Here (J2,Jo) DC cases will converge but so slowly that

the truncation might, in pr.actice, be undesirable

The oscillatory signature of R when the most drastic truncation is

made suggests the possibility of short term differential corrections. The

maximum value of R tends to occur after four periods of the orbit. Hence an

arc length of four times the orbital period becomes a reasonable guideline

for short term corrections. In this arc length, convergence is achieved but

speed of convergence again becomes the trade-off for the truncation. As the

orbital period lengthens with greater semi-major axis, so does the time

arc over which the (J2,Jo) case converges in the DC procedure.

Wl.., the Filter as an estimator, l.ess conclusive results are found.

Tl_e effect of a truncation in the variational equations on filter perfo_'ntance

was highly cor._elated to the initial covariance matrix. When the a priori

covariance matrix was a good indication (within 5 standard deviations) of

the actual error imposed on the state, little difference was seen in the convergent

behavior of the filter for the (J2,J2) and (J2,Jo) cases. However, when the

accuracy of the a priori covariance matrix is relaxed, the (J2,Jo) case showed

divergence in the cases tested. Furthermore, when the accuracy of the a priori

covariance matrix is completely lost, neither the (J2,Jo) nor the (J2,J2) case

will converge.
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The results obtained in the filter section of this paper leave another

set of questions open. It was assumed tl_at using the low altitude, circular

equatorial orbit where the perturbatiorls due to the nonsphericity of the earth

are most pronounced would be a good orbit to test the effects of truncated

variational equations in the filter. This appear.s to be a valid assumption

in view of the analysis mentioned above based on equations (7) and (8).

However, other sets of orbital elements could be tested iri order to help

determine the limits of accuracy needed in the a priori covariance matrix

when using an approximate state transition matrix. Also, this study was

restricted to variations inO-_ . Certainly many other variations could be

tested, although this starts to drift away from the original intent of the

study. Also, is there a level of state noise which might be used to help

compensate for the use of an approximate stmLe transition matrix?

In general, this study could be expanded to rlenpotentiai accelerations

such as drag and solar radiation pressure. What, then, would be the effect

of including a nonpotential acceleration in the equations of motion but

excluding it in the variational equations?

Lastly, the stability properties of the state transition matrix is

a question of interest. Does the solution to the variational equations

exhibit one type of stability for the (J2,J2) modeling which is different

from (J2,JO) modeling?

Although many questions remain open, it is hoped that this study

sheds some light on the appropriateness of state transition matrix

approxi mati ons.
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A SEMIANALYTICAL THEORY FOR THE
PARTIAL DERIVATIVES FOR PERTURBED MOTION

W. McClain,* A. Green, t A. Bobick,** and P, Cefola?t

Charles Stark Draper Laboratory

ABSTRACT

A semianalytical theory for the partial derivatives of perturbed motion is described. The theory is
based upon the generalized method of averaging. The required functional capabilities include the
solution of the variational equations for the averaged equations of motion and the evaluation of the

short-periodic partials. The results are presented in the framework of both the analytical and
numerical averaging methods. Additional two-body functions (the partial derivatives of the Poisson

brackets with respect to elements and the second partial derivatives of position with respect to ele-

ments) are required and these have been derived with the aid of the computerized algebra system,
MACSYMA. However, for the initial developmental effort, two-sided divided difference techniques

have been used to construct the partial derivatives of the averaged equations of motion and the
short-periodics with respect to the slowly varying elements. Partial derivatives with respect to the

phase angle are constructed analytically. This implementation allowed duplication, in the partial

derivatives, of the force models specified in the averaged equations of motion and the short-periodics
with a relatively small software development effort. Numerical comparisons of the semianalytical
partials with the Cowell partials are given.

*Staff Engineer

tCPT, ARMOR, U.S. Army
**MIT Dept. of Electrical Engineering and Computer Science

??Section Leader, Space Systems Analysis, Air Force Programs Department
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TARGETING WITH FIXED PROPELLANT LOAD

Geza S. Gedeon

TRW Defense and Space Systems Group

ABSTRACT

The Inertial Upper Stage (IUS) for the Space Shuttle Operation employs solid rocket stages with

fixed, propellant loadings. This means that, if for a given mission the satellite weight is less than the
maximum, the IUS will deliver higher AV-s than required. Then, means must be found to waste the
excess capability in order to achieve the desired orbit. One way would be to execute a nonoptimal

transfer which would require higher than maximum AV-s. In the following, an algorithm is presented

which defines take-off points on the parking orbit and the injection points on the target orbit* for

which transfer orbits require a fixed AV 1 and a fixed AV2 (defined by the satellite weight).

To have complete generality, it is assumed that both the parking and the target orbit are elliptical.

This allows the use of the same algorithm for guidance, i.e., to compensate for AV errors. Namely

the transfer orbit achieved by the erroneous _V 1 is regarded as a new parking orbit and the new

transfer problem is solved by assuming a 5AV 1. The maximum value of 8AV 1 is the AV 1 variation
and its minimum value is the one which still yields a solution by the algorithm. AV 2 errors are
regarded orbit injection errors and compensated the usual way.

*For interplanetary missions the target-orbit is the IUS Parking orbit from which the third stages
inject the spacecraft into a departure hyperbola.
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Figure 1 shows the performance of the two-stage IUS. Also shown are on the

figure the minimum aV1 and aV2 required to transfer a satellite from the
Shuttle orbit into a 2.9 ° inclined synchronous (circular) orbit. For a

satellite which weighs : 5300 Ib, the IUS would produce these AV-s, thus

a Hohmanntransfer, from node to node, would be feasible. But for a

satellite weighing less than 5300 Ib, the IUS delivers an extra performance

which has to be wasted some way. This can be done, e.g., by a non-optimum

transfer scheme shown on Figure 2. Instead of transferring from node to node,

transfer is made between non-nodal points D and A. If the points are

correctly chosen the equations shown under the figure are simultaneously

satisfied with the same h = angular momentumvalue. In those equations A and B

are simple constants which depend on the chosen geometry, Yi are direction
cosines of the chord vector _ in two coordinate systems, the first one is

shown, the other would be in the target plane with the X axis through A.

VR and VT are the radial and transverse velocity components of the parking

(p) and the target (t) orbit velocities. Finally, AV1 and _V2 are the ideal
rocket velocities delivered by the IUS to a satellite with the particular

weight.

Generally the two equations do not yield simultaneous solutions, one of the

points or both have to be moved to get a solution. There are many different

ways to use residues to move one of the points to the correct location, any

of these can be implemented on a digital computer.

The following figures show examples of transferring from a 150 n mi circular

Shuttle orbit a 2900 Ib satellite into different final orbits. Figure 3a

shows the case of transferring from a 28.5 ° inclined Shuttle orbit into a

24 hour circular equatorial orbit. The angle of the first burn is measured

in the parking orbit from the node where the target orbit "ascends" (northward)

through the parking orbit plane. The second angle measured in the target

orbit from the node where the parking orbit "descends" through the target

orbit plane (same location). Values for a Hohmantransfer would be 0 and 180.

For a satellite weighing only 2900 Ib, solutions are represented by the two

curves on Figure 3a.
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Figure 3b shows the correspondingangularmomentumvalues, i.e., the simultaneous

solutionsof the two AV equations. The cross marks are servingto interrelate

the correspondingbranchesof the curves. If two radii vectors and the angular

momentumare known,then the transferorbit is completelydefined,transfer

time, transferangle, perigee,apogee altitudes,burn directions,etc., can be

all calculated.

Figures4a and b show transferpossibilitiesto a 12-hourcriticallyinclined

circularorbit from a 37.5° inclinedShuttle orbit. Both orbits have the

same right ascensionof the nodes, (mostfavorablecase).

Figures5a and b show "Type I"* transfersto a 12-hourcriticallyinclined

eccentricorbit from a 37.5° inclinedShuttleorbit. The perigeealtitude

of the final orbit is 150 n mi and its apogee altitudeis 21390 n mi. The

argumentof the perigeeis 270e. The right ascensionof the target orbit

is fivedegrees behind that of the parkingorbit which was found to be

approximatelythe best geometry. Even so the range of solutionis rather

restricted. A much more broad range was found for "Type If" transfersshown

on Figures6a and b. It is interestingto note that if departureis made

between -98° and -70° both Type I and II transfersare possible,i.e., the

quarticsproducefour real roots.

* Like on interplanetarymissionsType I trajectorieshave less than 180°

transferangles. Type II trajectorieshave more than 180° transferangles.
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ANGLE OF THE FIRST BURN IN THE PARKING ORBIT. DEGREES 

FIGURE 3a. TRANSFER TO A 24 HOUR ORBIT. 
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A SEMIANALYTICAL SATELLITE THEORY

FOR WEAK TIME-DEPENDENT PERTURBATIONS

P. Cefola,* W. McClain, ? L. Early, ? and A. Green**

Charles Stark Draper Laboratory

ABSTRACT

Previously, Semianalytical Satellite Theories based upon the Generalized Method of Averaging have
been developed for

- perturbations with no explicit dependence on time, and

- perturbations with a strong explicit dependence on time

While the assumption of time independence (TI) is exact only for zonal harmonics and for static

atmosphere density models, the assumption has also been applied successfully to develop the
averaged equations of motion for lunar-solar perturbations of satellite orbits with periods up to two
days (see AIAA preprints 78-1382 and 75-9). However, recent testing of the lunar-solar short

periodics produced via the TI assumption for the GPS orbital flight regime (12 hr period) indicates

that the relative accuracy of these short-periodics is significantly less than the accuracy of the zonal
short-periodic variations.

This paper describes the modifications of the Semianalytical Satellite Theory required to include
these 'weak' time - dependent perturbations. The new formulation results in additional terms in

the short-periodic variations but does not change the averaged equations of motion. Thus the

m-monthly terms are still included in the averaged equations of motion. This contrasts with the

usual approach for the strongly time-dependent perturbations in which the m-monthly (or m-daily,

if tesseral harmonics are being considered) terms would be eliminated from the averaged equations
of motion and included in the short-periodics computation.

Numerical test results for the GPS case obtained with a numerical averaging implementation of the
new theory demonstrate the accuracy improvement.

*Section Leader, Space Systems Analysis, Air Force Programs Department
)Staff Engineer

**CPT, ARMOR, U.S. Army
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A SEMIANALYTICALSATELLITE THEORY

FORWEAKTIME-DEPENDENTPERTURBATIONS

Outline

e Review of Analytical Results _or Time-lndependent (TI) Case

• Numerical Results for Low Altitude Case w/TI Theory

• Numerical Results for High Altitude (GPS) Case w/TI Theory

m Analytical Development of Weak Time-Dependent (WTD) Theory

• Numerical Results for High Altitude Case w/WTD Theory

(Zonals, Lunar-Solar, and Solar Pressure)

• Numerical Results for High Altitude Case w/WTD Theory

(Zonals, Lunar-Solar, Solar Pressure, and 2x2 Tesserals)
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SHORT PERIODICS

DSCULATING ELEMENT SPACE ai = _i + Eni,l(E'_) MEAN ELEr4ENTSPACE

27

/ •ai _ _FI(c'X) cni,l(E,_)dk'= 0 ai " EAi,l(E)

R = n + _F6{a,X) (i,= 1,2,3,4,5,6) _ _ n+ eA6,1(_)

ASSUFIE

al = Xio 4-_ [Xic_ cos (_) + ZI(_ sin (ok')]

o:l

BY USE OF THE GENERALIZED METHOD OF AVERAGING

Xlo = _6_6 + eAi,l(_) = _'i

2_

n- Ia---_:L--'T_, k IXio cos (o_)+ Zlo sin (ok')Io=I

DEFINE

Xi(_ Zio
Cio =- _ Dio = oT

zni,l(_,_) =_ I_Ci_ sin (ok)- _Dlo cos (ag)]

%° = o--e¢_ - \_/q6
i = 1,2,3,4,5,6

-- SHORT PERIODIC COEFFICIENTS ARE FUNCTIONS OF _HE FIVE SLOHLY VARYING MEAN ELEMENTS

AND THEREFORE SHOULD ALSO BE SLOWLY VARYING•

-- COUPLING OF THE FAST VARIABLE SHORT PERIODIC VARIATION WITH THE SEMIMAJOR AXIS

SHORT PERIODIC VARIATION.

-- FOR CONSERVATIVE FORCES, ANALYTICAL EXPRESSIONS ARE POSSIBLE FOR ECio AND EDio.
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L_ ALTITUDE TEST CASE

• EPOCHCONDITIONS: 1974, Oct. 21, I0 hrs, 24 min.

OSCULATINGELEMENTS MEANELEMENTSIPCE)

a = 6644.586 a = 6636.3797

e = .01 _ = .0106045

= 67.g_538_19 o T = 67.97090021 °

: 91,99738418 ° _ = 91.9949106 °

= 200.674168B ° _ = 200.21097331 °

M = 164.3173126 ° M = 164"77124281°

m S/_C • ATMOSPHERE

CO = 2.0 Modified Harris-Priester

Area = 1.86m2 w/FIo'7 = 150

Mass = 677okg

o FORCEMODELS

COWELL(30 second step) SEMIANALYTICAL (I day step)

J2 ..... J6 First Order: J2 .... 'J6 and Dras

and drag Second Order: J_ + J2-Drag Coupling
in the AOG

_IZSAK . Analytical Drag - J?)

?0



HIGH ALTITUDE TEST CASE

I. ASSUME A SET OF EPOCIIMEAN ELEMENTS; THESE ARE 'CONSTANTS' FOR THE

SEMI-ANALYTICAL THEORY

2. AT EPOCH, USE THE SHORT-PERIODIC GENERATOR TO PRODUCE OSCULATING

ELEMENTS

3. CONVERT TIIEOSCULATING ELEMENTS TO POSITION AND VELOCITY; THESE

ARE THE CONSTANTS FOR THE COWELL THEORY

4. PROPAGATE THE ORBIT USING BOTH THE SEMI-ANALYTICAL THEORY AND COWELL

AND COMPARE THE RESULTING POSITION _ND VELOCITY HISTORIES

TEST CASE #2 FORCEMODELS

C_oWELL SEMI-ANALYTICAL

J2'....J6 J2,...,J6 PLUS J22

LUNAR-SOLAR LUNAR-SOLAR (TI)

SOLAR RADIATION PRESSURE SOLAR RADIATION PRESSURE (TI)
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SEMI-ANALYTICALTIIEORY

FOR WEAKLYTIME-DEPENDENT

PERTURBATIONS

o OSCULATINGEQUATIONS

dai
_-- : _ Fi(a,k,t)

_k F6(_,k,t)= n+c

• ASSUMEbFORMS

dTi_ -_ .+
_- -- e Al(a,t) ai _ TI . _ ni{a',T,t)

d_ = n(_I) . e A6(a,t) ), = _ + _ n6(_,T,t)dt

e MATCHINGEXPRESSIONSFOR dal/dtAND dk/dt GIVES

AI + _ --Bni+ -- : Fl(_,_,t), i = l.....S_T _t

_n6 _n6 _ 3n
A6 + _ -- + _ = F6(_,_,t) - __ nl(_,_,t)

_ _t 2a

m ASSUME:

_02n Bnl--d_ = O, i = I,...,6

I

Bt

PHYSICALLY,THISTAKESTHE M-MONTHLIESOUT OF.THE SHORTPERIODICS

e THEN

Al _ _2n Fi(_,_,t) d_, I : I.....6
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WTD SHORT-PERIODICS

e DEFINE

flS(_,_,t) : Fi(_,_,t) - Ai

e ASSUME

FiS(a,_,t) : _ [Xio(_,t) cos o_ + Zi_(a,t) sin o_]
o=I

ni (a,_,t) : _ -- [Mio(_,t) sin o_ - Nio(_,t) cos _]

e SUBSTITUTING INTO THE MATCHING EXPRESSIONS GIVES PDE's

I _Ni_

Xj_ = Mio - o'-E at

I @Mio
Zio = Nio +-- +__

on at

e ASSUME SOLUTION TO PDE

Mi° : Xi_ + _(I)

A(2)
Nio _ Zia + •

e FIRST ORDER RESULT

N l I I aDi'_a" (3_$ 61 B Cl'(_l sin ak-

e NOTE: Ci,a AND Di,a ARE THE COEFFICIENTS COMPUTED WITH THE TI ASSUMPTION
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TEST CASE#2

e FORCE MODEL

COWELL SEMI-ANALYTICAL

J2,...,J6 J2,oo.,J6 PLUS J22

LUNAR-SOLAR LUNAR-SOLAR (WTD)

SOLAR RADIATION PRESSURE SOLAR RADIATION PRESSURE (WTD)

o MEAN ELEMENTS

a = 26559.5 km _ = 0o0°

e = o001 m = 0.0°

i 63°0° M = 0.0°

• OSCULATING ELEMENTS

a = 26561.56567 km _ = 359°9999657°

e = .00104842 _ = 359.8560915°

i = 63.001124° M = .1436848842°

TESTCASE#2 RESULTS

TIME (DAYS) Ax(m) Ay(m) Az(m) RSS(m)

2 -.01 .8 1.317 Io54

4 -.22 1.574 2°704 3.14

6 -.63 2.278 4D395 4,99

8 -1.31 2.866 6.274 7.02

I0 -2.14 3.601 7o801 8°85

12 -3°70 4.702 9.342 II.09

14 -5.58 5.322 I0o51Q 13o04
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TEST CASE#3

I FORCEMODEL

COWELL SEMI-ANALYTICAL

J2'°°_'J6 J2....'J6 PLUS J22

LUNAR-SOLAR LUNAR-SOLAR (WTD)

SOLAR RADIATION PRESSURE SOLAR RADIATION PRESSURE (WTD)

(C,S)2,I + (C,S)2,2 (C,S)2,1 + (C,S)2,2

• MEAN ELEMENTS

a = 26559.5 km n = O,O°

e = .O01 m = 0.0°

: 63.0° M =" 0.0°

• OSCULATING ELEMENTS

a : 26561.54781 km _ : 359.9999706°

e = .0DI04802 _ = 359.8538535°

i = 63.001118° M = .1459308175°
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Figure I. Radial Difference after 23 hours fron Eocch/Semianalytical
minus C_ell for the Lc_1Altitude Circular Test Case
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Cowell: 6xO gravitational field any draq: 30 sec numerical integration

time step

AOG: Ist order analytical expressions for the 6xO mravitational field,
•Zeis' expressions for Jp effects and option 7"f_r drag (48 pt
quadrature order 1 day numerical integraticn time steo

SPG: 6xO gravitational field2(7/48) and draq (7/48) to first order,
•Zeis' expressions for J2 effects,

Initial Conditions: PCE
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Figure 2. Cross Track Difference after 23 hours from Eooch/Semianalytical
minus Cowel] for the Low Altitude Circular Test Case
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Figure 3. Along Track Difference after 23 hours from EDcch/Seminalytical
tnihus Co, ell for the Lo_ Altitude Circular Test Case
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Figure /_ Time Ilt._tory of the Zonal Se=imaJor Axis ghort Periodic CoetEicients _ Eor th_ Low ^ltituJe

_. Circular Te_ Ca_a
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-- _ame initial ¢ond/t/onn _nd perturb_/on_ _ in dr_; opt/on 6 of AA,_-79-133
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Figure 5 Time Hietory of the Vr_g _cmim_Jor _ll Short Perlodla Coefficleneat for the Low A1eltudeCircular Test Case
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Figure 6. Radfal Difference (Tr Theory)
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Figure 7. Cross Track Difference (T! Theory)
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Figure 8. Along Track Difference (TI Theory)
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Figure g. Along Track Difference (WTDTheory)
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Figure I0o Along Track Difference (WTDTheory)
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Fiqure II. Radial Difference/Semianalytical minus Cowell for the GPS Test Case
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Figure 12. Cross Track Difference/Semi_analytical minus C_Jell for the
GPS Test Case
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Figure 13. Alono Track Difference_eminalytical minus Covlellfor the _PS
Test Case
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Figure 14. Radial Difference/Semianalytical.minus Cowell for
GPS (Test Case #3)
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Figure 15. Cross Tnack Difference/Semian_lytical minus C_;ell for
GPS (Test Case #3)
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Figure 16o Alonq Track Difference/Semi analyticallminus Cowell for
GPS (Test Case #3) "
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PHASE I NAVSTAR/GPS EPHEMERIS
AND SPACE VEHICLE CLOCK PERFORMANCE SUMMARY

Albert B. Bierman

The Aerospace Corporation

ABSTRACT

The Navstar/Global Positioning System (GPS) has been under evaluation for more than one year.

This paper, one of several Major Field Test Objective reports, addresses the issue of Control Seg-
ment accuracy in predicting Space Vehicle (SV) clock and ephemeris states for broadcast to the user

community. Both the highly precise ephemeris and clock prediction data blocks and the less precise
(but longer period of utility) almanac data block are evaluated.
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i. INTRODUCTION

The Navstar/Global Positioning System (GPS) is a

satellite-based navigation system that provides extremely

accurate three-dimensional position, velocity and time

information to properly equipped users anywhere on or near the

earth. It is a Joint Service Program, managed by the Air Force

with deputies from the Navy, Army, Marines, Defense Mapping

Agency, Coast Guard and NATO with technical support provided by

The Aerospace Corporation.

Phase I - Concept Validation - has been undergoing

test and evaluation in preparation for the second stage of the

Defense Systems Acquisition Review Council (DSARC-2) in Spring

1979. An extensive flight test program has been conducted at

the Yuma Proving Ground in Arizona and, to a lesser extent, off

the coast of Southern California and at other sites in the

continental United States.

While the ultimate objective is to demonstrate

precision navigation for a wide range of military missions, it

is equally important to verify the performance of all aspects

of the GPS system. To accomplish these goals a series of

papers has been prepared to support major field test objectives

for DSARC-2.

i. 1 OBJECTIVES

This paper addresses the accuracy of the ephemeris and

space vehicle (SV) clock predictions which are vital to the

user navigation function. The Phase I system specification

(Ref.l) allocates 3.66 meters (I sigma) for the ephemeris error

94



contribution to the User Equivalent Range Error during the

twenty-four hour period after the satellite upload message has

been prepared. Phase I satellites have rubidium frequency

references as atomic standards. The GPS error budget allocates

2.74 meters (i sigma) for the SV clock error during the two

hour period after the satellite upload message has been

generated. The Phase I clock error is predicated on a rubidium

atomic standard with fractional frequency stability of 1 part

in 1012 over a two hour period. Operational satellite clocks

will be cesium beam tube or hydrogen maser standards. These

Clocks offer frequency stability of 1 part in l013 or better

over 24 hours. Thus the Phase III Operational GPS can be

expected to provide better than 3 meters (i sigma) accuracy

over the twenty-four hour period after the navigation message

has been prepared.

1.2 SCOPE

This assessment will evaluate (i) the ephemeris and SV

clock error contributions to user ranging error (URE) during

the two-hour periods following navigation data uploads; (2) the

error contributions throughout the twenty-four hour period

following navigation data uploads; and (3) SV almanac data

accuracy for 2 weeks or more after upload. It is important to

note that while item (2) addresses twenty-four hour accuracy,

there is no prescribed Phase I clock error budget beyond two

hours.

