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1.0 FOREWORD
 

This report is a summary of work performed on NASA Contract
 

NASB-32665 during the period of 7 February 1978 to, 20 January 1980.
 

The investigation was conducted for the George C. Marshall Space
 

Flight Center, Huntsville, Alabama. The Contracting Officers Tech­

nical Representative was Mr. Leon Hamiter.
 

The majority of the work was performed within the Advanced
 

Technology Laboratory of the Technology Support Division of Hughes
 

Aircraft Company. Mr. James J. Erickson was principal investigator
 

and program manager. Mr. R. L. Barch's help with eqiupment design
 
and technical assistance was a valuable contribution. Mr. F. A. Lucich
 

and Mr. D. L. Mehrle along with other personnel from the Radar
 

Division generated the image processing software and provided the
 

computer analyses of the photoresponse data. Mr. P. G. Backes and
 

Mrs. J.A. Sheppard generated the computer software for the automated
 

integrated circuit test facility used to measure the electrical para­

meters of the test devices for this program.
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2.0 SUMMARY
 

The work described in this report was the third phase of a project to
 

develop and evaluate a new nondestructive inspection and test method for micro­

circuits. The basis of the new method is the use of a raster-scanned optical
 

stimulus incombination with special electrical test procedures, and computer­

aided image processing techniques, The raster-scanned optical stimulus is
 

provided by an Optical Spot Scanner, an instrument that combines a scanning
 

optical microscope with electronic instrumentation to process and display the
 

electrical photoresponse signal induced in a Device Under Test (DUT). The
 

resulting photoresponse images are then processed and compared using a digital
 

computer to implement image processing techniques.
 

The Optical Spot Scanner itself is not a novel idea: Its ability to
 

detect and image flaws in semiconductor devices and to check the static logic
 

states of internal stages of microcircuits is well known. The overall purpose
 

of this project is to devise methods by which an Optical Spot Scanner can be
 

used for 100% screening inspection of microcircuits. Because of the time
 

necessary to scan a raster frame and because of the number of data points
 

(picture elements) contained in a photoresponse image of OUT, an important
 

prerequisite for this application is that the OUT must be adequately char­

acterized by a single photoresponse image for the accept/reject decision. A
 

method by which this special photoresponse image can be generated was developed
 

in the first phase of this project. The new method was named the State Super­

position Technique because of the way in which it generates the photoresponse
 

image. The work done in the first phase was described in the final report
 

"Imaging LSI Microcircuits with Optical Spot Scanners," dated January 1976.
 

The goal in the second phase was to evaluate the ability of the OSS to
 

detect flaws in CMOS microcircuits that had failed electrical tests after a
 

1000 hour, powered life-test at 1250C. Unlike the previously examined failed
 

microcircuits, these specimens were functional devices that had failed one or
 

more parametric tests. A group of microcircuits that had passed electrical
 

screening tests after the same type of life-test were used as a control group.
 

In brief, the results of this program showed that the Optical Spot Scanner
 

operated in combination with the State Superposition Technique can detect
 

effects inmicrocircuits that are correlated with their electrical behavior.
 

Since the effects are localized on particular portions of the microcircuit
 

chips, the resulting information may be of value not only for screening
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inspection but also for engineering studies of CMOS microcircuits.
 

Localized differences in photoresponse magnitudes were readily observed
 

among all specimens, both good and reject; however, the shapes of the photo­

response image are essentially the same for all the test specimens. A few
 

instances of qualitative differences have been observed. Some have been
 

tentatively attributed to parasitic elements, such as parasitic bipolar
 

phototransistors. Also, certain photoresponses were correlated with some
 

degraded parameters. Nevertheless, the photoresponse information that best 

characterizes the microcircuit test specimens is believed to be contained to a 

significant extent in the photoresponse magnitudes of the various active ele-


It became apparent that the method of comparing photoresponses by
ments. 


visually comparing photographs of photoresponse images displayed on a CRT is
 

both inefficient and ineffective. The work done in the second phase was de­

scribed in the final report "Optical Scanning Tests of Complex CMOS Microcircuits",
 

dated October 1977.
 

