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ABSTRACT

The purpose of the present note is to treat some problems of attitude
stability of spinning satellites in a rigorous manner and to show that, with
certain restrictions, linearized stability analysis correctly predicts the
attitude stability of spinning satellites, even in the critical cases of

Liapunov stability theory.
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(1)

INTRODUCTION

Since the attitude instability experience by Explorer 1, many papers
have been written on the effects of internal dissipation on the attitude
stability of spinning satellites, In the engineering literature, stability
analysis is restricted to the variatiomal or linearized perturbational equations,
despite the fact that spinning satellites are almost always critical cases
in the Liapunov-Poincaré stability theory. This is certainly true in the case
of dual spin satellites, which have the further complication that the linearized
perturbational equations have periodic coefficients.

The purpose of this note is to treat some problems of attitude stability
of spinning satellites in a rigorous manner and to show that, with certain
restrictions, the linearized stability analysis cor:sectly predicts the attitude

stability of spinning satellites.
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1. Detumbling of a Spacecraft Using Pagsive Torsional Dampers

Formulation of Problem

Consider a spacecraft which 1s designed to spin about axis 1, the axis
of maximum moment of inertia, to provide an artificial gravity field for the
crew. Attached to the spacecraft on axes 2 and 3 ave torslonal dampers, consist-
ing of inertia wheels of polar moment of inertia Iy (i1=2,3) with torsional
springs with restoring torque Kif(ei) and damping torque Diéi’ Let I,
Iy 13 be the moments of inertia of the spacecraft about the 1,2 and 3 axes

respectively, including the moments of inertia of the dampers

Let I,>I,2L.>>J

P7EFg>> 0y 1=2,3

Suppose that owing to collision with another spacecraft, which is at-
tempting to dock with the first spacecraft, a tumbling motion results. Let
Wyy Wyy g be the angular velocities of the tumbling motion with respect to
the body-fixed axes 1,2 and 3 respectively. For the safety and comfort of
the crew, and to make docking possible, the spacecraft must be detumbled and

returned to a state of simple spin about the 1 axis.

Equations of Motion

11&;1+ m2w3(13-I2)+J3w393-J2w3é2= 0 (1.1)
Loyt g (L =1,)+0,8,-3,0,8, =0 (1.2)
Lyt w0, (Ty=1) 43,8443 ,0,8, =0 (1.3)
3, (8,4 0,)4D,8,+K, £ (8,) =0 (1.4)

J3(93+ (u3)+D363+K3f(63) =0 (1.5)
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Where:

£(6)=~£(~0)

0£(8)>0 0640

9
Lim 5%31 =1, J £(y)dy=F(0)>0 640
60 0

S0 4=2,3

DKy

Global Stability

Let

1 2 - 2 - 2 2 12 * 2 : X
V= 2[Ilw1+(12 Jz)w2+(13 J3)w3+J2(w2+62) [33(w3+63) ]+K2P(02)+K3r(03)
the function V is clearly positive definite

. . q . o o »” ¢ M .
V=Ilm1wl+12w2w2+13w3w3+J2(wzez vw292+6262)+K2f(62)62

. e ”" . .
+J3(m363 +m363+8383)+KSf(63)03

(1..6)

(1.7)

(1.8)

Using equations (1,1),(1.2),(1.3),(1.4) and (1.5) to evaluate V along

the trajectories of the motion, we have:

» 02 a,2
V=—[D262+D363]SO

The function V 1is positive definite and its time derivative along the tra-

(1.9)

jectories of the motion is negative semi-definite, therefore V 1is a Liapunov

function and the tumbling motion is globally Liapunov stable. We note that \

is only semi-definite and vanishes when é2=63=0. Equations (1.4),(1.5) show

that 62 and 03 are not zero unless,
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(a) wz-w3-0 and 62-03-0

or (b) Kzf(ez)-—32m2 and st(aa)--dawa

Examination of equations (1.1),(1.2) and (1.3) shows that condition (b) cannot
be satisfied in general unless él-QQ-éa-O , 61-51-61-0 y 1=2,3 and one of the
following conditions hold

1) wl#O , wz-w3-0
i1) msz ml=w3=0

i1d) w3#0 y W =0

12
This set of conditions are simply the equilibrium solutions of the set of
equations (1.1),(1.2),(1.3),(1.4) and (1.5). With this exception, &,=8,=0,

only on a set of measure zero, Thus, using (1.9),

t
0

2 2 3 3
Hence, the function V(t) decreases along the trajectories of the motion.
V(t) must therefore tend to a limit corresponding to one of the equilibrium
solutions. The particular limit to which all motions ultimately tend for large
time is determined by the stability of the equilibrxrium solutions. Clearly all
motions will tend in the limit to the largest invariant set, which corresponds

to a stable equilibrium solution,

Stability of the Equilibrium Solutions

Examination of equations (1.1) through (1.5) shows that there are three

equilibrium solutions.
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X w0 , 4%1,2,3 3 ej-aj-aj-o , 3=2,3

i) w:l*o 'Y wz-ws-o
11) “2*0 » Wy =wy=0

141) W h0 , wy=u,=0

1"%2

Case (1)
Wy mz-wa-o
Let
wl-w10+£ Wy™n 4 Wa=g

Bj-uj J=2,3

Perturbing about the steady state solution and retaining only the linear terms

in the equations of motion, one obtains
115-0
Lymhing o8 (LyT)+d05=0 5y o8ty=0

Tyttuggn(Ty=T) )43 ga 443 50y 16,=0

32(a2+n)+D2a2+K202 =0
J (u +;)+D3 3 3(13 =0
Let
2_2_ =B . -‘12_ =p2
]
J2 2 J2 2
D K,

y
w {Ww
n
™
W
.
=
w |
L
o
w N

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)
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Define

l 1213

The characteristic equation for the system of linear differential

equations (1.11) through (1.15) is

' J J ,
A [[(- .2.);\ +52A2+pga] [(1~ —I—i)xf’+33x2+pgx]
1
w2[ o 22— A2 ap2 || (14 2 73 \aZegan2|l =0 (1.16)
1 .1, 9""Py T -1, 1 3 Ps y
171y 1713
J
1y,
e )
=\ 1

J
; ( i) 2
i Ii

Let

If J, and J, are selected suirh that

2 3

Iy

T.-1,
Jl 2 )= ) (1.18)
i -
"1

1

1+

i=2,3 w0
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the charactaristic equation (1.16) becomes

2 {1380 p 201 2402 [ (1) A 2Bap21 2] w0 (1,19)
which may be writien in the form
f(k)-Agl(A)gz(A)NO (1.20)

where

gy (=11 > +an24p2a 4] (1) A 5 antp?)
(l [ 21-)

2

g, (V==L [0 +8024p2A 4l (1) 1Bk

Using truchy's Principle of the argument, or Nyquist's criterion, it is easily

shown rhat gi(l), i=1,2, have zeros only in the left half XA plane. Thus,

Almo , Re?\iq) 1€(2,7)

This is clearly one of the criiical cases in Liapunov stability theory,
however, using Theorem AIII of the appendix, we see that the full perturbation

equations are Liapunov stable. Thus, the equilibrium solution (i) is stable.