The adequacy of item (3) will be judged against the

almanac URE (i sigma) values (Ref. 2) presented in Table I.
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Table I. Almanac Accuracy

User Equivalent Range Error
Time estimated by analysis

(meters)

1 day i000
1 week 2500
2 weeks 5000
3 weeks i0000
4 weeks 15000

5 weeks 20000
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2. SYSTEM DESCRIPTION

GPS is comprised of three system components (i) the

Space Segment, (2) the User Segment, and (3) the Control

Segment.

2.1 SPACE SEGMENT

The Space Segment provides the spaceborne navigation

payload. Phase I uses four space vehicles in 10,900 nmi

(20,200 km) altitude circular orbits inclined 63 degrees with

respect to the equator. The satellites are distributed in two

inertial planes which provide an hour or more of usable four

Space Vehicle (SV) geometry for daily user testing at the Yuma

Proving Ground (YPG). Table 2 presents a summary of the

constellation configuration. The orbit periods are controlled

to cause the ground traces to repeat each day. Fig. 1

illustrates the repeating satellite geometries. Because of the

sidereal effect of the earth's motion about the sun, and orbit

torques by the oblate earth and by sun-moon effects, each day's

events occur approximately 4 minutes and 3.4 sec earlier than

the previous day's events. Satellite geometry at the YPG is

described by the azimuth-elevation time history in Figure 2.

The satellite positions at 1 January 1979/1700 GMT are shown on

Figs. i and 2. At that time, the opportunity for four

satellite navigation at YPG was nearing termination due to the

fade of Navstar 4.

The major elements comprising the navigation payload

are the pseudo random noise sub assembly (PRNSA), atomic

frequency standard, processor, and L-band antenna. The PRNSA

includes the baseband generator, which produces the P (precise)

and C/A (coarse/acquisition) ranging codes and encodes naviga-

tion data from the processor onto the pseudo random noise (PRN)
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Table II. Navstar Phase I Orbits at First

Ascending Node on 1 Jan. 1979

NODAL LONGITUDEOF RIGHTASCENSIONOF TIMEOFFIRST
SA_LLI1_ PERIOD. INCLINATION. FIRSTASCENDING ASCENDINGNODEII). ASCENDINGNODE. ECCENTRICITY ARGUMENTOF DATEOF
IDENTIFIER rain de9 NODE.deg de9 GMT PERIGEE.de9 LAUNCH

NS-i 717.982 63.12 46.12 218.06 0448:18 0.0034 345.5 21 F[B" 1978

NS-2 717.983 63.41 331.61 100.25 0155:30 0.0051 93.4 12 MAY1979

NS-3 117.985 63.03 _2.81 98.15 0022:18 0.0015 350.4 I OCT1978

NS-4(2I ]17.988 63.13 95.71 21"/.67 0033=48 0.0008 71.4 IODEC1978
Do

Ill ReferencedIo astronomicalcoordJnalesof 1950.0
12)Datafor 15January1919
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ranging signal; the amplifier/modulator units that supply the

L 1 (1575.42 MHz) and L2 (1227.6 MHz) carrier frequencies

modulated by the PRN ranging signals; and the high-power

amplifiers that amplify the carrier signals for transmission.

2.2 USER SEGMENT

The User Segment consists, in part, of navigation

avionics which measure pseudo range and delta (pseudo) range

using the navigation signal from each satellite. Pseudo range

is the true distance from the satellite transmitter to the user

antenna phase center plus an offset due to the user's clock

bias. Similarly, delta range is the incremental range change

over a specified time interval plus an offset due to the user's

frequency bias. Each signal carries ephemeris data and system

timing information modulated at 50 bps. The low data rate

information forms the navigation message, which permits the

user receiver/processor to convert pseudo range and delta range

measurements to user three-dimensional position and velocity.

Navigation message data consists of five subframes

each containing 300 bits of data (Fig. 3). Subframe 1

Subframe 1 Subframe 2 Subframe 3 Subframe 4 Subframe 5

SV Clock SV Ephem- SV Ephem- Special Almanac Data
Data eris Data eris Data Messages

Single

Frequency
Ionospheric
Model Data

Data Block I Data Block II Data Block III

Figure 3. Navigation Message Structure
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contains data to establish system time and a set of

coefficients with which a single frequency user can model the

signal delay due to the ionosphere. The data in subframe 1 is

also referred to as data block I. Subframes 2 and 3 contain

data from which the satellite position and velocity can

accurately be determined. These two subframes are referred to

as data block II. Subframe 4 contains alpha numeric data

. irrelevant to navigation. Subframe 5 provides data similar to

data block II but of reduced accuracy. Every thirty seconds

the almanac of a different satellite appears in data block III.

2.3 CONTROL SEGMENT

The Control Segment consists of a Master Control

Station (MCS), an Upload Station (ULS), and monitor stations

(MS) located in Hawaii, Guam, Alaska, and at Vandenberg AFB,

California. The monitor stations passively track all

satellites in view and accumulate pseudo ranging data, which is

transmitted to the MCS where it is processed to provide

estimates of the satellite ephemerides and clock offsets. At

least once a day these estimates are extrapolated forward in

time to provide predictions of the SV ephemeris and clock

states. These predictions are the basis of the new navigation

message that is transmitted by the upload station to the

satellites for subsequent downlink transmission encoded on the

carrier signals. The MCS, ULS, and the Vandenberg monitor

station are co-located.

As previously described, the satellite-station

geometries repeat, occurring somewhat less than 4 minutes

earlier each day. Fig. 4 presents the tracking contacts for 1

January 1979. Tracking opportunities for some SV-MS pairs

occur 23 hours per day with as many as 12 satellite-station
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contacts occurring simultaneously, e.g., 1600 GMT. Yuma

Proving Ground can be considered to have the same tracking

opportunities as Vandenberg monitor station because of their

proximity. Thus, the opportunity for four SV tracking at Yuma

occurs between 1515 and 1725 GMT on 1 January 1979 where the

earlier time is determined by the rise of Navstar 1 while the

later time is determined by the fade of Navstar 4. The

desirability of incorporating Vandenberg tracking data prior to

preparing the upload further reduces the available test window.
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3. EVALUATION METHODS

Control Segment operations have been supporting Phase I

satellites for nearly two years. Much of this time has been

used to integrate the system, de-bug hardware and software, and

to refine system parameters in order to optimize performance.

Sufficient data have been accumulated during the last year to

enable the Phase I Control Segment evaluation. Evaluation

activities fall into two categories: (1) Master Control

Station system performance evaluation and (2) independent

validation activity.

3.1 Master Control Station System Performance Evaluation

Within the Master Control Station software is a

program for system performance evaluation. This program

performs various computational checks and comparisons to

monitor Control Segment performance. These checks generally

involve comparisons of parameters or functions generated some

time in the past with corresponding parameters or functions at

current ("real") time. In particular, two computations

involving the navigation message have proved useful as a

measure of Control Segment performance: (I) measurement

residuals and (2) user range error (URE).

3.1.1 Measurement Residuals

Throughout a satellite pass, raw monitor station

measurements (pseudo range and delta range) are edited;

corrected for such physical phenomena as tropospheric and

ionospheric delays, relativity, satellite lever arms, and light

transit time delay; and smoothed to yield a current measure of

the slant range between the satellite and the monitor station.

Using the applicable data block I and II portions of the
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navigation message which were last uploaded to the satellite,

one can compute the corresponding (predicted) slant range to

the satellite. The difference between the smoothed and

predicted measurement represents the range error due to the

navigation message errors. Fig. 5, is a simplified

illustration of the measurement residual computations.

3.1.2 User Ran@e Error

The navigation message is prepared and uploaded during

the time when the Vandenberg monitor station is tracking.

After upload, the satellite is tracked for at least another

hour (SV4) and for as much as another five hours (SV2). The

newest data represents the best (real time) information on the

satellite clock and ephemeris. A predicted pseudo range

measurement to a stationary site at Yuma Proving Ground,

Arizona is computed from the applicable navigation message (see

Fig. 6). A corresponding pseudo range measurement is computed

using the current (real time) satellite clock and ephemeris

estimates. The difference between these pseudo range

computations represents the user range error (URE) attributable

to the Control Segment (i.e., navigation message).

3.2 INDEPENDENT VALIDATION

In support of the Phase I activities, The Aerospace

Corporation has performed independent evaluations of Control

Segment performance (see, for example, Reference 3).

Evaluation efforts involve post flight ephemeris and clock

reconstruction using GPS-supplied data as well as S-band

ranging data collected by the Air Force Satellite Control

Facility (AFSCF). Also, extensive simulation activity where

the truth is precisely known has been used to validate Control

Segment per formance.
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3.2.1 Best Fit Ephemeris and Clock

Absolute satellite ephemeris and clock accuracies are

difficult to establish. To accomplish post flight

reconstruction, a special version of the TRACE program (Ref. 4)

has been used to generate best fit ephemeris and clock (BFE/C)

estimates. For evaluation purposes, BFE/C estimates are

considered to be the closest representations of the "truth"

currently available. Three types of data have been used for

post flight reconstructions: MCS generated smoothed ranging

data (SRTAP), Aerospace generated smoothed ranging data (named

APOLY, after the software which generates it) and AFSCF radar

ranging data.

3.2.1.1 SRTAP Data

The Master Control Station generates smoothed pseudo

range and delta range measurements every fifteen minutes when

monitor station tracking data exists. These data referred to

as SRTAP data, are the input to the linearized Kalman filter

which computes the real time satellite ephemeris corrections

and clock states. In addition, this same data is forwarded to

the Naval Surface Weapons Center/Dahlgren Laboratories where a

reference trajectory for the MCS Kalman filter linearization is

generated weekly.

3.2.1.2 APOLY Data

As an alternative to using MCS prepared smoothed data,

The Aerospace Corporation has developed a program (named APOLY)

which converts raw monitor station (6 second interval

measurement) ranging data into smoothed data. Moreover, APOLY

uses integrated delta range rather than polynomial generated
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range differences to complement the pseudo range data. By

doing their own editing, correcting, and smoothing, Aerospace

Analysts have absolute control over which data are used and

obtain explicit measures of the quality of the data.

3.2.1.3 AFSCF Data

As part of AFSCF support, the GPS satellites are

tracked with S-band radars from Satellite Control Facility

(SCF) sites extending from the Indian Ocean to northeastern

United States. Six daily contacts of I0 minute minimum

duration (the Indian Ocean site often gathers as much as one

hour), while sparse vis-a-vis GPS tracking densities, provide

tracking coverage over more of the orbit than the four GPS

monitor station network. The GPS sites stretch only from Guam

to Vandenberg AFB.

3.2.1.4 Ephemeris Comparisons

Best Fit Ephemerides (BFE) for the period 16-30 August

1978 were generated: one based on SRTAP data, a second based on

APOLY data, and a third based on SCF data. The solution

trajectories of each fit were differenced with each other.

Agreement between the BFEs was quite good. Figure 7 is an

example of the differences between Navstar 2 BFEs using SCF and

SRTAP data. Estimated differences in terms of URE are

approximately three meters (one sigma). These results are more

notable when one considers that Navstar 2 experienced roll

momentum dumps on the twentieth and the twenty sixth day of

August.

The momentum dumping process was performed with a

coupled-pair of 0.1 Ib reaction control jets. The location of

these jets caused a plume impingement onto the space vehicle,
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producing an intrack position error of about one hundred meters

impulsive per day. A judicious choice of fit parameters to

include in-track thrusts in the BFE solutions removed

essentially all of the intrack error due to this source.

3.2.2 Ephemeris End Around Check

The ephemeris end around check (EEAC) involves a

sophisticated simulation of GPS data inputs and outputs (see

Ref. 5). Some aspects of the activity are still not

completed. When they are, they will be documented. For now,

two aspects of EEAC will be useful to this presentation: (I)

best fit ephemeris and clock solutions, and (2) monitor station

location solutions (geodetic survey). Monitor station survey

will be discussed in Para. 4.3. The best fit activity is cited

here to demonstrate the efficacy of the post flight

reconstruction methodology since in this case the truth is

precisely known.

One case (Case 3.X) involved the simulation of two

Phase I satellites and four monitor stations. Reference 5

gives specific details of all the simulated effects. Briefly,

one satellite was characterized by a cesium frequency standard

and Navy's Navigation Technology Satellite II (NTS II) the

solar pressure force model, while the second satellite had a

rubidium frequency standard and a Navstar solar pressure force

model. Force model errors were introduced into the solar

pressure and geopotential force models. Other simulated errors

included monitor station location coordinates, pole wander

values, monitor station clock instabilities based upon ground

cesiums, SV random and deterministic clock errors, tropospheric

and ionospheric refraction corrections, and white noise on all

measurement links.
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This data was fit using the same methodology applied

to real data. Figures 8 and 9 present the differences between

the best fit solutions and the truth. All the error components

display the twelve hour periodic structure typical of GPS

orbits. Radial errors have amplitudes between one and two

meters. Horizontal errors (the root sum square of intrack and

crosstrack errors) are approximately fifteen meters for Navstar

1 and ten meters for NTS II. As a result of the altitude of

the GPS orbits only between zero (at zenith) and twenty four

percent (on the horizon) of the horizontal error maps into the

user range error. Hence, the estimated contribution to the

user ranging error is about three meters (one sigma).

3.3. DATA COLLECTION

Although Control Segment data is collected daily,

special data collection periods have been designated for the

purpose of performance evaluation. Table III presents a

summary of these special periods. The SEG tests (CS-SEG-1)

were intended to verify Control Segment performance in support

of one, two, and three satellites. Each test was nominally

scheduled for four weeks of normal operations. As evidenced in

Table III, none of the SEG tests had four consecutive weeks of

normal operations. The CS-S-1 (S-l) test was a four satellite

full system evaluation. Initially scheduled for 17 January to

13 February, 1979, it was rerun from 26 February to 25 March,

1979. This latter period was devoid of significant anomalies

and is considered to be representative of normal operations.

During these test periods extensive data collections

were performed and forwarded to General Dynamics/Electronics

Division in San Diego, California and The Aerospace Corporation

in E1 Segundo, California for analysis. It is primarily the

results of these data analysis activities that are reported in

the following section.
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Table III. Special Data Collection Periods

TEST PERIOD

CS-SEG-I (i SV) 15 MAY - 12 JUNE 1978

CS-SEG-I (2 SV) 15 AUG - 12 SEPT 1978

CS-SEG-I (3 SV) 13 NOV - 20 DEC 1978

CS-S-I (4 SV) 29 JAN - 23 FEB 1979

26 FEB - 25 MAR 1979 •
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4. RESULTS

This section summarizes Phase I Control Segment

performance to date. For more details see Refs 6-9. The

results will address the following issues: ephemeris and

satellite clock prediction accuracy, i.e., data block I (SV

clock) and data block II (ephemeris); almanac accuracy, i.e.,

data block III-

4.1 EPHEMERIS AND SATELLITE CLOCK PREDICTION ACCURACY

4.1.1 Master Control Station System Performance Evaluation

As described in Section 3, this activity is performed

with the MCS software. The results reported in Sections

4.1.1.1 and 4.1.1.2 have been supplied by General Dynamics

Electronics Division. The remainder of Section 4 is based on

analyses performed at The Aerospace Corporation.

4.1.I.I Measurement Residuals

Satellite positions predicted from the navigation

messages are used by the GPS Master Control Station System

Performance Evaluation software to compute a predicted range

from a given satellite to a Control Segment monitor station

currently tracking that satellite. Corrected smoothed pseudo

range measurements are then converted into a measured range by

subtracting the predicted satellite clock offset and the

current estimate of the monitor station clock offset. The

difference between these measured and predicted ranges provides

a direct indication of the accuracy of the GPS navigation

message.
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Fig. i0 summarizes the predicted range residuals to

the Vandenberg monitor station for the four GPS satellites.

The data presented are the root-mean-square (rms) of the

predicted range residuals based on data collected during four

satellite testing in February 1979. The daily residuals were

shifted along the horizontal axis so the data could be

evaluated relative to upload time. Note that the residuals for

the four SVs before the daily upload are of the order 3-30

meters. At the upload time, the residuals drop towards zero

and then begin to disperse. The residuals are not identically

zero at upload time because of the timing involved in computing

the evaluation parameter. The navigation message is

constructed based upon filter estimates at a particular epoch.

These data must be uploaded to the satellites and verified by

the Control Segment monitor stations before it is available for

evaluation. Hence, the message has aged a minimum of fifteen

minutes (the nominal Phase I evaluation interval) before

measurement data are available for residual formation.

4.1.1.2 qser. Ran@e Error

Section 3.1.2 described the URE computation performed

by the MCS System Performance Evaluation. The CS-S-I test •

performed from 26 February through 25 March 1979 was a period

of stable GPS operation. Daily URE data were accumulated for

the four satellites. The root-mean-square (rms) of these URE

values are plotted in Fig. Ii as a function of time since the

navigation message was uploaded to the satellite. It should be

added that the mean value of the URE for each satellite is less

than 1.5 meters; hence the rms value can also be interpreted

as the standard deviation with no significant error.

As a consequence of the satellite geometries (see

Section 2), Navstar 4 is visible to Yuma for less than 2 hours
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after the fourth satellite (Navstar 2) rises. During the first

two hours after upload Navstars i, 2, and 3 better the required

accuracy by more than one meter. Although Navstar 4 exceeds

the one hour error budget by 0.1 meters (4.0 vs 3.9 meters),

the difference is quite small. In general, all four satellites

better the Phase I accuracy requirements during the entire

period they are visible to Yuma after upload.

4.1.2 Independent Validation

The twenty-six navigation messages broadcast by the

satellite (one message each hour) predict the position and SV

clock offset around the entire orbit, actually extending two

hours into the next day. These predictions have been compared

against the "truth" solution (BFE/C) prepared by The Aerospace

Corporation (see Section 3.2) during the special data

collection periods. Figures 12 and 13 present the Navstar 1

and 2 ephemeris and clock errors as determined from the upload

messages on 16 Aug 1978 (day 228). The small data loss in the

first hour is due to the MCS computation lag between the time

the navigation message is prepared and the time it is uploaded,

verified, and then broadcast. During this time the satellite

is broadcasting the navigation message uploaded previously.

Radial and crosstrack ephemeris errors have a

characteristic twelve hour periodicity. Intrack errors, while

also of twelve hour periodicity, have a secular error growth in

addition. Clock errors, on the other hand, should look more

like a random walk. However, the clock errors on 16 August

show some periodic characteristics. This appears to be a

result of (i) relative paucity of data due to unavailability of

Guam tracking station, (2) induced correlations between clock

state and ephemeris state estimates due to high altitude (4.2

earth radii) of GPS orbits, and (3) induced correlations due to

best fit clock processing.
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Next, the ephemeris and clock errors are converted to

user ranging errors by mapping the contributions onto the

line-of-sight to (fictional) uniformly distributed users on the

earth's surface. At each time point, the range errors for the

uniformly distributed user population are computed and the

corresponding statistics are tabulated. Fig. 14 presents the

68 percent error curves for Navstars 1 and 2 for 16 Aug 1978.

To interpret this result, remember that 68 percent of all users

who can see the satellite (masking angle is five degrees for

these computations) will incur errors equal to or less than the

value indicated by the curve. On 16 Aug, the maximum global

user range error was i0 meters during the first two hours and

about 22 meters during the twenty four hour period after upload.

4.1.2.1 Two Vehicle Testin@

A similar activity was done for each day during which

an upload was generated during the CS-SEG-I (2 SV) test

period. A total of l0 days between 16 and 31 August had

acceptable uploads (weekends were excluded, and two days had

some difficulties). Cumulative error statistics for the

two-week test period are presented in Fig. 15. Two curves -

one for the first two hour period after the upload message was

generated and the second for the twenty-four hour period after

the upload message was generated - summarize the Control

Segment ephemeris and SV clock prediction performance. To

interpret the figure, given a point on either curve xI = URE,

Y1 - probability), one states that for the indicated time span

(i.e., 0-2 hours or 0-24 hours) there is a probability of Yl'

that a user will incur a URE less than or equal to x1. Ergo,

there is a 68 percent probability that the user ranging error

is less than 6.5 meters during the first two hours after

upload. While this value is almost two meters beyond the error

budget it is a very positive result when one considers that at

this point in time:
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• Navstar 2 incurred intrack velocity impulses
during the attitude control system roll momentum
dumping process. This phenomenon was caused by
plume impingement during the firing of the 0.1 lb

reaction control thrusters. The momentum dump
impingement anomaly was identified during the BFE
processing - a month or more after the test
period.

• The Control Segment software was still in a state
of checkout. Several corrections have since been

made - primarily in the data base.

The twenty-four hour URE statistics are impressive

when one realizes that the SV rubidium clock should contribute

nearly 37 meter (I sigma) to the URE. According to the curve,

for the 16-31 Aug. time period, the 68 percent probability

yields a URE of 14 meters - which includes ephemeris and clock.

4.1.2.2 Three Vehicle Testing

A similar exercise was performed for the CS-SEG-1 (3

vehicle) test period. Seventeen days in the period 14 November

to 8 December had uploads included in the cumulative error

statistics shown in Figure 16. Again, two curves are used to

su_m_arize the Control Segment ephemeris and SV clock prediction

performance; the first depicts performance for the first two

hours after an upload while the second is for the twenty four

hour period after the upload.

A procedural change strongly affected the character of

these results. In an attempt to obtain ephemerides independent

of GPS data, the previously referenced tracking data from the

Air Force Satellite Control Facility was used as the basis for

generating the BFE used in this comparison. This data was not

corrected for ionospheric propagation effects at all, and was

corrected for tropospheric propagation effects by use of a

procedure different from that used at the MCS. While the
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long-arc fits to these AFSCF data appeared of acceptable

quality, it was subsequently demonstrated that their predict

performance was noticeably poorer than those obtained from

GPS-obtained data. This poorer predictive capability is

sharply evident in these three satellite test results.

Additional problems hampered these analyses;

• A different clock was employed on Navstar 2

during this test than was used on the 2 vehicle
test. This clock exhibited a 56 sac-period

oscillation throughout this test. Additionally,

this clock at that time manifested some as yet

unexplained frequency excursions typically of

many minutes duration and of several tens of
meters' magnitude in pseudo range. These factors

have led to worsening of Navstar's prediction

performance by a factor of 2 or more.

• Guam monitor station was not operational

• Navstar 2 had a 56 second period anomalous

oscillation in the 1575.42 Mhz carrier signal

with amplitude 50 times greater than expected

• Navstar 1 had emerged from its eclipse season

just prior to the 3 vehicle test span. It has
been observed throughout these analyses that

orbit and clock prediction are relatively worse

in and near eclipse seasons than between eclipse
seasons.

• Plume impingement during roll momentum dump

firings was again a problem during this test. If

anything, the number of momentum dumps was larger
in this interval than during the two vehicle test.
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4.1.2.3 Four Vehicle Testing

Four vehicle data for the period 29 January - 12

February 1979 was employed to examine the predictive

capabilities of that configuration. Ten days of valid uploads

are included in this sample. Cumulative error statistics are

given in Figure 17, as before, in the four vehicle 2 hour and

24 hour prediction curves.

