OPTIMAL LARGE ANGLE MANEUVERS
WITH SIMULTANEOUS SHAPE CONTROL/VIBRATION ARREST
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ABSTRACT

A relaxation method is demonstrated which reliably solves the nonlinear two-point-boundary-value
problem which arises when optimal control theory is applied to determination of large angle
maneuvers of flexible spacecraft. The basic ideas are summarized and several idealized maneuvers
are determined. The emphasis is upon demonstrating the basic ideas and practical aspects of the
methodology. References are cited, particularly Turner’s dissertation which presents detailed
formulations and more general applications.
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Discussion of Figures

With reference to Figure 1, we employ the method of assumed modes to obtain a set of ordinary
differential equations which govern deflections and rotations. The form of the equations of motion
are given in Figure 2. Note the high dimensionality and the variability of the coefficient matrix.
Note that solution for the acceleration coordinates is required in order to integrate motion as a
function of time, and in order to apply optimal control theory.

Figure 3 displays a partitioned algorithm which efficiently determines the inverse of the high-
dimensioned, configuration-variable coefficient matrix. Consistent with this partitioning algorithm,
we consider in Figure 4 an algorithm for obtaining partial derivatives of the inverted coefficient
matrix with respect to deflection coordinates (required in the optimal control algorithm).

Figure 5 summarizes the state and co-state differential equations which follow from Pontryagin’s
principle as the necessary conditions satisfied by optimal (minimum quadratic cost) maneuvers.
Observe that the initial and final states are generally known, but the initial and final co-states are
usually unknown. Thus, as usual, a nonlinear two point boundary value problem (TPBVP) has
resulted. Notice the quadratic angular velocity nonlinearity due to “rotational stiffness.”

In Figure 6, we summarize an imbedding/relaxation approach which has proven a reliable approach
for solving TPBVP’s of the above structure. In essence, a one parameter (o) family of problems is
constructed that one special member (a = 0) has an analytical solution, while another member
(a = 1) is the true problem of interest. By relaxing o through a sequence of increasing values
0<@; <1, we can extrapolate arbitrarily good initial or final co-state estimates (by adjusting the
o-increment) from previous converged solutions, thereby allowing efficient differential corrections
to isolate accurate co-states corresponding to each «. Typically, only 4 or 5« j values are actually
required to reach the desired « = 1 solution. This method and related methods are developed and
applied to several examples in Reference 3.

Considering now a specific configuration, we refer to Figure 7. The four identical cantilevered
appendages are mounted in the same plane to the rigid central hub. We neglect the hub radius

in any equation in which it appears divided by the appendage length. Referring to Figure 8, we
restrict attention to pure spin rotations and antisymmetric deflections, consistent with spin-up,
spin-down, and rest-to-rest maneuvers with the configuration initially and finally undeformed. We
consider only the case of torques applied to the hub.

Table 1 describes seven maneuver calculations, corresponding to three sets of maneuver boundary
conditions and four different dynamical models. These cases are selected to demonstrate the
effects of rotational stiffening and to show that the relaxation method can handle both high
dimensionality and nonlinearities.

Figures 9a - ¢ display the angle of rotation, angular rate and torque for the case 1 maneuver (rigid

appendages). For comparison, Figures 10a - ¢ display the same variables for cases 2L and 2N of
flexible appendages, assuming a 1 mode expansion. It is of interest to note that the flexibility
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effects are large indeed. The flexible case torque oscillates anti-symmetrically about the rigid case
torque, the desired final angle and angular rate are achieved and the modal amplitude (and its de-

rivative) are simultaneously driven to zZero. It is interesting that the linear and nonlinear solutions
were identical, to graphical accuracy, due to the small deflections and velocities of this particular

maneuver.

Figure 11a - d and 12a - d display angle of rotation, torque history, and amplitudes of the first two
modes for cases 3L and 3N, respectively. The maneuver is an extremely rapid spinup from rest to
0.5 rad/sec in 60 sec. The linear (3L) and nonlinear (3N) solutions differ significantly, but the
linear solution retains the general shape and amplitudes differ by less than 10% throughout most of
the motion.

Figure 13a - g display the angle of rotation, angular rate, torque, and the first four modal amplitudes
for case 4L (a rest-to-rest maneuver through a 360° rotation). These results simply show that,
indeed, the large rigid rotations and vibration suppression of several degrees of freedom are deter-
mined.

We offer the following significant conclusions:

® An Optimal Control Formulation is Presented for General 3 Dimensional Maneuvers of a
Class of Flexible Satellites

® A Partitioning Method is Introduced to Invert the Rotational-Vibrational Equations of
Motion for Acceleration Coordinates and to Obtain the Adjoint Equations

® An Imbedding/Relaxation Process if Demonstrated for Solution of the Two-Point-Boundary-
Value Problem.