The work reported here from the third phase of this project was undertaken
 

to further develop the OSS as a screening instrument by comparing quantitative
 

differences in the photoresponse images. This was conceived as a result of the
 

previous program which revealed that each test device is best characterized
 

by the information contained in the magnitude of the photoresponse, since the
 

overall shape of the photoresponse remains fairly constant from device to device
 

while differences in the magnitudes are observed.
 

The photoresponse images generated by the optical scanner have a very high
 

data content. In order to handle the large volume of data and determine which
 

of these data convey the information of interest, a highly versatile,'high
 

capacity data recording and processing method was used. The method that was
 

used was to record the photoresponse image, digitize this information and
 

then process the data by digital image-processing techniques. 

The overall approach that was used was to modify the existing optical
 

scanner so that the photoresponse images from the test devices could be re­

corded on magnetic tape. Photoresponse images from two different groups of
 

test devices were recorded before and following various life-test intervals.
 

Electrical parameters of the test devices were also measured before and after
 

the life-test intervals. Attempts were then made to correlate differences
 

in the photoresponse images with differences in the electrical parameters.
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Two types of differences in the photoresponse images were to be considered:
 

the differences between images of different specimens whose electrical para­

meters are different, and differences between images of the same device, whose
 

electrical parameters and photoresponse images changed significantly during
 

the course of the life test. A principal objective of this program was to
 

determine whether the photoresponse image obtained before the life-test con­

tained any information that could be used to predict life-test failures.
 

The existence of such information and the methods needed to detect it-will
 

determine the basic design of optical scanners to be used for microcircuit
 

screening or inspection.
 

The results of the program showed that correlations could be made between
 

differences in optical scanner photoresponse images of devices and differences
 

in their electrical parameters. The most obvious correlation was made for the
 

one test device which was a parametric failure from the first electrical test.
 

Subtractions between this device's photoresponse image and those of devices
 

whose electrical parameters were within specification limits revealed signifi­

cant differences. The other correlations between electrical parameter differ­

ences and photoresponse image differences were made through comparisons of
 

subtle differences in the images that resulted from the subtraction of two
 

photoresponse images. Many of the differences that were revealed by the sub­

traction of two images were virtually undetectable by visual comparison of the
 

two images which demonstrated that the new approach did provide useful informa­

tion that was otherwise unobtainable.
 

None of the test devices electrical parameters failed or degraded due to
 

inherent problems during life tests. Therefore, no significant correlations
 

could be made between any failed or degraded parameters and changes in the
 

photoresponse images from any one device. The only correlation that could be
 

made was that there were also no large changes in the photoresponse images
 

following the life-tests. Also, since none of the devices failed or degraded
 

as a result of inherent defects during the life tests, the initial images could
 

not be compared to determine if they contained information which could be used
 

to predict subsequent device failure or degradation.
 

Since correlations could be made between differences in device electrical
 

parameters and subtle differences in photoresponse images that were revealed
 

using the new approach developed during this program, the program was successful
 

even though all the proposed correlations could not be attempted since the
 

device parameters did not change during the life tests. Conclusions can be
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drawn from these results which are encouraging with respect to the ultimate
 

success of the optical scanner as a screening inspection instrument using the
 

approach developed in this program. Subtle differences in photoresponse images
 

could be correlated with differences in electrical parameters, eyen though the
 

differences in the electrical parameters were small enough so that the electrical
 

parameters were all within specification limits. (Except for one failed test
 

device whose photoresponse image was obviously different from other test devices'
 

photoresponse images.) Semiconductor device physics in combination with the 

previous observation would predict that devices whose electrical parameters are
 

vastly different, for example, outside of specification limits, would have photo­

response images which are quite different than the photoresponse images of devices
 

whose electrical parameters are within specification limits. Also, if the optical
 

scanner is to be developed into an effective screening inspection instrument,
 

small differences between devices' electrical parameters which are within speci­

fication limits should not have a large effect on the photoresponse image which
 

would be used as a basis for an accept/reject decision. The results of this
 

program showed that the new approach of performing quantitative analysis of the
 

photoresponse images does not conflict with this requirement. Acceptable
 

variations in device electrical parameters produced only subtle changes in the
 

resulting photoresponse images.
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3.0 INTROPUCTION
 

In recent years the growing complexity and density of microcircuits
 

has greatly increased the difficulty of inspecting and testing them. Since
 

the reliability requirements of space and airborne systems can be met only
 

by 100 percent inspection and testing procedures, more efficient and effec­

tive testing and inspection methods are necessary. One prospective technique
 

for fulfilling this need is inspection with an Optical Spot Scanner.
 