Case (ii)
w2=m20#0 ) Wy=wy=0
Let
w1=5 ’ w2=m20+n ’ w3=;

6 o,  1=2,3

Perturbing about the equilibrium solution and retaining only the linear terms

in the equations »f motion, we have:
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Ilz-mzot;(13-12)+J3w20a3'40 (1.22)
12n+J2a2 =( (1.23)
135+w205(12-11)+J3&3 =0 (1.24)
Jz(a2+n)+D2u2+K2a2 =0 (1.25)
Js(a3+£)+03a3+K3a3 =0 (1.26)
Let
"\
2 yo(Ty~Ig) (1)=1))
fy= I.1
l 3 +
~ (L.27)
D K
1 2.
B,= == p,=m == 1-2,3
i Ji i Ji
J
The characteristic equation for this set of linear differential
.equations is:
J J
2 2 211,4(,_ -3 3 02 022
A[}\ (1- 12)+32A+p2][}\ (1 13 )+63>\ BSQZA ﬂzps
2 2f, I3 2
Hpo=Q5 1+ =—=— ]} A" | =0 (1.28)
372 12-13

Application of Cauchy's principle of the argument on Nyquist's stability

criterion immediately shows that

Al=0 A2>0 A3<0

(1.29)
ReX <0  i=4,5,6,7

i
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Since A2>0 » application of Theorem II shows that the full perturbational

equations are unstable in the sense of Liapunov stability theory.

vase (i11)
w3-w30#0
Let

wl-mz-o

WymE s Wymn , WgmwaatE

Perturbing about the equilibrium solution and retaining only the linear terms

in the equations of motion, we have:

Let

The characteristic equation for this set of linear differential

equations is:

Ilg+w30n(13—12)~J2m30a2 =0

12n+m305(11-13)+J2a2 =0

T4ThT 404 =0
Jz(a2+n)+D202+K2a2 =0
J3(a3+c)+03a3+K3a3 =0
2
g W3p(I;-13) (I,-13)
5= 1.1
~ 5o
D K
by 2 &
B,=—=— P.= 7 i=2,3
1773, 1" T

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)
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J J
2 3 21,4 2 3,.2
A[A (L- -—x3>+63A+p3][A (l- -'-'Ia) +82k +S'2382)\

J
2.2 2 \,2..2 2],
+(%2+92(%- 12_13>)A +92p%] 0 (1.36)

Application of Cauchy's principle of the argument, or Nyquist'’'s stability

criterion immediately shows that (1,36) has roots:

A,=0 , ReA >0 i=2,3

1 i

(1.37)

ReA1<O 1=4,5,6,7

Since there are two eigenvalues whose real parts are positive, application
of Theorem AII shows that the full perturbational equations are unstable in the
sense of Liapunov stability theory. Thus we s.2 that the only stable equilibrium
solution ig that corresponding to Case (1) w1#0 ’ m2=w3=0. From the analysis
of global stability we know that the function V(t) (1.7) decreases along the
trajectories of the motion and tends to a limit corresponding to a stable equili-
brium solution, the only stable equilibrium solution is that corresponding to
spin about the 1 axis, the axis of maximum moment of inertia. Thus we have
shown rigorously that it is possible to detumble a spacecraft using only passive
torsional dampers. Edwards and Kaplan (1) have treated the problem of automatic
detumbling of a spacecraft using the motion of a servo-controlled internal mass.

Their treatment is heuristic rather than rigorous.

2. Stability of a Dual Spin Satellite

The stability of dual spin satellites has been examined by a number of
authors; however, in the case where the rotor and the platform both exhibit

internal dissipation, the analytical solution was first presented by Sarychev
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and Sazonov (2) who used Floquet Theory. In this note the effects of internal
dissipation will be modelled by torsional dampers in both rotor and platform.

It will be shown that the linearized stability analysis is rigorously justified
and it will also be shown that the linearized stability analysis can be performed

quite simply by using Lagranges method of variation of parameter,

Formulation of the Problem

The dual spin satellite consists of two rigid bodies with a common axis
of rotation (axis 3)
Let the axial moment of inertia of the rotur be J,
Let the total axial moment of inertia of the satellite be C (rotor plus plat-
form, plus dampers)
Let the total equatorial moment of inertia of the satellite be A (including the
dampers)
Let Ip and Ib' be the polar moments of inertia of the damper wheels on the
platform and rotor respectively

Let 1 and ﬁé be the damping and stiffness parameters of the torsional

damper on the platform. Let Ri and Eé' be the corresponding parameters for
the rotor damper:

Let w, and Wy be the angular velocities of the platform with respect to the

1
1 and 2 axes respectively. Let wq be the angular Qelocity of the platform
about the 3 axes

Let @ be the angular velocity of the rotor about the 3’ axis relative to
the platform, where the angle 1 (measured about the 3’ axis) defines the

orientation of the body fixed axes of the rotor with respect to body fixed

axis of the platform.
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Let TB be the frictional torque of the rotor bearings

Let Ty be the torque of the despin motor.

Equations of Motion

J(&3+$)-Igélm2cosdldmlsind:]+T -TMfO
Cw +Jw-I 8 lw €08 Y ~u sinu;] Luw ¢=0

A&;1+[ (C—A)m3+JtIJ]w2+I;)[8cos v -8 (w3+\11)sin v ]+1b&§-o

r (2.1)
Aéz-[(C-A)m3+J¢]w1+IL[681nqr+é(w3+$)coa\p]+Ibw3$=0
It ‘+T<’l 64K, o+Iy [ (wytw,) cos w+(w2—wlw)sin v =0
1b¢+xl¢+xz¢+1bm1-o J

Where ¢, 6 are the rotation angles of the torsional dampers on the platform

and rotor respectively.