® Numerical Studies Indicate that Practical Algorithms Result from these Developments
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THE METHOD OF ASSUMED MOBLS

The deflection of the jth flexible member is modeled as
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ROTATIONAL/DEFLECTIONAL EQNS OF MOTION
DYNAMICS OF FLEXIBLE SATELLITES

{8} = [F(8)]{w}
(I {0} = ~[H ]{n} + (£¢0,w,n,0, )} + {u}
MI{n} = -[(H]{G} + {g(0,0,n,0,t)}

Combine (2) & (3)

T .
J(n) H jgl £+ n}
H M (_n ‘ 8
Note
[H] & [M] are constant
BT = )+ ) 3]l < < 15,]] (eypicaty)
Inertia of Inertia varia-
undeformed tions due to
vehicle deformations

A problem:

We need eqns of motion in the state space form g

but

(1) The coefficient matrix of (4) is variable

(11) Its dimensions may be several hundred

Figure 2
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PARTITIONED/PERTURBATION INVERSION OF THE

COEFFICIENT MATRIX
c T A N
tn G JoooH
Name the submatrices: ' = '
CZ] . C22 H « M

The cij can be expressed directly as a function of J, M, H as:

Form 1 Form 2
-1
-1 -1 7 T .,-1
-1
-1 ,T -1 -1 T
022 M-HJ'"H) M -M"H C21
Coy | ~Coy H O™ L
21 22 11

For direct numerical calculations, Form 2 is preferred since
(1) (3 - o o]

(ii) M is generally diagonally dominant (an identity matrix if one first
solves an eigenvalue problem - Note M is positive-definite symmetric)

M™' H) is a 3 x 3 matrix

Figure 3
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CERTAIN REQUIRED PARTIAL DERIVATIVES & HOW TO DETERMINE THEM

Rotational/Vibrational Equations of Motion
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FORMULATION OF THE OPTIMAL CONTROL PROBLEM

STATE VARIABLES

x, = 18}, x,=1{n}, x3= {0}, x, = {n)

STATE DIFFERENTIAL EQUATIONS

x = [FGxD] x5} = FGx, = %5 = =5 )

?_'(.2 = 54 = Ez( i T ) E(‘, - =)
g%l {{45}} {53(’51’ Xyy Xqs Xgn Uy t)} £x,,0) +u
< (F) - = = Mrl(x ) IR AP
_>E4$ {n} f4(§1’ 32) }.(3’ 3_{4, 4, t) =2 E(Z(_i,t)

Find u(t) generating a trajectory initiating at Ei(to), terminating at_gi(tf),

which minimizes the function

§ T
u + X, W,., x
122 ~ Tii =

t
_1 £ T
B NEREN s

HAMILTONIAN

PONTRYAGIN'S NECESSARY CONDITIONS

Co-state Equations

S M . X
A‘i—- al‘.i —Q_i(_}i: e _}543 2'\'1’ LY _>‘4) u, t)

Optimal Control

Minimize H at each instant with respect to admissible u(t), this
yields u = gﬁgl, ces Xy Al’ cay 14’ t)

Figure 5
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IMBEDDING/RELAXATION METHOD FOR SOLVING
TWO-POINT BOUNDARY VALLE PROBLEM

Define merged vector
T
1= {xT AT}

The coupled state and costate differential equations are then
Z = [A]Z + a{all nonlinear terms}
L o )
® Typically, we know é(to) and 5(tf), but not 2‘-(to)’ A(tf).

® For o= 0, we can solve for A(t ) exactly.

©® By taking sufficiently small a-increments, we can use converged l(to) from

neighboring optimal solutions to initiate successive approximations with

anbitranily good stanting estimates for the unknown A(to)‘

® Typically, only 5 to 10 intermediate a-values are required a practical
algorithm results.

Figure 6
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FIGURE 7 UNDEFORMED STRUCTURE

FIGURE 8 ANTISYMMETRIC DEFORMATION
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14%4

Case #

2L

2N

3L

3N

4L

4N

TABLE 1 DESCRIPTION OF TEST CASE MANEUVERS

Qualitative Description

Rigid Appendages
Rest~to-Rest Maneuver
te = 14.221 sec.
Linear Kinematics
Rest-to-Rest Maneuver
tf = 2n/m1 = 14.221 sec

Nonlinear Kinematics
Rest-to~Rest Maneuver
te = 21r/u;1 = 14.221 sec

Linear Kinematics
Spinup Maneuver

tf = 60 sec

Nonlinear Kinematics
Spinup Maneuver

cf = 60 sec

Linear Kinematics
Rest-to~Rest Maneuver

tf = 60 sec

Nonlinear Kinematics
Rest-to~Rest Maneuver

tf = 60 sec

# of Modes (N)
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