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{1)

INTRODUCTION

Since the attitude instability experience by Explorer 1, many papers

have been written on the effects of internal dissipation on the attitude

r
stability of spinning satellites. In the engineering :Literature, stability

analysis is restricted to the variational or linearized perturbational equations,

despite the fact that spinning satellites are almost always critical cases

in the Liapunov-Poincare stability theory. This is certainly true in the case

of dual spin satellites, which have the further complication that the linearized

perturbational equations have periodic coefficients.

The purpose of this note is to treat some problems of attitude stability

of spinning satellites in a rigorous manner and to show that, with certain

restrictions, the linearized stability analysis cor4ectly predicts the attitude

stability of spinning satellites.
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(2)

1. Detumbling of - a Spacecraft Using Passive Torsional Dampers

Formulation of Problem

Consider a spacecraft which is designed to spin about axis 1, the axis

of maximum moment of inertia * to provide an artificial gravity field for the

crew. Attached to the spacecraft on axes 2 and 3 are torsional dampers, consist-

ing of Inertia wheels of polar moment of inertia Ji , (1-2,3) with torsional

springs with restoring torque K I f(O I ) and damping torque D I ; I $ Let I,,

12 1 13 be the moments of inertia of the spacecraft about the 1,2 and 3 axes

respectively, including the moments of inertia of the dampers

	

Let I IL	 i-2p3? '2^13"Ji

Suppose that owing to collision with another spacecraft, which is at-

tempting to dock with the first spacecraft, a tumbling motion results. Let

w1,  w2v w3 be the angular velocities of the tumbling motion with respect to

the body-fixed axes 1,2 and 3 respectively. For the safety and comfort of

the crew, and to make docking possible, the spacecraft must be detumbled and

returned to a state of simple spin about the 1 axis.

Equations of Motion
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0	 (1.4)

	

0	 (1.5)



Where:

f(0)U—f(—e)

	

of (0)>0	 000

Lim	 .1	 f(y)dy-F(0)>O	 000
6+0	 fo

D i l ^K i >0	 1-2,3

GlobalStabilit

Let

V- 1f, W I+(I _J )w 2 +(1 _J )w 2	 2	 2 I+K r. (02 )+K 3"e3)	 (1.7)
2 1 1	 2 2 2	 3 3 ^+J 2 (w 2+0 2 ) 13 3 (w 3+0 3 )	 2

the function V is clearly positive definite

)+K f(O^-I W ^J+i W W" +1 W	 I1 1	 2 2 2 3 3^3^J 2 (Y2 _""2Y'2'2 2 2 2

	

1 .	 6
+J 3(^3 6 3 +tJ) 3 0 3 +6 3 a 3 )+K 3 f(O 3 )e 3

Using equations (l,l),(l.2),(l.3),(l.4) and (1.5) to evaluate 	 along

the trajectories of the motion, we have:

	

;2	 0.2

	

^--[D2 2 +D 3 e 
3 0
	 (1-9)

The function V is positive definite and its time derivative along the tra-

jectories of the motion is negative semi-definite, therefore V is a Liapunov

function and the tumbling motion is globally Liapunov stable. We note that

	

is only semi-definite and vanishes when	 =0. Equations (1.4),(1.5) show2 3

that 02 and E) 3 are not zero unless,



(4)

(a) ;243.0 and 02
NO3

-0

or	 (b) K2f 
(02)x`-J12 

and K3f (03)=-j3W3

Examination of equations (1.1),(1.2) and (1,3) shows that condition (b) cannot

be satisfied in general unless w14 x t y 3.0 , 01we iNO 1-0 , 1-2,3 and one of the
i

following conditions hold

)	 w100 , w2Mw3R0

ii) W
2
00 w 

1 
w

3 
NO

iii) w300 , w1^w2 0

This set of conditions are simply the equilibrium solutions of the set of

equations (l.1),(l.2),(1.3),(1.4) and (1.5). With this exception, 82^^3.0,

only on a set of measure zero. Thus, using (1,9),

t

V(t)_V(0)-_( [0 262+ D303]dt<0	 (1.10)
0

Hence, the function V(t) decreases along the traj ectories of the motion.

V(t) must therefore tend to a limit corresponding to one of the equilibrium

solutions. The particular limit to which all motions ultimately tend for large

time is determined by the stability of the equilibrium solutions. Clearly all

motions will tend in the limit to the largest invariant set, which corresponds

to a stable equilibrium solution.

Stability of the Equilibrium Solutions

Examination of equations (1.1) through (1.5) shows that there are three

equilibrium solutions.



wi=0 , 1-1 0 2,3 ; 
0 -U =

0 -0 J-203

i)	 w1#0 , w2nw3=0

1i) w200 , w1=w3n0

iii) w300 , w
1 

mow 2WO

Case i),

wI°w
10
 , w2=w3=0

Let

w1~w10+^
	 w2" , w3=4

0j=a^	 9=2,3

Perturbing about the steady state solution and retaining only the linear terms

in the equations of motion, one obtains

11 t=0	 (1.11)

F
	12n+w10^(11-I3)+J 2a2rJ3w10a2=0	 (1.12)

	

34+')l01(12-I1 
+j 3a3+J2W10a2=0	 01.13)

J '(a +;)+A a +K a
2 2	 2 2 2 2	 =0	 (1,14)

J3 (a3+^)+A3a3+K3a3'	 =0	 (1.15)



(6)

Define

2 w10(71-12)01-13)

23

The characteristic equation for the system of Linear difrorential

equations (1.11) through (1.15) is

(1 	 2 3+ 2X2*p2A [(,--	 3 X 3+g3A'", p A

2)

J 2 	 2	 .^	
2+St 2 1+ --- --f l^ +03 X+P 2 ^1+	 +R X+p 2 	=U	 (1,16)

l	 11-12)	 2 2	 T1_13)	 3 3

"Let
J

B1°^ r^,_ ĵ ) 6
i

J
P ?. I- O p2
	

(1.17)

1=2,3

if J2 and ,J3 are selected Porli that

Ji
1+	

R
J	 (1+N)	 (1:.X8)

1- Ii
i

i=2,3	 po



(7)

the characteristic equation (1.16) becomes

{ [A^+^^ +t^	 + [(]+t )7^ +fix+^^^] ^ .0	 (1119)

which may be wriLi an in the Form

£(^)agl(7^)g2(a)^4	 (1.20)

where

(^)• C 3+;3X2+p2a1+fM l+0X2+Rx+p2I

(7:.2)

g2(X).,_i fa3+OX2+p2?] +R[(1+u)X2+Pn+p2I

Usiri,P C. v;ehy's Principle of the argument, or Nyquist's criterion, it . s easily

shown Lhat g i (a), 1-1,2, have zeros only in the left half a plane. Thus,

X IMO , Re Ai <0	 i(=-(2,7)

This is clearly one of the cri " cal cases in Liapunov stability theory,

however, using Theorem AIII of the appendix, we see that the full perturbation

equations are Liapunov Stable. Thus, the equilibrium solution (1) is stable.