The Optical Spot Scanner (OSS) is an instrument that scans a focused
 

spot of light in a raster pattern over a specimen. The electrical photo­

response signal and the reflected light signal are displayed on CRT displays.
 

In fact, the OSS can be thought of as a Scanning Optical Microscope that is
 

closely analogous to the Scanning Electron Microscope (SEV) operated in the
 

Electron Beam Induced Current (EBIC) and.secondary electron emission modes.
 

However, unlike the SE, the OSS is completely nondestructive, does not
 

require a vacuum chamber for the test specimen, and can provide a signifi­

cantly higher beam-induced signal level (by several orders of magnitude, if
 

necessary). Research experience with the optical scanner has already estab­

lished that it can detect certain important types of flaws in simple
 

semiconductor devices. Some of these flaws cannot be detected by visual
 

inspection or by conventional electrical tests. In microcircuits, the OSS
 

generates a photoresponse pattern or image that depends on the circuit's
 

digital state. In effect, the OSS can thereby monitor directly the internal
 

operation of microcircuits. Because of the buffering effect of each suc­

ceeding state on the preceding stages of a digital microcircuit, direct
 

monitoring of the internal operation of the circuit cannot be done by con­

ventional electrical measurements at the external terminals.
 

These potential capabilities - to nondestructively monitor the internal 

operation of digital microcircuits and to detect and localize otherwise 

undetectable flaws - would make the OSS a very effective inspection instru­
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ment for 100 percent screening inspection and also for engineering studies of
 
microcircuits. Unfortunately, its use is made difficult by the complexity of
 
the digital microcircuits themselves. For screening inspection it must be
 
assumed that the photoresponse image data will be converted to digital form,
 

processed, and compared to a reference image to make the accept/reject decision.
 
The large amount of data contained in a single image can be handled rapidly
 

enough by a modern computer, but a screening procedure that required scanning
 
and processing several images per test device would not be practical. The use
 
of the OSS for screening inspection therefore requires a method for generating
 
a single photoresponse image that adequately characterizes the nevice Under
 
Test (DUT). This image-then could be used as a "characteristic signature" for
 
making the accept/reject decision. One obvious requirement for the image is
 
that it should contain images of all photoresponsive circuit elements in it.
 

The difficulties with using a conventionally generated photoresponse
 
image can be stated in several, essentially equivalent ways. One version is
 
as follows: when the photoresponse image of a DUT is generated, the photo­
response signals frbm some of the circuit elements may not be accessible at the
 
device's external terminals. The photoresponses may be shorted out by conduc­
tive paths in parallel with the circuit elements in question, or they may be
 
prevented from reaching the external terminals by blocking series elements.
 

Whatever the reason,_ these circuit elements- will appear dark i-n th-pfioto­

response image.
 

The work in the first phase of this contract addressed the problem of
 
generating the required photoresponse image on the basis of the above state­

ment of the problem. One promising approach was selected for further
 
development after several possibilities had been investigated. The successful
 

implementat-ion of a method based on this approach was mainly the result of an
 
improved understanding of the problem. As stated above, the difficulty is
 
that the photoresponses from some of the circuit elements are externally
 
inaccessible, so these circuit elements do not appear in the photoresponse
 
image. However, which circuit elements appear and which do not is determined
 
by the DUT's digital state. Indeed, it is the pattern of light and dark cir­
cuit elements in the photoresponse image that characterize the PUT's digital
 
state. By analyzing this pattern it is possible to determine the state of
 
internal circuit stages that are not accessible to measurement via the device's
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external terminals. The difficulty of imaging all circuit elements in one photo­
response image is not that the photoresponses from some elements are inaccessible, 
but that the DUT is Being examined ina single digital state. It can be assumed
 
that if the set of photoresponse images of all possible states of the DUT were
 
examined, any given circuit element would appear at least once'in the set. 
In fact,
 
for a complex microcircuit, a set of images containing each circuit element in at
 
least one image would be a small subset of the set of all possible images. Disre­
garding the problems of implementation, one possible approach for generating the 
required "characteristic signature" image is to form an appropriately weighted super­
position or average of a subset of images having each circuit element in at least
 
one image. The method that was developed in the first phase of this work is an 
implementation of this approach. Because of the way in which it generates the 
"characteristic signature" image, the new method was named the State Superposition 
Technique.
 