These data were reduced using a GPS data based BFE

Predict Performance characteristics of this configuration and

seen to be smaller than the two vehicle data presented

earlier. The two hour value of less than 5.5 in with a 68

percent probability is closer to the specification error budget

than previously reported values. In this two week interval

there were two cases of anomalous clock performance, and the

previously noted 56 second oscillation on Navstar 2's clock

continued to plague the analysis. However, by the use of the

magnetic torque momentum control system the incidence of

thrusting to control momentum was eliminated. A change in the

MCS data case process noise values resulted in more accurate

predictions during this period, as is shown in Figure 17.

Table IV summarizes the 68% values for each of the

three described here. It presents data by Navstar vehicle as

well as points from the composite curves, Figures 15-17. The

specific problems addressed earlier are clearly reflected in

the summary.

The four vehicles analyzed here were part of a

preliminary examination of four vehicle test results. Both the

individual Navstar SV results and the composite are very

encouraging as steps toward meeting the specification of 5

meters in 2 hours, 68% of the time. A preliminary look at the
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Table IV. Test Summaries

Two Vehicle Cumulative Summary

NAV 1 NAV 2 ALL (B Chart)

68%, 0-2 7.3m 5.5m 6.5m

68%, 0.24 14.1m 12.4m 14 m

Three Vehicle Cumulative Summary

NAV 1 NAV 2 NAY 3 ALL

68%, 0-2 13.5m 12 m i0 m 13.5m

68%, 0-24 23.5m 29 m 12 m 20.5m

Four Vehicle Cumulative Summary

NAV 1 NAV 2 NAV 3 NAV 4 ALL

68%, 0-2 5 m 6 m 4 m 7.5m 5.5m

68%, 0-24 ll.5m 27 m 12 m 6 m ll. Sm

CS-S-I (see Table III) data indicates it is of higher quality

and more nearly free of annoying anomalies. It is anticipated

that all vehicles will meet specification value during this

period.

Of special interest are the 24 hour predict values,

which are much better than had been anticipated from analyses

assuming a 1 part in 1012 fractional frequency stability

clock.
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4.2 ALMANAC EVALUATION

The methodology for evaluating the almanac (data block

III) message is quite similar to that used for the independent

validation of the ephemeris and SV clock messages (see section

4.1.2). Data block III has only one message per satellite per

day. Moreover, it is intended to be useful (to much less

accuracy) over extended time periods (see Table I). Thus, in

evaluating almanac messages, the time scale is in days rather

than hours. Here, as in section 4.1.2, the evaluation is based

on data collected from 16 to 31 August 1978.

Fig. 18 presents the results of the almanac evaluation

for messages generated during the CS-SEG-I (2 SV) test. These

messages spanned the period 16 to 31 August. If the one sigma

values of Table I are interpreted as 68 percent probable URE,

the almanac accuracies during the 2 SV SEG test appear to

satisfy the error budget over the five week evaluation interval.
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5. CONCLUSIONS

Control Segment test evaluations have occurred during

Spring 1978 (I SV), Summer 1978 (2 SV), Fall 1978 (3 SV), and

Winter 1979 (4 SV). The one SV test period was of little value

because of many anomalous conditions. The two SV test period

during Summer 1978 had two weeks' usable data. The three SV

test period had over three weeks of usable data. Two weeks of

4 vehicle tracking were examined as a preliminary look at the

formal four vehicle test data. Analysis on these periods forms

the basis of this paper.

GPS system checkouts were still occurring in summer

1978. The evolution of Monitor Stations capability and

reliability has increased continually from that period to the

present. Plume impingement during momentum wheel unloading,

which were causing in-track satellite perturbation approaching

100 meters a day, were identified in the course of these

analyses. This problem has been removed through the use of

magnetic torque for momentum wheel unloading. The checkout

operations included a large number of problems solved,

anomalies identified, fixes devised, work-arounds installed,

and general systems development. Throughout it all, (perhaps

despite it all), the Control Segment continued to perform its

functions extremely well. Specifically:

• Control Segment user ranging error contributions
were only about 1 meter over the specified values
(i.e., 5.5 meters vice 4.6 meters) for the two
hour period following upload.

• Twenty-four hour URE values were below what was
anticipated from the Phase I rubidium SV clocks.

• Almanac accuracy met the URE budget.
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AUTONOMOUS SATELLITE ORBIT DETERMINATION DURING THE
DEVELOPMENT PHASES OF THE GLOBAL POSITIONING SYSTEM*

Joan B. Dunham

Computer Sciences Corporation

ABSTRACT

An onboard navigation system was developed to aid the design and evaluation of algorithms used in

autonomous satellite navigation with Global Positioning System (GPS) data. The performance of

the algorithms designed for a GPS Receiver/Processor Assembly (R/PA) intended for Landsat-D was
investigated during the development phases of the GPS (four to six satellites in the constellation).

This evaluation emphasized the effects on the orbit determination accuracy of the expected user
clock errors, GPS satellite visibility, force model approximations, and state and covariance propaga-

tion approximations. Results are presented giving the sensitivity of orbit determination accuracy to
these constraints.

*Work performed under National Aeronautics and Space Administration Contract NAS 5-24300
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IN TRODUCTION

The Navstar Global Positioning System (GPS) is a Department of Defense pro-

gram that will provide navigation information to properly equipped users. A

constellation of up to 24 satellites in 12-hour orbits will broadcast coded signals

from which the user's position can be determined. The application of GPS to

onboard satellite navigation has been previously discussed (References i, 2).

As part of the evaluation of the feasibility of autonomous satellite orbit deter-

mination using GPS, an experimental GPS Receiver/Processor Assembly (R/PA)

will be placed on Landsat-D, and the resultant orbital solution will be compared

to that obtained using more conventional ground-based techniques. This experi-

ment will be conducted during the early phases of GPS, during which there will

be four to six GPS satellites available.

The R/PA desig-n proposed for spacecraft applications (Reference 3) consists

of a dual-channel receiver and a Digital Equipment Corporation (DEC) LSI-II

processor. The R/PA measures pseudorange and delta pseudorange observa-

tions from the GPS signals, estimates the corresponding observations using

the GPS navigation message, and uses the observation residuals in a UDU T

formulation of the extended Kalman filter (EKF) to determine the user space-

craft's position, velocity, clock bias and bias rate, and satellite drag coefficient.

Simulation studies are in progress to determine the accuracy attainable with this

use of the GPS data, to identify and evaluate the primary sources of error, ,_md

to examine the algorithms in the proposed R/PA. As an aid to such studies, an

onboard navigation package simulator (ONPAC) was developed on a DEC

PDP-II/70 computer, which has computational accuracy similar to that of the

LSI-II. The simulator is designed for both prernission planning and real-tirne

analysis as well as evaluation of the GPS receiver algorithms.

The simulator is being used in this study to determine the factors affecting the

optimum performance of the onboard processor that are mission independent.

138



Some of these results are Presented here. The topics studied include data

editing, residual smoothing, fading of the filtermemory, clock modeling, state

process noise covariance modeling, and GPS selection.

As an aid to the use and evaluation of GPS pseudorange and delta pseudorange

observations, the capabilities to simulate and use these observation types were

built into the Research and Development Goddard Trajectory Determination Sys-

tem (R&D GTDS). GPS observation can be simulated with R&D GTDS for both

ONPAC and R&D GTDS use.

An overview of the steps involved in simulation and use of GPS data are sum-

marized in Figure i. Both truth model information and simulated data are

passed to the ONPAC program. There, the orbit estimation is done, and the

estimated trajectory is compared to the truth model.

DATA SIMULATION

The force model used in generating the true user ephemeris can be selected

from the options available to the R&D GTDS EPHEM program (Reference 4).

These include geopotential harmonic coefficients (up to 21-by-21), drag, solar

radiation pressure, and perturbations from the Sun, the Moon, and the other

planets.

Data simulation options for parameters affecting the data accuracy are listed

in Figure 2. Itshould be noted that GPS satellitescan be scheduled for specific

subsets of the total simulation time span. If a GPS satelliteis scheduled for

observations only during periods when itis not visible, itis "scheduled out" of

the data set. The default inclinationwill also be a modifiable option in the

future.

The information passed to ONPAC is summarized in Figure 3. Because all the

computations in ONPAC are done in the Earth-centered Earth-fixed (ECEF)

coordinate system, this information is in ECEF coordinates.
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Figure 1. Overview of Analysis Approach
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o USERCLOCKERRORrlODELOPTIONS:

NO ERROR

OOADRATIC

RANDOMWALK

o OBSERVATIONMEASUREMENTERRORS

o GPSCLOCKERRORMODELOPTIONS:

No ERROR

CONSTANT BIAS, UNCORRELATED

CONSTANT BIAS, CORRELATED (I.E., ALLOPS

CLOCKS HAVE THE SA;4E ERROR}

O GPS CONF[OURATION OPTIONS:

1 TO 2q GPSs (DEFAULTS: 5 IN PHASE ], _2 IN

PHASE [[, 2q IN RHASEIi[)
3 ORBIT PLANES

ALL ORBITS CIRCULAR; INCL[NATION = 63 DEGREES;

12-HOUR PERIODS

o GPSDATASPACINGOPTIONS:

_tI (PROMo TO _o)

At 2 (FROM_PSn TOGPSn_i)

At 3 [FROM LAST GPS It4CCNSTELLATION TO GPS _1)

o GPSSELECT[0N:

ALL OBSERVABLE

GEOMETRIC DILUTION OF PRECISION (GDOP)

EACHGPSMAYBE SCHEDULED FOR SUBSET(S}

OF THE TOTAL SIMULATION TIME SPAN

o GPSEPHEMERISERROROPTIONS;

NONE

RANDOM CONSTANTS FOR RADIAL AND CROSS-TRACK

(H,C); LINEARLY INCREASING ALONG-TRACK (L) TO

A RANDOMLY SELECTED MAXIMUM:

-- UNCORRELATED

-- 0RBIT-W[SE CORRELATED

-~ TOTALLY CORRELATED

SINUSOIDAL:

-- INPUT IS H,C,L AMPLITUDES, PERIOD _P},

AND ALONG-TRACK RATE L[)

-- DIFFERENT mNASE OF=SET FOR EACH _PS,

COMPUTATION BASED ON _IUMBER OF _msB

IN THE CONFIGURATION

Figure 2. R&D GTDS GPS Data Simulation Options

141



FOREACHOBSERVATION:

rOBS = TIME OF OBSERVATION (INCLUDING USER CLOCK OFFSET)

T(tk) = USER CLOCK OFFSET = rOB S- tk

TD(tk) = USER CLOCK DRIFT AT tk

POBS = "OBSERVED" OBSERVATION (PSEUDORANGE)

= TRUE OBSERVATION (PSEUDORANGE)

APOBS = "OBSERVED" OBSERVATION (DELTA PSEUDORANGE)

_p = TRUE OBSERVATION (DELTA PSEUDORANGE)

-_GPS = GPS POSITION AND VELOCITY VECTORS IN ECEF_GPS'
COORDINATES, INCLUDING THE EFFECT OF GPS

EPHEMERIS ERRORS

r, V = TRUE USER POSITION AND VELOCITY VECTORS IN

ECEFCOORDINATES

GPSSATELLITE IDENTIFICATION

TRUTHMODELINFORMATIONPROVIDEDDURINGDATAGAPS

Figure 3. Simulated Data Produced for ONPAC From R&D GTDS
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ONPAC ESTIMATION

The ONPAC estimation is done with the UDU T form of the EKF, as described

in the mathematical specifications (Reference 5). The estimation process is

briefly described in Figure 4. The a priori state and covariance matrix can be

either the values from the last observation processed or the input values. The

integration of the satellite equations of motion is done with a modified Euler

integrator. The state transition matrix is computed with a Taylor series ap-

proximation. Studies have demonstrated that these propagation techniques

have sufficient accuracy for nearly circular orbits for the filter as long as the

propagation stepsize is held small, i.e., less than i0 seconds.

The ONPAC state vector is given in Figure 5. The clock bias and bias rate are

estimated in position and velocity coordinates as the clock offset and drift times

the speed of light. The user can select all nine members as the solve-for state,

drop the drag and estimate only eight parameters, or drop the drag and clock

drift and estimate seven parameters.

Parameters that can be varied in the ONPAC program are listed in Table i.

The force model options for the user satellite are the Earth geopotentia[ up to

the 5-by-5 harmonics, rotation terms, and drag. The state transition matrix

is computed with a Taylor series approximation and has only a two-body geo-

potential contribution plus rotation and drag terms. The effect of even further

limitations to this force model can be studied, as can the effect of the integra-

tor stepsize. A tunable parameter study can be done with variations of the

process noise parameters, the fading memory smoothing factor, maximum

values for the memory factor and the residual, and the obser_ration measure-

ment noise.

RESULTS

As part of the autonomous orbit determination evaluation, an experimental

R/PA will be placed on Landsat-D. The proposed Landsat-D orbit was used in

studies of the orbit determination.
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MATRIX

'_' QK = STATE PROCESS NOISE
COMPUTE COVARIANCE MATRIX

PK' UK' DK SGPS(TK) = GPS POSITION

GK = COMPUTED OBSERVATION

_GPS(fK HK, O-C HK OBSERVATION PARTIAL
I DERIVATIVES

OUTPUT

XK..

ACCEPTED .

UPDATE I _0 BACK Tb
_K,OK,§K,tK START

,i ]
IF THE NO OF "-_- A /

' OUTPUT
GPSs IS _ 4, G

FADE MEMORY / K

NOTE: ALL OPERATIONS ARE DONE
IN DOUBLE PRECISION

Figure 4. ONPAC Estimation Algorithm
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X _ CARTESIAN POSITION COMPONENTS

y (/ IN EARTH-CENTERED_ EARTH-FIXED

z ) (ECEF)COORDINATES

B CLOCK BIAS

X = _
-- , _ CARTESIAN VELOCITY COMPONENTSY

I INECEFCOORDINATESi /

CLOCK BIAS RATE

D DRAG COEFFICIENT

CD Acx
D =

2M

WHERE
MCX = CROSS-SECTIONAL AREA OF THE

SATELLITE

M = MASS OF THE SATELLITE

CD CONSTANT COEFFICIENT

Fig-are5. ONPAC StateVector
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Table 1. User Options in ONPAC

TYPE OPTION ADJUSTABLEPARAMETERS

ACCELERATION IIODEL

GEOPOTENTIAL - DEGREE & ORDER, 2-BODY TO 5X5

ATMOSPHERIC DRAG 0N/OFF TIME CONSTANT, Td

EI<FALGORITHM

RESIDUAL TEST FOR ACCEPTANCE ON/OFF PMAX

FADING MEMORY 0N/OFF 'P2

PROCESS NOISE 0N/OFF a2, qa, qb, qd

SOLVE-FOR PARAMETERS INCLUDE/EXCLUDE -
DRAG PARAMETER

OBSERVATION MEASUREMENT NOISE - O-p2' (YA_

STATE TRANSITION MATRIX - ORDER OF APPROXIMATION TOAt 3

INTEGRATOR - STEP SIZE

USER CLOCK - TIME CONSTANT, If



Initial conditions for Landsat-D and the GPS satellites are given in Figure 6.

The GPS satellites constitute the default Phase I configuration. Since the launch

of Landsat-D is expected during the early phases of the GPS, efforts were con-

centrated on orbit determination using the Phase I and subsets of the Phase I

configuration.

Sample results are presented with four different sets of simulated data for

October i, 1980, 0 hours to 6 hours Universal Time (UT). The data simulation

options used in common for these data sets are given in Figure 7.

The ONPAC options used for four sample cases used with these data sets are

given in Table 2. In addition, all runs were done using a 5-by-5 geopotential,

drag in the force model, a state transition matrix approximated to zkt3, and

a 3-second stepsize. The level of process noise used was found from tunable

paYameter studies to give the best results during periods of poor visibility.

Figure 8 shows the root-sum-square (RSS) position error for the baseline case

and the Phase I visibility over the 6 hours of the data span. During periods when

the fading memory is used and four or more GPS satellites are in view, the

RSS position error ls less than i0 meters. The curve has a "fiat bottomed"

appearance found to be characteristic of the cases when fading memory is used.

The studies discussed here have shown that the best results occur when the

fading memory is tuned to the periods of good GPS visibility and the process

noise covariance to periods of poor GPS visibility. The fading memory multi-

plies the covariance matrix and inflates the entire matrix, whereas the process

noise is additive to certain terms of the covarianee. The fading memory swamps

the effect of the process noise when they are used together.

Cases 2 and 3, whose RSS errors are shown in Fig-ure 9, are done with data

sets B and C, which include GPS clock bias errors. The GPS satellites are

selected with the geometric dilution of precision (GDOP) procedure, which,

when six or more GPS satellites are in view, picks for observation only those
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LANDSAT-DINITIALCONDITIONS

SEMIMAJOR AXIS 7086,901 KILOMETERS

ECCENTRICITY 0,001

INCLINATION 98,181 DEGREES

LONGITUDE OF ASCENDING NODE 354,878 DEGREES

ARGUMENT OF PERIGEE 180,000 DEGREES

MEAN ANOMALY 0,000 DEGREES

PERIOD 98,956 MINUTES

GPSCONFIGURATIONANDINITIALCONDITIONS

PHASEI CONFIGURATION

INCLINATION 63 DEGREES

ECCENTRICITY 0,0

SATELLITES 1, 2, 3:

- LONGITUDE OF ASCENDING NODE 120 DEGREES

- MEAN ANOMALIES i00,140,180 DEGREES

SATELLITES 4, 5, 6:

- LONGITUDE OF ASCENDING NODE 240DEGREES

- MEAN ANOMALIES 60,i00,140 DEGREES

PERIOD !2 HOURS

Figure6. InitialConditions
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LANDSAT-D FORCE MODEL:

- 8X8 GEOPOTENTIAL

- LUNI-SOLAR PERTURBATIONS

- DRAG

- SOLAR RADIATION PRESSURE

QUADRATIC USER CLOCK ERROR:

- T_ = 3,3360x 10.5 SECONDS

- T2 = 3,475x i0-I0SECONDS/SECOND

- T3 = 5,0x 10-16SECONDS/SECOND2

OBSERVATION SPACING:

- &t] = 0,6 SECOND
I

- _t2 = 6 SECONDS

- &t3 = 6 SECONDS

OBSERVATION STANDARD DEVIATIONS:

- _p = 2,0 METERS

- O-Ap = 1,7CENTIMETERS

OPTIONS VARIED:

- GPS EPHEMERIS ERROR MODEL

- GPSCLOCK BIAS

- GPS CONFIGURATION AND SELECTION

Figure 7. Data Simulation Options Used for Data
Sets A, B, C, and D From R&,DGTDS
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Table 2. ONPAC _md Data Simulation Options Used in Sample Cases

FADING
CASE MEMORY cTp DATA GPSEPHEMERIS GPSCLOCK SELECTIONPARAMETERS SET ERRORMODEL BIAS

i

BASELINE CASE

TESTCASE1 /_ = 0.2 8.1M A RANDOMLYSELECTED NONE PHASEI,
(3507) P2 = 2.0 (O-H"O-C"O-L)=

(5M, 5M_ 10M) ALL

FADING MEMORY/GPS CLOCK BIAS

- TEST CASE 2 /_ : 0.2 7.5 M B SINUSOIDAL CORRELATED PHASE I

(4010) P2 = 1.05 (H,C,L,L)= (5M,5M, TG = 3 Ns GDOP
10M,0.05M/SEC)

P = 24HOURS

TEST CASE 3 NOT USED 7.5 M C SINUSOIDAL UNCORRELATED PHASE I,

(4011) (H,C,L.L)= (5M,5M, CTTG= 3 NS GDOP10M,0.05M/SEC)

P = ]2 HOURS
EFFECT OF FOUR IN CONSTELLATION

TEST CASE 4 /_ = 0.2 8.1 M D SAME AS C ABOVE NONE # 2,3,5,6
(8102) P2 = 2,0 IN PHASE I



ROOT SUM SQUARE OF P O S I T I O N  ERROR 
FOR B A S E L I N E  CASE (DATA SET A)  

RSS OF 

POSITION 
ERROR 

(METERS) 100 
- 

0 

PHASE I - GPS S A T E L L I T E  V I S I B I L I T Y  

Figure 8. Baseline Case and Visibility 
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ROOTSUMSQUAREOF POSITIONERROR

FORTESTCASE2 (DATASETB)

200

RSSOF

POSITIONI00-
ERROR
(METERS)

0
0,0 1,5 3,0 4,5 6,0

ROOTSUMSQUAREOF POSITIONERROR

FORTESTCASE3 (DATASETC)

200

RSSOF
POSITION

(METERS)

O'
0,0 1,5 3,0 4,5 6,0

TIME FROM 0 HOURS ON !0/I/80(HOURS)

F:gure 9. Root-Sum-Square Position Errors of Test Cases 2 and 3
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four with the best geometric distribution. If four or fewer are visible, those

seen are picked for observation.

The effect of the GPS clock bias error is to increase the baseline case RSS

position error during periods of good visibility. The fading memory option used

in case 2 causes the RSS error to drop to the minimum value more quickly than

in case 3 at periods of good visibility and makes the curve plotted flatter than

that in case 3. Study of the correlated versus the uncorrelated GPS clock errors

shows very little difference in their effects.

Data set D was simulated using only four GPS satellites from Phase h satel-

lites 2 and 3 in one plane and satellites 4 and 5 in another. Figure i0 shows the

visibility and GDOP for this data set. Test case 4, whose RSS error is shown

in Figure ii, was run using this data set. The RSS position error grows to

more than 300 meters during the data gaps, and the user clock is poorly esti-

mated when fewer than four GFS satellites are visible. Given that the error

in the data and the GPS ephemeris is approximately 7 meters, the GDOP from

Figure i0 would predict an error in the position determination of 35 meters or

more when four GPS satellites are visible. The results in test case 4 are in

the 25-through-35-meter range at times of good visibility, within the range pre-

dicted by the GDOP.

CONCLUSIONS

The conclusions of the studies are _ven below.

• The algorithms used are sufficient for accurate orbit determination.

• The errors in orbit estimation are less than those predicted from

the GDOP.

• Accurate orbit determination is possible with only four GPS satel-

lites in the constellation.

• The orbit determination accuracy is limited by the GPS ephemeris

,and clock accuracies.
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GDOPOF GPSs# 2, 3, 5, 6 FROM

R&D GTDS PHASEI (DATASET D)

i0,0

DILUTION OF

PRECISION 7,5 -

(GDOP) L d XJ

5,0 I , ,
0,0 1,5 3,0 4,5 6,0

GPSVISIBILITYFORDATASETD

6,0

4,0 ....NUMBER

2,0 -

i0,0 l , ,I
0,0 1,5 3,0 4,5 6,0

TIME FROM 0 HouRsON 10/1/80(HOURS)

Figxlre i0. GDOP and Visibilityof Data Set D
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TRUE-ESTIMATED CLOCK B IAS FOR TEST CASE 4 (DATA SET D) 

ROOT SUM SQUARE OF POSITION ERROR 
FOR TEST CASE 4 (DATA SET D) 

3 0 0  

RSS OF 

POSITION 
ERROR 200  

(METERS) 

1 0 0  

Figure 11. Clock and Position Errors of Test Case 4 



• The fading memory enhances the orbit determination accuracy,

especially when the a priori Imowledge of the user clock offset is

poor.