Case (ii)

w2=w2p#0 , w1=w3=p



(8)

11
^+4)

20"' 3-1 2)+J 3w20a5"O (1.22)

12;+J2d2	 -0 (1.23)

1 3 1+(020"1 2 -1 1 )+J 3&3 	=0 (1.24)

1 2 (0, 1 2+A)+D2a 2+K201 2	M0 (1.25)

J3 (a3+1)+D3a3+K3a3	-0 (1.26)

Let

^2- w20(Z2-T3)(1i-Z2)

	

2	 1113
(.27)

	

8	 p2- 	 1-2,3
iTi-

The characteristic equation for this set of linear differential

equations 1s;

^ f

\

X [2(1- 
J2
 

1+02a+p2
J

[' (1- z3 +6 x3-8
2	 3

J
+(p3-S22 C1+ z 31
\	 2 3)

Application of Cauchy's principle of the argument

criterion immediately shows that

X l=0 a2>0 a3<0

302`-02p3

/ x2 =0	 (1.28)

on Nyquist's stability



(h)

Since X 2 0 , application of Theorem II shows that the full perturbational

equations are unstable in the sense of Liapunov stability theory.

 -ase (iii)

w3-W3000
	 w1^W2n0

Let

W1'4 , W2an ' W3'W30+t

Perturbing about the equilibrium solution and retaining only the linear terms

in the equations of motion, we have:

I1j+W30n(13-12)-12W30a2 =0	 (1.30)

12 p+W30^(Il-i3)+J 2a2	=0	 (1.31)

1 3 +J3a3	=0	 (1.32)

J2 (a2+n)+D2a 2+K2a 2	=0	 (1.33)

13 (x3+^)+D3aa+K3a3	=0	 (1.34)

Let

2 W30(I1-I3)(I2-I3)

3= 	 1112

(1.35)

^i Ji ; p2	 i=2,3° Ji i	 i



(10)

J	 J
1 2 1-	

+S3^+p3 
4 l- 12 ♦52X3+S'302X

3	 3

J

	

+ p2+SZ2 1-	 2	 X2+R2p2 .0	 (1.36)
	2 2	 I2-13	 2 2

Application of Cauchy ' s principlg of the argument, or Nyquist's stability

criterion immediately shows that (1.36) has roots:

Al=0 , ReA i>0	 1-2,3

(1.37)

Rea i<0	 1=4,5,6,7

Since there are two eigenvalues whose real parts are positive, application

of Theorem All shows that the full perturbational equatans are unstable in the

sense of Liapunov stability theory. Thus we s,:..^ that the only stable equilibrium

solution is that corresponding to Case (i) w 1#0 , 
w2=w3=

0. From the analysis

of global stability we know that the function V(t) (1.7) decreases along the

trajectories of the motion and tends to a limit corresponding to a stable equili-

brium solution, the only stable equilibrium solution is that corresponding to

spin about the 1 axis, the axis of maximum moment of inertia. Thus we have

shown rigorously that it is possible to detumble a spacecraft using only passive

torsional dampers. Edwards and Kaplan (1) have treated the problem of automatic

detumbling of a spacecraft using the motio,ia of a servo -controlled internal mass.

Their treatment is heuristic rather than rigorous.

2. Stability of a Dual Spin Satellite

The stability of dual spin satellites has been examined by a number of

authors; however, in the case where the rotor and the platform both exhibit

internal dissipation, the analytical solution was first presented by Sarychev

I
I

I

2



(11)

and Sazonov (2) who used Floquet Theory. In this note the effects of internal

dissipation will be modelled by torsional dampers in both rotor and platform.

It will be shown that the linearized stability analysis is rigorously justified

and it will also be shown that the linearized stability analysis can be performed

quite simply by using Lagranges method of variation of parameter,

Formulation of the Problem

The dual spin satellite consists of two rigid bodies with a common axis

of rotation (axis 3)

Let the axial moment of inertia of the rotor be J.

Let the total ,axial moment of inertia of the satellite be C (rotor plus plat-

form, plus dampers)

Let the total equatorial moment of inertia of the satellite be A (including the

dampens)

Let Ib and 
Ib^ 

be the polar moments of inertia of the damper wheels on the

platform and rotor respectively

Let K  and K2 be the damping and stiffness parameters of the torsional

dumper on the platform. Let K l and 
K2/ 

be the corresponding parameters for

the rotor damper;

Let w1 and w2 be the angular velocities of the platform with respect to the

1 and 2 axes respectively. Let w3 be the angular velocity of the platform

about the ? axes

Let ^ be the angular velocity of the rotor about the 3' axis relative to

the platform, where the angle ^ (measured about the 3` axis) defines the

orientation of the body fixed axes of the rotor with respect, to body fixed

axis of the platform.

a



(12)

Let TB be the frictional torque of the rotor bearings

Let TM be the torque of the despin motor.

Equations of Motion

i(w3+0 -Ib6[w 2Cos ^ -.:wlsin ]+TB-TM=p

Cw3+Jiji-Ib0 [ W2 Cos^ -W 1 sin ]-Tbw2¢n0

Awl+[(C-A)wa+J$]w 2+Ib[0cos "(w 3+$)sink 1+10-0
(2.1)

Awl-[(C-A)w 3+J^)w l+Ib[6sin ^ +6(w3+^)cos^ )+I bw3 =0

Ib6+K16+K28+Ib[(iu1+w2^)cos ^ +(w2-wig)sin ] 	 no

Ib^+K1¢+K?+Ibwl=0

Where, A are the rotation angles of the torsional dampers on the platform

and rotor, respectively.

Steady State Solutions

If the torque of the despin motor just balances the bearing friction

torque when ^=a , then the steady state solution is:

w3=S2 	

(2.2)

0=0=5=$=w1=w2=0

i



Linearized Stability Equations

Let



(14)



(15)

The stability of

theory, as was done by

of equations (2.5) may

small, by using Lagranj

if e-Max(u,N' )

in Appendix B.