Following a demonstration of the State Superposition Technique in the first
 
phase of this effort, a second phase of the project was undertaken in order to
 
investigate the effectiveness of the new technique in detecting flaws in micro­
circuit specimens. Since the initial demonstration had shown that the Optical Spot
 
Scanner was particularly well suited to CMOS microcircuit inspection, this second
 
phase consisted of a project to examine good and failed CMOS microcircuits with the
 
State Superposition Technique and to correlate the photoresponse images with the
 
electrical behavior. Twenty specimens of each of two CMOS part types were supplied 
by NASA MSFC. The specimens had undergone a 1000 hour 1250C life-test, after which
 
they had been tested according to tentative MIL-M-38510 specifications for the part 
types. The twenty specimens, of each type included a group of ten reject microcircuits 
that had failed power supply current tests and a control group of ten good micro­
circuits.
 

For various reasons that made this approach more productive, emphasis in the
 
laboratory work was placed on one of the two part types, In addition to a survey
 
of State Superposition photoresponse images under conditions of normal operation,
 
experiments were planned and carried out on this part type to detect effects whose
 
presence was implied by results of electrical tests. Tests at high clock frequen­
cies showed the Optical Spot Scanner's ability to localize the stages that
 
malfunctioned at high frequency. These tests also disclosed the unexpected acti­
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vation of parasitic bipolar structures that amplified the optically injected
 
photocurrents. Experiments were also done to measure a length parameter
 
describing the dependence of a junction's photocurrent on the distance from
 
the junction to the focused optical spot. While not entirely conclusive, the
 
experimental results strohgly suggest that large values of the length para­
meter are a necessary condition for low leakage currents in the test specimens.
 

The laboratory work on the second part type was restricted to State Super­
position image surveys at two values of power supply voltage. At the lower
 
voltage the test specimens were operated near their upper frequency limits.
 
A fairly consistent pattern of bipolar parasitics was detected in all the
 
specimens. The parasitics appeared to involve diffused conductors and diodes,
 
and also p-channel FET's in transmission gates. Some major differences between
 
photoresponse images for different test specimens were noted, but they could
 
not be" readily correlated to the electrical test data for these specimens.
 

In brief, the results of this program showed that the Optical Spot Scanner
 
operated in combination with the State Supernosition Technique can detect
 
effects in microcircuits that are correlated with their electrical behavior.
 
Since the effects are localized on particular portions of the microcircuit
 
chips, the resulting information may be of value not only for screening inspqc-_
 
tion but also-for enegib&rin ittcRiesof CMOS microcircuits. However, the
 
results of this study led to the conclusion that the information provided by
 
the photoresponse data that best characterizes the microcircuit is contained
 
mainly in the magnitude of the photoresponse from the various active elements.
 
Small changes in photoresponse magnitude can not be detected by visual compari­
sons of photographs of CPT photoresponse images which was the comparison method
 
used. Even qualitative changes were shown to be very difficult to keep track of
 
by visual comparisons alone, especially on complex devices.
 

As a result of the previous studies, the work reported here was undertaken
 
to perform quantitative comparisons of the photoresponse images generated from
 
the examination of the test devices by the optical scanner using the State
 
Superposition Technique. Briefly, the tasks for this program consisted of
 
modifying the existing optical scanner so that the photoresponse images could
 
be recorded, digitizing the recorded data and analyzing the data using image
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processing techniques. Photoresponse images and electrical parameters from
 

groups of two different device types were recorded before and after successive
 

life-test intervals. Correlations were then made between the differences in
 

the photoresponse images and differences in the electrical parameters. The
 

two device types that were examined were both CMOS devices: the CD4028A BCD­

to-decimal decoder and the CD4034A eight stage bus register.
 

The mechanism of photoresponse image formation, using a CMOS inverter
 

as an example, is reviewed in this section for completeness. Also,,the State
 

Superposition Technique is reviewed since it is the basis for the formation of
 

the photoresponse images which can be used to completely characterize the
 

microcircuit. Qualitative and quantitative image analysis are also discussed
 

in this section. Subsequent sections include the following: a description of
 

the modified and improved optical scanner used for this work; the hardware and
 

software used to provide image processing of the photoresponse data; laboratory
 

work and conclusions.
 