Steady State Solutions

If the torque of the despin motor just balances the bearing friction

torque when ¢=o » then the steady state solution is:

(2.2)
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Linearized Stability Equations

Let

w3'Q+0€ 3 T=ot 3 r-'% T
by=v=o(t4n) 5 Y=y =0 (1+)
w W
1 2
o V13 g =y 3 TyTy=RoL r (2.3)
Foe 4 ro— b}
e Eh ul_ Eh K. = El~ . K= El_
’ - ’ - ’ =Ty
A A 1 Lo’ "l To
K K
_ 2 2
Ky= L2 T 2 <
b b

In Appendix C, it is shown that the steady state solution is stable for

sufficiently small perturbations, provided the following conditions are satisfied

g>0 (2.4)

and the systems of equations:
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\
dv 2 -2 , 7
E:l AV CHUAI ) cos'r~(1+r)gg sint| =0
c 2 d 2 d 2 dt
T LdTt J
v, ay , [ 4% T
e -Av2+ur ar +u t;*f sin'r+(1+r)3? cos'i =0
T \  (2,5)
2 dv dv
478 . do v 1 — -
drz +K1 at +K29+ [(d'r +v2) cos T+ <d1‘ v1> sin T] 0
2 dv
da’¢ deo 1.
o @ Hydt g7 =0 -

is Liapunov asymptotically stable.
Equations (2.5) have periodic coefficients and may be rewritten in

standard form as

dp
'a-'t'_' =A3(T)_R (2.6)

where

A3(T+ n)=A3(T) 2.7)

and

p=] ¢ (2.8)
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The stability of equation (2.6) may then be investigated by using Floquet
theory, as was done by Sarychev and Sazonov (1). Alternatively the stability
of equations (2,5) may be investigated directly in the case where p,u' are
small, by using Lagrange's method of variation of parameters.

If e-MaX(u,u') and e<<1l , then equations (2.5) are of the type treated

in Appendix B.

Let
/Vl cos AT sin At
y= - a(r) (2.9)
V2 sin At -cO08 AT
where
al(r)
a(t)=
a, (1)

Substituting into equations (2.5) we have:

da da 2 2 R
—= cos At + — sin At =-p’ 49 cos T +1’ (1+r)@- sinT -U )
dt dt 2 dr 2
dt dt
~(2.10)

da da 2

2 ;%0 s 14098 cos ¢ our 98
P sin At - I cos At =-y 5 sinT -) (l+r)d7 oS T =Ur o

dt. /
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2
%% +K'1 %% +K'26-(A-1)[alcos()\-l)r-azsin()\-l)'t]
T
da1 da2
15 cos(A+1) 1+ TS sin(A+1) 1

2
d9¢ 4¢ - -
d‘l’z +Kl ar +K2¢ A[alsi,n At a,cos M]

da1 da2
-la— cos AT+ ~—~ gin At
T dr

Using equations (2.10) to solve for dal/d'r and dazldr

da 2 w
3 1 =y’ ) cos (A=1) 1= (1+r)y’ 48 sin(A-1)1
T d'tz dr
&% g
-~y 5 €OS AT ~Ur i sin AT
dr v
da 2
a‘"g' Ty 4 9— sin(A-1) t+(L+r)p’ 48 cos(A-1)T
T de dt
a? d
- ——% sin At +yr ?ii Ccos AT J
dt T

Clearly, if deo/drt , dze/dr , d8/dt , d?'cim/dr2 are bounded,since e<<1l

e=Max (p ,u' ), hence

da2

oo, |52
dt dt

2] + |2

v 0(e)

(2.11)

(2.12)

(2.13)
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Thus, al(r) and az(r) are slowly varying functions of 1, hence in equations
(2.11) we may neglect the terms dal/dr » dazldr in comparison to a, and a,:
We may further treat al(r) and az(r) as "constant", provided Ki and K,
are not too small.

Thus the "Steady State'" solutions of equations (2.11) are:

0(t)=C(t)cos(A=1)1+D(r)sin(A~1) T+0(¢)

(2.14)
+{1)=E(1)cos AT +F (1) 8in{A-1) 140(e)
where
ﬂ
2 / s
. -(A-l)[K;-(A-l) )az(T)+(Afl)Klal(T;]
[K)-(A-1) 2124 K] (0-1)17
. / 2
. -(=1) [ (O-1)K)ay (1)-(Ky-(A-1) D ay (1) ]
[K)-(1-1) 12+ [K, (A-1)17
r (2.15)
_A[(KZ-A)232(1)+AK131(T)]
E(r)= 2,2 2
[Ky=A"17+[K,A)
AR a, (D)= K,=AD)a, ()]
F(1)= ) )
(K, 32124k 2] -

Substituting equations (2,14) into equations (2.12), treating al(r) and
az(T) as constants. Consistent with this, we retain the time averaged coef-
ficients of C(tr) , D(t) , E(1) and F(r) 1in the resulting equations, thus

we have
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da
3—;1— - -‘%‘[(A-I)(Mr)]m %M(Mr)leﬂfez)

(2.16)

ff?_ = i‘-il (A-1) (M) 1D+ {2 (be) 1140 (e?)
dr 2 ’ 2 ¢

Using equation (2.15) to substitute for C, D, E and ¥ in terms of al(r) and

a,(1)
da
9 - 2
rratal LY ﬁa2+o(a )
(2.17)
da
3?3 -aa2+aa1+o(e2)
where
[
L1 L,
o= A+r] - RN 5+ R A (2.18)
[Kl-(k-l) ] +[K1(A-1)] [K2~A ] +[K1A]
I
E-0-12[Ky- (1)) 52k,
Re[at+r] - IR 5+ ) 5 (2.19)
[Kz—(k-l)‘] +[K1(A-1)] [KZ-A ] +[K1A]
o -8
The matrix is simply the matrix Foo of (B-31).

B o
The characteristic equation for the system (2.17) correct to 0(g) 1is

(A-a) 24p%=0 (2.20)

A2-2antal+a2=0 (2.21)
The condition for stability is that

a<0 (2.22)
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The stability condition may be written

2,1 2
o (oL v 27— >0 (2.23)
where
] u' ' 3
A= N Kl(?wl) (Ar)
(2.24)
= X
A 5 KlA(M-r)
but
) (C-A)r-h] ~
A )
R r (2.25)
\
and A=l= (C-A)IZ:'(J-A/ y
Thus we have the following conditions:
i) System is asymptotically stable if
A,A'50 (2.26)
. i1) System unstable if
8,4’ <0 (2.27)
1i1) If A £'<0 , stability depends on the quantitative relationship
between A and A’
iv) In particular, if @ the spin rate of the platform is zero, i.e.

r=0
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- Jy 2
then & %»KL(A) 0 (2.28)
i
' Myl J=Ay .

Frequently J<A .. A’<0 , however by making the dissipation
in the platform sufficlently large, condition (2.22) can always be
satisfied

v) Provided A>0 , the dissipation in the platform may be maximized
by setting KZ-A2 ; in this case the condition for stability

becomes:

/
U Y
B A 2 Kl()‘ e

)
. + >0 (2.30)

1 [Ké—(x-1)2]2+[xi(x~1)jz'

t

In Appendix B it is shown that the stability treatment presented above

is rigorously correct for e=Max(p,u’) sufficiently small.