Let

equation (2.6) may then be investigated by using Floquet

Sarychev and Sazonov (1). Alternatively the stability

be investigated directly in the case where U,P are

ge's method of variation of parameters.

and a«1 , then equations (2.5) are of the type treated

1vl	
cos AT	 sin AT

va	 a(T)	 (2.9)

-. v2	 sin AT	 -cos AT

where

a1(T)

a(t)=

a2(T)

Substituting into equations (2.5) we have:

dal cos AT + da2 sin AT =-U' 
d22 

cos T +u' (1+r)de sin T -u 
d22

dT	 dT	
dT	 T	 dT

(2.14)

dad sin AT - da2 cos AT =-}' -dZe sin T -U' (1+r)de cos T -Ur d_T
dT	 dT	

dT
	dT 	 dT

.__.., Wn-



(1^)

2
d+Ki de +K 1 ON 0-1) Calcos (^-])T-e2sin(X-1)TI

-
 C

da l	da2

dT 
cos(X+I)r+ 

ST 
sin(X+1)T

(2.11)

2
d Z +K1 d +^CZ^WgalSin XT -a

2 
coo XTI

dT	

da	 da	 11
dT1 cos XT + dT2 sin XTJ

C

Using equations (2.10) to solve for da l/dT and da2/dT

dal 	 d26 cos(X- l)T-(1+r)µ' de sin(a-1)T
dT .-^ dT2	 dT

2
-p	 cos ?a i -pr	 sin XT

T (2.12)

da

dT --11 .' sin(X -1)T+(l+r)µ^ ag COS(X-1)T
dT

2
-	 sin X t +pr 

d 
cos XT

dT

Clearly, if d6/dT , d 26/dT , d6/dT , d2^/dT 2 are bounded,sinee a<<1

e-Max(p ,u') , hence

Nal l	 jda 21

T	 + dT	 ti 0(e)	 (2.13)

1 a ll + Ia2i



(17)

Thus, al (T) and a2 (T) are slowly varying functions of T, hence in equations

(2.11) we may neglect the terms daIMT , da 2/dT in comparison to a1 and a2.

We may further treat a 1 (T) and a 2 (T) as "constant", provided K And K1

are not too small.

Thus the "Steady State" solutions of equations (2.11) are:

9(T)-C(T)cos(a-l)T+D(T)sin(X-1)T+0(G)
(2.14)

L ( T) -E (T)COS XT+F(T) Sin (A-1)T+Q(e)

where

22)a2(T)+(X-l)K'al(T)]
C(T)= —

[K'	 2+[K'

1(^-^)Kla2(T)-(K2-0-1) 2 )a1 (T) ]
'	

A(T)-

[K2-(a-1)212+[K(^-1)]2	
rr^^

E	 (. 2 .15)

E(T)= 

a[(K2-X)2a2(T)+XK1a1(T)]

[K2-X2]2+[K1X]2

i

=
-^[7+K1a2(T)-(K2-^ 2)a1(T)l

F(T)4	

[K2-x2]2+[K1a]2

E

Substituting equations (2.14) into equations (2.12), treating a 1 (T) and

a2 (T) 
as constants. Consistent with this, we retain the time averaged coef

i
ficients of C(T) , D(T) , E(T) and F(T) in the resulting equations, thus

we have

C

i



(18)

	

dT	
[0-1)0+01C+ 2[a(a+r)IE+O(e2>

(2.16)
da

d x
[ (a-1) (X+r) ]D+ R[X(X+r)IF+0(e2)

Using equation (2.15) to substitute for C, D, E and F in terms of a (T) and

a2(T)

da
dTl .aa ..Ra2+0(e2)

(2.17)

d82 saa2
+$a1+0(e2)

where

a

	

	 2(7^-1) 3K	 2 3K

	

1	 1
^-[X+r]	 +	 (2.18)

	

[K1-(1^-l) 2] 2+[KI(a-1) ] 2	 [KZ-N2 ] 2+[K1NI 2

(X-l)2[Ki-(^-1)2]	 2 X2[K2-X2]
R^°[^,+r ]	 2 2	 2+	 2 2	 2	 (2.19)

[K2-(A-1) ] +[K
1 (X-1)1	 [KZ-X I +[K X1

a	 -S
The matrix	 is simply the matrix F00 of (B-31)

B	 a

The characteristic equation for the system (2.17) correct to 0(e) is

(A-a) 2+02_0	 (2.20)

	

A2_
2aA+a2+s 2=Q 	 (2.21)

The condition for stability is that

a<0	 (2.22)

Mal



(19)

The stability condition may be written

( A- 1 ) 2A'	 x2A+	 —>O	 (2.23)
[K2-(x-1) 2 1 2+[Ki(x-1)) 2 	[K2-x212+[K1x12

where

4' =2 K' (A-1) (k+r)
(2.24)

A= 2 Klx(x+r)

but

x= (C-A)r+J
A

x+r= 
c A	 (2.25)..	 A

and	
X-J= (C-A)r+(J-A)

A

Thus we have the following conditions:

i) System is asymptotically stable if

A,A'>0	 (2.26)

ii) System unstable if

A t A'<Q	 (2.27)

iii) If A 4 1 `0 , stability depends on the quantitative relationship

between A and A'

iv) In particular, if Q the spin rate of the platform is zero, i.e.

r_0



(20)

then A. 2 K1
(A)2>0
	 (2,28)

A r 	K' 3-A) CA)	
(2,29)

Frequently J<A	 A'<0 , however by making the dissipation

in the platform sufficiently large, condition (2,22) can always be

satisfied

V)	 provided A>O , the dissipation in the platform may bo maximized

by setting 
K2WX2 

in this case the condition for stability

becomes;

u K 0-1)2A^,a+r) 
+--	 2 _ 1	 >0	 (2.30)2	

K1	 ^K22122

In Appendix B it is shown that the stability treatment presented above

is rigorously correct for e-Max (p,u') sufficiently small.

Other Problems

1) The technique above has also been used on the problem treated in

reference ( 1) and the results agree exactly.

2) The techniqui above has also been applied to the case where the despi.n

motor is used in conjunction with the products of inertia terms in the inertia

tensor of the platform to obtain stability for the dual spin satellite.
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Liap nov-Poincsre Stability Theory

Definitions

Given the dynamical system;

dx
at "Ax+ftx,t)

x(0) c

Lim	 11.L(A ' oll
 RO uniformly in t

^'x= ^-:0

(A.1)

Liapunov Stability

If given any 6>0 there exists an 00 such that 	 C implies teat

J Jx(t) 1 I- a , b t>0 , then the trivial solution of A,. I is said to be L a unav

Stable (L.S.).