All computations have been done in double precision; the effect of performing

some operations in single precision has not yet been investigated.

The studies discussed here have shown that the filter is not overly sensitive to

the tunable parameters. The results presented are typical of the results

gathered from a range of parameter values.
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A PRECISION RECURSIVE ESTIMATE FOR

EPHEMERIS REFINEMENT (PREFER)

Bruce Gibbs

Business and Technological Systems, Inc.

ABSTRACT

PREFER is a filter/smoother program for orbit determination which is used to refine the ephemer-
ides produced by a batch least squares program (e.g., CELEST). PREFER requires, as input, a file

containing the nominal satellite ephemerides and the state transition matrices as generated by
CELEST. PREFER interpolates from this file at the times given on the Measurement Data file and

processes the measurements in the Kalman filter to estimate the corrections to the nominal trajec-
tory. The filter state also includes other parameters which have an effect upon the orbit determina-

tion (e.g., drag, perturbing gravitational accelerations, thrust, measurement biases and refraction

parameters, etc.). Because PREFER is estimating the corrections to the nominal values, all partials
are evaluated about the nominal trajectory and the filter is linear (not extended).

The measurement data types which PREFER can process include ground range, range difference

and Doppler measurements, GPSPAC pseudorange and pseudodelta-range measurements, NAVPAC
range difference measurements and altimeter measurements. A GPS Trajectory file supplies the

ephemerides of the GPS satellites which are required to process the GPSPAC or NAVPAC measure-

ments. A unique feature of the program is the capability to estimate hundreds of pass-disposable,
measurement biases while using storage and computation for only a few biases.

After running the Kalman filter forward to the end of the Measurement Data file, PREFER performs
optimal smoothing. A file created by the Kalman filter is read backward in time and the smoothed

estimates are obtained by using the recursive formulation of Rauch-Tung-Striebal.

The combination of a Kalman filter and a smoother should result in greatly improved estimates of
satellite ephemerides as compared to the batch estimation. Batch estimation is subject to errors

because of errors in the dynamic models (e.g., gravitational). A filter/smoother which properly
accounts for dynamic (state) noise should weight the data optimally and reduce the estimation
errors. Smoothing will produce better estimates (in the middle of the data span) than just a }'orward
filter because past and future data is used to estimate the state at each point in time (a filter uses

only past data). Smoothing also tends to average out any dynamic modeling errors which remain.

PREFER's capability for improving orbit determination has been demonstrated on simulated data

which contained significant modeling errors. The nominal trajectory had errors as large as 53

meters and the GPS trajectory file had peak errors of 12 meters. However, the PREFER smoother
estimate was usually accurate to 3 meters with peak errors of 8 meters. Even during data gaps, the

smoothed radial error was always less than 6 meters.
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INTRODUCTION

A recursive filter/smoother orbit determination program has been

developed to refine the ephemerides produced by a batch orbit deter-

mination program (e.g., CELEST,GEODYN). PREFERcan handle a variety

of ground and satellite-to-satellite tracking .types as well as satel-

lite altimetry_ It has been tested on simulated data which contained

significant modeling errors and the results clearly demonstrate the

superiority of the program compared to batch estimation.

The input to the program consists of four files and card input.

A file containing the nominal (batch estimate) host satellite ephemerides

and the 6 by 6 state transition matrix (from epoch osculating elements

to current cartesian elements) is interpolated at the times given on

the measurement data file. A GPStrajectory file supplies the ephemerides

of the GPSsatellites which are required to process the GPSPACor NAVPAC

measurements. A sun/moon file supplies the data which is used in the

earth motion model (for ground based measurements). The card input to

the program specifies run constants (e.g., time intervals) and a pz_o_

standard deviations, state noise spectral densities, time constants, etc.

158



Measurement Types

PREFERcan process the following types of measurements.

• Ground Tracking

Satellite to ground range

Ground laser range

Satellite to ground range difference

Ground Doppler

• Satellite-to-Satellite

GPSpseudo range and pseudo delta range

NAVPACrange difference

• Altimetry

Range to center of earth.

Provisions have been made for handling 50 ground stations and 24

GPSsatellites but only 4 ground stations and 15 GPSsatellites can be

simultaneously observable. This restriction is imposed because of a

limitationon the total number of states. Since station position

errors, measurementbiases, refractionparameters,GPS positionerrors

and timing biases can all be estimated,the state vector could become

unwieldly. PREFER has the capabilityto estimate all these parameters

while using storageand computationfor only those parameterswhich are

simultaneouslyobservable. This is discussed in later sections. Thus,

the limitationis on the number of simultaneouslyobservablestations

and GPS satellites. As a practicalmatter, this limitationis not very

restrictingsince it is unlikelythat more than four ground stations
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see a low altitude satellite. Furthermore, simulations have

that for the 24 satellite GPSsystem, no more than 15 GPSsatel-

would be observable to a low altitude satellite (without encounter-

severe refraction problems).

The altimetry measurements are assumed to have been preprocessed

a nominal geoid model so that they are treated as a range to the

center of the earth.

Dynamics

A list of the dynamic parameters which PREFERcan estimate is given

below:

1 Satellite semimajor axis at epoch

2 Satellite eccentricity x sin (argument of perigee) at epoch

3 Satellite eccentricity x cos (argumen%of perigee) at epoch

4 Satellite inclination at epoch

5 Satellite mean anomaly plus argument of perigee at epoch

6 Satellite right ascension of ascending node at epoch

7 Satellite drag coefficient

8 Perturbing gravitational acceleration (vertical)

9 Perturbing gravitational acceleration (cross-track)

I0 Perturbing gravitational acceleration (along-track)

II Acceleration of Ist thrust segment (vertical)

12 Acceleration of Ist thrust segment (cross-track)

13 Acceleration of Ist thrust segment (along-track)

14 Acceleration of 2nd thrust segment (vertical)

15 Acceleration of 2nd thrust segment (cross-track)

16 Acceleration of 2nd thrust segment (along-track)

17 Host satellite clock timing error

18 Host satellite clock drift rate

19 Altimeter bias.
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The first 6 are epoch osculating elements. The drag coefficient,

perturbing gravitational accelerations, host clock drift rate and

altimetry geoid error (bias) are all assumed to be independent, first

order Markov processes. This may not be strictly true but it is a

reasonable approximation. The thrust accelerations are assumed to be

constant since the thrust durations will be relatively short.

The state transition matrix for the entire system of dynamic para-

meters and measurement related biases is:

where ¢I is:

CBLIAOC_ ALT,
o,:o_,,.__,_. co_c_LT_ T_R_,J_,ys_., _,o,_.

. XXC>CX
CD 0 ,."_ 0 0 0 0

6_v._ I__o oAcct. 0 o£',_o 0 0 0

AL o o..__

IHI I

TCI i

IHRUSTTL1 1
0 0 0 0 0

To2 I

CBILiAK TL2 1Ab I At :

A_. 0 0 0 0 0 P"
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The upper left 6 x 6 partition of @I is an identity matrix when
is being used to perform the time update on the state vector. However,

when individual measurements are being processed, the satellite position

and velocity in cartesian coordinates at the measurement time must be

known. The nominal position and velocity and the transition matrix from

epoch osculating to cartesian elements are obtained by interpolation

from the host trajectory file. The filter state (which includes the

estimated correction to the epoch osculating elements) is multiplied by

¢I to obtain the estimated correction to the nominal cartesian elements.

The upper right partition of @I (i.e., the transition from Cd ,
gravitational accelerations and thrust to cartesian elements) is

obtained as an iterated, second order Taylor series. Since the integra-

tion time interval will be relatively short (less than 120 seconds) and

state noise is included in the formulation, a highly accurate integra-

tion method is not required.

The state noise covariance matrix (required by the filter) is

obtained by Taylor series integration of the input spectral density

matrix.

Kalman Filter

Measurements are processed in a Kalman filter to estimate the

corrections to the nominal trajectory. All partial derivatives are

evaluated about the nominal trajectory and thus the filter is linear

(not extended).

Since the program was intended to process many thousands of

measurements, the execution time would have been excessive if the

Kalman equations were evaluated for each measurement. Therefore, the

measurements are processed in small "mini-batches" (typically 120
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seconds), during which time, the dynamics are assumed to be deterministic.

Only when proceeding from the epoch of one mini-batch to the next is

state noise included in the covariance equations. The term "mini-batch"

is intended to indicate the lack of state noise rather than the method

of processing since the estimation algorithm is actually the recursive

U-D algorithm of Bierman [I].

A unique feature of PREFERis the capability to estimate hundreds

of pass-disposable measurement-related biases while using storage and

computation for only a few. As measurement data from new stations or

GPSsatellites is processed, the state vector and covariance matrix are

augmented with the a priori information for the new measurement para-

meters. When the station or GPSsatellites are no longer visible to the

host satellite, the parameters are dropped from the state vector and

covariance matrix. These parameters can be deleted from the filter

state since they will no longer have an influence on the estimation of

"common" parameters (dynamic and other measurement related biases).

However, the deletion of parameters from the filter state does complicate

smoothing since the lost information must be reconstructed later. This

is discussed in another section.

It should be noted that these hundreds of measurement related

parameters are probably not observable in a statistical sense, i.e.,

a priori information is required to make the covariance matrix full

rank. These parameters are included in the filter state primarily to

assure proper weighting of the measurement data.

Figure 1 is a flow chart of the FILTER subroutine. This routine

is called once for each mini-batch of data. The flow chart shows the

sequence of events required to perform the time update, write information

on the disk for smoothing, process data with the U-D algorithm and

delete parameters from the filter state.
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Smoothinq

Optimal smoothing is performed using the backward recursion

developed by Rauch, Tung and Striebel [4]. The final estimate of the

filter is used to initialize the smoother equations. The smoother gain

matrix at time t k is computed as:

Gk = @-I -Ik+l(l-Qk+IPk+I/k )

Then the smoothed state vector and covariance are computed as:

_k/m : _k/k + Gk(_k+I/m-_k+I/k)

Pk/m = Pk/k + Gk(Pk+I/m-Pk+I/k) G_

where the notation _i/j means the estimate x at time t i based

upon measurements up to time tj In other words, _k+I/k is the

a priori estimate at time tk+l' _k/k is the a posterCoz_ estimate

at time t k and Xk/m is the smoothed estimate at time t k (t m is
the last data point).

Notice that the gain matrix Gk has the following structure:

where the partitioning indicated separates the dynamic parameters from

the biases. Since the number of biases may be several times greater

than the number of dynamic parameters, the multiplications by 0 or 1

are avoided in the coding.
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Although Kalman filter formulations based upon covariance matrices

are more prone to numerical problems than the factored filters, numerical

problems are not so severe in the smoother. The smoother equations are

only evaluated once per mini-batch rather than for each measurement.

Furthermore, the equations for the smoothed x and P are uncoupled

since the gain matrix only depends upon variables from the filter. Thus,

errors in the smoothed P have no effect upon x .

Disposable Pass Parameters in Smoothin_

It is fairly well known that measurement bias parameters need only

be included in the filter state during periods when data of the appro-

priate type is actually being processed. Outside the data interval, the

solution for the pass parameters has no effect upon the solution for

the commonparameters.

Weare not aware of any published reference which demonstrates that

the "disposable parameter" approach is also valid for smoothing.

Therefore, this section shows that the approach is valid add demonstrates

how it is implemented for the present problem. The following derivation

is basically the same as that given by Tanenbaum.I

Fraser and Potter [2] showed that the optimum smoother could also

be derived as the linear combination of a forward filter which includes

a priori information and a backward filter which does not include

a priori. The results obtained from such a filter will be identical to

those obtained by the RTS algorithm.

Consider the case shown in the figure where the forward filter has

processed data from pass a but not b while the backward filter has

processed data from b but not a .

ITanenbaum, M., private communication, NSWC/Dahlgren, December 1977.
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I
pass a I pass b

forward , I backward
filter I _ < filter

I
t k

The filter states and covariances at time t are:

Forward Backward

-Xcl - ci

= x'= OiXk Xa[ -k

X l
Of -b

_cc Pca 0 -'Pcc 0 P'-cb

Pac Paa 0 0 _ 0

0 0 ' 0 P'Pbc bb

where subscript c denotes com#nonparameters. Notice that tile a priori

information for the pass b parameters of the foward filter is treated

as if it is a measurement which does not actually enter the forward

filter until the pass is begun. It can also be shown (with some dif-

ficulty) that similar results are obtained by allowing it to enter the
filter at the initial time. The smoothed covariance is obtained as a

minimum variance combination of the two estimates. Since the errors in

the two estimates are uncorrelated, the smoothed covariance is simply

the inverse of the sum of the two information matrices*

*Operations on matrices containing _ must be done with great care.
The result can, however, be derived more rigorously.
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-I

Pk/m = (p_l+p_-l)

-ll I
(p-l+p,-l) p, pcc cc (Pcc+Pcc)-I Pca

I cc I cc(Pcc+Pcc)-I P'
cb

c)-I (p +p, )-I p,= I Paa-Pac(Pcc+P_ Pca I Pac cc cc cb

I I
p, _p, ( p,
bb bc_Pcc+Pcc)-I c_- I t

Notice that the solution for the commonparameters does not depend

upon the pass parameters. Furthermore, the solution for pass a does not

depend upon the pass b parameters (and vice versa). This verifies that

it is not necessary to carry the pass parameters outside of the pass.

However, we must also verify that the pass parameters can be "reconstructed"

in the RTS formulation of the smoother.

Pk+I/k /k+l/k+lPass Ikl _I.,,II t
tk.l tk tk+l tk+2

Consider the case shown in the figure. Assume that the smoothed vaiues

for t k are to be computed. Pk/k and Pk+I/k from the forward fil-

ter have the same dimension but Pk+I/k+l does no___t_tinclude the pass

parameters. Obviously, the smooth covariance, Pk+I/m ' is the same

dimension as Pk+I/k+l In the RTS equations, the difference

Pk+I/m - Pk+I/k must be computed but these two arrays are of different
dimensions. Therefore, we examine whether the missing terms of &P

can be reconstructed. Using the results from the forward-backward

smoother, we find that:
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Pk+I/m- Pk+I/k = I I

_ t I

where aPcc = -Pcc(Pcc+Pcc )-I Pcc is simply computed as the upper left

partition of Pk+I/m Pk+I/k "

Whenwritten in this form, it is obvious that APk+1 is singular.
This also shows that the "missing" terms of AP can be reconstructed

p-I obtained from
by pre- or post-multiplying by the factor Pac cc

Pk+I/k " The rational for discarding pass parameters after writing the
filter a priori to the disk should now be obvious.

By a similar procedure, we can also demonstrate that the pass para-

meter portion of Xk+i/m - Xk+i/k can be reconstructed as

: _(-II-Xcc cl

AXk+l

L

The equation for the gain matrix requires that Pk+I/k be inverted.
It can be easily shown [3] that the same results for the smoothed x

and P will be obtained whether or not the pass parameters are

included in the gain computation. Thus, the final RTSequations used

when reconstructing pass parameters are:

_k/m = _k/k + G' &_cc

Pk/m = Pk/k + G' &Pcc G'T
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where

oIcc,Occ cc,I
Jk

Examples

Two examples using simulated data are given to demonstrate the

improved performance of PREFER. The first is relatively trivial in that

no modeling errors were included. The test was made simply to evaluate

the program response to an initial condition error. Table 1 summarizes

the test case and Figure 2 displays the results. The filter position

error was initially 20 meters. During the first data pass, the error was

reduced to 7 meters but during the subsequent data gap, the error rose

to 38 meters. After the first orbit, the filter error remained below

1 meter. However, the smoother position error was less than 1.2 meters

for the entire run. The smoother error is largest at epoch because

the 1 sigma a priori error is weighted into the solution.

The second example is a more rigorous test of the program. It

includes some additional data types and also has significant force

modeling errors. Table 2 summarizes the input and Figure 3 displays
the results.

The filter estimate has peak errors of 63 meters (mostly cross-

track) while the maximumerror in the smoother estimate is 11.2 meters

(mostly radial) at the epoch. The peak error in the filter estimate

occurs at 30 to 40 minutes which corresponds to a minimum error in the

nominal trajectory. Apparently the filter had an erroneous estimate

of the gravitational accelerations at the time that a data gap occurred.
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ORBIT - 350-420 KM ALTITUDE, e = ,005, 96,9o INCLINA-

TION, 180 MINUTES (2 REVOLUTIONS)

MODEL ERRORS - NONE (NOMINAL TRAJECTORY IS PERFECT)

TRACKING DATA - 7 GROUND STATIONS, RANGE DATA ONLYj NO MEASURE-

MENT NOISE BUT DATA IS GIVEN A WEIGHT OF iMETER

ADJUSTED PARAMETERS - ORBITAL ELEMENTS_ MEASUREMENT BIAS AND REFRAC-

TION PARAMETERS, STATION POSITION ERRORS

INITIAL CONDITIONS - FILTER ESTIMATE OF SEMI-MAJOR AXIS AT EPOCH IS

PERTURBED BY 20 METERS (I_)

A PBIORI STANDARD DEVIATIONS

SEMI-MAJOR AXIS - 20 M

e SIN m - ,00001 RADIAN

e COS = - .00001 RADIAN

INCLINATION - ,00001 RADIAN

L + _ - .00001 RADIAN

- ,00001 RADIAN

STATION BIAS - 1 M

STATION REFRACTION - 0,5 M

STATION POSITION - 5 M (EACH COMPONENT)

STATENOISESPECTRALDENSITY

X, Y, Z - .03M/SEC1/2

_, _, _ - .3xi0-4M/SEC3/2

Table l Summary of Test Case Number l
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Figure 2 Error in Estimated Position for Example I



ORBIT - 165-264 KM ALTITUDE, e = ,0075, 96,4° INCLINATION,

192 MINUTES (2 REVOLUTIONS)

MODEL ERRORS - MEASUREMENT DATA GENERATED USING A 25,25GRAVITY
FIELD, NOMINAL TRAJECTORY WAS OBTAINED BY LEAST

SQUARES FITTING THE TRUE TRAJECTORY USING A 8,8

GRAVITY FIELD, THE RESULTING POSITION ERRORS ARE

LESS THAN 53 METERS, ALSOj SINUSOIDAL ERRORS WERE

ADDED TO THE POSITIONS ON THE GPS TRAJECTORY FILE,

THE STANDARD DEVIATIONS FOR THE PEAK ERRORS WERE:

10 METERS ALONG-TRACK, 6 METERS CROSS-TRACK AND

2 METERS RADIALLY,

TRACKING DATA - 16 GROUND STATIONS: ALL HAVE RANGE DATA BUT TWO

"ALSO HAVE RANGE DIFFERENCE AND ANOTHER TWO HAVE

DOPPLER DATA, DATA IS NOISELESS BUT IS GIVEN

WEIGHTS OF 1 METER (RANGE), 6 CM (RANGE DIFFERENCE)

AND 0.2x10-I0 (DOPPLER), 6 GPS SATELLITES (PSEUDO

RANGE AND DELTA-RANGE), DATA HAS MEASUREMENT NOISE

OF 1,5 METERS (PSEUDO RANGE) AND 2 CM (PSEUDO DELTA-

RANGE), DATA IS WEIGHTED ACCORDINGLY,

ADJUSTED - CD,GRAVITATIONAL ACCELERATION, HOST CLOCK ERRORS, •
PARAMETERS STATION MEASUREMENT BIASES AND REFRACTION, STATION

POSITIONS, GPSPOSITIONS AND TIMING,

Table 2 Summary of Test Case Number 2
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Thus, theerror quickly increased until more tracking was obtained.

However, the filter covariance matrix during the data gaps was also

large so that the smoother could correctly weight the filter estimates.

Notice that both the filter and smoother estimates are quite

accurate during the periods when GPStracking is available. During

these periods, the smoother estimation error was generally less than

three meters and the radial component was accurate to within 1.5 meters.

Even during the data gaps, the smoother radial error did not exceed 6

meters (except at the epoch). This large error occurred at 102 minutes

from epoch and the nominal trajectory at this time had a 50 meter cross-
track error.

It should be noted that no great attempt was made to "fine tune"

the input parameters for this example. Presumably the errors could be

reduced further by the appropriate choice of state noise variances,

time constants, etc.

Summary

The results of the various tests on simulated data demonstrate

that PREFERhas great potential for improving orbit determination of

low altitude satellites.
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APPLICATION OF OPTIMUM SMOOTHING
FOR IMAGE DISTORTION CORRECTION

Ronald A. Werner

TRW Defense and Space Systems Group

ABSTRACT

Optimum linear smoothing is utilized to estimate certain distortions in Landsat-D images. Measure-
ments that are processed by the smoother consist of designated control point locations within the

images. Image distortions that are estimated by the smoother are those induced by Landsat-D satel-

lite navigation errors and slowly-varying attitude and sensor alignment uncertainties. Preliminary
results indicate that optimum smoothing produces substantially more accurate distortion estimates

than optimum filtering and that optimum smoothing may reduce the number of control points
needed to yield a desired image correction accuracy.
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INTRODUCTION

Landsat-D is the next of a series of satellites designed to transmit

imagery data to the ground to support earth resources management. The pri-

mary payload of Landsat D spacecraft is a thematic mapper (TM) and the

secondary payload is a multispectral scanner. The mission objective is to

produce high quality images of the earth surface for use in agriculture

monitoring. The TM has seven spectral bands and 30 meter resolution. It scans

the earth 185 km perpendicular to the spacecraft ground track at 7.4 hz rate;

spacecraft motion provides the along-track scan. Digitized image data, along

with spacecraft attitude measurements, are telemetered real time to the NASA/

Goddard greund station, where the data is processed to produce high precision

images: 55.5 meter (Io) registration error and _9.1 meter (Io) total geometric

error.

The raw image data contains distortions due to navigation error, attitude

measurement error, and TM misalignment relation to the attitude reference axes.

In order to remove these distortions from the image data and thereby achieve the

precision images that are required, a Recursive Distortion Estimator (RDE) is de-

signed to estimate the distortions. The measurements used by the RDE are based on

locations of control points in the distorted image data, together with their known

locations on the ground. The image of each control point is projected onto the

ground. Distortion in the image causes the projected position of the control point

to differ from its known true position. This difference in position is used by the

RDE to estimate the distortion in the image data.

Reference 1 suggests a Kalman filter RDE. This document evaluates an optimum

smoother RDE and compares its performance with that of a Kalman filter RDE.