Other Problems

1) The technique above has also bzen used on the problem treated in
reference (1) and the results agree exactly.

2) The techniqui above has also been applied to the case where the despin
motor is used in conjunction with the products of inertia terms in the inertia

tensor of the platform to obtain stability for the dual spin satellite.
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APPENDIX A

Liapunov-Poincare Stability Theory

Definitions

Given the dynamical system:

: B
dx
?]'E'-Al‘."'.g,(i’c)
x(0)=¢ L (A)
f‘
Lim lJm‘i‘f«‘—s‘z‘-s-‘»%»c«)«-l-rlm'--0 uniformly in ¢t
Hzll+0  |lx]]
J/

Liapunov Stability

If given any 6>0 there exists an e>0 such that ||c||=¢ implies that
|lx(e)|[s6, ¥t>0 , then the trivial solution of A.l is said to be Liapunov

Stable (LOSD) ’

Liapunov Asymptotic Stability

If the trivial solution of A.l is Liapunov stable and in addition
|Ix(t)]] tends to zero as t tends to infinity, then the trivial solution of

A.l is said to be Liapunov Asymptotically Stable (L.A.S.).

Liapunov Instability

If given a 6>0 there exists no ¢>0 such that ||g|]>€£ implies that
llgﬂt)|]ﬁ-6, ¥ t>0 then the trivial solution of A.1 is sald to be Unstable

in the sense of Liapunov.
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Theorem Al
If A 1s a stability matrix, i.e. if ReAi(A)<O vy then A.1 is Liapunov

asymptotically stable provided that IIg]' is sufficiently small,

Proof

Case (i) A nondefective

There exists a nonsingular matrix T such that T-lAT-A , Reli<0 \
Let x=Tz
Then N
dz2
qt “Mzte(z,t)
2(0)= =T"'¢
r (A.2)
g(z,£)=1" e (12, t)
1
il§£§£lel.=o uniformly in ¢t
Hzll»0  |]z]| )
Let
2
V(z)=z*z=| |z | (A.3)
V(z)=zhztz*z (A.4)
=2%(2Rel) z+2Rez*g (2, t) (A.5)
=-aV+2z*(2ReA+al) z+2Rez*g (2, t) (A.6)

If 0<a< Min (|Reli(A)|)
i
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Then
~[2ReA+al]=Q=Q >0 (A.7)
V(z)=-aV=U(z,t) (A.8)
Where
W(z,t)=2z*Qz-2Rez*g(z,t) (A.9)

Since gﬁg,t) contains no terms linear in 2z, W(z,t)>0 provided
||gli is sufficiently small.
Thus

V(z)s-aV for ||z|| sufficiently small

Hence

v(z) se "ty (0) (A.10)

Thus 1f v(0)~{lgg|lz is sufficiently small, V(z)-llgjlz remains small and
tends to zero as t-+m, hence (A.2) is Liapunov asymptotically stable. Since ;

x=Tz, stability of 2z implies stability of x, hence (A.1l) is L.A.S.

Case (ii) A-defective, in this case it is not possible to diagonalize A,
lowever, there exists a nonsingular matrix T such that A can be reduced to

Jordan Canonical form .

T “AT=

o , Z a,=N (A.11)
2 =1 i




Where the Ju

(24)

are Jordan blocks such as

To simplify the proof, consider the case

Let x=Tz

Then

HY
”~~
(=)
A4
n
|8
]
(]
i
[
Te)

Al 0
- Al
. 1
A1
_p AiJ
Moo
Jmi-x_1
A
0 1
;1 1 0
0 A
T'lAT-
I 0 AN”%
1 0]
M
z+g(z,t)
N-2

(A.12)

(A.13)

(A.14)
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gﬁg,t)-T'¥£(tg.t)

(z,t
gtz t) =0 uniformly in ¢
lzl|»0 |]z||
Let
V(z)=2*Pz>0
Where
1 0
P= -——l—~§ 'PT>0
(ReAl)
0 I
V=z¥Pztz¥pz
=-2%Qz+2Re(2*Pg(z,t)
Where
.
-2Re>\1 -1 0
2
Q=1-1 - Red,
0 -2ReAN_2
Since ReAi<0 ‘Vi
Q=q">0

Thus
V=-aV-W(z,t)

>0

(A.14)
cont'd

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
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Where
W(z,t)=2*(Q-al)z-2Rez*Pg(z,t) (A.22)
1f
|Ren, |
@< ———=5— , then (Q-al) >0 (A.23)
(ReAl) +1

Since g(z,t) contains no terms linear in 2z, W(z,t), it is positive pro-

vided ||z|| 1s sufficiently small.
o Vs-aV for |lz|| sufficiently small (A.24)

Applying the arguments of Case (i), we see that the trivial solution of (A.l)
is Liapunov Asymptotically stable.
The technique developed above can easily be extended to cover the case

of multiple repeated roots or higher order Jordan blocks.

Critical Cases

It will be observed that the techniques used to prove the stability of
(A.1) break down if Re}\ino for 1€(1,k), i.e. if the matrix A has one or more
zero eigenvalue, or one or more pairs of complex conjugate pure imaginary eigen-

values. Such cases are called Critical Cases and will be treated in Theorem III.

Theorem AII
If the matrix A in (A.1) has one or more eigenvalues with positive real
part, then the trivial solution of (A.l) is Liapunov unstable for sufficiently

small initial data.



Proof

Case (1) A nondeflective, in

T which diagonalizes A.

i.e., where

Let x=Tz

Then

Let

Where

T 1ATmp
Re) i >0

ReA, =0
ey

dz
3¢ "hzte(z,t)

2(0)= =l

g(z,t)=T £ (2, t)

(27)

ie(l,k)
J € (k+1)

Miﬂu =0 uniformly in ¢t

Lim
lzl]+0 ||z

V(z)=z*Pz

P=

this case there exists a nonsingular matrix

(A.25)
1
+ (A.26)
/
(A.27)
(A.28)
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Ve z¥Pz¥zNPZ (A.29)
\'I-_z_*Q_z_-!-ZRe (z*Pg(z,t)) (A.30)
Where
2ReAk 0
Q= =Q'20 (A.31)
0 -ZReI\N_k
Hence
VmaV+W (2, t) (A.32)
Where
W(z,t)=z*[Q-aP]z+2Rez*Pg(z,t) (A.33)
If O0<a<Min Ai(A) (A.34)
1si=sk
Then
(Q-aP) is positive definite (A.35)
Since g(z,t) contains no term linear in z, for ||EJ[$Z\, sufficiently small,
W(z,t) is positive.
Hence
VzaV (A.36)
o V(z)ZeatV(O) (A.37)

Since V(z) 1is sign indefinite, there exists a set 91:

Ql:V(g)ZO 89,:V(2)=0 (A.38)
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Define 92:
fy:] 2| |<6<a
Let
0y nlrmz
1f

z(0)e 2, » vV(0)>0

Then V(z)zeatv(O) >0

The trajectory g+ cannot exit through 891 since V(0)>0 and V(z)
is increasing; therefore it must exit through f:he boundary || _g_l I-G. Hence
given any 0<§<A there exists no €>0, such that if ||2(0)||se, z(0)EQ,,
||_z_(l:)||$6 for ¥t>0 .. the trivial solution of (A.l) is unstable in the

sense of Liapunov.