Liapunov Asymptotic Stabi lity

If the trivial, solution of A.1 is Liapunov stable and in addition

112E(t)l( tends to zero as t tends to infinity, then the trivial: solution of

A.1 is said to be Liapunov Asymptotically Stable (L.A.S.).

Lia unov Instability

If given a 6>0 there exists no 00 such that 	 implies that

^x(t)I1 s d , d' t>O then, the trivial solution of A.1 is said to be Unstable

in the sense of Liapunov.



(22)

Theorem Al

If A is a stability matrix, i.e. if ReA i (A)<0 vi , then A.1 is Liapunov

asymptotically stable provided that 11x11 is sufficiently small,

Proof

Case (i) A non&,-fective

There exists a nonsingular, matrix T such that T-1 
AT-A  , ReXi<0 vi

Let x-Tz

Then

d.z
dt

t% O)- =T-1C

R(z , t)-T -1 f (Tz, t)

Lim	 11R(Zr-- 't)i1 =0 uniformly in t
IIzI1-► o	11211

Let

V(z)-z*z=llzll2

v(z)=z*z+z*i

=z*(2ReA)z+2Rez* z,t)

=-aV+z*(2ReA+aI)z+2Rez*R(z,t)

If 0<a4 Min. (IReai(A)I)
i

(A.2)

(A. 3)

(A.4)

(A.5)

(A.6)

W..



Then

[2ReA+al]-Q-QT>O

V(z)--QV-W(z,t)

(A.7)

(A.8)

(23)

Where

W(z, 0-z*Qz-2Rez*g(z, 0

Since & ,t) contains no terms linear in z, W(z,t)>0 provided

jjzjj is sufficiently small.

Thus

V(z)s-aV 	 for (Izll sufficiently small

(A.9)

Hence

V(z) 
s e-atV(0)	 (A.10)

Thus if VM-111ril 2 is sufficiently small, V (z)= (! z l 2 remains small and

tends to zero as t+oD, hence (A.2) is L apunov asymptotically stable. Since

x-Tz, stability of z implies stability of x, hence (A.1) is L.A.S.

Case (ii) A-defective, in this case it is not possible to diagonalize A.

However, there exists a nonsingular matrix T such that A can be reduced to

JnrAnn Cannnfeal form
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$(z,0 -T-1f (TAI t)

Lim	 I .&(z ' t= 11 -0 uniformly in t
I.ZI1+0	IIzII

(A.14)
cont Id

Let

V(z)-z*Pz>0
	

(A.15)

Where

1	 0

PM	 1 
2	

•PT> 0
(Real)

0	 I

V=z*Pz+z*Pz

--z*Qz+2Re(z*PR(z,t)

Where

-2Rea -1	 0

Q- -1	 2ReX

0	 2ReAN-2

(A.16)

(A.17)

(A.18)

(A.19)
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Where

	

W(z.t)-z*(Q-a1). -2Rez*PR(z,t)
	

(A.22)

If

IReAll
a <

	

	 , then (Q-al) > 0	 (A.23)
(Rea 1) 2+1

Since I(z,t) contains no terms linear in z, W(z,t), it is positive pro-

vided H AI I is sufficiently small.

V s -av for 1+z11 sufficiently small	 (A.24)

Applying the arguments of Case (i), we see that the trivial solution of (A.1)

is Liapunov Asymptotically stable.

The technique developed above can easily be extended to cover the case

of multiple repeated roots or higher order Jordan blocks.

Critical Cases

It will be observed that the techniques used to prove the stability of

(A.1) break down if ReN 1.0 for i E(1,k), i.e. if the matrix A has one or more

zero eigenvalue, or one or more pairs of complex conjugate pure imaginary eigen-

values. Such cases are called Critical Cases and will be treated in Theorem III.

Theorem All

If the matrix A in (A.1) has one or more eigenvalues with positive real

part, then the trivial solution of (A.1) is Liapunov unstable for sufficiently

small initial data.

M
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Proof

Care i A nondeflective, in this case there exists a nonsingular matrix

T which diagonalizes A.

i.e., where

T-1AT-A

ReA i > 0	 1 E (1,k)	 (A.25)

ReA1
 -

1.0 	 j E (k+l)

Let x-Tz

Then
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V•z*pz+z*Pz	 (A.29)

V-z*QZ+2Re (z*P1(z,t))	 (A.30)

e, Where

2Renk	 0

Q.	 .QTZO	 (A.31)

0	 -2ReAN-k

Hence

V-aV+W(z,t)	 (A.32)

Where

W(z,t) =z*[Q-mP]z+2Rez*Pgi(z,t)	 (A.33)

	

If 0<a<Min	 A i (A)	 (A.34)
1si$k

Then

(Q-aP) is positive definite	 (A.35)

Since y,(z,t) contains no term linear in z, for 1Izlls A, sufficiently small,

W(z,t) is positive.

Hence

	

VZaV	 (A.36)

V(z)Zeat
V(0)	 (A.37)

Since V(z) is sign indefinite, there exists a set 521:

Q :V(z)ZO	 9Q :V(z)=0	 (A.38)

^v .
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Def ine Q2:
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n2:1 LEI Ig6<A

Let

n:Ano2 1	 2

if

z(0)E S: 2 V(0)>o

Then	 V(z)keatV(0)>O

The trajectory g+ cannot exit through DSt 1 since V(0)>O and V(z)

is increasing; therefore it must exit through the boundary IIAII -6. Hence

given any 0<6<A there exists no a>O, such that if	 R(0)E S129

Ilz(t)IIQ for d t>O	 the trivial solution of (A.1) is unstable in the

sense of Liapunov.

Case (ii) A defective, in this case A cannot be diagonali.zed, however there

exists a nonsingular matrix T which reduces A to Jordan Canonical form

i.e.

