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ABSTRACT

A software system is described which provides for batch least-squares estimation of spacecraft orbit,

attitude, and camera bias parameters using image data from the Geostationary Operational Environ-

mental Satellites (GOES). The image data are obtained by the Visible and Infrared Spin Scan

Radiometer (VISSR) Atmospheric Sounder (VAS). The resulting estimated parameters are used for
absolute image registration. Operating on the Digital Equipment Corporation (DEC) PDP-11/70

computer, the FORTRAN system also includes the capabilities of image display and manipulations.

An overview of the system is presented as well as some numerical results obtained from observations

taken by the SMS-2 satellite over a 3-day interval in August 1975.
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SECTION 1 - INTROI)UCTION

A variety of spacecraft (S/C) exist which transmit images to the ground to

provide meteorological and Earth resource information. Several studies have

been concerned with the use of this imaging data for the estimation of the S/C

orbit and attitude. Such an estimation procedure can be used for several

purposes. The one with which this report is concerned is the use of the esti-

mated S/C orbit and attitude (O/A) parameters for absolute image registration.

The estimated O/A parameters are used to predict the geodetic latitude and

longitude (_, X) which correspond to a specified location on an Earth picture.

This allows accurate geodetic coordinate determination for temporal phenomena_

such as clouds or sea swells.

There are two categories of image data; those from three axis stabilized S/C

and those from spin-stablized S/C.

The Landsat and Earth Resource Technology Satellites (ERTS) are examples

of three axis stabilized S/C. These produce image data from high inclination

(polar) close Earth (900 km altitude) orbits. The use of this data is discussed

in Reference 1 which describes a software system for the display ,and manipu-

lation of image data as well as the use of an extended Kalman filter estimator

for the O/A parameter determination.

The geosynchronous Geostationary Operational Environmental satellites

(GOES) are examples of spin-stabilized S/C which produce image data. An

overview of O/A estimation using this type of'data is given in Reference 2,

where sample numerical results are presented for the first geostationary

Synchronous Meteorological Satellite (SMS-1).
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This paper describes a software system developed to provide Bayesian weighted

least-squares estimation of spacecraft orbit and attitude parameters using

picture data obtained from the VAS (VISSR Atmospheric Sounder) instrument

to be flown on the GOES-D. The data consist of ground control points of

known geodetic cool<tinates located on pictures of the Earth taken by the GOES

spacecraft. The VAS/NAVPAK (VISSR Atmospheric Sounder Navigation Pack-

age) system operates on the Digital Equipment Corporation PDP 11/70 computer.
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SECTION 2 - VAS/NAVPAK SOFTWARE OVERVIEW

As shown in Figure 1, the VAS/NAVPAK system can be divided into four

functions. First, the Data Base Management (DBM) portion controls file

and data manipulation. Second, the picture display and cursor navigation

portion _ntrols: (1) picture display on the I2S, such as image zooming;

(2) cursor navigation, including the extraction of picture coordinates (£, e)

and the a_tomatic moving of the cursor to the picture coordinates correspond-

ing to a specified longitude and latitude; (3) automatic grey scale correlation

between a prestored chip (16 x 16 pixel reference landmark) and a search

area about the cursor; (4) the creation of landmark observations. The third

VAS/NAVPAK function is the O/A and camera bias estimation. This portion

of the system provides for weighted least-squares (DC) estimation of the

satellite orbit, attitude, and camera biases. The fourth VAS/NAVPAK function

produces hhe specific navigation parameters which are required over a spec-

ified prediction interval (usually 2 days). The navigation parameters are

used to annotate the picture data.

2.1 Pict_lre Display m_d Cursor_Navigation

Cursor navigation is the prediction of picture coordinates (£, e) corresponding

to a specified geodetic latitude and longitude, given the estimated satellite

orbit and attitude and the camera biases for some epoch time.

This is _he method by which a prestored video reference area (taken from a

VAS pie_ul_e) is correlated with an area surrounding the cursor on the image

displayed5 by the operator.

2.2 Orbit/Attitude Estimation

The S/C O/A estimation is done with the classical Bayesian weighted least-

squares _technique. The estimator can use either landmark data, radar

tracking ,data, or both. Only the capability for using landmark data will be
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presented. It is assumed that the working observation files of landmark

data have been created before beginning the O/A estimation.