3.1- Photoresponse Image Formation
 

When a light beam is focussed on the surface of a semiconductor, electron­

hole pairs are created. In the presence of an electric field, such as is created
 

by a p-n junction, the electrons and holes are separated, creating an electrical
 

photoresponse. In microcircuits, the optical scanner generates a photoresponse
 

that depends on the circuit's internal fields. These fields are, of course, dir­

ectly dependent on internal biases. In effect, the optical scanner can directly
 

monitor the internal operation of microcircuits.
 

A simple CMOS inverter, as shown in Figure 3-1, will be used to demonstrate
 

how a photoresponse image is formed and interpreted.
 

V+.
 

SSP-CHANNEL 

D 
INPUT- OUTPUT 

i N-CHANNEL 

Figure 3-1. Circuit Schematic of CMOS Inverter
 



When the input to the inverter is "high", the n-channel FET is "on" 

conducting) and the p-channel FET is "off" (non-conducting). With the 

n-channel FET "on", the negative supply voltage (V-) is present at the 

drain of the n-channel FET which is the output of the inverter. There­

forehere is no field across the n-channel FET. As a result, when the 

light beam from-the optical scanner is swept across the n-channel FET,
 

there will be no photoresponse signal.
 

The drain of the "off" p-channel FET is also at V- while the source
 

is at V+. In this case, when the light beam from the optical scanner
 

sweeps across this FET, the generated electron-hole pairs are separated
 

by the field across this FET. This results in a photoresponse from the
 

p-channel FET.
 

When the input to the inverter is "low" the p-channel FET is "on" and
 

the n-channel FET is "off". Using the same type of analysis as for the
 

"high" input it can be seen that there will be a photoresponse signal from
 

the n-channel FET but there will be no signal from the p-channel FET. To
 

generalize for either input, there is a photoresponse signal from the "off"
 

FET while there is no signal from the "on" FET.
 

In CMOS circuitry, the n-channel FET's are fabricated in p-wells on
 

the n-substrate. These p-wells are always tied to the most negative poten­

tial while the substrate is tied to the most positive potential. Therefore,
 

the p-wells on a CMOS device always generate a photoresponse signal due to
 

the large field between them and the substrate, regardless of the logic states
 

on the inputs.
 

The previously mentioned photoresponse signal takes the form of a current
 

which flows between V+ and V-. This signal is detected by measuring the
 

voltage drop across a small resistor (100Q2) inserted between the device's V­

lead and the V- power supply. This voltage is then used to intensity modulate
 

a CRT to generate a photoresponse image for the device.
 

An internal anomaly in a CMOS device will alter the photoresponse image
 

in such a way that the presence of the anomaly can be inferred. For example,
 

suppose the output of the CMOS inverter in Figure 3-1 were connected to V­

through an anomalously small resistance (a short or leakage path, for example).
 

When the input to the inverter is "high", the output would be V- and the anomaly
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would have no effect. However, when the input is "low", the p-channel FET
 

turns "on" but there is still a large potential across this FET, V+ on its
 

source and V- on its drain. Also, the n-channel FET still has little or no
 

potential across it. Therefore, the inverter will be imaged as if it still
 

had a "high" input and the photoresponse images for the inverter will be the
 

same for both inputs.
 

Figures 3-3 through 3-5 are photoresponse images of a CMOS inverter to
 

demonstrate the preceding discussion. (The reflected light image of the
 

inverter is shown in Figure 3-2). Figure 3-3 shows the photoresponse image
 

of the inverter with a "high" input and Figure 3-4 shows the inverter with
 

a "low" input. Figure 3-5 shows the inverter with a "low" input and a 100
 

resistor between the output and V-. It can be seen that Figure 3-5 looks
 

like Figure 3-3 in the region of interest as anticipated.
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Figure 3-2 Reflected light image of a CMOS inverter on 

a MC14049 chip 

Figure 3-4 Photoresponse image of a CMOS inverter with 
a "low" input 
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Figure 3-3 Photoresponse image of a CMOS inverter
 

with a "high" input
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Figure 3-5 Photoresponse image of a CMOS inverter with a
 

"low" input and a 100 2 load resistor to V-.
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3.2 STATE SUPERPOSITION TECHNIQUE
 

As discussed previously, the objective in developing the State Super­

position Technique was to generate a "characteristic signature" photoresponse
 

image that could be used for microcircuit screening inspection. The approach
 

is to form an appropriately weighted superposition or average of a set of
 

images having each circuit element in at least one image.
 