Jal
k

T-lAT=	
Jag	

,	 =N

•Jak

Where

(A.39)

(A.40)

(A.41)
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ail

Jai	 ail	 (A.43)

.	

i

Let x-Tz in (A.1)

dz

dt

K(0) M !!CmT_1c

J-T-1AT	 (A. 44)

rL( z , t)-T-l€ (Tz, t)

Lim	 't) 
=0 uniformly in t

IIZI1-0	 11zII

To simplify the presentation we shall consider three typical cases

Case (iia)

^1 1	 0

0 A
J=	

l
(A.45)

0	 AN-2

Where

Reh1>0 , ReX 0	 9 E (3,N)

f
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V(z)^z*Pz

Where

"	 ^	 1

PM	 1

(Re)
_tN-k

Then

Viz*Pz+z*Pz

Pz*Qz+2Rez*PI(z,t)

Where

2Rea1 1

Q.QT.	 1	
2ReA0
1

2ReAN-k

equation (A.49) may be rewritten

w

V=aV+W (z,t)	 a>0

Where

W(z,t)-z*(Q-aP)+2Rez*P.&(z,t)

If

Ree
l

0<a<

1+(ReX1)2

(A.46)

(A.47)

(A.48)

(A.49)

(A. 50)
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then

(Q-0) is positive definite	 (A.54)

Since g(z,t) contains no terms linear in z, W(z,t) is positive if

z t Q, sufficiently small.

:.	 VZaV	 for RK1 1 s a	 (A.55)

Since V is sign indefinite, there exists a set nl,

nl : V k 0 , Vw0 on DO	 (A.56)

Define

`r
	

sz2;	 ^zl s 6^cA	 (A.57)

Q 	 nln 02	
(A.58)

From (A.55)

V(z) k eatV(0)	 (A.59)

if

z(0)E03 r BV(0)>0

Then V(z)>0 and monotone increasing provided 	 Q3

The trajectory, g+ , starting in 03 
with V(0)>0 cannot exit 93 through

the boundary DO,, since V-0 on DO,, the trajectory must therefore exit through

the boundary ( JzJJ-6. Hence, given any 6, 0<6<A, there exists no c>0,

F	 such that i J az(0) i s e implies J z(t) J J s 6 b t>0. The trivial solution of

(A.1) is therefore unstable in the sense of Liapunov.

t



(A.63)

(A.64)

Casa iib

(33)

Ak	 0

jw	 ^k+1

Ak+l

0	
AN-k-2

Where

ReAi>o 	 i E (1, k)

Re(Ak+1)<o

ReAi : 0	 j E (k+3 ,N)

Lot

V(x)-z*Pz

(A.60)

(A.61)

(A.62)
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Where

2Reak	 0

-2ReXk+1 -1

Q-

	

	 (A.65)-Re2 k+l

0	 2ReAN-k-2

The matrix Q is clearly positive semi-definite.

Equation (A.64) may be rewritten

V-av+W(z,t) ; a>O	 (A.66)

Where

W(z,t)'x*(Q-aP ) z+2Rez*Pj(z,t)	 (A.67)

O<a<Min	 Ai 	(A.68)
lsisk

The (Q-aP) is positive definite and W(z, t) is positive for (I z j I s A,

sufficiently small. The arguments of Case (ii) apply here also and the trivial

solution of (A.1) is unstable in the sense of Liapunov.

Case (iii)

hk	 0

J^	 ^R (A.69)

0	 0 1
0 0

I
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Where

	

Rexi>0	 iE(l,k)	
(A.7A)

	

Rex iQ	 j E (k+1,N-2)

Let

	

V(z)-z*Pz	 (A ► 71)

Where

	

I 	
0	 r

Pm	 -1Z	 (A ► 72)
t

	

0
	 -1

Then

V-z*Qz+2Rez*,&(. , t)	 (A. 731)

Where

t
2ReAk

	

2ReAe	 (A. 74)

0 -1
-1 0

Equation (A.73) may be rewritten

	

^-OV+W(z,t) ; a>0	 (A.75)
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Where

W(z,t)1z*(Q-aP)z+2Rez*P.&(z,t)	 (A.76)

rt

04a< Min

1,4sk	 (A.77)

R° 2
a

Then (Q-aP) is positive definite and W(z,t) is positive for jjzjj 4A,

sufficiently small. The arguments of Case (ii) apply here also and the trivial

solution of (A.1) is unstable in the sense of Liapunov.

The techniques developed above are easily extended to the case of multiple

repeated roots and higher order Jordan forms.

It should be noted in passing, that unlike Theorem I, Theorem II does not

break down in the case where one or more eigenvalues have a zero real. part.

Critical Cases in the Liapunov-Poincare Theory

As already pointed out, if the matrix A has any eigenvalues with zero real

part, stability cannot in general be inferred from the stability of the linearized

equations. In the case of the attitude stability of satellites it will be shown

that due to the special form of the equations of motion, stability of the full

perturbational equations can still be inferred from the linearized or variational

equations.

Theorem AIII

The perturbational equations govern.ng  the attitude stability of spinning

satellites take the special form:
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dxl

d  s^l(x1'2'ta

dX2

d t	 —2 --2 --1 --2

xx

x•	 x(0)Ic	 (A.78)

2E2

£1(x1,0,t)^0	 £2(2l,0,t)=0

I I^I,(Xl^X2^t) II
Lim	 uniformly in t

11X2 I I-^O	 i IX2 I I

If the matrix A is a stability matrix, then the trivial solution of (A.78)

is Liapunov stable for sufficiently small initial data. Furthermore, the states

x1 and x2 have the following properties

Lim I (X2 11 = o
t;OO	 (A.79)

Lim ((.x1 I I - y	 constant

t+CD

Rehi<0 V i
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We shall only discuss the case where A is nonde£eetive, the case for
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Where

vl (?x> s izl- I I

 ,Ell 12

(A.83)

V2(z2)- z2z2- IIz2112

Hence

V(?)=I LZ1 11 2+1 IZ2
1
 1 2-1 IZ11 2 	 (A.84)

V2=z22Re%+2Rez2.&2 (z l ,z2,t)	 (A.85)

(A.85) may be rewritten as

V2--aV2-W2 (zl ,z 2 ,t) , a>0	 (A.86)

Where

W2(zl,?2rt)=z2(Q-aI)z2-2Rez22(zl,z2,t)	 (A.87)

Where

Q=-2ReA>0	 (A.88)

If

0<a< Min	 1Reai)
1sisN-2

Then

(Q-aI) is positive definite

Since $2(zl90,0=0

if	 I?1112+1 1.2
.2

11 2 < A sufficiently small

LA

(A.91)
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Then

12Rez2g^2(zl,z2,t) ^siC2 (A) I lz2 i l2
(A.92)

Where	 K2(040 as A+O

Thus by taking A sufficiently small

W2(Al ,z 2 ,t)^ S1Iz2 11 2>0	 (A.93)

V 2 s -av2	(A.94)

Hence

	

V2(z2) s e-atW 2 (0)	 (A.95)

Hence if

IIz(0)1 1 s e<A	 (A.96)