SYSTEMDEFINITION

The system state variables ×i' i = 1 through 6, are defined as follows:

×
1

x Along-track, cross-track and vertical components of navigated
2 position error

×
3

x4 1_ Roll, Pitch, and yaw attitude measurement error plus instrumentx5 misalignment
x

6
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X °

7

X Along-track, cross-track and vertical components of navigated
8 velocity error

×
9

X1o1X Roll, pitch, and yaw attitude measurement error drift rate plus
11 I instrument misalignment rate

x12 )

The state differential equations are

_(i = xi+6 for i = 1 through 6 (I)

3 _gsi_6
Xi = Z ×k + zi for i = 7, 8, 9 (2)

k=l 3x k

×i = ai×i-6 + bixi + zi for i = I0, II, 12 (3)

where gs. is the jth component of spherical (Keplerian) mass attraction

acceleration for j = I, 2, 3 and z i is Gaussian uncorrelated white noise

for i = 7 through 12. The coefficients in Equation 3 are ai = 0 and

bi = -0.00139 sec -I for i = I0, II, 12. The standard deviation OZi of each
.52xlO-5m/sec 3/2component of state noise z i is: = 1 for i = 7 and 8,

aZ9 = 2.28xlO_5m/sec3/2 _Zi 3 2and _Zi = 0.0213 #rad/sec / for i = I0, II, 12.

The standard deviations _ of initial uncertainty in each state variable
xi

x i is: _ = 250m, _ = 50m, _ = 17m, _ = 291 prad for i = 4, 5, 6,
x x 2 x 3 x i
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= 0.05 m/sec, o = 0.02 m/sec for i = 8, 9, and _ = 0.4 _rad/sec for
x 7 xi xi
i = lO, II, 12.

The measurements Yl and Y2 are defined as the along-track and cross-track
deviations between the control point image projected onto the ground and true

position of the control point. The standard deviation of the noise in each

measurement is: _ = 3.0 m and _ = 5.0 m.
_I _2

In additionto the slowly-varyingsensor pointingerror (causedby

attitudemeasurementerrors and sensormisalignment)that is estimatedby the

RDE, there is also an uncorrelated(white)pointingerror which causes distortionin

the image data. The standarddeviationof the distortioncaused by this

random pointingerror is 2.55m along-trackand 4.73m cross-track.

DESCRIPTIONOF SMOOTHINGALGORITHM

The equationsfor optimum linearsmoothingare given in Chapter 6 of

Reference2. The smoothingalgorithmutilizedfor the RDE is calleda fixed-

intervalsmootherin Reference2.

METHOD OF ANALYZINGSMOOTHINGPERFORMANCE

The RDE performanceis evaluatedvia linearstatistical(covariance)

analysis. Based on an assumedset of controlpoint locations,the state error

covariancematrix is propagatedover the smoothingintervalby the smoothing

equations. The error covariancematrix for along-trackand cross-trackresidual

distortionsare then computedat each point in the image, based on the state

error covariancematrix at that point and the covariancesof sensor random

pointingerrors.

Several cases that were analyzedwere repeatedassumingthat the RDE is a

Kalman (optimum)filter. This was done so that Kalman filterperformance

could be comparedwith optimum smoothingperformance.

SUMMARYOF SMOOTHERPERFORMANCEANALYSISRESULTS

The resultsof this performanceanalysisshow the smoothingalgorithm

yields substantiallymore accuratedistortionestimationthan a Kalman (optimum)

filter for the identicalcase. Furthermore,the smoothingalgorithmrequires

fewer controlpoints to achievea desiredaccuracy.
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The results also show that the desired distortion compensation accuracy

can be achieved with one control point every fourth scene for a series of 40

scenes or by having four control points uniformly distributed over a single
scene.
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BACKGROUNDINFORMATION

• LANDSAT-D SATELLITE TELEMETERSDIGITAL IMAGEY DATA FROM705 Km ALTITUDE

TO NASA/GODDARDGROUNDSTATION, WHEREIT IS PROCESSEDTO PRODUCEPRE-

CISION IMAGESOF THE EARTH SURFACE

• IMAGERY DATA IS PRODUCEDBY A THEMATIC MAPER (TM) WHICH SCANS THE SURFACE

OF THE EARTH 185 Km AT 7.4 Hz RATE PERPENDICULARTO THE SATELLITE GROUND

TRACK

• THE INSTANTANEOUSFIELD OF VIEW (IFOV) OF THE TM (ONE PICTURE ELEMENT

(PIXEL)) IS 30 m x 30 m

• THE RAW IMAGERYDATA CONTAINS SLOWLY-VARYINGDISTORTIONS DUE TO NAVIGATION

ERROR, ATTITUDE MEASUREMENTERROR, AND TM MISALIGNMENT, AS WELL AS

UNCORRELATED(WHITE) RANDOMPOINTING ERRORS

• SLOWLY-VARYINGDISTORTIONS ARE ESTIMATED BY THE RECURSIVE DISTORTION

ESTIMATOR (RDE) BY COMPARINGTHE LOCATIONSOF "CONTROL POINTS" IN A SCENE

WITH THEIR KNOWNLOCATIONS ON THE GROUND



OBJECTIVESOF RDE

• ESTIMATEANDREMOVEDISTORTIONSFROMIMAGESSO THAT RESIDUALDISTORTION

IS NOGREATERTHAN:

±5.5 m (I_) SCENE-TO-SCENEREGISTRATIONERROR

•9.1 m (lo) TOTAL GEOMETRICCORRECTIONERROR

• MINIMIZETHE NUMBER OF GROUNDCONTROL POINTS NEEDED TO ACHIEVEACCURACY

REQUIREMENTS



METHOD OF ANALYSIS

• LINEARSTATISTICAL(COVARIANCE)ANALYSIS

- STATE ERROR COVARIANCEMATRIX PROPAGATEDVIA SMOOTHINGALGORITHM

- ERROR COVARIANCEMATRIX OF RESIDUALALONG-TRACKAND CROSS-TRACK

DISTORTIONSCOMPUTEDBASED ON STATE ERROR COVARIANCEMATRIX AND

STANDARDDEVIATIONSOF UNCORRELATEDPOINT ERRORS

• KALMAN (OPTIMUM)FILTER PERFORMANCEEVALUATEDAS WELL AS OPTIMUM

SMOOTHINGPERFORMANCE



m SUMMARYAND CONCLUSIONS

- OPTIMUM SMOOTHINGBY THE RDE PRODUCESSUBSTANTIALLY MORE

ACCURATEDISTORTION ESTIMATION THAN OPTIMUM (KALMAN) FILTER-

ING AND REQUIRES FEWERCONTROLPOINTS TO ACHIEVE A DESIRED

ACCURACY

- ONE CONTROLPOINT EVERY FOURSCENESYIELDS ONLY MODEST

DEGRADATIONIN ACCURACYRELATIVE TO HAVING ONE CONTROLPOINT

EVERY SCENE

- DESIRED DISTORTION CORRECTIONACCURACYCAN BE ACHIEVED IN A

SINGLE SCENE BY HAVING FOURCONTROLPOINTS UNIFORMLY

DISTRIBUTED OVER THE SCENE



SYSTEMDEFINITION

• STATE VECTORDEFINITION:

XIx2}_ ALONG-TRACK,PoSITIONCROSS-TRACK AND VERTICAL COMPONENTS OF NAVIGATED

)X3

x I ROLL, PITCH, AND YAWATTITUDE MEASUREMENTERRORPLUS INSTRUMENT

x5 MISALIGNMENT

x
6

x71x ALONG-TRACK, CROSS-TRACK AND VERTICAL COMPONENTS OF NAVIGATED
8 VELOCITY ERROR

x
9

xl° I ROLL, PITCH, AND YAWATTITUDE MEASUREMENTERRORDRIFT RATE PLUSXli INSTRUMENTMISALIGNMENT RATE

}X12



SYSTEM DEFINITION(Continued)

• STATE DIFFERENTIALEQUATIONS:

xi = xi+6 for i = l through 6

3

£i : Z  gsi-6
k=l _xk Xk + zi for i = 7, 8, 9

Xi = aixi-6+ bixi + zi for i = lO, II, 12

WHERE

-l
ai = O, bi = -0.00139sec

a = 1.52xi0-5 m/sec3/2 for i = 7, 8
zi

Oz9 = 2.28x10 -5 m/sec 3/2

_zi = 0.0213 _rad/sec3/2 for i = I0, II, 12



SYSTEM DEFINITION(Continued)

• INITIALSTATE UNCERTAINTIES:

= 250 m
X

I

c = 50 m
X

o = 17 m
X3

o = 291 _rad for i : 4, 5, 6
xi

o = 0.05 m/sec
X7

o = 0.02 m/sec for i = 8, 9
xi

o = 0.4 urad/sec for i = lO, II, 12
xi



SYSTEM DEFINITION(CONCLUDED)

• MEASUREMENTNOISE (FOR REGISTRATION):

3.0o = m _ALUN_-IKA_K)w
1

o = 5.0 m (CROSS-TRACK)
m

2

• UNCORRELATEDRANDOM POINTINGERRORS:

_RI = 2.55 m (ALONG-TRACK)

OR2 = 4.73 m (CROSS-TRACK)



COMPARISONOF KALMANFILTERING WITH OPTIMUM SMOOTHING

• REFERENCE CASE REFLECTS TEMPORAL REGISTRATION ACCURACY WITH THE ERROR

MODELS DISCUSSED EARLIER AND ASSUMES ONE CONTROL POINT PER SCENE FOR

TEN SCENES

• KALMANFILTERING, AS WELL AS OPTIMUMSMOOTHING, IS EVALUATED FOR THE

REFERENCECASE

• THE STANDARDDEVIATION (IN METERS) OF RESIDUAL DISTORTION AT THE TIMES

WHENTHEY ARE MINIMUM ARE SUMMARIZEDAS FOLLOWS:

KALMAN FILTERING OPTIMUM SMOOTHING

i

RDE STATE UN- TOTAL RDE STATE UN- TOTAL
ESTIMATION CORRELATED RESIDUAL ESTIMATION CORRELATED RESIDUAL
ERROR(la) POINTING DISTORTION ERROR(Io) POINTING DISTORTION

ERROR(la) (la) ERROR (la) (la)
| •

I¢ONG TRACK 1.89 2.55 3.17 1.28 2.55 2.85

CROSSTRACK 2.81 4.73 5.50 1.85 4.73 5.08



COMPARISONOF KALMANFILTERING WITH OPTIMUMSMOOTHING(Continued)

- RESULTS PRESENTEDSO FAR INDICATE ONLY MODESTIMPROVEMENTBY SMOOTH-

ING RATHERTHAN FILTERING. THIS IS BECAUSETHE STANDARDDEVIATIONS

OF RDE ERRORSWERETAKEN AT THE TIMES WHENTHEY ARE MINIMUM

- THE FIGURES BELOWSHOWDRAMATIC IMPROVEMENTIN RDE ACCURACYWHEN

OPTIMUMSMOOTHINGIS USED RATHERTHAN KALMAN(OPTIMUM) FILTERING

- THESE PLOTS SHOWTHAT FEWERCONTROLPOINTS ARE NEEDEDTO ACHIEVE THE

REgUIRED ACCURACYIF THE RDE IS A SMOOTHERRATHERTHAN A FILTER

- ALL THE RESULTS THAT FOLLOWARE BASED ON THE ASSUMPTIONTHAT OPTIMUM

SMOOTHINGIS UTILIZED IN THE RDE



COMPARISONOF KALMANFILTERINGWITH OPTIMUMSMOOTHING(Continued)
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COMPARISONOF KALMANFILTERING WITH OTPIMUMSMOOTHING(Continued)
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COMPARISONOF KALMANFILTERING WITH OPTIMUM SMOOTHING(Continued)
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COMPARISONOF KALMANFILTERING WITH OPTIMUMSMOOTHING(Concluded)
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REDUCINGTHE NUMBEROF CONTROLPOINTS PER SCENE

• A TM TEMPORALREGISTRATION CASE REFLECTINGONE CONTROLPOINT EVERY

FOURTHSCENEWAS ANALYZED

• THE STANDARDDEVIATIONS (IN METERS) OF RESIDUAL DISTORTIONS FOR THIS

CASE ARE COMPAREDWITH THOSE FROMA CASE WITH ONE CP PER SCENEAS FOLLOWS:

ONE CP PER SCENE ONE CP EVERY FOUR SCENES

RDE STATE UNCORRELATED TOTAL RDE STATE UNCORRELATED TOTAL
ESTIMATION POINTING ERROR RESIDUAL ESTIMATION POINTING ERROR RESIDUAL
ERROR(Io) (Io) DISTORTION ERROR (Io) (Io) DISTORTION

(1o)

ALONGTRACK 1.28 2,55 2.85 1.77 2.55 3.11

CROSSTRACK 1.85 4.73 5.08 2.41 4.73 5.31

• THESE RESULTS SHOWSTHAT REDUCINGTHE NUMBEROF CP's TO ONE EVERY FOURTH

SCENEDEGRADESTOTAL ACCURACYONLY SLIGHTLY, AND THE TM TEMPORALREGISTRATION

ACCURACYREQUIREMENTS[5.45 M (I_)] IS STILL SATISFIED



LIMITING THE CONTROLPOINT REGIONTO ONESCENE

• SEVERAL TM TEMPORALREGISTRATIONCASES WERE ANALYZEDTHAT REFLECT

UTILIZINGVARYING NUMBERSOF CP's UNIFORMLYDISTRIBUTEDOVER A

SINGLE SCENE IN ORDER TO REMOVEDISTORTIONSFROM THE SCENE

• THE FIGURE BELOW SHOWS HOW THE STANDARDDEVIATIONSOF RESIDUAL

DISTORTIONSIN THE SCENE VARY WITH THE TOTAL NUMBER OF CP's

UTILIZEDTO CORRECT FOR DISTORTIONS

• BASED ON THESE RESULTS,AT LEAST FOUR CP's (DISTRIBUTEDOVER THE

SCENE) ARE NEEDED TO SATISFYTHE TM TEMPORALREGISTRATIONACCURACY

REQUIREMENT

• THESE RESULTSALSO SHOW THAT FEWER THAN FOUR CP's CAN BE UTILIZED

WITH ONLY MODEST DEGRADATIONIN REGISTRATIONACCURACY



LIMITING CONTROLPOINT REGION TO ONE SCENE (Concluded)

I'MTEMPORAL REGISTRATIONACCURACY VS. NUMBER OF
CP'S UNIFORMLY DISTRIBUTEDOVER ONE SCENE

8

7 _, . TOTAL RESIDUAL

OSS-TRACK
REGISTRATIONACCURACY

5.45

RDE STATE ESTIMATION
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< 1 ERRORALONG-TRACK

w.J 0
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OPTIMAL LARGE ANGLE MANEUVERS

WITH SIMULTANEOUS SHAPE CONTROL/VIBRATION ARREST

James D. Turner and John L. Junkins

Virginia Polytechnic Institute and State University

ABSTRACT

A relaxation method is demonstrated which reliably solves the nonlinear two-point-boundary-value

problem which arises when optimal control theory is applied to determination of large angle

maneuvers of flexible spacecraft. The basic ideas are summarized and several idealized maneuvers

are determined. The emphasis is upon demonstrating the basic ideas and practical aspects of the
methodology. References are cited, particularly Turner's dissertation which presents detailed

formulations and more general applications.
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Discussion of Figures

With reference to Figure 1, we employ the method of assumed modes to obtain a set of ordinary
differential equations which govern deflections and rotations. The form of the equations of motion

are given in Figure 2. Note the high dimensionality and the variability of the coefficient matrix.

Note that solution for the acceleration coordinates is required in order to integrate motion as a
function of time, and in order to apply optimal control theory.

Figure 3 displays a partitioned algorithm which efficiently determines the inverse of the high-

dimensioned, configuration-variable coefficient matrix. Consistent with this partitioning algorithm,
we consider in Figure 4 an algorithm for obtaining partial derivatives of the inverted coefficient

matrix with respect to deflection coordinates (required in the optimal control algorithm).

Figure 5 summarizes the state and co-state differential equations which follow from Pontryagin's
principle as the necessary conditions satisfied by optimal (minimum quadratic cost) maneuvers.
Observe that the initial and final states are generally known, but the initial and final co-states are

usually unknown. Thus, as usual, a nonlinear two point boundary value problem (TPBVP) has
resulted. Notice the quadratic angular velocity nonlinearity due to "rotational stiffness."

In Figure 6, we summarize an imbedding/relaxation approach which has proven a reliable approach
for solving TPBVP's of the above structure. In essence, a one parameter (o0 family of problems is

constructed that one special member (c_= 0) has an analytical solution, while another member

(a = 1) is the true problem of interest. By relaxing a through a sequence of increasing values
0 _<c_i <_ l, we can extrapolate arbitrarily good initial or final co-state estimates (by adjusting the
a-increment) from previous converged solutions, thereby allowing efficient differential corrections

to isolate accurate co-states corresponding to each o_. Typically, only 4 or 5a i values are actually
required to reach the desired a = 1 solution. This method and related methods are developed and
applied to several examples in Reference 3.

Considering now a specific configuration, we refer to Figure 7. The four identical cantilevered

appendages are mounted in the same plane to the rigid central hub. We neglect the hub radius

in any equation in which it appears divided by the appendage length. Referring to Figure 8, we
restrict attention to pure spin rotations and antisymmetric deflections, consistent with spin-up,
spin-down, and rest-to-rest maneuvers with the configuration initially and finally undeformed. We
consider only the case of torques applied to the hub.

Table 1 describes seven maneuver calculations, corresponding to three sets of maneuver boundary
conditions and four different dynamical models. These cases are selected to demonstrate the

effects of rotational stiffening and to show that the relaxation method can handle both high
dimensionality and nonlinearities.

Figures 9a - c display the angle of rotation, angular rate and torque for the case 1 maneuver (rigid
appendages). For comparison, Figures 10a - c display the same variables for cases 2L and 2N of

flexible appendages, assuming a 1 mode expansion. It is of interest to note that the flexibility
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effects are large indeed. The flexible case torque oscillates anti-symmetrically about the rigid case

torque, the desired final angle and angular rate are achieved and the modal amplitude (and its de-

rivative) are simultaneously driven to zero. It is interesting that the linear and nonlinear solutions
were identical, to graphical accuracy, due to the small deflections and velocities of this particular
maneuver.

Figure 11a - d and 12a - d display angle of rotation, torque history, and amplitudes of the first two

modes for cases 3L and 3N, respectively. The maneuver is an extremely rapid spinup from rest to

0.5 rad/sec in 60 sec. The linear (3L) and nonlinear (3N) solutions differ significantly, but the

linear solution retains the general shape and amplitudes differ by less than 10% throughout most of
the motion.

Figure 13a - g display the angle of rotation, angular rate, torque, and the first four modal amplitudes
for case 4L (a rest-to-rest maneuver through a 360 ° rotation). These results simply show that,

indeed, the large rigid rotations and vibration suppression of several degrees of freedom are deter-
mined.

We offer the following significant conclusions:

• An Optimal Control Formulation is Presented for General 3 Dimensional Maneuvers of a
Class of FIexible Satellites

• A Partitioning Method is Introduced to Invert the Rotational-Vibrational Equations of

Motion for Acceleration Coordinates and to Obtain the Adjoint Equations

• An Imbedding/Relaxation Process if Demonstrated for Solution of the Two-Point-Boundary-
Value Problem.

• Numerical Studies Indicate that Practical Algorithms Result from these Developments

References
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THE METHOD OF ASSUMED MODES 

T h e  d e f l e c t i o n  o f  t h e  j t h  f l e x i b l e  m e m b e r  is m o d e l e d  a s  

a r e  p r e s c r i b e d .  As minimuin r e q u i r e m e n t s ,  t h e y  m u s t  

Â be l i n e a r l y  i n d e p e n d e n t  

* s a t i s f y  u, v ,  w ' s  g e o m e t r i c  boundary c o n d i t i o n s  

T h e  a m p l i t u d e  f u n c t i o n s  c o n s t i t u t e  t h e  con<( igu /~a . t i on  vec/to^i 

T h e  amplitude's play t h e  role o f  d i s c r e t e  g e n e r a l i z e d  c o o r -  

dinates. 

Figure  1 



ROTATIONAL/ LECTIONALEQNSOFMOTION

DYNAMICSOF FLEXIBLESATELLITES

{_} = [F(O)I{_} (i)

[J(n)]{_} = -[HT]{n} + {f(o,m,q,G,t)} + {u} (2)

[M]{n} = -[H]{_} + {g(0,_,q,q,t)} (3)

Combine (2) & (3)

Note

[H] & [M] are constant

[JO_)] = [Jo ] + [JD(_)] , IIJDII < < llJoll (typically)

Inertia of Inertia varia-

undeformed tions due to

vehicle deformations

A problem:

We need eqns of motion in the state space form x = F(x,u,t),

but

(i) The coefficient matrix of (4) is variable

(ii) Its dimensions may be several hundred

Figure 2
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PARTITIONED/PERTURBATIONINVERSIONOFTHE

OOEFFICIEI4Tr TRIX

I i HT -I

CI.l • C2

Name the submatrices: ---

oDOOOt'OOO _*eOooo

C2] " C22/ M

The Cij can be expresseddirectlyas a functionof J, M, H as:

Form l Form 2
-I

j-l . j-l HT HT M-l
Cll C2l (J - H)

C22 (M - H j-I HT)"l M-I M-I H C2_

C2I -C22 H j-I -M-I H Cll

For direct numericalcalculations,Form 2 is preferredsince

(i) (J - HT M-I H) is a 3 x 3 matrix

(ii) M _s generallydiagonallydominant (an identitymatrix if one first
solvesan eigenvalueproblem - Note M is positive-definitesymmetric)

Figure 3
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CERTAIr_EQUI,_DPARTIALDERIVATIVES& _IVTODETE_IINE_

Rotational/Vibrational Equations of Motion

___(_)

or, in inverted form

l -- _o_I- -
t'" =- I_ t

Note

T

n_ = {nI n2 ... nn}

,od°ter.i._{_-_[,o.rw
,,q--l_=

from which

or

M--I = __-i . , i=l,2,...,n

where

_J(n_)! ]

= - @-_-i : 0

l_-q/= "o i o

Figure 4
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FORMULATIONOFTHEOPTIMALCONTROLPROBLEM

STATE VARIABLES

_l: {0}, _2: {n}, _3: {_}' x4: {_}

STATE DIFFERENTIAL EQUATIONS

_1 : [F(xI)] {_3 } = £I(_1 ' -' _3' -' -' -)

_2° _ : £2( -, -, -, _4, -, -)

l{q}) _4(_1 ' _2' _3' _4' _' t) = l_(_i,t)

Find _u(t) generating a trajectory initiating at xi(to), terminating at xi(tf),

which minimizes the function

] = 1 tf 4 T xi)d tt/ (urw u+ Y.Nwii
O i:2

HAMILTONIAN
I

4 4
l T _T

i=2 i:l

PONTRYAGIN'S NECESSARY CONDITIONS
lil I i m

Co-state Equations

: _H__i(_l' "" _4;A .... A; u, t)_i

Optimal Control

Minimize H at each instant with respect to admissible _(t), this

yields _ : U(Xl, .., _4; _i' "'' _' t)

Figure 5
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IMBEDDINC_REIAXATIONMEII_ODFORSOLVING

TWO-POINTBOUNDARYVALUEPROBLEM

Define merged vector
T

z -={x_ ___}

The coupled state and costate differentialequationsare then

Z = [A]Z+ _{all nonlinearterms}

I II II 11

• Typically,we know_x(to) and_x(tf),but not __(to),__(tf).

• For m= O, we can solve for _(to) exactly.