Case (ii) A defective, in this case A cannot be diagonalized, however there

exists a nonsingular matrix T which reduces A to Jordan Canonical form

i.e.
r‘]al y
3 k
77 lAT= L v =N
. 1=1
! Tk

Where

(A.39)

(A.40)

(A.41)

(A.42)
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i
Jai” Al (A.43)
.Ai
Let x=Tz in (A.l)
dz 3
qc “Jzte(z,t)

z(0)=8=1"1c

g=1"laT" L (A.44)
£(z, =T E (T2, 0)
t ’
Lim ,_“_B;(ég_z_u_ =0 uniformly in ¢t J
lzll»0 ||z]|
To simplify the presentation we shall consider three typical cases
Case (iia)
B .
Al 1 0
0 )\1
o Mg

Where

Rekl>0 ’ ReAjSO je (3,N)



Let

Where

Then

Where

Q=Q"=

P=

v

2

(31)

V(z)=z#Pz

=ZPZ¥ZAPZ

=z#*Qz+2Rez*Pg (z,t)

ReA 1l

20

~2ReA

N-k

equation (A.49) may be rewritten

Where

If

ﬁ-av+w(g,t) 3 a>0

W(z,t)=z*(Q-aP)+2Rez*Pg(z,t)

ReAl

O<oa< -——————-———-2-
1+(Re2\l)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

I

S




(32)

then
(Q-aP) is positive definite (A.54)

Since g(z,t) contains no terms linear in z, W(z,t) is positive if

||z]| =4, sufficiently small.
S, V2aV for ‘ l_z_l ] A (A.55)

Since V 1is sign indefinite, there exists a set szl.

2,1 VvzQ , V=0 on a9, (A.56)
Define
¢ ||z|] s 6<a (A.57)
2,0 2,08, (A.58)
From (A.55)
v(z) = e*tv(0) (A.59)

If

¥

2(0)€Q, , BV(0)>0

Then V(z)>0 and monotone increasing provided ||z||€0, .

The trajectory, g+, starting in 93 with V(0)>0 cannot exit 523 through
the boundary 391, since V=0 on 891, the trajectory must therefore exit through
the boundary H_z_l |-6. Hence, given any §, 0<6<A, there exists no ¢€>0,
such that |]z(0)||<e implies ||z(t)]|sé V¥ £>0. The trivial solution of

(A.1) is therefore unstable in the sense of Liapunov.




(33)

Case (1ib)
Ak 0
7e Mot 1
A
k+1
| 0 ANek-2,
Where
Rehi>0 ie(l,k)
Re(kk+l)<0
ReAj £0  JE(k+3,N)
Lat
V(z)mz*P2
Where
r
L
-1
P= 1————5
(Redy1q)
“IN-k-2

In this case

V= 2%Qz+2Rez*Pg (z,t)

(A.60)
|
|
7
> (A.61)
~
(A.62)
(A.63)
(A.64)
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Where
2Rekk 0

2
Q= -l =5 (A.65)
ReA+1
0 -2Rel\N_k_2
] J
The matrix Q 1is clearly positive semi-definite,
Equation (A.64) may be rewritten
V=V (z,t) 3 a>0 (A.66)
Where
W(z,t)=z*(Q-aP)z+2Rez*Pg (z,t) (A.67)
1f
0<a<Min Ai (A.68)

1=1isk
The (Q-aP) 4is positive definite and W(z,t) is positive for ||z|| =4,
sufficiently small. The arguments of Case (1i) apply here also and the trivial

solution of (A.1) 1s unstable in the sense of Liapunov.

Case (1ii)

J= A (A.69)
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Where
Rel,>0 ie€(1,k)
ReAJSO J € (k+1,N=2)
Let
V(z)=z*Pz
Where
Ik 0
Pm "Iz
-8
-0 ‘1-
Then
05§ﬁng2ngfg(g,t)
Where
2Re,l\k
Q= -2ReAe
0 -1
L ""1 0

Equation (A.73) may be rewritten

VmaV4W(z,t) § a>0

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)
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Where

W(z,t)=2z*(Q-aP)z+2Rez*Pg (z,t) (A.76)

If T
O<a< Min Ai
2
Rm= 7
o J

Then (Q-oP) is positive definite and W(z,t) is positive for I|EJl‘5A-
sufficiently small. The arguments of Case (ii) apply here also and the trivial
solution of (A.l) is unstable in the sense of Liapunov.

The techniques developed above are easily extended to the case of multiple
repeated roots and higher order Jordan forms.

It should be noted in passing that unlike Theorem I, Theorem II does not

break down in the case where one or more eigenvalues have a zero real part.

Critical Cases in the Liapunov-Poincare Theory

As already pointed out, if the matrix A has any eigenvalues with zero real
part, stability cannot in general be inferred from the stability of the linearized
equations. In the case of the attitude stability of satellites it will be shown
that due to the special form of the equations of motion, stability of the full
perturbational equations can still be inferred from the linearized or variaticnal

equations.

Theorem AIII

The perturbational equations govern.ng the attitude stability of spinning

satellites take the special form:
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at ~f(xphxg:t)

A
5 "Ax,tE, (3‘-1 X9 t)

x= x(0)=¢

Xo
_f_l(?_‘.l ’,9,) t)'Q, H _f_z(?_‘__lsoyt)"o

im ||£¢(£1vx2»t)|| N
2,170 x|

uniformly in ¢t

r

L

(A.78)

If the matrix A 1is a stability matrix, then the trivial solution of (A.78)

is Liapunov stable for sufficiently small initial data.