V 2 (.z.2)s 
e-atE2	

(A.97)

IIz2 (t)II s e-a/2te	 (A.98)

t

?1=z1(0)+ I p 1 (?1'i2 ► T)dr 	 (A.99)
0

Since x(z1 ,0,T)=0 and y1 %,, 2 j) satisfies a nonlinearity condition;

.uniformly in t

1^$l(?1^?20T)II S K1(A)V2(Z2)
(A. 100)

for jj .zJj s A and Kl(A)ti0(1)
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Thus
t

IIS1 II s llZl ,(0)II +Kl (A) fV 2c—Z2(t) )dt0
(A.101)

Using (A.97)

Iizl (t)ll sll?l(0)II +Kl(A) a (1-a-at ) e 2
	(A.102)

Using (A.96)

I lzl (t)I I sK2We	 (A.103)

V(i(t))^IIz(t)IL
2 
s[K2(o)+e-at ] E 2	

(A.104)

••	 I I Z(t) I t s K3 (A)e , v t> 0 	 (A.105)

Thus if we choose

E s e*=

	

	 d	 (A.106)K3(A)

Then given any 6, 0<6<A , if IIz(0)I
I
 s c* then I Iz(t)I I S  , V t>0 .

Thus the trivial solution of the system (A.81) is Liapunov stable, and since

(A.81) is derived from (A.78) by bounded linear transformations, system (A.78)

is also Liapunov stable. In addition, using equation (A.98) we see that

Limz	 _0	 (A.107)
tiao 

I I_2 { t)II -

Using (A.80), (A.107) implies that

Lim 1122(t)II=0	 (A.108)
t+CD

f
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From (A. 99)

OD

rim 
l (t). -Z W)+ f F',(zi,x29T)dT

Since

1
 ( j

0o	 Ki(Q)

R1 ( Z l + z 2	 T ) dfl j s	
2

a 	 t	 ^
0

the integral (A.109) converges, hence, using (A.80)

Lim 112 l (t)j j-Y — a constant
t-*ao

provided that the initial data is sufficiently small.

Extension of Theorem AIII to Systems with Periodic Coefficients

In the study of the attitude stability of dual spin satellites, the

perturbational equations take the following form:

dxl

dt	 11(Xl'x2,t)

dx2
dt =A(t)x2+f2(xl,x2,t)

xl

A-7	 x(0) =c

x2

A(t+T) =A(t) 	d t

(A. 109)

(A.110)

(A.111)

f i (xl ,0,t)- 0

A
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I I f1 (X1 ,x2 , t)1 I
Lim	 0 uniformly in t	 (A.111)
I1x2 1I4o 	 I1X2 II	 Cont Id

For such systems, Theorem IV applies.

Theorem AN

Given the system (A.111), if all the solutions of the equation

dx2

dt 
`A(t)22	 x2(0)-c2
	 (A.112)

are Liapunov asymptotically stable, then the trivial solution of (A.111) is

Liapunov stable for 11 11 sufficiently small. In addition the states x1

and E2 have the following properties.

Lim 11X211`0
t+00

(A.1,13)

Lim ((2i,11-y — a constant
t+CD

Proof

Consider first the matrix equation

AX
dt 

=A(t)X ; X(0)=I	 (A.114)

It is well known from Floquet theory- that X(t) has the following form:

0

i
X(t)=Q(t)eSt	 (A.115)

Where B is a constant matrix
(A.116)

and Q(t+T)=Q(t) , Q(0)=I is a bounded periodic matrix.
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The requirement that all solutions of equation (A.112) be Liapunov

asymptotically stable is equivalent to the requirement that the matrix B

be a stability matrix. i.e.

Rea i WO , V i	 (A.117)

The matrix Q(t) in (A.115) satisfies the differential equation

	

d +QB-A( t)Q	 (A.118)
dt

Consider now the Liapunov transformation

x2=Q(t)u2	(A.119)

Substituting into (A.111)

du

a u2+Q(t) 
dt2 =A(t)Q(t)u 2+f 2 (x 1 ,Q(t)u2 ,t) 	 (A.120)

dug u-1(t) 	 VIR2tf-2dt Q
A(t)Q(t)-

	 1	 —(xIQ(t)u21t)(Al2l)

Using equation (A.11:8)

au2
dt =Bu2+h2(k,u2It)

where	
(A.122)

h x u t-	 t f x	 t o t

It

,:



Then system (A.111) becomes

dul

dt whl (1 P 2't)

(45)

dug
d t 	 ^Bu2+h2(u1+u2,t)

ul	
x1(0)

UN	 u(0)=	 we (A. 124)
u2	 x2(0)

hi (jl}0,t)=o	 J-1,2

IIh1(^1+u2+t)11
Lim	 60 uniformly in	 t

IIu2 11->0 	 11112 11 J
The system (A.124) has exactly the same structure as system (A..78),	 hence

by Theorem III, the trivial solution of (A.124) is Lapunov stable for sufficiently

small initial data and in addition 	 ul	 and	 u 2	 have the following properties:

i)	 Lim IIu2(t)11-0

t+OD (A.125)

ii)	 Lim 1Iu1 (t) 11 =y -- a constant ft-*C0

Using (A.119) and (A.123) it therefore follows that system (A.111) is

Liapunov stable and	 x1	 and	 2E2	 have the following properties:

a)	 Lim IIx	 (t)11=0
t-+C0 2 (A.126)

b)	 Lim Ilxl (t)11 =r — a constant
t'►ao

Thus establishing Theorem IV.
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APPENDIX B

Justification for the Method of SlowlX Varying Parameters

The linearized equations of motion of dual.-spin satellites with damping

in both rotor And platform can be written in the following standard form:

dv
0 -1

dr .a
	 v+c Al ('c) d +A (T) 	 (B.l)

1	 0

k
k	 a =B^+ c(T)	 +U(r)v	 (B.2)

E

Where v is a two -oector, x is a four vector, A (T), A (T) , B , C(T)tt	 l	 2	 0

E
D(T) are bounded matrices and o0 is a small parameter.

j
To reduce (A.l) and (A.2) to more convenient form, we introduce the

following transformation
f

E

Cos XT	 sin XT

v=	 a	 (B.3)
sin XT -Cos N T

Equation (A. 1) becomes

dT -eA3(T) 
d^r 

+eA^F (T)x	 (B.4)

Where
A3(T)=T(XT)AI(T)

A4(T) -T(XT)A2(T)	
(B.5)