• By taking sufficientlysmall a-increments,we can use converged_{to) from

neighboringoptimal solutionsto initiatesuccessiveapproximationswith
arbit_u_rily good sta_t.ing estimate_ for the unknown_(to).

• Typically,only 5 to lO intermediatea-valuesare required a practical
algorithmresults.

Figure 6
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FIGURE7 UNDEFORMEDSTRUCTURE

FIGURE8 ANTISYMMETRICDEFORMATION
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TABLE I DESCRIPTION OF TEST CASE MANEUVERS

Case # Qualitative Description # of Modes (N) 6° _o Of 8f Wuu Wss

(RAD) (RADISEC) (RAD) (RADISEC)

Rigid Appendages

i Rest-to-Rest Maneuver 0 0 0 0.i 0 1.0 [0]

tf = 14.221 see.

Ll_tear Kinematics

2L Rest-to-Rest Maneuver i 0 0 0.I 0 1.0 [I]

tf = 2_/_ I = 14.221 see

Nonlinear Kinematics

2N Rest-to-Rest Maneuver 1 0 0 0.I 0 1.0 _I]

tf = 2_/_ 1 = 14.221 sec

bo

4_ 3L Linear Kinematics

Spinup Maneuver 2 0 0 2_ 0.5 1.0 [I]

tf = 60 sec

Nonlinear Kinematics

3N Spinup Maneuver 2 0 0 2_ 0.5 1.0 If]

tf = 60 see

Linear Kinematics

4L Rest-to-Rest Maneuver 4 0 0 _ O 1.0 [I]

tf = 60 sec

Nonlinear Kinematics

4N Rest-to-Rest _neuver 4 0 0 _ 0 1.0 [i]

t_ = 60 secr



DESCRIPTION OF THE VISSR IMAGE REGISTRATION
AND GRIDDING SYSTEM

Larry N. Hambrick
National Environmental Satellite Service

National Oceanic and Atmospheric Administration

ABSTRACT

Small scale weather forecasting has created a demand for the accurate earth location of real-time
GOES/VISSR data. A year ago an interactive processing system, built by the Space Science and

Engineering Center of the University of Wisconsin, was installed at the National Environmental
Satellite Service's central facility where it is referred to as VIRGS (VISSR Image Registration and

Gridding System). The VIRGS is now operational, delivering a level of accuracy that closely
approaches the goal of 1 visible pixel.

The most interesting aspect of the VIRGS implementation has been the development by Dr. Dennis

Phillips of a highly efficient accurate software package to compute orbit and attitude on the basis of

star and landmarks observations. The package executes in a few seconds on a small computer and
allows for human interaction as needed. Recovery of full accuracy following a satellite maneuver

requires as little as six hours of observations.

The VIRGS is briefly described in terms of its operations, procedures, product outputs, and accur-

acy. Potential enhancements of the system include extending the prediction period so as to increase

overall efficiency. With the accuracy now available from VIRGS, the routine remapping of VISSR
images to remove bothersome dynamic deformations seems feasible as future improvement to the
VISSR data service.
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ORBIT/ATTITUDE ESTIMATION FOR THE GOES SPACECRAFT
USING VAS LANDMARK DATA

H. Sielski, and D. Hall
Computer Sciences Corporation

R. Nankervis, D. Koch
Goddard Space Flight Center

ABSTRACT

A software system is described which provides for batch least-squares estimation of spacecraft orbit,

attitude, and camera bias parameters using image data from the Geostationary Operational Environ-

mental Satellites (GOES). The image data are obtained by the Visible and Infrared Spin Scan

Radiometer (VISSR) Atmospheric Sounder (VAS). The resulting estimated parameters are used for
absolute image registration. Operating on the Digital Equipment Corporation (DEC) PDP-11/70

computer, the FORTRAN system also includes the capabilities of image display and manipulations.

An overview of the system is presented as well as some numerical results obtained from observations

taken by the SMS-2 satellite over a 3-day interval in August 1975.
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SECTION 1 - INTROI)UCTION

A variety of spacecraft (S/C) exist which transmit images to the ground to

provide meteorological and Earth resource information. Several studies have

been concerned with the use of this imaging data for the estimation of the S/C

orbit and attitude. Such an estimation procedure can be used for several

purposes. The one with which this report is concerned is the use of the esti-

mated S/C orbit and attitude (O/A) parameters for absolute image registration.

The estimated O/A parameters are used to predict the geodetic latitude and

longitude (_, X) which correspond to a specified location on an Earth picture.

This allows accurate geodetic coordinate determination for temporal phenomena_

such as clouds or sea swells.

There are two categories of image data; those from three axis stabilized S/C

and those from spin-stablized S/C.

The Landsat and Earth Resource Technology Satellites (ERTS) are examples

of three axis stabilized S/C. These produce image data from high inclination

(polar) close Earth (900 km altitude) orbits. The use of this data is discussed

in Reference 1 which describes a software system for the display ,and manipu-

lation of image data as well as the use of an extended Kalman filter estimator

for the O/A parameter determination.

The geosynchronous Geostationary Operational Environmental satellites

(GOES) are examples of spin-stabilized S/C which produce image data. An

overview of O/A estimation using this type of'data is given in Reference 2,

where sample numerical results are presented for the first geostationary

Synchronous Meteorological Satellite (SMS-1).
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This paper describes a software system developed to provide Bayesian weighted

least-squares estimation of spacecraft orbit and attitude parameters using

picture data obtained from the VAS (VISSR Atmospheric Sounder) instrument

to be flown on the GOES-D. The data consist of ground control points of

known geodetic cool<tinates located on pictures of the Earth taken by the GOES

spacecraft. The VAS/NAVPAK (VISSR Atmospheric Sounder Navigation Pack-

age) system operates on the Digital Equipment Corporation PDP 11/70 computer.
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SECTION 2 - VAS/NAVPAK SOFTWARE OVERVIEW

As shown in Figure 1, the VAS/NAVPAK system can be divided into four

functions. First, the Data Base Management (DBM) portion controls file

and data manipulation. Second, the picture display and cursor navigation

portion _ntrols: (1) picture display on the I2S, such as image zooming;

(2) cursor navigation, including the extraction of picture coordinates (£, e)

and the a_tomatic moving of the cursor to the picture coordinates correspond-

ing to a specified longitude and latitude; (3) automatic grey scale correlation

between a prestored chip (16 x 16 pixel reference landmark) and a search

area about the cursor; (4) the creation of landmark observations. The third

VAS/NAVPAK function is the O/A and camera bias estimation. This portion

of the system provides for weighted least-squares (DC) estimation of the

satellite orbit, attitude, and camera biases. The fourth VAS/NAVPAK function

produces hhe specific navigation parameters which are required over a spec-

ified prediction interval (usually 2 days). The navigation parameters are

used to annotate the picture data.

2.1 Pict_lre Display m_d Cursor_Navigation

Cursor navigation is the prediction of picture coordinates (£, e) corresponding

to a specified geodetic latitude and longitude, given the estimated satellite

orbit and attitude and the camera biases for some epoch time.

This is _he method by which a prestored video reference area (taken from a

VAS pie_ul_e) is correlated with an area surrounding the cursor on the image

displayed5 by the operator.

2.2 Orbit/Attitude Estimation

The S/C O/A estimation is done with the classical Bayesian weighted least-

squares _technique. The estimator can use either landmark data, radar

tracking ,data, or both. Only the capability for using landmark data will be
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I VAS/NAVPAK I

1
1 1 ! 1

DBM Picture Display O/A Navigation
Data Base and Cursor Orbit/Attitude Parameter

Management Navigation Estimator Output

• Manipulation of fun- • Display of pictures • Creation of observa- • Predict estimated
damental constants IIS tion working files state

and flags
• Manipulation of pic- • Interactive least- • Perform the Chebyshev

• File manipulation tures (zoom) squares (DC) deter- fitting of position, beta
ruination of satellite count, etc.

• Automatic moving of

orbit/attitude param- • Calculate auxiliary• cursor to specified eters and camera
goedetic coordinates biases parameters

• Extraction of picture
coordinates for given
cursor location

• Correlation between

prestored chip (16x16
pi×el reference land-

mark) and current
picture search area

• Creation of landmark
observation

Figure 1. VAS/NAVPAK Overview



presented. It is assumed that the working observation files of landmark

data have been created before beginning the O/A estimation.

The computational procedure followed for the O/A proceeds in tim following

steps:

1. An a prioriestimate isprovided ofthe solve-forparameters. These

parameters will be a subset of:

re, ro the S/C position mid velocity

Xi, i=1, 5 S/C attitude model

¢i, i=l, 5 coefficients

camera bias

_o camera bias

AYe camera bias

2. For each observation, the S/C position and velocity are found by

integrating the equations of motion to the observation time; tob s.

For tile VAS/NAVPAK system, the integra'don is performed with a

12fll order Cowell method, as described in Reference 3. The force

model is seleetable by the user and can include a spherical harmonic

geopotential expansion terms up to 21 x 21, lunar/solar third body

perturbations, and solar radiation pressure.

3. For each observation time, an observation (£, e) pair and partial

derviatives are computed corresponding to the geodetic coordinates

{_, X) of the landmark using the S/Cposition, velocity, attitude, and

camera biases.

4. The computed observation pair is used to calculate the observation

residuals. The residual is examined to see if it meets the editing

criteria. If it does not, it is not used in the solution.
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5. After steps 2, 3, and 4 have been performed for all the observations,

the new estimate of the epoch S/C state, the attitude, m_d camera

biases, and their covariance matrix, is computed.

6. The new estimate of the solve-for parameters are compared with

the previous to see if the least squares process has converged. If

the solution is judged to have not converged, hhe new estimate re-

places the a priori in step 1, and the process is repeated.

2.3 Navigation Parameter Output

Spacecraft parameters cm_ be generated for a sequence of overlapping time

intervals covering a specified output span. These parameters include

spacecraft ephemerides, attitude information, camera biases, eclipse times,

and Chebyshev coefficients for position, beta angle, and retransmission

correction.
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SECTION 3 - TtIE OI3SEI:_VATION MODEL

The observational model in VAS/NAVPAK is a modification of that used in the

SMS NAVPAK (Reference 4). The camera bias ,and attitude representations

for the VAS/NAVPAK observational model were reformulated, consulting the

VAS working group (Reference 5) and with the assistance of II. Pajerski (GSFC).

The SMS and GOES are geosynchronous spinning spacecraft designed for taMng

pictures of the Earth in several wavelengths. A camera, or VISSR (Visible

and Infrared Spin Scan Radiometer), transmits data to a grotmd station where

a complete picture of the Earth is assembled. The data consist of a grid or

matrix of intensity measurements. A line number and an element number

specify the location of the intensity measurement within the grid. The line

number £, corresponds roughly to longitude. These are shmxm schematically

in Figure 2. For the visible wavelen_h observations, each picture element

{pixel) intensR_y measurement corresponds nominally to an area on Earth

of dimension 1/2 mile by 1/2 mile square. Of course, near the edge of the

Earth, foreshortening will enlarge and distort this square. Options exist to

handle data whose dimensions are integer multiples of this matt (i. e., 2-mile

by 4-mile data). Associated with each line of the picture is a time and angxflar

quantity which relates the starting position of the line to the direction of the

Sun in inertial space.

At the ground station preproeessing is performed and full resolution picture

segments of 1024 x 1024 pixels are generated; In order to create a landmark

observation, the operator first displays a picture or subset of a picture on

the 12S. Then, an identification is made of a particular location on the

picture (£, c) pair which corresponds to a known geodetic latitude and longitude

on Earth. The geodetic coordinates and the picture coordinates with associated

quantities such as time and Sun angle are transferred to an observation file.

This constitutes a single landmark observation pair.
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Figure 2. Schematic VAS/GOES Picture
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Figure 3 shows the GOES satellite relativeto the earth at an instant of time.

Except for specific camera constants, the SMS is almost identical to file GOES.

Both satellites are cylindrical spi_ming objects with tile longitudinal symmetry

axis nearly aligned with the spin axis. The spin axis in turn is nearly aligned

with the polar axis of the Earth pointed southward. As the satellite spins,

the camera scans across the face of the Earth's disk, from west to east

measuring the light intensity for each pixel along a line. The relation between

the (_, e) coordinates of each picture and the camera orientation can be shown

by comparing the image in Figure 2 with Figure 3. The element, e, is re-

lated to the azimuthal camera angle, q. This angle is measured in the satellite

spin plane and is the angle between the line of sight (LOS) vector to the land-

mark and the LOS vector to the left (west) edge of the Earth. The conversion

to line element is

e -- q/I_PE (1)

where RPE is tile number of radians per line element° The satellite spin plane

in Figure 4, perpendicular to the spin axis z', is shown coincident with the

spacecraft (S/C) symmetry plane, perpendicular to l:he S/C longitudinal

symmetry axis zs/C. In the actual development of the observation equations

the general case of a misaligned spin axis is considered.

The line number related to the camera elevation angle, a, as

a

_=_-ff_ + £o (2)

where RPL is the number of radians per line ,and _o is the line number which

corresponds to a zero elevation setting of the camera.

The relation of the picture coordinates (2, e) to com_]inates of a location on the

Earth (_, X) depends upon the spacecraft position and attitude, and the camera

constants and biases. Several coordinate system transformations are required

to express this relation.
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The satellite spin plane coordinate system, the (x', y', z') system in Figmre 3,

must be related to the Earth inel_ial coordinate system in which the satellite

position is computed. Figure 4 shows a spacecraft spin pl.'me coordinate system

relative to true-of-date coordinates. The x' axis lies in the true-of-date (xz)

plane at an angle of × with respect to the true-of-date (-x) axis. The y' axis

forms a right hand orthogona ! system.

The transformation matrix S from the (x, y, z) system into the (x', y', z')

system is

y' = S • = sin_bsin× cos_ cosXsin_ (3)

-eos_sin× sin _ -cos_eosXJ

Since the positive spin axis z' is nearly aligned with the negative z axis of the

true-of-date, system, the angles × and _ will always be relatively small. Also

shown on Figure 4: are the right ascension and declination angles (c_, 6) which

are conventionally used to reprcsent the location of the z' axis. The declination

angle is near -90 degrees. The relation of (×, ¢) to (oe, 6) is

COS(X

tan'< = -afTa-K-6
(4)

sine = sin a cos6.

The loea_ton of the z' axis in (a, 6) is expressed as a time varying flmction as

6 = 60 + 51t + 52 sin(63t + 54) (5)

and

o_ = a 0 + O_lt + a 2 sin(o_3t +a4) (6)

The model represented by equations (5) and (6) is a symmetric one. Because

of the spin stability of the S/C axis, perturbations to (_, 6) or (X, ¢) are ex-

pected to be small.
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Figure4. True-of-Dateand SpinPlaneCoordinates
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Since the spin axis is nearly alined with the negative z axis of the true-of-

date system, the right ascension angle, a, is sensitive to the precision with

which it is computed. For example_ if the magnitude of the xy plane projection

of z f (line OA in Figure 4) is nearly zero, then a change in sign would cause

c_to change by 180 degrees. Such a change can occur on successive iterations

in the estimation process. The result would be to create divergent oscillations

in the attitude correction vector (c_, 5). Therefore, it is advantageous to use

the (X, ¢ ) coordinates for the spin axis location.

The angle ¢ is analogous to declination and is the angle bet_vecn the xz true-

of-date plane and the spin axis. It is measured from the xz plane (perpendicular

to the xy plane) to the z' axis. The angle X is analogous to right ascension

and is the angle between the z axis and the projection of the spin axis onto the

xz plane.

The model for the (X, _) coordinates of the spin axis can be written in a form

similar to those of equations (5) and (6)

¢ = ¢0 + ¢1 t + ¢2sin(_3 t+ ¢4) (7)

and

= _0 + Xlt + _Y2sin(X3t + _4)" (8)

Figure 5 shows the S/C symmetry coordinate system. The Zs/C axis is

parallel to the S/C longitudinal symmetry axis and Xs/C points to the zero

elevation angle in the actual VISSR plane. The S/C symmetry plane is per-

pendicular to the S/C symmetry aixs and is the reference plane from which the

true camera elevation is measured. Two VISSR planes are shown; the actual

VISSR plane is the plane swept out in elevation as the camera is moved from one

spin cycle to another, while the nomin._l VISSR plane is the plane in which the

camera motion is supposed to occur. The angle (measured in the symmetry

plane) between the sun sensor plane and the nominal VISSR plane is _o"
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_0 THE ANGLE IN THE SYMMETRY PLANE BETWEEN THE NOMINAL AND
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Figure 5. Spacecraft.Symmetry Coordinate System
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The angle measured in the S/C symmetry plane between tile actual and nominal

VISSR planes, AYO, is the first camera bias. A second camera bias is _,

which is .qn elevation {or line) bias angle. When the camera is set at a zero

elevation set£ing, represented by line XS/C0, its true elevation angle is _.

Angle a is the elevation of a landmark above (or below) the nominal zero eleva-

tion point and Aa is the amount by which the elevation is incremented each spin

cycle. At the beginning of a picture, a is set to a negative value corresponding

to the northern part of the earth and then incremented to positive values towards

the southern portion of the earth.

Figure 6 shows the spin plane (or attitude) coordinate system first instroduced

in Figure 4. Because of the inertial motion of the spin axis (equations (7) and

(8)) and the rotation of the earth, the location of a landmark with respect to the

spin frame is changing. Moreover, the daily motion of the sun and the spin

axis inertial motion causes the solar positions to change with respect to the

spin coordinates. However, at the time of a landmark observation, is, the

azimuth of a landmark, )_ and the azimuth of the sun, 3/1, can be determined

with respect to the spin system.

Yigure 7 shows the spin coordinate system relative to the S/C symmetry frame.

The symmetry frame is rotating with respect to the spin frame but Figure 7

depicts the instant that the VISSR plane intersects with x' axis of the spin frame.

Notice that the xs/C axis is shown coincident with the x' axis at this instant.

This choice is tantamount to forcing the z' axis to lie in the Ys/cZs/c plane.
This choice as allowable because the bias _ can absorb the elevation difference

{between x' and xS/C) which would occur if z' did not lie in the Ys/cZs/c

plane at this moment.

An angle p is defined as the angle, measured in the spin plane, between the

nominal VISSR and actualVISSR planes. This represents an azimuthal bias

which allows the modeling of error in the azimuthal location of the VISSR plane.
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Figure 7. Camera and Spin Biases
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The angle _' is the angle in the spin plane between the actual VISSR plane and

the _ensor plane, and a is the elevation of the camera at the time a landmark

was observed in the S/C symmetry coordinate system.

A A

Since X'sun, Xsun and the sun direction form a right spherical triangle,

_= - tan-l(tan A sin 6S) . (9)

The picture coordinate, _, is the line number or elevation coordinate and is

given by,

_=a-_
+ _o (10)

where RPL is the radians/line conver.slon constant and _o is the line corre-

sponding to a = 0. In practice the elevation angle a' is found in the spin plane

and then converted to a.

The second picture coordinate, e, corresponds to an azimuthal angle (measured

in the spin plane) between the left (west) edge of the earth and the landmark.

The situation is shown in Figure 8 which depicts the spin plane as viewed from

the north. The satellite is spinning clockwise. The picture coordinate, e, is

thus,

72 - 71-8 +ve- mod 2v (11)
RPE

where RPE ls the number of radians per element and /3 is the angle through which

the satellite has turned from the instant of sun observation by the sun sensor

to the observation of the left edge of the earth by the VISSR. The angle T1 is

the azimuth of the sun and _/2 the azimuth of the landmark. The angle fl is

determined by finding, for each line Of the picture, the first or leftmost pixel

of that line. Each revolution, a body-mounted sun sensor on the satellite detects

the sun and produces a sun pulse. For each revolution, a time interval called

the fl-time (T#), is computed. This time, which should elapse between the

sighting of the sun by the sun sensor and the alignment of the camera with the
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desired left edge of the earth pieture, is used to detect the first element of each

line. For each line, the values T_ and t o (time of the average sun pulse) are

available as recorded data. Since there are 3144960 counts per half spin

%
fl = 3144960 (radians) (12)

or

_T_ - 8" 165 )
[J= 3'i44960 + 7r (13)

when the sun pulse is 180 degrees out of phase.
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SECTION 4 - NUMERICAL RESULTS

The sample results shown below (Figure 9) are for a three day span of SMS-2

data obtained from three images taken twenty-four hours apart. Additional

preliminary results taken from NAVPAK runs using a longer data span supplied

by NOAA indicates that sub-pixel accuracy is possible by using a suitable set of

solve-for parameters and a longer, denser data set. The full results of these

and other evaluations of VAS/NAVPAK (e. g., force and attitude model evalua-

tions, propagation/prediction capability evaluation, etc.) will be published in

a future paper.
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ITERATION REPORT FOR ITERATION 3

CURREBTWE, IGHTED _ 0.7270660+01 PREDICTED'dEIGHTED _"IS 0.0000000+00
PREVIOUS NEICHTED l_IS 0.727209D+01 S_*IALLEST _ICIITED Ba_S 0.7272090+01
RELATIV CHANCE IN t_'LS 0.1963890-03 **_ DC CO_VRCEI) ***_
START= 750830 150436.60 END = 750901 150600.09 EPOCH= 750830 150000.00

--- OBSF&VATION SUHNARY BY TYPE ---
TYPE / TOTAL NO. / ACCEPTED /'dEI_EDt_ / r_AN P_SIDUAL / STANDAILD DEV
ELEH 29 24 0.65660+01 -0.2211D-01 0.32830+01
LIBE 29 24 0.7913D+01 -0.11950-02 0.3956D+01
RANG 0 0 0.00000+00 0.00000+00 0.00000+00
RDIF 0 O O.O000D+O0 0.00000+00 0.00000+00

ICEPLERIAN ELEHE_S AND LANDHARI(HODEL A'I'rITUDE PM_HETET_S FOR IT_ 3
PARA_-TER SOINE? CUIt_NT PREVIOUS STA.DEV

SHA (KH) 42164.9041 _2164.9041
ECC 0.0040 0.0040

INCL (DEC) 1.8162 1._162
HLON (DEC) :128.2253 128.2253
CHI-1 (DEC) YES 0.4938 0.4938 0.82530-01
CHI-2 (D/S) 0,0000 0.0090
PSI-I (DEC) YES "1.8674 -1.8674 0.2964D-01
PSI-2 (D/S) 0.0000 0.0000

CARTESIAN COORDINATES A_D Ia_D_B.KBIASES FOR ITEal 3
PA_t SOI,VE? CURRENT PREVIOUS STA.DEV
X (i_I) YES -26340.0797 -26340 0797 0.28000+01
Y (_,[) YES 82_82.0857 028_2 0857 0.46160+01
Z (KkI) YES -778,19111 -778 1918 0.81420+01
XDOT (,WJS) YES -2.4089 -2 4089 0.1779])-02
YI)OT (K/B) YES -1.9121 -1 9121 0.1662D-02
ZDOT (YJS) YES 0.0790 0 0790 0.31930-03
BIAS-1 (DEC) YES 0.0970 0 0970 0.45140-01
BIAS-2 (DEG) 0.0000 0 0000
BIAS-3 (DEC) 0.0000 0 0000

Figure 9. Sample Numerical Results
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ONBOARD IMAGE CORRECTION

D. R. Martin, A. S. Samulon, and A. S. Hamori

TRW Defense and Space Systems Group

ABSTRACT

This paper describes a processor architecture for performing onboard geometric and radiometric
correction of LANDSAT imagery. The design uses a general purpose processor to calculate the

distortion values at selected points in the image and a special purpose processor to resample (cal-

culate distortion at each image point and interpolate the intensity) the sensor output data. A

distinct special purpose processor is used for each spectral band. Because of the sensor's high
output data rate, 80 M bit per second, the special purpose processors use a pipeline architecture.
Sizing has been done of both the general and special purpose hardware.
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I. Introduction LANDSAT D consists of a Multimission Modu-
lar Spacecraft {MMS) combined with an instrument
module containing the Thematic Mapper (TM). As
the spacecraft passes over a region, the
TM scans back and forth, as shown in Figure I.