The computational procedure followed for the O/A proceeds in tim following

steps:

1. An a prioriestimate isprovided ofthe solve-forparameters. These

parameters will be a subset of:

re, ro the S/C position mid velocity

Xi, i=1, 5 S/C attitude model

¢i, i=l, 5 coefficients

camera bias

_o camera bias

AYe camera bias

2. For each observation, the S/C position and velocity are found by

integrating the equations of motion to the observation time; tob s.

For tile VAS/NAVPAK system, the integra'don is performed with a

12fll order Cowell method, as described in Reference 3. The force

model is seleetable by the user and can include a spherical harmonic

geopotential expansion terms up to 21 x 21, lunar/solar third body

perturbations, and solar radiation pressure.

3. For each observation time, an observation (£, e) pair and partial

derviatives are computed corresponding to the geodetic coordinates

{_, X) of the landmark using the S/Cposition, velocity, attitude, and

camera biases.

4. The computed observation pair is used to calculate the observation

residuals. The residual is examined to see if it meets the editing

criteria. If it does not, it is not used in the solution.
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5. After steps 2, 3, and 4 have been performed for all the observations,

the new estimate of the epoch S/C state, the attitude, m_d camera

biases, and their covariance matrix, is computed.

6. The new estimate of the solve-for parameters are compared with

the previous to see if the least squares process has converged. If

the solution is judged to have not converged, hhe new estimate re-

places the a priori in step 1, and the process is repeated.

2.3 Navigation Parameter Output

Spacecraft parameters cm_ be generated for a sequence of overlapping time

intervals covering a specified output span. These parameters include

spacecraft ephemerides, attitude information, camera biases, eclipse times,

and Chebyshev coefficients for position, beta angle, and retransmission

correction.
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SECTION 3 - TtIE OI3SEI:_VATION MODEL

The observational model in VAS/NAVPAK is a modification of that used in the

SMS NAVPAK (Reference 4). The camera bias ,and attitude representations

for the VAS/NAVPAK observational model were reformulated, consulting the

VAS working group (Reference 5) and with the assistance of II. Pajerski (GSFC).

The SMS and GOES are geosynchronous spinning spacecraft designed for taMng

pictures of the Earth in several wavelengths. A camera, or VISSR (Visible

and Infrared Spin Scan Radiometer), transmits data to a grotmd station where

a complete picture of the Earth is assembled. The data consist of a grid or

matrix of intensity measurements. A line number and an element number

specify the location of the intensity measurement within the grid. The line

number £, corresponds roughly to longitude. These are shmxm schematically

in Figure 2. For the visible wavelen_h observations, each picture element

{pixel) intensR_y measurement corresponds nominally to an area on Earth

of dimension 1/2 mile by 1/2 mile square. Of course, near the edge of the

Earth, foreshortening will enlarge and distort this square. Options exist to

handle data whose dimensions are integer multiples of this matt (i. e., 2-mile

by 4-mile data). Associated with each line of the picture is a time and angxflar

quantity which relates the starting position of the line to the direction of the

Sun in inertial space.

At the ground station preproeessing is performed and full resolution picture

segments of 1024 x 1024 pixels are generated; In order to create a landmark

observation, the operator first displays a picture or subset of a picture on

the 12S. Then, an identification is made of a particular location on the

picture (£, c) pair which corresponds to a known geodetic latitude and longitude

on Earth. The geodetic coordinates and the picture coordinates with associated

quantities such as time and Sun angle are transferred to an observation file.

This constitutes a single landmark observation pair.
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Figure 2. Schematic VAS/GOES Picture
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Figure 3 shows the GOES satellite relativeto the earth at an instant of time.

Except for specific camera constants, the SMS is almost identical to file GOES.