COS XT	 Sin XT

T(XT)=

sin XT -cos XT
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Equation (B.2) becomes

dt -B
p
x CI (r)dT 

+D1 (T)a	 (B.6)

where

C1(T)-C(T)T(XC)

(B.7)

D1 (T)-C (T)'dT +D (T)T(XT)

Let us now introduce a second transformation

xsz+Gi(T)a

(B.8)

G1 (T)-	
e B 0(T-0

 DiQ)d4
-oo

Substituting into (B.6)

dz
dT =BO

z+[Cl (T)-G1 (0) a^a	(B.9)

Substituting (B.6) into (B.4), using (B.8) and solving for aa
dT

da
dT =eF(T)a+eH1 (T)z	 (B.10)

Where

F(T)- [I-eA3e11-1[A3D1+(A3B0+A4)G11

(B.11)
H(T)=[I-eA3C11-1[A3B0+A4]

Substituting (B.10) into (B . 9) we have

k



(4B)

dz yBO& B1 (T) CII (T) a 	 (B.12)

Where

B1(T)"[G1,(T) -G1(T) ]111(2)
(B.13)

H2(T)"[cI(T)-61(T)IF(T)

For a sufficiently small, the matrices F(T), H1 (T), H2 (T) and B1(T)

are bounded

if we write

F(T)- l7Q+F1(T)	 (B-14)

where

fT
F X Lim 
	

F(T)d	 (8.75)
a Tom x o

Theorem BI

Given the system of equations

da
aT =e[FG+FI(r)la+eH,(T)z

(B.16)
dz
dT =[BO+ Bl(T)lz+eH2(T)a

if	 i)	 F0 and Bo are stability matrices

ii)	 I Fl (T)dT is a bounded matrix
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Then for a sufficiently small, the trivial solution of (B.16) is Liapunov

asymptotically stable.

Proof

<	 Since Fa and B  ata stability matrices there exist symmetric positive

definite matrices P  and P2 such that

FTP1+P1v w-211

(B.17)

BT^P2+P2B0^-12

Consider the function

V7aTP1a+ zT P ?z-caTQ(r)a	 (B.18)

Where

Q(T)-FT(T)P1+P1F2(T)

fB.19

F2(T)- 
	

FI(T)dT

Q(T) is a bounded matrix, since Pi and F 2 (T) are bounded matrices

	

V,aTP a+aTP a+zTP z+zTP z- LA Qa+aTQa+aTQaj e	 (B. 20.)

Using equation (B.16) and (B.19)

VI-eaT[(,0+FT1 1 1)P +P (F
0
 +F

1
 )]a+2eaT 1P H1.z-e[aT(FT1P1 +P ^. F]. 

)a+eaT(FTQ+QF)a0	 --	 — 	——

+2eaTQH z]+zT [(BT+eBT)P +P (B +eB )]z+2caTHxP z	 {E.21)
1	 0 ^. 2 2 0 1— -- 2 2--
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Where

P+FO+Fl	 (B.22)

Using (B.17) V becomes:

0--2saTa-zT z+czT (BTP +p 2 B1 ) z+2eaTR (T)a-e 2 [aT (FTQ+QF)a+2aTQHlz] 	(}3.23)

Where

'	 R(T)=[P1H1(T)+HT(T)P2) 	(B24)

Equation (B.23) may be rewritten:

V=-eaTa-• zT [T-a (BTP 2+P2B1)-eR1,R] z

e (a-Rz)T (a-R })

e 2 [aT (i T Q+QF)a+2aTQHlz]	 (B.25)

Since Bl , p2 ,Q, R etc. are bounded matrices, for a sufficiently small, the

sign of V is that of the first three terms.

V<0 for e sufficiently small	 (B.26)

Similarly, the sign of V, (B.18) is that of the first two terms for a suf-

ficiently small. Hence, for a sufficiently small

Vy 0 , V<0	 V is a Liapunov function 	 (B.27)

Hence, the trivial solution of equation (B.16) is Liapunov asymptotically stable.

Using (B-.8), stability of z and a implies stability of x and a

and hence of x and Y. Thus,, under the hypothesis of Theorem (BT), the

am
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trivial solution of equations (B.1) and (B.2) is Liapunov asymptotically stable.

Given that BO is a stability matrix, the requirements for stability are

that a be sufficiently small and that the time average of the matrix F(T)

should be a stability matrix.

Nov

F(T) [I-cA3 ( T)Gl (T)1
-1 [

A3 (T)B^+A4 (T))C l (T)+A (T)Dl(T))

=(A3(T)Bp+A4(T))Gl(T)+A3(T)Dl(T)

+c[I-eA3C 1 1 -1 A3C1 [(A3BeA4)Gl+A3Dl 	(B.28)

Hence

F0 ;FOecF01

Where

fo

ao

F
OO=Lim T[ (A3BO+A4 )G1+A3D)d	 (B.29)

T-^oo 

fo

oo

F01=Lim	 I-cA3CIA3C1[(A3BO+A4)G1+A3D1]dT
T+oo

The requirement for stability is that F^ be a stability matrix, for

C sufficiently small this requirement will be satisfied if the matrix F00

in (B.29) is a stability matrix.

In terms of the matrices A1, A2 , BO , C and D, this condition becomes:



r
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t (T
	

fT BQ(T-C)	 d '
r, 00:1, 1 T(Xr) ( A B0+A2J	 a	 (0 dT +A) T(XE)d^

T-►ao	 0	 0

+A IC 
d 

+D]T(XT)	 (B.30)

should be a stability matrix.

Rather than carry out the operations in (B.30) in one step, F CO may

be evaluated in the following manner.

i) Make the transformation (B.3)

ii) Compute SO(T) ^ the "steady state" response of equation (B.6)
regarding a(T) as a constant vector

iii) Substitute the "steady state" response xQ (T) into equation (B.4)

iv) Time average equation (B.4) regarding a(T) as a "constant" vector

The procedure yields the equation

da

	

dT =F
OOa	 (B.31)
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APPENDIX C

Equations of Motion for a Dual-Spin Satellite

The dual-spin satellite consists of two rigid bodies having a common

axis of rotation.

Let the axial moment of inertia of the rotor be J.

Let the total axial moment of inertia of the satellite be C (including platform,

rotor and dampers)

Let the total equatorial moment of inertia of the satellite be A (including

platform, rotor and dampers)

To simulate the effect of internal damping, the model will include torsional.

dampers.

Let * be angle (about the common axis) between the body fixed axis in the

rotor and platform.