In performing analyses of imagery produced Each scan contains 16 scan lines spaced at approxi-
by earth resource observation satellites, it is mately 30 meter intervals and provides coverage of
frequently desirable that two images of the same seven spectral bands. In each spectral band, the
scene be registered; that is, each physical part moving image is swept past an array of detectors
of the scene is in the same location on the two by the scan mirror action. Each detector combined
i_ages so that the picture elements (pixels) of with mirror scan motion produces one image line in
the two images can be aligned. Such precision is one spectral band. The scan line corrector com-
not easy to attain, mainly because of varying dis- pensates for spacecraft motion during the scan, thus
tortions and viewing conditions from one image to yielding straight scan lines perpendicular to the
the next. Registration can be accomplished, how- spacecraft velocity vector. As the ground foot-
ever, by estimating these distortions and pro- print of each detector moves 30 meters cross-track,
cessing the image data accordingly, its output is sampled and converted to an 8 bit

digital word. These words are then multiplexed to
form an 83.268 Mops data stream.

With the adve_t of LANDSAT D, currently under
development, earth resource observation satellites
are coming closer to operational, rather than ex-
perimental, use.

Key features of LANDSAT D are- _ _

o Ground sample distance of thirty
meters

o Geodetic accuracy to 3 meters (RMS) ii_2_i

using ground processing

o Visible, near infrared, and thermal _........
infrared spectral bands o'_?o,_A,

CAOSS TmACK

o Swath width of 185 kilometers

o Repeated coverage every sixteen days • \
A_RAV O_ OIIIc'roR$ IPIWIL$,

o Seven spectral bands having eight bit
radiometric resolution

Figure I. Multispectral Scanning Sensor Geometry

The on-board processing technique described
While the features of LANDSAT D are all de- in this paper will provide corrected data in real-

sirable for an operational system, several elements time. The registration accuracy, although not as
must be added to create a truly operational system, good as that produced by ground processing, will be
Chief among these is rapid receipt of corrected approximately half the ground sample distance
imagery by the user. Due to the high data rate (15 meters). The expected accuracy should be quite

(lO million picture elements per second), present sufficient for doing crop yield assessment using
plans for LANDSAT D involve geometric correction multi-date imagery, change detection, and deter-
(on the ground) of only ten per cent of the (over mining progress of environmental disturbances such
land) imagery. Corrected imagery will be pro- as crop disease and fire. Further processiug on
duced within two days of transmission with ship- the ground will still be able to provide the ex-

ment through the mail adding several more days tremely high accuracy imagery required relatively
delay between imaging and availability of the data. infrequently for mapping purposes.
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The primary factors that are making on-board the same in each image and scan lines are parallel.
image correction viable are: l) the extremely high If the relative alignments of the two tsodtstance
accuracy ephemeris information to be available in registered images were known, they could be lined
realttme from the Global Postioning System (GPS), up and comparedsince any two given locations in a
2) the availabilityof small,high density,low sceneare separatedby the same numberof pixels
powermemories,and 3) high speed,low powerpro- for any two isodistanceregisteredimagesof the
cessors, scene. However,knowledgeof this misalignmentis

not requiredfor the on-boardisodistanceregis-

Evenwith thesetechnologicaladvances,prac- tration. In fact,directcomparisonof pixels
ticalsolutionof the on-boardcorrectionproblem stillwill most likelyrequirefurtherinterpola-
requiresa subsystemarchitecturethatis a bal- tion sincethe relativeshiftbetweencorresponding
anced combinationof a generalpurposecomputer pixelsis not necessarilyan integernumberof pix-
and specialpurposehardwareusingboth parallel els.

and pipelineprocessing. AbsoluteLocationof Pixels

More specificdetailson both the sourcesof Absolutelocationof pixelsaccomplishes
distortionand the geometriccorrectiontechnique everythingthat isodistanceregistrationaccom-
can be found inReferenceI. plishes. Inaddition,the relativealignmentof

the two imagesbeingcomparedisalways a knowe
numberof pixels. Thisallowsdirectcomparison

II. RegistrationProblem of the intensityof correspondingpixelswithout
furtherresampling.This is illustratedin Fig-

Two imagesof the same regionare said to be ure 2 by showingthat the squareregionscan be
registeredwhen each physicalpartof the sceneis made to coincide.

in the same locationineach image. Thisallows In comparisonto isodistanceregistration,
directcomparisonof dlfferentimagesof the same the absolutelocationregistrationrequiresa more
region. Unfortunately,unprocessedimagesdo not precisedistortionmeasurementtechnique. The ab-
meet thiscriterionbecauseof the distortions solutemagnitudeof all distortionsis important
contributedby the sourcesdiscussedin Section now, not just thosewhich varyduringthe scene.
llI. Groundor on-boardprocessingcan be used to The correspondingcorrectiontechniqueis com-
correctthe imagery. Dependingon the amountof parablefor isodistanceregistrationand absolute
on-boardcorrection,the amountof additional locationregistration.Sincesubsequentresampling
groundprocessingrequiredto completecorrection on the groundisavoidedby absolutelocationre-
of the imagerywill vary. Someof this additional gistration,it is clearlyadvantageousto do it.
groundprocessingis very simpleand can be done However,whetheror not it can be done depends
readilyby individualusers. Therefore,it is im- upon the capabilityof the on-boarddistortion
portantto considerthe degreeof correction measurementtechnique.
obtainablewith differentamountsof on-board

processing. In this sectionvariouslevelsof ExactOverlapof ImageFrames
registrationare defined. To achieveeach suc-

cessivelevelrequiresadditionalon-boardcapabi- The pixelsin imageswhichare absolute
lity. locationregisteredcan be comparedby extracting

correspondingportionsof the two images. Note
IsodistanceReqistration thatthe edgesof the sceneare not requiredto

overlap. Consequently,if subsequentimageryis
Isodistanceregistrationof differentimages usedto comparewitha referencescene,up to four

of the same regionrequiresthe sceneto have imagesmust be used to reconstructthe sameregion
constantinterpixeldistanceand parallelscan coveredby the originalimage. This difficultyis
lines. Figure2 illustratesthis concept. In the overcomeby exactoverlapregistration,which
unprocessedimages,the distancebetweenpixels causesthe pixelsof subsequentimagesto be in the
is unequal. After isodistenceregistrationhas same positionas in the referenceimages.been accomplished,the'distancebetweenpixelsis

Co.s,A.,,.,L.,,X,,This levelof registrat(onrequiresthe same

..............• • [_......___ • • .,s,A..s distortionmeasurementcapabilityas absolutelo-
......... • ,._E=,v_EL_......._A=. cation registration.The dichotomybetweenabso-

lute locationregistrationand exactoverlap
registrationis in the geometriccorrectiontech=
niquewhichmust be employed. Relativelylittle

• • _o.._.o,._,,_ groundprocessingis savedby this techniquecom-
e A_kklT| t(_;AI(IIN O • FOR OVERLAYING

......... L___-_ A.=_s,._o,._,,paredto absolutelocationregistration.However,
• ' if the increaseinon-boardprocessingcomplexity

is relativelysmall,this additionallevelof
registrationis worthwhile.

.........,........... _,o._.,,._ r4apProjectionRectificationIMA{;t F.AMfS FAAMCS "

Map projectionrectificationrequireseach
pixelin an imageto lie at a specifiedmap CO-

E_.,,_'_A' ordinate;furthermore,the i'nterpixelspacing
• _^,_,_,,_._ _.o,..._c"'_""must correspondto that of the map projection.

This requiresmore than registration,sincethe
repeatabilityof imagerydoes not guaranteethe

Figure2. RegistrationLevels imagecorrespondsto any type of map projection.
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Productionof imageswhichare rectifiedwith

respectto a well-knownmapprojection(e.g.,Uni- TURNAROUND_ TS.142,060+N2_SEC-- ]
versalTransverseMercatoror SpaceObliqueMer- A -
cator)is not attemptedin this implementation.

A significantamountof on-boa_ storageis re- J__AN0END '1

However,distortiondue to earthrotationis FORWARD
importantto eliminate,since thisrotationwill
affectdifferentimagesof the sameregionin a
differentway. Thisrequiressome sort ofmap
projectionto providea measureof the effectof
earthrotation. Sucha map projectiondoesnot
need to be a conventionalmap p_jection, nME--I_

Ill. Sourcesof Distortion _ART I TF'TR"

OFACTIVE MAN TR I _ _.N #SEC
ME_URED BY

Raw data receivedfromthe ThematicMapper MAN ANGLE
cannotbe directlyregisteredwith otherdata scan- MONITOR _,371 _o371

_.4 _SEC TURNAROUND _.4 _SEC
ned on previouspassesover the same regionbecause R
each unprocessedimageis affectedby a uniqueset
of distortions.De four primarycausesof dis- Figure3. ThematicMapperScan Durationstortionare:

o SensorCausedDistortions

Variationin the absoluteattitudeof the
o AttitudeVariation spacecraftwith respectto a previouspasswill

causean absolutelocationregistrationerrorpro-
o AlignmentVariation portionalto thisattitudevariation. Such vari-

ationis limitedby the accuracyof the star
o EphemerisVariation tracker. Isodistanceregistrationrequiresa

stableattitudereferenceduringthe scene,but is
Imagedistortionwill resultin a correspond- relativelyunaffectedby the absoluteaccuracyof

ing registrationerrorif the distortionis not this reference. Consequently,isodistanceregis-
estimatedand removed. After performingthis geo- trationis primarilydeterminedby the gyro drift
metriccorrection,the resultingregistrationerror in the stellar-inertialattitudereferencesystem.
is determinedby the accuracywith whichthe dis-
tortionis estimated,not by the actualmagnitude AlignmentVariation
of the distortion. In this sectionno estimation

or correctionis assumed,hencedistortionand The attitudeof the spacecraftis controlled
registrationerrorare virtuallysynonymouscon- by the attitudecontrolsystemwhichis locatedin a
ceptshere. separatestructurethan the ThematicMapper. For
SensorCausedDistortion the reasonspreviouslycited,the attitudeof the

ThematicMappermust be held constant(withrespect
The scanningmotionof the ThematicMapper to the earth-pointingframeof reference)to pre-

must be preciselythe sameon successivepasses vent distortion.However,the coordinateaxes of
the ThematicMapperare not the same as thoseof

over a regionif no distortionis to be int_duced, the Attitude_nt_l System. The differencebe-
Variationin the activescan duration(i.e.,scan tweenthesesets of axes exhibitsboth long term
veloci_) will cause stretching(or compression)of driftand a shorttermvariationdue to thermal
the pixelspacingwithina scan line. Variationin effects. Consequently,even if the spacecraft's
the scan periodwill causethe spacingbetweenscan attitudewere to remainconstant,alignment
linesto be differentfor subsequentimagesof a variationwould distortthe scannedimage.region,causingdifferentimagesof the sameregion

to havea differentnumberof scan lines. Figure3 EphemerisVariationillustratesthesevariations.

The locationof the spacecraftwith respectto
In additionto variationin scanperiodand the g_und at a giventimeof day can vary signi-

activescanduration,an additionalsourceof dis- ficantlyfor differentpassesover a region.
tortion is scannonlinearity.That is, the angular Pixelscomparedat the same timeof day for sub-
velocityof the scanmirrordoes not remainpre- sequentpasses,with no knowledgeof spacecraft
ciselyconstantduringthe scan,thus p_ducing location,can have a significantoffsetin pixel
irregularlyspacedpixels, location. Absolutelocationregistrationrequires

_at thisoffsetbe knownand correctedand is es-
AttitudeVariation sentialif differentimagesof the sameregionare

to be compared.
In the normalmode of operation,the attitude

of the spacecraftcan be commandedto takeon any Variationin the spacecraftaltitudefor dif-
desiredvalue. Nominally,the attitudeis such ferentpassesovera regionaffectspixelspacing
that the scansare perpendicularto the orbital in the cross trackdirectionfor both isodist_ce
velocityvectorwith the ThematicMapperpointing and absoluteregistration.Exceptfor the effect
towardsthe centerof the earthat mid scan. The of variationin the orbitalvelocity,the differ-
attitudeof the spacecraftis controlledby the ence in the spacecraft'salong trackand cross
attitudecontrolsystemlocatedin the spacecraft, trackpositionhas no impacton isodistancedis-

tortion. The altitudeand orbitalvelocityof the
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spacecraftchangesvery littlein comparisonto Althoughthis techniqueis not as accurateas
the cross trackdrift for differentpassesovera
region. Consequently,isodistancedistortion one usinggroundcontrolpoints,it is stillcapableof producingsub-pixelregistration.In fact,in
causedby ephemerisvariationis far smallerthan the isodistancesensethe registrationis nearlyas
the correspondingabsolutedistortion, good as can be obtainedwith groundcontrolpoints.

Table l summarizesthisperformance.The pixel
Correctingthesevariationsrequiresmore spacingfor the ThematicMapperis 30 meters,which

than a simpleshiftof the image. Specifically, meanstheseregistrationerrorsare approximately
perspectivedifferencesand earthrotationwill
combineto distortthe imagedata if the spacecraft ½ pixel.
isnot in preciselythe same locationas on pre-
vious passes. Perspectivedifferencearisesin
part becausethe ThematicMappersamplesthe de-
tectorsat equallyspacedangularincrements.Be- TableI. One-SigmaRegistrationErrorfor On-Board
causeof this,the pixelspacingon the ground DistortionMeasurementTechniques
increaseswith distanceaway from the groundtrack,
This variation_in pixelspacingpreventssimply DISTO_ION ALONG-T_CK C_SS-T_CK
shiftingthe imageto producealignment. Earth _URCE ER_R(M_ERS) ER_R(METERS)
rotationshiftsthe sceneduringthe scan,thus
producingan imagewhich is significantlyskewed SENSOR 1.6 1.3
with respectto a conventionalmap projectionof MIS_IGNMENT 7.3 5.2
the earth'ssurface. In addition,earthrotation
causesskewingof scan linesfor differentimages ALTITUDE 10.3 10.2
of the same region. EPHEMERIS S.O B,O

RSS 13.7 12.6

IV. DistortionEstimation

Registrationis accomplishedin two steps:
estimationor measurementof the variouspossible
factorswhichaffectregistration,and compensation MeasurinqSensorDistortions
for thesefactorseitherthroughdata manipulation
or spacecraftcommands. The firststepof this Of all the sourcesof sensor-causeddistor-
processis the topicof this section;the second tion,by far t_e largestis variationin scan dura-
stepwill be addressedin the next section, tion. The ThematicMappercontainsa scan angle

monitorwhich furnishesaccurateinformationboth

The accuracywith whichthesedistortionscan aboutpixel spacingwithina lineand pixelspacing
be estimatedis of particularconcern. Afterthe betweenlines. The scananglemonitor(SAM)op-
imageshavebeen correctedbasedon the distortion ticallymeasureswhen the scanmirrorentersthe
estimate,the remainingregistrationerroris caused activescanregion,when it is at its midpoint,
primarilyby the errorin estimatingthe distor- and when it leavesthe activescan region. The
tion. The techniqueusuallyemployedto estimate multiplexerinsertsa majorframesyncword intothe
distortionon the grounduses groundcontrolpoints downlinkdata stream(84 Mbps, interruptibleat
whichconsistof 32 by 32 pixelsubimageswith 8 bit word boundaries)when the SAM indicatesthe
knownlocation. The receivedimageryis correlated mirrorhas enteredthe activescanregion. After

the end of the scan pulseoccurs,the multiplexerwith the groundcontrolpointto determinethe prop-
er positionof one pixel. A dynamicmodelis used insertsan end of scan pattern,line length,cali-
for the distortion,with the correlationinforma- brationand zero restoreinformation.
tionservingas observationsof the distortion
process. By usingKalmanfiltering,the distortion Scan nonlinearity,if it is significant,will
at each pixelin the imagecan be estimatedand be calibratedfor each ThematicMapper. The extent
corrected. Variationswhichoccurat a higher of this nonlinearityis currentlynot determined,
frequencythan can be measuredby groundcontrol sinceThematicMapperis not yet operational.A
pointsmust be measuredby someothertechniqueor piecewisecurvefit can be used to modelthis non-
else simplyignoredif they are sufficientlysmall, linearity,if necessary.

Unfortunately,the use of groundcontrol AttitudeDetermination
pointsrequiresa significantprocessingand data
storagecapability. Inorder tomake on-board The attitudeof the spacecraftrelativeto
processingviable,the distortionmeasurement the trueearth-centeredinertialframeis deter-
techniquedescribedheredoes not use groundcon- minedby l) approximatingthe earth-centerediner-
trol points. The sensor-causeddistortionsare tial framewith an on-boardstellar-inertialframe
measuredby the scananglemonitor. Alignmentis of reference,and 2) commandingthe spacecraftto
calibratedin a preoperationalmode fromthe ground pointin a specifieddirectionrelativeto the
stationby usinggroundcontrolpoints. This stellar-inertialreference.
alignmentis transmittedup to the spacecraftand
periodicallyupdated. Attitudeis determinedby The threeaxis attitudereferenceis derived
usinga stellar-inertialattitudereferencesystem from integratedgyrodata. Attitudeand gyrobi-
whichusesan advancedstartrackerdesign. Ephe- ases are updatedperiodicallyfrom strapdownstar
merisis determinedfrom the GlobalPositioning trackermeasurementswhichare processedby an on-
System(GPS). boardalgorithm,typicallya six-stateKalman

filter. If this referenceis sufficientlyaccu-
rate,the attitudedistortionis not a matterof
concern.
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This is possiblythe most difficultsource putationrelatingscanneddata to the reference
of distortionto measureon-board,sincethe accu- coordinatesystem,the completecalculationis
racy of the attitudereferencesystemis typically performedonly for a selectedsubsetof pointsin
far lessaccuratethan the estimateobtainedwith the coordinatesystem. The locationin the scan-
groundcontrolpoints. By using a star trackerof ned data correspondingto otherpointsin the
advanceddesign,a one-sigmaattitudereference referencecoordinatesystemisestimatedusingan
systemaccuracyof 3 arc-sec(eachaxis)is achiev- interpolationpolynomial.
able. This is sufficientto attainsub-pixedre-
gistration.Even withoutan advancedstar tracker, Once the correspondencehas beenestablished
the isodistanceregistrationwill stillbe excel- betweenlocationsin the outputframeand the
lent. scanneddata, neighboringscannedvaluesare used

to interpolatean estimateof the intensityvalue
AlignmentCalibration of the outputpixel. Becausesomeof the neigh-

boringvaluesare producedby differentphoto-
The attitudeof the ThematicMapperrelative detectors,each with its own nonlinearresponse

to the stellar-inertialframemust be knownif the to.the incidentillumination,correctionof the
scan is to be of the desiredplaceon the earth, detectorresponsesprecedesthe interpolation
The relativealignmentof the ThematicMapperand process.
the attitudereferencesystemcan be determined
readilythroughthe use of groundcontrolpoints. CorrectionCalculation
Any other techniquefor determiningthis alignment

would be extremelydifficult. Inorder to avoid The outputpointcorrespondingto a given in-
the use of groundcontrolpointsin an operational put pixelcan be computedby usingthe piercepoint
mode,this alignmentcan be performedperiodically calculation.The piercepointcalculationuses
on the groundand transmittedto the spacecraft, the ephemeris,attitude,and scan informationto
In the absenceof significantmechanicalstress determinethe latitude/longitudeof the inputpixel
beingplacedon the spacecraft,thismisalignment on the earth'ssurface. This is convertedinto a
shouldbe relativelysmall. Inany event,the pointin the outputspaceby usingan appropriate
effectof this distortionon isodistanceregis- map projection.The inputpointcorrespondingto
trationisminimalbecauseit is slowlyvarying, a givenoutputpointcan be determinedby iter-

ativelyestimatingthe pointin the inputspace
EphemerisDetermination basedon the resultingpiercepointcalculation.

This has been shownin groun_processingto re-
When operational,the GlobalPositioning quireat most threeiterations.