Both satellites are cylindrical spi_ming objects with tile longitudinal symmetry

axis nearly aligned with the spin axis. The spin axis in turn is nearly aligned

with the polar axis of the Earth pointed southward. As the satellite spins,

the camera scans across the face of the Earth's disk, from west to east

measuring the light intensity for each pixel along a line. The relation between

the (_, e) coordinates of each picture and the camera orientation can be shown

by comparing the image in Figure 2 with Figure 3. The element, e, is re-

lated to the azimuthal camera angle, q. This angle is measured in the satellite

spin plane and is the angle between the line of sight (LOS) vector to the land-

mark and the LOS vector to the left (west) edge of the Earth. The conversion

to line element is

e -- q/I_PE (1)

where RPE is tile number of radians per line element° The satellite spin plane

in Figure 4, perpendicular to the spin axis z', is shown coincident with the

spacecraft (S/C) symmetry plane, perpendicular to l:he S/C longitudinal

symmetry axis zs/C. In the actual development of the observation equations

the general case of a misaligned spin axis is considered.

The line number related to the camera elevation angle, a, as

a

_=_-ff_ + £o (2)

where RPL is the number of radians per line ,and _o is the line number which

corresponds to a zero elevation setting of the camera.

The relation of the picture coordinates (2, e) to com_]inates of a location on the

Earth (_, X) depends upon the spacecraft position and attitude, and the camera

constants and biases. Several coordinate system transformations are required

to express this relation.
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The satellite spin plane coordinate system, the (x', y', z') system in Figmre 3,

must be related to the Earth inel_ial coordinate system in which the satellite

position is computed. Figure 4 shows a spacecraft spin pl.'me coordinate system

relative to true-of-date coordinates. The x' axis lies in the true-of-date (xz)

plane at an angle of × with respect to the true-of-date (-x) axis. The y' axis

forms a right hand orthogona ! system.

The transformation matrix S from the (x, y, z) system into the (x', y', z')

system is

y' = S • = sin_bsin× cos_ cosXsin_ (3)

-eos_sin× sin _ -cos_eosXJ

Since the positive spin axis z' is nearly aligned with the negative z axis of the

true-of-date, system, the angles × and _ will always be relatively small. Also

shown on Figure 4: are the right ascension and declination angles (c_, 6) which

are conventionally used to reprcsent the location of the z' axis. The declination

angle is near -90 degrees. The relation of (×, ¢) to (oe, 6) is

COS(X

tan'< = -afTa-K-6
(4)

sine = sin a cos6.

The loea_ton of the z' axis in (a, 6) is expressed as a time varying flmction as

6 = 60 + 51t + 52 sin(63t + 54) (5)

and

o_ = a 0 + O_lt + a 2 sin(o_3t +a4) (6)

The model represented by equations (5) and (6) is a symmetric one. Because

of the spin stability of the S/C axis, perturbations to (_, 6) or (X, ¢) are ex-

pected to be small.
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Since the spin axis is nearly alined with the negative z axis of the true-of-

date system, the right ascension angle, a, is sensitive to the precision with

which it is computed. For example_ if the magnitude of the xy plane projection

of z f (line OA in Figure 4) is nearly zero, then a change in sign would cause

c_to change by 180 degrees. Such a change can occur on successive iterations

in the estimation process. The result would be to create divergent oscillations

in the attitude correction vector (c_, 5). Therefore, it is advantageous to use

the (X, ¢ ) coordinates for the spin axis location.

The angle ¢ is analogous to declination and is the angle bet_vecn the xz true-

of-date plane and the spin axis. It is measured from the xz plane (perpendicular

to the xy plane) to the z' axis. The angle X is analogous to right ascension

and is the angle between the z axis and the projection of the spin axis onto the

xz plane.

The model for the (X, _) coordinates of the spin axis can be written in a form

similar to those of equations (5) and (6)

¢ = ¢0 + ¢1 t + ¢2sin(_3 t+ ¢4) (7)

and

= _0 + Xlt + _Y2sin(X3t + _4)" (8)

Figure 5 shows the S/C symmetry coordinate system. The Zs/C axis is

parallel to the S/C longitudinal symmetry axis and Xs/C points to the zero

elevation angle in the actual VISSR plane. The S/C symmetry plane is per-

pendicular to the S/C symmetry aixs and is the reference plane from which the

true camera elevation is measured. Two VISSR planes are shown; the actual

VISSR plane is the plane swept out in elevation as the camera is moved from one

spin cycle to another, while the nomin._l VISSR plane is the plane in which the

camera motion is supposed to occur. The angle (measured in the symmetry

plane) between the sun sensor plane and the nominal VISSR plane is _o"
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The angle measured in the S/C symmetry plane between tile actual and nominal

VISSR planes, AYO, is the first camera bias. A second camera bias is _,

which is .qn elevation {or line) bias angle. When the camera is set at a zero

elevation set£ing, represented by line XS/C0, its true elevation angle is _.