Equation of Motion

Rotor

J[w3]-Ib*[w2Cos ^ -W
1
 sin ^ )=TM TB	(C.l)

b
	 Where 1 1

b
	the polar moment of inertia of the damper on the rotor

6 is the rotation angle of the torsional damper on the rotor

TM the torque if the despin motor

TB the frictional torque of the rotor bearings.
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Rotor/Platform

Cw3 3 -Ib6(w 2cos ^ -wlsin ^ )-Ib';w2=Q

Awl+[(C-A)w3+J^]w 2+Ib[Ucos^-6(w3+$)sink ]+Ib Qi = O	 (C.2)

Awl-[(C-A)w3+J$]wl+Ib[6sin "6(W 34) Cos ^]+Ibw3;=0

Where I 	 is the polar moment of inertia of the torsional damper on the platform

^ is the rotation angle of that damper;;

Dampers

Ib0+KIO+K26 =-Ib [wlCos ^ +w2sin ^ +w ?co" -wl^sin ^ ]

(C.3)

Ib0+Y+K2 =-Ibwl

Steady State Solution (TM=TB)

w 3=St	 $=0 , ^=Qt

(C.4)

8==6=¢=w1=w2 0

Perturbed Motion

Let	 w3=P+ot T=Qt r

	

^2=^y^=o(1+>	 (C.5)

a =vl a2 =v2	TB-TM=S a
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Perturbational Equations

A d +
	 -u^ d© IV

2cos(T+n)-visin(T+n)1 + A -0
dT .JC	 J

do s ^	
I

dT

TT + C d -u
i
6 IV2
Acos(T+n)-vlsin(T+n)^ dO -u C v2 d 0

dvl	 (C-A)C+J4	 d28 	 d28	 d8
dT + 

r^+	
A	 lv2+p
	

2 
+P'[  

2 cos{^+n)- dT 
(l+r+F+;)sin(T+n)1 =0

dT	 dT

dv2	
(C-A>^+J	 de	 ate	 d0	

11

A	 vl+U(r+g d.T 
+uZsin(T+n)+ dT(1+r+ + )cos(T+nI =

dT 	 dT
0[X+	

C 

2 	 dy	 1
d 9 +K' d9 +K^A+	 +v (1+;) cos(T+n)+	 -v (1+4) sin(T+n)

J
 =0

dT
2 1 dT 2 

r(dvl
 
dT	 2 	 ^T	 1L 

2	 dv
d 2 +K1 d +K2^+	 dTl =0
dT

^.(C.6)
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Let

	

n	 (C. 8)

vi

V2

a(C -9)

e

de
dT

Using (C.8) and (C.9), equations (C.6) can be rewritten as:

dAdt -Aid+fl(^^^ c)	 (C.1.0)

at =A 2p+U[ Bi (T)+B 2 (C,P,T)I ap`+f 2 (E,p 0 T)	 (C.11)

Where

Ai , A2 are constant matrices

B1(T+2fr)=B1(T)

JI B2(1,p , T ) I
Lim	 -0 uniformly in t	 (C.12)

E 11+1 IP- I 1+0	I I^d 1+11.-11

f1 ( I.QIT)=

f2(&,O,T)-0

Of

4

M
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4

Lim	
) 1 ^1 (^s,^,, T) 1 1 

.0
11PJ 1-*0	 1 IP-1 I

l l f2 ( Vp, T ) I I
Lim 

	
W0

I	 I Id I+1 IPI 1+0	 11.0 1+I IP- I I

Solving (C.11) for dp/dT, we have:

Ap-ar -A3(T)p+f3Q,P,T)

Where

A3(T+Tr)=A3(T)

=[I-UB1(T)]-1A2

13 (.L,PT ) -[I-NB1(T))-1f2(C,P,T)

+U[ I-p(B1(T)+B2( 	T)]-1B2(^,P,T)Ag

Where

f3(9,0,T)=0

and	 Lim	 =0 uniformly in t

I LEI 1+I IP-I 1-)-0 	11.0 1+1 IP-11

Let

	

0	 0

C=TY	 where T-1AT=	 0

	

o	 ^°r

(C. 12)
cont'd

(C.13)

(C.14)

J

1
(C: 15)

(C.16)

Y>o
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Equations (C.10) and (C.13) become

0

dt	 0	 ±4(Y,L,T)

-y

dp ^A (T) +ft	 _ (Y , P , >

Let

yl	 Y3
	 4,

^)

,=	 x2=	 , x=

Y2	 P	 X2

Equations (C.17) can now bi written in the form:

aXl
dT =fj(x1,x2,T)

axe

dT aA(T)"2+f2('x,,.??`2,T)

xl

x=	 x(0)=c

x2

A(T+ft)=A (T)

f i(xl ,0,T)=0	 i=1,2

Lim	 -0 uniformly in T
^X2^ ^->Q	 (x2^

(C.1.7)

(C.18)

P. (C.19)



i
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Where

-Y

	

A(T).	 (C.20)

A3(T)

Theorem 1V of Appendix A is applicable to (C.19) and stability is

guaranteed, for 11c1l sufficiently small, provided all solutions of

dx

	

dT2	
sA(T)x2	 (C.21)

are Liapunov asymptotically stable.

Using (C.20), all solutions of (C.21) will be asymptotically stable

provided all solutions of
f

	

dp  A3T	 3 P-	 (C.22)

are asymptotically stable.

Since equation (C.22) is the linear part of equation (C.13), the condition.

for stability can be expressed in terms of the variational equations obtained

by linearizing the perturbational equations (C.6).

Thus, the conditions for stability of a dual-spin satellite are:

1) The initial perturbations shall be sufficiently small

2) All solutions of the following set of differential equations shall

be asymptotically stable



Y
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dvl +^v +u ^ + oa r d22 cos T - (+r) 0 s ix► 	 -0
dT

	Td
 T

dv

dT2 
-avi+pr d -u' - sin T +( l+r) ^.^ cos r =0

dT

(C.23)

2	 dv	 dvd 9 
+Kr 

do +K' e+	 l +v cos T +	
2 -v sin z -0

dT2 i dT
	 2	 dT	 2	 dT

2	 dv

dT2 +Kl 
d 

+K2¢+ 
dT 

0

It will be noted that the present analysis rigorously Justifies the normal

engineering analysis, in which one examines only the stability of the linearized

equations and ignores completely the subtleties of the stability of the per-

turbational equations.

k
r
f

f°E

^ ,.	 ...	 ..,Y...	 _.: ....	 _ ems...,._..	 i.
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