Lim ||§1|]=‘y — constant

X and X, have the following properties
Lin ||,/ |=0
t->00
t+m

Proof

Let

X172
X712,
-1
Where T “AT=A

Reli<0 ¥ i

Furthermore, the states

(A.79)

r (A.80)
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We shall only discuss the case where A 1s nondefective, the case for
A defective 1s handled in a similar manner,

Using (A.80) equation (A.78) becomes:

451
Tt B (Zzgt)

452
Te h2gtey(2),7,,t)

2, (0) x,(0)
2(0)= =7 = ' } (A.81)

.&l (Zl )5,2 ’ t)”_f_l (?ﬁl ’T_Z,_z ’ t)
8y(2y,2,, t:)='L"J'£2 (%,,T2,,t)
Ei(ﬂi’QJt)=0

where
EQ(Ei’QAt)fg

g, (zy,2y,0) |
?im P =0 uniformly in ¢t

2,1l 11z,

Let V(2)=V, (2 )4V, (2,) (A.82)
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Where

2
v, (z))=zdz,=| |2, ||
V,(z,)=2%z =||z ||2
2\2p " E3%r% | 12y

Hence

2 2
V(=] |z, | 12+ |2,] %] |/

625552ReA52+2ng552(51,52,t)
(A.85) may be rewritten as

Vz--avz-wz(gl,gz,t) 3 a>0

Where
( =z% (Q- -

Where

Q=-ZReA>0
1f

O<a< Min IReAi|

1=isN-2

Then

(Q-aI) is positive definite

Since ,,8_2 (El vgp t)=9_

.
T |zl l= o/ |12y | 1%+|12,]1% <& sufficiently small

(A.83)

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)
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Then
‘ 2
lZRe.?.ﬁﬂz(il’iz’t) ISK;)_ (8] Lz.z[ |
(A.92)
Where K2(A)»0 as A+0
Thus by taking A sufficiently small
Wy(2y:2,,8) 2 8] [ 25]] 50 (A.93)
\'/2 s-aV, (A.94)
Hence
V,(z,) se 5, (0) (A.95)
Hence if
|12€0) || s e<a (A.96)
Vy(z,) s te? (A.97)
IEXCHE (A.98)
From (A.81)
t
z,=z, (0)+ Jogl(g_l,gz,r)dT (A.99)

Since gl(gi,Q,T)=0 and 31(51*52’T) satisfies a nonlinearity condition;

sniformly in ¢

|18y (210250 || 5K, (A)V, (2)) (A.100)

for ||z|| <A and Kl(A)wO(l)
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Thus

t
V,(z,(t))de (A.101)

llzg 121z @1y |

Using (A.97)

2

Nz 311 s ]z, (@] ]+, (8) 2 (1-e™%)e (A.102)

Using (A.96)
NENOITES A (A.103)
v(z(0)=||z(0) | | = K2 (a)+e™ 2 (A.104)
||_§(t)||sk3(A)e , ¥t>0 (A.105)

Thus if we choose
£ S gh= 3?A) (A.106)

Then given any &, 0<8<A , if |]z(0)||=e* then ||z(t)||=s , ¥Yt>0.
Thus the trivial solution of the system (A.81) is Liapunov stable, and since
(A.81) is derived from (A.78) by bounded linear transformations, system (A.78)

is also Liapunov stable, In addition, using equation (A.98) we see that

Lim ||z,(e)|[=0 (A.107)
t->o0

Using (A.80), (A.107) implies that

Lim | |x,(£)][=0 (A.108)
troo
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From (A.99)

(00}

Lim 2z, (t)=z, (0)+ I 81(21,2,,1)dT (A.109)
oy Z10E07Ey o Bt 1%

Since

.

00

K, (4)
IIJO gl(zl,zz,t)drlts 1 2

> ’

the integral (A.109) converges, hence, using (A.80)

Lim ||§1(t)||=y — a constant (A.110)
t~>oo

provided that the initial data is sufficiently small.

Extension of Theorem AIII to Systems with Periodic Coefficients

In the study of the attitude stability of dual spin satellites, the

perturbational equations take the following form:

dx

v = £ ®xy,0)

dt

x(0)=c % (A.111)

A(t+T)=A(t) , VY t

'f_i(?ilao’t)ﬁ 0
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I'gi(liiﬁgit)'|
Lim =0 uniformly in ¢t (A.111)
a0 |lx,]| Cont 'd

For such systems, Theorem IV applies.

Theorem AIV

Given the system (A.111), if all the solutions of the equation

d§2
ac 'A(t)_)_t.z 3!__2(0)-02 (A.112)

are Liapunov asymptotically stable, then the trivial solution of (A.11ll) is

Liapunov stable for ||c|| sufficiently small. In addition the states x

1
and Xy have the following properties.
5\
Lin | |x,]|-0
t-+00
> (A.113)
Lim |[§1||=Y ~ a constant
t+m
J
Proof
Consider first the matrix equation
dX _ _
dc =A(t)X ; X(0)=I (A.114)
It is well known from Floquet theory that X(t) has the following form:
X(t)=q(t)eBt (A.115)
Where B 1is a constant matrix
(A.116)

and Q(t+T)=Q(t) , Q(0)=1 1is a bounded periodic matrix.
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The requirement that all solutions of equation (A.112) be Liapunov
asymptotically stable is equivalent to the requirement that the matrix B

be a stability matrix. 1i.e,
Re%iﬂB)<0 y Y1 (A.117)

The matrix Q(t) in (A.115) satisfies the differential equation

g% +QB=A(£)Q (A.118)

Consider now the Liapunov transformation

Xy=Q(t)u, (A.119)
Substituting into (A.111)
«Qy 2+Q(L) =2 =AU (x,,Q(E) 1y, ) (A.120)
du
3{-% =Q’1(t){[A(t)Q(t)- 3%]u +f (_}gl,Q(t)y_z,t)} (A.121)
Using equation (A.118)
du2 N
T =Bu, +h2(xl,u2,t)
where v (A.122)
h (xl’u 9t) Q (t)f (xl’Q(t)u pt)
o/
Let

4=%, | (A.123)
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Then system (A.11ll) becomes
du,
Tt "y (g eny,t)

Je_ "Buyth, ('E‘l LIy t)

u, x,(0)
us u(0)= - L (A.124)
Y 3‘..2(0)

b (u;,0,6)50  g=1,2

| 10y Q5000 |
Lim L L A =0 uniformly in ¢
Tuyl120 [yl |

The system (A.124) has exactly the same structure as system (A.78), hence
by Theorem III, the trivial solution of (A.124) is Liapunov stable for sufficiently
small initial data and in addition Yy and u, have the following properties:
1) Lim ||y, (e)||=0
t+co (A.125)

11) Lim ||g_1(t) | |=y — a constant
t>ao

Using (A.119) and (A.123) it therefore follows that system (A.111) is
Liapunov stable and b3 and X, have the following properties:
a) Lim ||§2(t)l|=0
t+oo (A.126)

b) Lim | Igc_l(t) | |=y — a constant
t-+oo -

Thus establishing Theorem IV,
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APPENDIX B

Justification for the Method of Slowly Varying Parameters

The linearized equations of motion of dual-spin satellites with damping

in both rotor and platform can be written in the following standard form:

0 -1

dy dx

= =) yje[Al(w:) 3= +A2(T)3€_] (B.1)
1 0

SE wp et o(r) S 4 (8.2)

dr o eV g Y B

Where v 1s a two wector, x 4s a four vector, Al(T), Az(r) » By c(r),

D(T)

are bounded matrices and ¢>0 41s a small parameter.