Angle a is the elevation of a landmark above (or below) the nominal zero eleva-

tion point and Aa is the amount by which the elevation is incremented each spin

cycle. At the beginning of a picture, a is set to a negative value corresponding

to the northern part of the earth and then incremented to positive values towards

the southern portion of the earth.

Figure 6 shows the spin plane (or attitude) coordinate system first instroduced

in Figure 4. Because of the inertial motion of the spin axis (equations (7) and

(8)) and the rotation of the earth, the location of a landmark with respect to the

spin frame is changing. Moreover, the daily motion of the sun and the spin

axis inertial motion causes the solar positions to change with respect to the

spin coordinates. However, at the time of a landmark observation, is, the

azimuth of a landmark, )_ and the azimuth of the sun, 3/1, can be determined

with respect to the spin system.

Yigure 7 shows the spin coordinate system relative to the S/C symmetry frame.

The symmetry frame is rotating with respect to the spin frame but Figure 7

depicts the instant that the VISSR plane intersects with x' axis of the spin frame.

Notice that the xs/C axis is shown coincident with the x' axis at this instant.

This choice is tantamount to forcing the z' axis to lie in the Ys/cZs/c plane.
This choice as allowable because the bias _ can absorb the elevation difference

{between x' and xS/C) which would occur if z' did not lie in the Ys/cZs/c

plane at this moment.

An angle p is defined as the angle, measured in the spin plane, between the

nominal VISSR and actualVISSR planes. This represents an azimuthal bias

which allows the modeling of error in the azimuthal location of the VISSR plane.
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The angle _' is the angle in the spin plane between the actual VISSR plane and

the _ensor plane, and a is the elevation of the camera at the time a landmark

was observed in the S/C symmetry coordinate system.

A A

Since X'sun, Xsun and the sun direction form a right spherical triangle,

_= - tan-l(tan A sin 6S) . (9)

The picture coordinate, _, is the line number or elevation coordinate and is

given by,

_=a-_
+ _o (10)

where RPL is the radians/line conver.slon constant and _o is the line corre-

sponding to a = 0. In practice the elevation angle a' is found in the spin plane

and then converted to a.

The second picture coordinate, e, corresponds to an azimuthal angle (measured

in the spin plane) between the left (west) edge of the earth and the landmark.

The situation is shown in Figure 8 which depicts the spin plane as viewed from

the north. The satellite is spinning clockwise. The picture coordinate, e, is

thus,

72 - 71-8 +ve- mod 2v (11)
RPE

where RPE ls the number of radians per element and /3 is the angle through which

the satellite has turned from the instant of sun observation by the sun sensor

to the observation of the left edge of the earth by the VISSR. The angle T1 is

the azimuth of the sun and _/2 the azimuth of the landmark. The angle fl is

determined by finding, for each line Of the picture, the first or leftmost pixel

of that line. Each revolution, a body-mounted sun sensor on the satellite detects

the sun and produces a sun pulse. For each revolution, a time interval called

the fl-time (T#), is computed. This time, which should elapse between the

sighting of the sun by the sun sensor and the alignment of the camera with the

235



EDGE

SUN

EARTH
SUN SENSOR

PLANE AT TIME OF
SUN OBSERVATION
^

XSUN

_" SUN

_--_

y'

3'1 SATELLTTE SPIN IS CLOCKWISE

J

X t

THIS IS A VIEW OF THE SPIN PLANE SEEN FROM THE NORTH, THE (X' Y' Z" ) SPIN SYSTEM IS RIGHT-HANDED
BUT APPEARS LEFT-HANDED IN THIS FIGURE BECAUSE THE SPIN VECTOR Z ° IS POSITIVE INTO THE PAGE.