System(GPS)will providepositioninformation

accurateto within15 meters(three-sigma).By Althoughthe piercepointcalculationcan be
usingthis informationto updatea Kalmanfilter performedfor eachoutputpixel,this requiresan
model of the spacecraft'sorbit,the position, enormouscomputationalload. The solutionto this
velocityand accelerationof the spacecraftcan problemis the creationof an interpolationgrid
be accuratelyestimated. This processingis per- consistingof a subsetof the outputpictureele-
formedin the GPS receiver,with the resultsused ments. The distortionis calculatedonly at the
as inputsto the imageprocessor, grid pointswith interpolationused to evaluate

V. GeometricCorrection the distortionat the otheroutputpixels, Note
that this interpolation(whichis used to evalu-

In orderthatall imagesof the samearea on ate the geometricdistortion)has no relationto
the earthbe registeredwith one another,it is the interpolatorused to calculatethe output
necessaryto havea referencecoordinatesystem pixelintensity(cubicconvolutioninterpolator).
againstwhichto compareeach imageas it is gen-
erated. The goalof the registrationprocedure, The correctioncalculationmust be performed
then,is to generatean outputimagewhose pixels onceeach scan (0.07seconds). Thiscalculation
correspondto specificlocationsin the reference must consequentlybe made as simpleas possible
coordinatesystem. The intensityvalueof each to minimizethe on-boardprocessingrequirements.
outputpixelmust be estimatedfrom the data The referencemap projection(coordinateframe)
actuallyscannedby the ThematicMapper. Thusthe is of particularconcernsincethe latitude/
generationof each outputpixelrequirestwo longitudeof each piercepointmust be converted
steps: l) determinationof the locationin the to this coordinateframe. Propertiesdesiredof
actuallyscanneddatacorrespondingto the speci- the map projectionincludethe following:
fic outputpixel,and 2) estimationof the output
pixelintensityvaluefrom the neighboringscan- o Scan linesnearlyparallelto the X-axis
ned values, of the projection(reducebuffering)

Determinationof the locationin the scanned o Validover the entireorbit
datacorrespondingto a specificoutputpixelre-
quiresrelatingthe scanneddata to the reference o Simplecomputationally
coordinatesystem. This relationis computed
usingthe GPS ephemerisdata,the attitudesen- o Use elipsoidalmodel for the earth'sradius
sor and controlsystemoutput,ThematicMapper (allowregistration)
scanmonitoroutputs,and occasionalalignment
updates. Appropriateselectionof the reference o X and Y axes nearlyperpendicular(two-
coordinatesystemused is crucialto practicalon- dimensionalresampling)
boardimplementationof geometriccorrectionbe-
cause itaffectsthe amountof data that must be
buffered. Becauseof the complexityof the com-
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Although none of the four projection used for It is necessary to correct the response to
ground processing of LANDSAT D data satisfies these make it linear before performing the resampling
properties, a slight variation of the oblique Mer- operations used to accomplish geometric correction.
cator projection does. Unlike the space oblique This is because the resampling process requires
Mercator projection, this projection is not swath interpolating intensity values between scanned
continuous and must have a different transformed lines. The different responses of the sensors
equator for each image frame, cause discontinuities in the scanned image inten-

sity from line to line. The sensor caused discon-
The use of this projection facilitates the tinuities between lines will produce incorrect

four following simplifications in calculating the interpolated values. Once the interpolated value
distortion at the grid points: is produced, compensation for the radiometric dis-

tortion is not possible.
o A simple cross track distance expression

to calculate distance relative to known Thus an essential part of the geometric cot-
pierce points rection process is an initial radiometric correc-

tion. This radiometric correction is accomplished
o Linearity of the vertical distortion across as follows: The Thematic Mapper has a calibration

the scan line procedure by which the response curve of indivi-
dual detectors can be determined when requested

o Avoidance of inverse mapping iterations by from the ground. We propose to approximate these
making a good initial estimate of the dis- curve by piecewise linear functions. The break-
tortion at each grid point points and slopes of the piecewise linear functions

will be stored on the spacecraft. As each new sen-
o Distortion calculation at a reduced number sor output value is produced, the value will be

of a grid points, with quadratic interpola- compared with piecewise linear function for that
tion used to calculate the distortion at sensor to obtain a corrected intensity value.
the remaining grid points

By using the first two techniques, only two Resampling
pierce point calculations are required per scan.
The last two techniques significantly reduce the After the distortion has been estimated, the
number of evaluations of the cross track distance location of the pixel centerpoints of the Thematic

expression. A computer program was developed which Mapper imagery is known relative to the pixel cen-
compared the combination of these four simplifi- terpoints of the reference image. This is illus-
cations with inversemapping of pierce points. It trated in Figure 4. The regular grid in solid
showed that at most 0.03 pixel error results, lines represents the set of output pixels to be

generated. Intersections in the grids represent

Using these techniques, the distortion is the centerpoints of the individual pixels. The
calculated at grid points spaced once each 64 out- task of resampling is to calculate a set of in-
put pixels. The distortion is assumed to be the tensity values for the output pixels, based on
same for all sensors in each of the 16 lines, ex- estimates derived from the intensity values of

cept for fixed delays associated with the time the input pixels plus calculated distortions.
sequence at which the sensors are sampled. The There are different resampling techniques, but
distortion at the remaining pixels is performed all make use of the values of the input pixels
using piecewise linear interpolation. The piece- in the vicinity of the output pixel to be cal-
wise linear interpolation is extremely simple com- culated. This process is called interpolation.
putationally; consequently, it can be implemented
in special purpose hardware along with the resam-
pling of the imaged data. This is extremely
important, since the linear interpolation dominates
the grid point calculation in terms of number of

operations required. PIXEL/+, OENTERPOINTS

Radiometric Correction 11 _

As mentioned previously, the Thematic Mapper _------_'_ \ /II

produces sixteen image lines in each of seven spec- l __ /_< _--_

tral bands with each mirror scan. (Actually, the !_--_ _-i_'_/_\_'. ,_F oUTPUT

thermal infrared band produces only one-fourth as | MATR!X
many lines.) Each of the simultaneously scanned --"

lines is produced by a different photodiode. Ide- MATRIxINPUT__,i Yl_fT_,l 3
ally the response of each photosensor is linear so
that its output is proportional to the intensity of _----
the illumination in the specific spectral band. In I --

practice these sensors do not respond linearly. In , _ _

fact, each sensor has its own unique response curve I
that can vary gradually over a period of weeks or
months. _ --

Figure 4. Resampling with Equally Spaced
Output Matrix
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Ideally, a two-dimensional bandpass pro- f 1.0-2.251xi 2 + 1.25]xi 3 0 • Jxl ( Icess can be interpolated bypassing the imagery
through an ideal two-dimensional lowpass filter, f(x_= I 3.0-6.01xl+3.751xl2 .0.751x13 I _ Ixl_ 2

The reconstructed image can then be "resampled" "_0

at the desired output pixel locations. This is _ I ELSEWHERE

mathematically equivalent to weighting the input
pixels according to a two-dimensional (sin x)/x
function (the impulse response of an ideal two-
dimensional lowpass filter). The (sin x)/x
interpolation requires an infinite number of
points. However, practical interpolation is

accomplished by approximating the (sin x)/x AL F(X):_
weighting with a relatively small number of input
pixels.

Three resampling techniques are in common

use today : nearest-neighbor, bi I inear inter- _-_o o lO_2.polation, and cubic convolution. In the nearest- -2. o
neighbor procedure the value of the nearest input
pixel to the desired output pixel is used as the
value of that output pixel. Nearest-neighbor re- _ x
sampling is computationally simple, but qenerally

produces distortions in the form of small discon- Figure 5. Cubic Spline Interpolation

tinuities at the edges and borders in an image.
It also results in an extremely blocky image.

Bilinear interpolation uses the values of the
four pixels surrounding the output pixel to be cal-
culated. The intensity of these pixels are bilin-
early averaged to yield the intensity of the output VI. Implementation
pixels, with the relative weighting depending upon

the location of the output pixel. The resulting The on-board image processor is functionally
averaging moves the blockiness of the nearest- divided into two major units: a general purpose
neighbor technique but introduces small-scale programmable processor, and a custom designed re-
smearing that results in loss of resolution, sampling processor. A functional block diagram

of the entire system is shown in Figure 6. The
The cubic convolution technique uses the general purpose processor calculatesthe re-

values of the sixteen pixels surrounding the cursive distortion coefficients required by the
desired output pixel (Figure 4). The weighting resampling processor and acts as the controller
function in this case is a two-dimensional cubic for the resampling processor. The resampling
spline function which approximates the optimal processor performs the along scan and across
(sin x)/x interpolator. The one-dimensional scan resampling algorithms. In order to per-
cubic spline interpolator (shown in Figure 5) is form this resampling, this processor must also
a piecewise cubic polynominal which is the same perform radiometric correction and skew buffering.
as (sin x)/x at the breakpoints and is required
to be twice continuously differentiable at the
breakpoints. Two-dimensional interpolation is
accomplished by performing one-dimensional inter-
polation within each of the four closet rows to
obtain four pixels vertically aligned with the
desired output pi,xel. One-dimensional interpola-

tion in the vertical direction is then performed I_"_{_,Jli_}_' I_
to obtain the desired output pixel. Interchanging '_i_i _''°"the rows and columns in this procedure yields the I

same resu I t. : _.,_.,,o,,_ .......

Cubic convolution does not suffer from the _;:_:_:_m:_'_: ....
blockiness associated with nearest-neighbor inter-
polation or from the resolution difficulties which _...................
plague bilinear interpolution. _° ,_,o_.....................

• OOUBL_ LINES REP_ESENY _^G_ OX_A.

Figure 6., On-Board Processing
Functional _lock Diagram

248



Computerfor DistortionCalculation This estimateis basedon usinga 4096by
•40-bitprogramcontrolmemoryand a 2048 by

Duringthe time requiredfor one scan (0.07 16-bitRAM workingmemory. Sincethe processor
second)the generalpurposeprocessormust cal- is not timeconstrained,extensiveuse of branch-
culatethe distortioncoefficientsand performthe ing to "subroutines"can be used to keepthe
requiredcontrolfunctionsfor the resamplingpro- programwithintheselimits. Eachof thesememo-
cessor. Table2 summarizesthe numberof opera- riesrequiresapproximatelylO watts. Combining
tionsrequiredto performthiscalculation.Since thesememorieswith the lO wattsrequiredfor the
virtuallyall operationsrequire32 bit accuracy, CPUyieldsthe 30 watt estimate.
Table2 also showshow many singleprecision
(16 bit) operat.ionsare requiredto achievethe Resamplin9 Processor

requiredaccuracy. The preliminaryhardwaresizingdescribedin
this sectionemploysoff the shelfcomponentsand
is straightforwardin design. It does not assume
use ofyaw controlto reducethe numberof scan
linesstored. This possibilityis discussedin
the nextsub-section.The totalnumberof parts
is estimatedto be 810, with a totalpowercon-

Table2. OperationsRequired sumptionof 135 watts (20 percentmarginis in-
for DistortionCalculation cluded). The boardarea is estimatedto be 2.2

squarefeetwithoutredundancy. (Sincemuch of
NumberofOperations(DoublePrecision} the resamplinghardwareis identicalfor each

Processing -- spectralband,reliabilityconsiderationswill
segment Add MultiplyDivideSquareRootTrfg requirefar lessthan lO0 percentredundancy.)

By carefuldesignand use of customdevice
_alculate reference points 90 96 I0 9 8 fabrication,the powerconsumptionmightbe re..
ivaluatecrosstrack 220 400 ZO ducedby a factorof two.
Jistance

The resamplingprocessor(Figure7) employs
uadrat|cinterpolation246 336 sevenseparatealongscanand crossscan pro-
theralongscan 202 g cessors,one set for eachof the sevenspectral
Jistortioncalculations bands. A "skewbuffer"memoryis used to inter-
:rossscandistortion 9 2 l facethe alongscanand crossscan processors. It
:alculation stores32 scan linesof data (262144bytes)in each

_eeursiveequation 260 140 of the six high resolutionbands. A singleradio-
initialization metriccorrectionprocessorprecedesthe seven

along scan processors.Thereare two microsequenc-
TOTAL 1,047 977 II 29 B ers, one holdingthe controlcode for the radio-

metricand alongscan processorsand the other

Totalsingleprecision2.5344,341 holdingthecontrolcode for the skew bufferand
add/multiply acrossscan processors.Bothmicrosequencersdrive

a delay lineso the processorsfor each band re-
Totaladd/multiply ceivea delayedversionof the same code. The
persecondwith 70.952121.548 inputand outputare loadedintohigh speedFirst-
factoroftwomargin In-First-Out-Stacks(FIFOS)for the purposeof

resynchronizingthe data to the processorrate.

The firstprocessorconsideredwas the NASA
StandardSpacecraftComputer- i. Unfortunately,
thisprocessoris approximatelyfivetimestoo slow [ _-.----_ . __ I
to calculatethe distortioncoefficients. "

The NASA StandardSpacecraftComputer- IT was
also considered.Its fullparallelfloatingpoint

structurereducesthe doubleprecisionmultiply ! _ _,F-_E,,-_IEo._ IItime to 33.5microseconds.Consequently,thiscom- ,,,,NE

putermay be capableof performingthe distortion ___ i

calculation,providedthe factorof twe marginis L_, _I_ I _ _c°"_ _.... i

not required. Its powerconsumption(llOwatts for
8192 wordsof core memory)isat leasttwicethat J
requiredof a processoremployinghardwaremulti-

plication. _o,oL ,_It is estimatedthat a processorcouldbe
developedconsumingapproximately30 to 35 watts
which has the requiredcapability. For example,
a 16-bitversionof the 8-bit PayloadSignal Figure7. ResamplerBlockDiagram
Processor(PSP)builtby TRW and describedin
Reference2 would be in this rangeand wouldbe
capableof meetingthe performancerequirements.
The8-bit versionof the PSP is to be space
qualifiedby mid-1979.
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The radiometric processor operates at I0 mega- REFERENCES
samples/second. The along scan and cross scan

processors operate at 600 nsec per pixel with sub- Ill "On-Board Image Registration Study", prepared
cycles of 150 nsec. This is near the limit of by TRW Defense and Space Systems Group for
their capability with presently available parts. Goddard Space Flight Center under Contract
The parts which limit the speed of the processors No. NAS5-23725, January 31, 197g.
are the 150 nsec multiplier and the 64k memory
chips in the skew buffer. It is anticipated that

faster parts will be available in the near term [2] S. W. Houston, D. R. Martin, L. R. Stine,
which will increase the speedmargin. In addition, "Microprocessor Bit Synchronizer for Shuttle
a custom-designed multiply/accumulate chip might Payload Communications, IEEE Trans. Comm.,
be employed to decrease the complexity of the pro- Vol. C0M-26, No. II, Nov. 1978, pp. 1594-1603.
cessors. The parts and power could also be re-
duced by using an alternate memory configuration
which saves approximately five scan lines of data

instead of 32. This would require increased ad-
dressing complexity, but results in a factor of six
reduction in skew buffer memory. This coupled with
the multiply/accumulate chip could potentially re-
duce power by as much as one-half. The develop-
ment cost may be greater, however. This discour-
ages their use in a prototype ground version of the
resampling processor.

Attitude Control

As described above, ephemeris variation re-
sults in scan lines being skewed with respect to
the X-axis of the coordinate frame. One technique
of compensating for this skew is by using yaw com-
mands. Small, infrequent commands are capable of
compensating for ephemeris caused skew. This skew
is virtually zero at the equator and increases to
as much as six pixels at high latitudes. However,
the change in skew is approximately 0,3 pixel
during an image frame with the amount of skew be-
ing consistent to within a fraction of a pixel at
image frame boundaries. This corresponds to a yaw
command of lO0 urad given once each 30 seconds,
which is well within the capability of the attitude
control system. The dynamics of the attitude con-
trol system are measured and compensated in the
pierce point calculation, so the commands do not
adversely affect the registration.

The amount the yaw should be changed is deter-
mined by observing the slope of the scan line at
some consistent time within each image frame. This
can be directly translated into an attitude com-

mand and passed to the multimission modular space-
craft computer for implementation. This calcula-
tion adds virtually no burden to the general
purpose distortion calculation computer but can
reduce the memory required in the resampler to six
lines.

VII. Conclusions

We have shown that on-board correction of

LANDSAT D imagery to subpixel accuracy is feasible
using currently available technology. Specific
methods to accomplish this goal have been described.
Estimates of required size and power have been pro-
vided for both the special and general purpose
hardware used. On-board realtime correction offers

the potential of vastly increasing the percentage
of images corrected and makes direct readout to
users a valuable option.
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INCORPORATION OF STAR MEASUREMENTS FOR THE
DETERMINATION OF ORBIT AND

ATTITUDE PARAMETERS OF A GEOSYNCHRONOUS SATELLITE

(AN ITERATIVE APPLICATION OF LINEAR REGRESSION)*

Dennis Phillips
Scientific Programming and

Applied Mathematics, Inc.

ABSTRACT

Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being
ingested on a daily basis. The image coordinates of the star locations are measured and stored.

Subsequently, the information is used to determine the attitude, the misalignment angles between
the spin axis and the principal axis of the satellite and the precession rate and direction. This is

done for both the 'East' and 'West' operational geosynchronous satellites. This orientation infor-

mation is then combined with image measurements of earth-based landmarks to determine the orbit

of each satellite. The method for determining the orbit is simple. For each landmark measurement
one determines a nominal position vector for the satellite by extending a ray from the landmark's

position towards the satellite and intersecting the ray with a sphere with center coinciding with the
earth's center and with radius equal to the nominal height for a geosynchronous satellite. The

apparent motion of the satellite around the earth's center is then approximated with a Keplerian

model. In turn the variations of the satellite's height, as a function of time found by using this
model, are used to redetermine the successive satellite positions by again using the earth-based land-

mark measurements and intersecting rays from these landmarks with the newly determined spheres.
This process is performed iteratively until convergence is achieved, Only three iterations are
required.

*Prepared at Scientific Programming and Applied Mathematics, Inc. under contract with NOAA/
NESS.
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I, Introduction

When the first geosynchronous spin stabilized satellites with spin scan

cameras were launched, it was hoped that the image of the earth in these satellite

generated images would remain stationary so that the dynamics of the world's weather

systems could be observed with respect to an earth's reference frame. This hope was

not realized.

Eventually (1970-1971) at SSEC of the University of Wisconsin, software

packages were developed by Mr. Dennis Phillips and Mr. Eric Smith which generated

a satellite attitude from earth based landmark measurements and satellite orbit

parameters and which enabled one to transform earth coordinates to image coordinates

and vice versa.

Next, Mr. John T. Young, also at SSEC, skillfully adjusted orbit para-

meters made available from either NASA or NOAA to align pictures with high precision

on a regular basis. However, since this approach requires a highly skilled operator

and is time consuming, this approach has essentially never been transferred to

other installations.

Consequently, when NOAA/NESS convened with SSEC about the transfer of

SSEC's navigational capabilities to NOAA/NESS's operations, it was resolved that

a proposal of Mr. Dennis Phillips to develop automatic methods to extract attitude

parameters and orbit parameters from earth based landmark measurements and earth edge

measurements would be founded. As a result, two software packages, COMORB (compute

orbit) and UPGORB (upgrade orbit) were developed at SSEC and transferred (June 1978)

along with the VIRGS computer system to NOAA/NESS's World Weather Building. In

September, 1978 Dr. Dennis Phillips demonstrated the alignment capability of this

system and the software started to be used regularly in the operations around May,

1979.
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However, in August, 1978, Dr. Ken Chan, Mr. Ron Gird and Mr. Ben Remondi,

de_anstrated that star images could be detected and measured in the image frame. It

was recognized that star measurements would enable a very precise determination of

the satellite's attitude and the misalignment between the satellite's spin axis and

the satellite's principal axis. Dr. Dennis Phillips of Scientific Programming and

Applied Mathematics, Inc. has subsequently modified the SYSNAV software package to

accept these star measurements for attitude determination and changed the UPGDRB soft-

ware package to use these attitude and misalignment parameters to generate a Keplerian

set of orbit parameters which predictively aligns satellite images 24 hours in the

future. This software will be used in the operations very shortly.
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II. Attitude and Misalignment Parameter Determination

Each star measurement (we index the star measurements with the variable

i) determines a unit vector (xi, Yi, zi) which points parallel to the direction from

the satellite to the star. In addition, by using the line number of the position

of the star in the image frame, we can determine approximately the angle ¢i between

satellite's spin axis vector (u, v, w) and the unit vector. We have then, that

uxi + vYi + wzi - cos ¢i = ei for i=l,...,n

where n is the number of star measurements and ei is the error incurred at

each ith measurement.

The mathematical problem is to minimize
n

S =_-_. (uxi + vyi + wzi - cos¢i)2

i=l

subject to the constraint u2 + v2 + w2 = I. We do this by iteration and take advantage

of the fact that we know that w is always close to the value -l.

We set (uO, vo, wO) = (0, O, -I)

and iterate

(Un,Vn) = solution of setting

_S_u, v, Wn_l) = 0

_(U, V, Wn_I) = 0

and normalize by setting

Wn = 4i1.0-u£ 2 Tv£ _)

)2
until (Un-Un.l)2 + (Vn-Vn.1 £

l.O E-12.

254



Convergence is achieved in 2 or 3 iterations.

To realistically model the problem, we have to introduce the possibility

of a pitch misalignment angle. Hence, we consider the problem of minimizing

n

=_..j'(ux i + vyi + wzi - cos(¢!+¢)) 2
S

i=l

again subjectto the constraintu2+v2+w2 : I. Instead,we considerthe equivalent

problem n

S =_(uxi+vYi+WZi + a cos_i + bsin¢i)2
i=l

subjectto the constraintsu2+v2+w2= l

and a2+b2 = I.

To solvewe set

(uo, Vo, Wo, ao, bo) = (0,0,-I,0,-I)

and iterate

(uo,vo,bo)= solutionof setting

u,V,Wo,ao,b)= 0

_--_ u,v,wo,ao,b)= 0

u,V,Wo,ao,b)o

and normalize by setting
i

Wn :41.O-un2-Vn2
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and an :_-I.O-bn2-

until (Un-Un_l)2 + (Vn-Vn.l)2 + (bn-bn.l)2 <_I.OE - 12

Convergence is still achieved within 2 or 3 iterations.

The roll and yaw misalignment angles are determined by a method which

in a mathematical sense is virtually identical to the approach used to find the

attitude of the spacecraft.
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III. Orbit Determination

Once the attitude and misalignment of the spacecraft are determined,

the determination of a set of orbit parameters describing the motion of the space-

craft is relatively straightforward. By using the attitude and misalignment parameters

along with the line and element numbers of the measurement of image location of

earth-based landmark, one can determine a unit vector in inertial coordinates

which is parallel to the vector from the satellite to earth-based landmark.

By extending a ray from the landmark towards the satellite and inter-

secting that ray with an earth centered sphere whose height approximately equals

the height of a geosynchronous satellite, one obtains an approximate satellite

position vector Pi : ( xi_ at time t i and indexed by i.
Yi )zi

INTERSECTIONAT

APPROXIMATE

_TEU.ITE

POSITION

RAY EXTENDED TOWAP.DS

SATELLITE

EARTH-BASE)

_K.

SPHERE WITH RADIUS : 42,165_, CENTER_ AT EARTH'S CENTER
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To determine the orbit plane perpendicular we minimize

n

S :_ (uxi+vYi+WZi)2
i=l

subject to the constraint u2+v2+w2 = l

where here (u,v,w) is the orbit plane perpendicular and n is the number

of approximate satellite positions.

The quantities

uxi+vYi+WZi

should be close to zero by the definition of a perpendicular. The sum S is

minimized by using exactly the same method used to find the spin axis vector.

All that is left to be determined is the motion of the satellite within its

orbital plane. We model this motion with equation ti : cI + c20_i + c3 sinO_i + c4

cosOCi where the ti's are the times the approximate satellite position vectors are

determined, the O<i's are the angular positions of the approximate satellite position

vectors around center of the earth with respect to some arbitrary reference axis

and the Ci's are to be determined. This model is exactly Keplerian within .03 km

for eccentricities less than .Ol.

The Ci's are determined by using linear regression to minimize

n 2

S =_ (CI+C2C_+C3 sin_+C 4 cos_-ti)
i=l

A time span of 18 hours is necessary to determine C2 and the other

Ci's can be determined within a time span of lO hours.
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Estimates of the satellite's orbital variation of height as a function

of time are obtained from the Ci's and used to recalculate the satellite approxi-

mate position vectors from the earth-based landmark measurements. This is done

iteratively until a convergence criteria is satisfied. This requires 5 to 6

iterations. Finally, the orbit plane perpendicular and the constants Ci's are

converted to standard Keplerian constants.
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IV. Evaluation Criteria for Attitude and Orbit Generating Software

l, The amount of training and background required for each

system operator

2. The.relative convenience and ease of use of the system

3. The total man and computer resources necessary to operate the

system

4. Current operation status

5. Accuracy

6. Time required to recover operational accuracy after maneuvers

7. Future development prospects
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V. Future Developments

A. Sun pulse documentation information will be used to detect

and measure the effects of nutation and these effects

will be removed

B. Attitude precession will be determined automatically

C. The orbit model will be improved to increase accurate

propagation periods; eventual goal is to propagate accur-

ately up to 7 to I0 days.
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