To reduce (A.1l) and (A.2) to more convenient form, we introduce the

following transformation

cos AT sin At
y= a (B.3)
sin At =cos Av

Equation (A.l) becomes

Where

%% =eA4(1) %%'+€A4(T)§. (B.4)
w

A3(T)=T(AT)A1(T)

A, (1)=T(A1) A, (1) | (B.5)

COS AT sin At
T(A1)=

gin At -cos AT
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Equation (B,2) becomes

dx da

3 “Bgx C,(v) 3= 4D, (1)a
where

C, (1)=C(T)T (A7)

D, (D)=C(r) T 4D(1)T ()

Let us now introduce a second transformation
x=2+G, (1)a

' Bo(T’5>
oy [ O b (o)

=00

Suhstituting into (B.6)
dz ., da
ey =Bo_z_+[Cl(T)-G1('r)] FHy

da
Substituting (B.6) into (B.4), using (B.8) and solving for s

da
e =cF (1) atel, (1)z

Where *
, +~1
F(T)-[I—eA3e1] [A3D1+(A3B0+A4)G1]

H(T)=[I-6A3C1]-l[A330+Aa]

Substituting (B.10) into (B.9) we have

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)




Where

(48)

dz ‘
T 1Byzt By (1)ztell,(1)a (B.12)

B, (1)=(C, (1)=G, (v TH, (x)
(B.13)

Hz(r)-lcl(r)-cl(r)]F(r)

For e sufficiently small, the matrices F(t), Hl(r), Hz(r) and Bl(r)

are bounded

if we write

where

Theorem BI

F('r)-FO-O-Fl('r) (B.14)
1 T

F .= Lim -J F(t)d (B.15)
0 T-+c0 ¥ 0

Given the system of equations

If 1)

da
ar ~e[FgtF, (1) atel, (1)z

> (B.16)

dz
FES =[Bo+ Bl(T)}gfeﬂz(Tlg

are stability matrices

i1) I Fl(T)dT is a bounded matrix
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Then for ¢ sufficiently small, the trivial solution of (B.16) is Liapunov

asymptotically stable.

Proof

Since F, and B  a:e stability matrices there exist symmetric positiva

0
definite matyices P

0
1 and Pz such that

F P +PlFO-—2x

01
(B.17)
BOP2+P2BO- 12
Consider the function
V-g?Plgtg?PQE:qg?Q(r)g, (B,18)
Where
T h
Q(t)=F, (1)P,+P,F, (1)
\. (B.19)
Py [ @
J
Q(r) 4is a bounded matrix, since Py and FZ(T) are bounded matrices
U=a'P ataP,a+s P zta Poi- (a'Gara Qata Qd) ¢ (.20.)

Using equation (B.16) and (B.19)

V-e;ﬁ(v +F, )P +P (F0+Fl)]ngqg?Plﬁlgye[g?(FXP +P F )a+ea (F Q+QF)a

l) 1

+2ca  QHyz]+2" [ (B +eB))P 4P, (ByteB) ) 1z+2ca HyP 2 > (8.21)
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Where
F4+F  +F, (B.22)
Using (B.17) V becomes:
V=-2ca a-z zhez" (BIP,+P,B,)2+2ea R(r)z-c” [’ (FTQ+QF)a+2a QH 2] (B.23)
Where
R(T)=[PH) (1)+Hy (1)P, ] (B.24)
Equation (B.23) may be rewritten:
e T T T )
V=-ca a2 [I-e(B Py+P,B, ) -eR,R]z
T, o
-e(a-Rz) " (a~Rz)
m
~¢?(a" (" Qror)a+2a" ol 2] (B.25)

Since B1’P2’Q’ R etc. are bounded matrices, for e sufficiently small, the

sign of V is that of the first three terms.
S V<0 for e sufficiently small (B.26)

Similarly, the sign of V, (B.18) is that of the first two terms for e suf-

ficiently small, Hence, for ¢ sufficiently small
V>0 , V<0 .. V is a Liapunov function (B.27)

Hence, the trivial solution of equation (B.16) is Liapunov asymptotically stable.

Using (B.8), stability of z and a implies stability of x and a

and hence of x and v. Thus, under the hypothesis of Theorem (BI), the
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trivial solution of equations (B.1l) and (B,2) is Liapunov asymptotically stable,

Given that B, 1s a stability matrix, the requirements for stability are

0
that € be sufficiently small and that the time average of the matrix F(r)

should be a stability matrix,

New
F(T)-[I-6A3(T)Gl(r)] [A (t)By*+ +A, (1))G, (1)+A4(T)D, (1))
-(A (T)B 4(T))G (T)+A (T)D ()
+e[I-€A,C ] A3 1[(A3B0+A4)G1+A3 1 (B.28)
Hence
\
0 =Foo*c¥oy
Where
1 QO
F.=Lim —-J {(A By+A,)G,+ n}d (B.29)
(8 8]
F01=¥1m %-I [1-cAC ] AC, [ (A,B+A, )G +A,D, JdT
+00 0 J

The requirement for stability is that F0 be a stability matrix, for

e sufficiently small this requirement will be satisfied if the matrix FOO

in (B.29) is a stability matrix,

In terms of the matrices Al, AZ’ BO, C and D, this condition becomes:
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' ‘JT()[ 1[TB°(T-E)(“’)<)
F..xLim % | T(At)[A,B +A e C — +D) T(AE)dE
OOT-P(DL 0 170 72 0 drt

+A, [0 a‘-’; +nmm} (8. 30)

should be a stability matrix.

Rather than carry out the operations in (B.30) in one step, FOO may
be evaluated in the following manner.

i) Make the transformation (B.3)

ii)  Compute go(r) — the "steady state' response of equation (B.6)
regarding a(r) as a constant vector

11i) Substitute the "steady state' response 50(1) into equation (B.4)

iv)

Time average equation (B.4) regarding a(r) as a "constant' vector

The procedure yields the equation

=FOO§ (B.31)

gty

Where FOO is exactly the expression in equation (8.30).