3'1 IS THE AXIMUTH OF THE SUN (AT TIME ts)

3"2 IS THE AZIMUTH OF THE LANDMARK (at t s)

IS THE ANGLE THAT THE S/C HAS SPUN BETWEEN THE OBSERVATION OF THE SUN BY THE
SUN SENSOR AND THE OBSERVATION OF THE LEFT EDGE OF THE EARTH BY THE USER.

3" IS THE PROJECTION OF THE ANGLE BETWEEN THE VISSR AND SUN SENSOR PLANES.

ts IS THE OBSERVATION TIME OF THE LANDMARK.

Figure 8. Spin Plane

236



desired left edge of the earth pieture, is used to detect the first element of each

line. For each line, the values T_ and t o (time of the average sun pulse) are

available as recorded data. Since there are 3144960 counts per half spin

%
fl = 3144960 (radians) (12)

or

_T_ - 8" 165 )
[J= 3'i44960 + 7r (13)

when the sun pulse is 180 degrees out of phase.
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SECTION 4 - NUMERICAL RESULTS

The sample results shown below (Figure 9) are for a three day span of SMS-2

data obtained from three images taken twenty-four hours apart. Additional

preliminary results taken from NAVPAK runs using a longer data span supplied

by NOAA indicates that sub-pixel accuracy is possible by using a suitable set of

solve-for parameters and a longer, denser data set. The full results of these

and other evaluations of VAS/NAVPAK (e. g., force and attitude model evalua-

tions, propagation/prediction capability evaluation, etc.) will be published in

a future paper.
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ITERATION REPORT FOR ITERATION 3

CURREBTWE, IGHTED _ 0.7270660+01 PREDICTED'dEIGHTED _"IS 0.0000000+00
PREVIOUS NEICHTED l_IS 0.727209D+01 S_*IALLEST _ICIITED Ba_S 0.7272090+01
RELATIV CHANCE IN t_'LS 0.1963890-03 **_ DC CO_VRCEI) ***_
START= 750830 150436.60 END = 750901 150600.09 EPOCH= 750830 150000.00

--- OBSF&VATION SUHNARY BY TYPE ---
TYPE / TOTAL NO. / ACCEPTED /'dEI_EDt_ / r_AN P_SIDUAL / STANDAILD DEV
ELEH 29 24 0.65660+01 -0.2211D-01 0.32830+01
LIBE 29 24 0.7913D+01 -0.11950-02 0.3956D+01
RANG 0 0 0.00000+00 0.00000+00 0.00000+00
RDIF 0 O O.O000D+O0 0.00000+00 0.00000+00

ICEPLERIAN ELEHE_S AND LANDHARI(HODEL A'I'rITUDE PM_HETET_S FOR IT_ 3
PARA_-TER SOINE? CUIt_NT PREVIOUS STA.DEV

SHA (KH) 42164.9041 _2164.9041
ECC 0.0040 0.0040

INCL (DEC) 1.8162 1._162
HLON (DEC) :128.2253 128.2253
CHI-1 (DEC) YES 0.4938 0.4938 0.82530-01
CHI-2 (D/S) 0,0000 0.0090
PSI-I (DEC) YES "1.8674 -1.8674 0.2964D-01
PSI-2 (D/S) 0.0000 0.0000

CARTESIAN COORDINATES A_D Ia_D_B.KBIASES FOR ITEal 3
PA_t SOI,VE? CURRENT PREVIOUS STA.DEV
X (i_I) YES -26340.0797 -26340 0797 0.28000+01
Y (_,[) YES 82_82.0857 028_2 0857 0.46160+01
Z (KkI) YES -778,19111 -778 1918 0.81420+01
XDOT (,WJS) YES -2.4089 -2 4089 0.1779])-02
YI)OT (K/B) YES -1.9121 -1 9121 0.1662D-02
ZDOT (YJS) YES 0.0790 0 0790 0.31930-03
BIAS-1 (DEC) YES 0.0970 0 0970 0.45140-01
BIAS-2 (DEG) 0.0000 0 0000
BIAS-3 (DEC) 0.0000 0 0000

Figure 9. Sample Numerical Results
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