It will be noted that this procedure is exactly what was done heuristically

in Section 2 of this note.
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APPENDIX C

Equations of Motion for a Dual-Spin Satellite

The dual-spin satellite consists of two rigid bodies having a common
axis of rotation.
Let the axial moment of inertia of the rotor be J.
Let the total axial moment of inertia of the satellite be C (including platform,
rotor and dampers)
Let the total equatorial moment of inertia of the satellite be A (includiuy
platform, rotor and dampers)
To simulate the effect of internal damping, the model will include torsional
dampers.
Let ¢ be angle (about the common axis) between the body fixed axis in the

rotor and platform.

Equation of Motion

Rotor

J[é3+m]-ILé[m20031b—wlsindJ]=TM-TB (.1)

. Where IL

6 1is the rotation angle of the torsional damper on the rotor

is the polar moment of inertia of the damper on the rotor

TM the torque nf the despin motor

TB the frictional torque of the rotor bearings.
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Rotor/Platfo:m

cé3+3w-1;)é(m2cos ¥ -w,siny )-r{)&zmzzo h

Aél+((C-A)w3+J¢]w2+I;[§costb-é(w3+@)sinip]+1b$¢0 U (c.2)

Aoy~ [(C-A)u g+ I)Tu +T1 [B5in y +8 () cos y 14T, wad=0 )

Where Ib is the polar moment of inertia of the torsional damper on the platform

¢ 1s the rotation angle of that damper.

Dampers
poe ot 0~ ), ® . H \ T
Ib9+K19+K26=-Ib[wlcoslp+m2sin1b+w2wc051p-wlwsinUJ]
(C.3)
I 5K ¢+K, =-T u,
Steady State Solution (TMfTB)
w3=9 ’ ¢=0 , Y=ot
(C.4)
e=¢=e=¢=ml=w25 0
Perturbed Motion ~N
Let w,=0+cE 3 T=0t r='g ’
e 3 as s T i o
V= Vy=by=0 (147) L (C.5)
w w
1 . .2 _ -T =
s V1% V2 TB Ty=8 oz




Pe

(55)

rturbational Equations

[_i + g:] -u'% [vzcos('r+n)-vlsin('r+n)] + ’2’?; =()

C "2 dt

4, Jdr A i do _ A db
. + c WG [vzcos(r+n) vlsin(r+n)] a7 ¥ v =()

dv
dr

2 2

- 4 [M- (C""‘)E”J‘] vy d g_ +p’[9-g- cos(’r+n)— (l+r+F+Z;)stin('r+n)]

dr dr

5 2
2. [JH- -59-1‘—;-51?—‘-] vyhu(ere) o+ [9——3— sin(T+n)+ %%(l+r+£+z;)cos('r+n)] -
dt

4% o do dvy d"z
— 4K +K 0+ +v,.(1+2)} cos(t+n)+ T V1 (14)) sin(t+n)
22 Lt T T V2
2 dv
d¢ d¢ R
5 Ky g YKt g =0
dr
Where
I T/ )
u: ——b— 14 l:’ -—1)-
A P H T A
bopt' )
I L \
1 I.o’ 41 ' 0
b I
b
o2 Ky
2 1 272 p gt
b b )

?(0.6)

.7
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Ru—di

g

Using (C.8) and (C.9), equations (C.6) can be rewritten as:

Where

Q-IQ-
ot Jlon

=Algfgl(g,g,r)

dp _ dp
at =AZR+N[Bl(T)+Bz(_€_’_})_9T)] dt +.£€.,2 (_E;.’E’T)

Al’ A2 are constant matrices

Bl(T+2w)=B1(T)

"Bz(gtE’T)’l
Lim
el 1+ |ell»0 [1gl [+ ]l

=0 uniformly in ¢t

..f_.l (5,9_, T) =0

£,(£,0,1)=0

(c.8)

(c.9)

(c.10)

(c.11)

\,  (C.12)
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' Lgl (E,py7) l l
Lim - -
el [lpll

' l.f.g(.g.’l’_"r) ' I
Lim =
el [+l ell+o |gl|+]|pl]

Solving (C.11) for dp/dr, we have:

dp
at -A3 (T)B+£3 (5_)2,’ T)

Where
A3(r+n)-A3(T)
=[1-uB, (1)1 A
; 1 2
£56,p7) =[1-uBy ()17 £, (£,p,7)
+u[1-u(31(1)+82(§,g,r)]"182(5,2,T>A3a
Where
£3(_§_90,T)=9_
l |£3(_§.’B9T) I ‘
and Lim =0 uniformly in
[lel I+ el >0 [lell+]]el
Let
0 0
E=Ty where T_lAT= 0
0 =Y

t

\
> (C.12)
cont'd

p
(C.13)
} (C.14)

p,
(c,15)
(C.16)
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Equations (C.10) and (C.13) become

e 0 YE, (Yapo1)

B > (C.17) \

dp
at 'Ag(T)B.*.f.f, (¥,p,7) ¢

Let

25.1= » .’E.zg ’ __,= ‘ (0018)

Equations (C.17) can now be written in the form:

d.’_‘.l -
ar "L (%)

dx, _
T MRS, (),%p,7)

x r (c.19)
%2

A(t+r)=A(7)
£,(x,,0,1)=0 i=1,2

I Izl(.}f.l’_’iz"r) l l

Il,im =0 uniformly in 7
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Where
=Y
A(t)= (C.20)

A3(T)

Theorem IV of Appendix A is applicable to (C.19) and stability is

guaranteed, for Ilgjl sufficiently small, provided all solutions of

dgﬂ
T =M (1)X, (c.21)

are Liapunov asymptotically stable,
Using (C.20), all solutions of (C.21) will be asymptotically stable

provided all solutions of

dp

T =My (T)p (C.22)
are asymptotically stable.

Since equation (C.22) is the linear part of equation (C.1l3), the condition

for stability can be expressed in terms of the variational equations obtained

by linearizing the perturbational equations (C.6).
Thus, the conditions for stability of a dual-spin satellite are:

1) The initial perturbations shall be sufficiently small
2) All solutions of the following set of differential equations shall

be asymptotically stable
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-
dv 2 2
dr 2 drz d12 dr
dvy 2 i
2 _ d¢ ../ 1470 do -
T Av1+ur ar u [--ﬁ-dT sin 1 +(14r) ar Cos T 0
S (C.23)

2 dv dv
d“e , ., do ./ 1 2 -
~——~dT2 +KJ. I +K26+ [(*—-——M +v2) cos T+ (Md'r Vl) sin 'r] 0

2 dv
d7¢ d¢ N
o2 Ky 3 bt g =0

It will be noted that the present analysis rigorously justifies the normal
engineering analysis, in which one examines only the stability of the linearized
equations and ignores completely the subtleties of the stability of the per-

turbational equations.
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