In principle the required superposition can be effected as follows:
 

first, a set of digital states is selected such that each circuit element
 

appears inat least one photoresponse image corresponding to a digital state
 

in the set. Next, a test circuit or program is devised to rapidly clock the
 

device under test through the set of selected digital states. Then, the
 

required superposition of images is generated by scanning the DUT with the
 

optical scanner as it is being clocked repeatedly through the set of selected
 

digital states.
 

The application of this technique to a CMOS inverter will illustrate this
 

approach. The analysis of how the CMOS inverter's photoresponse image is
 

formed showed that the imaged element is the "off" transistor. With a low 

input, the n-channel FET is imaged; with a high input, the p-channel FET is
 

imaged. Clearly the superposition of these two images would be an image show­

ing both FET's in the inverter. The inverter has only two states. The program
 

that will repeatedly clock the inverter through this set of two states is an
 

input square wave. Thus the required State Superposition image of the inverter
 

can be obtained by scanning the DUT as it is being switched rapidly by a square­

wave signal applied to the input.
 

This simple example of the inverter can be extended to more complex circuits,
 

which are made by interconnecting circuit stages not much more complicated than
 

the inverter. Instead of two possible states, a complex circuit can have a very
 

large number of states. The problem is to choose a set of digital states that
 

provides the desired characteristic signature image. For a given circuit this
 

set of digital states is not unique, nor is the order in which the states occur.
 

At a minimum, the digital state sequence will be such that every active element
 

appears in the photoresponse image. This will happen if each active element
 

appears in at least one of the photoresponse images that would be obtained stati­
cally for each state in the sequence.
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For digital microcircuits the photoresponse is sensed at the power
 

supply or ground terminal, where it appears superimposed on the current
 

normally flowing through the circuit. Ifan attempt ismade to obtain a
 

photoresponse image of a microcircuit as it is being clocked rapidly
 

through some sequence of states, the photoresponse signal is found to be
 

masked by switching transients. This difficulty can be surmounted by
 

using a light beam whose intensity is modulated at a particular frequency.
 
The photoresponse then can be separated from the switching transients by
 

a highly frequency-selective demodulator.
 

The problem of separating an optical signal from noise is well known
 

in optical spectroscopy, where it is solved by the use of a lock-in ampli­
fier. The basic element of the lock-in amplifier is a phase-sensitive
 

detector in which the signal voltage ismultiplied by a reference square or
 

sine wave signal, producing sum and difference frequencies. A low-pass RC
 

filter at the detector's output rejects the high frequency components and
 

passes the difference frequencies of sidebands within the passband. Differ­

ence frequencies that are removed from the reference frequency by more than
 

low-pass filter's cut-off frequency are attenuated. Thus, the filter's out­

put is due to that portion of the signal's spectrum that lies about the
 

reference frequency within a passband determined by the low-pass filter.
 

The two ideas presented here - that of rapidly clocking a microcircuit
 

through a specially selected sequence of digital states, and then using a
 
modulated optical beam in the optical scanner to generate a photoresponse
 

that can be separated from the switching transients - comprise the State
 

Superposition Technique. The photoresponse image so generated will be
 

referred to as a State Superposition image. The sequence of digital signals
 

applied to the microcircuit's externalleads to cause it to go through the
 

selected sequence of digital states will be referred to as the State Super­

position program.
 

3.3 Qualitative Image Analysis
 

At this point in the development of the optical scanner as a screening
 

inspection instrument the State Superposition technique has been developed
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and demonstrated to produce a "characteristic signature" photoresponse
 

image. This image represents the electrical behavior of all the active
 

elements on the device. The problem to be solved is how to best interpret
 

this image in order to make a decision about the reliability of the
 

microcircuit which produced the image.
 

The initial approach used to analyze these images was to perform
 

visual comparisons of photographs of the photoresponse images displayed
 

on CRTs. The photoresponse images were from functional devices, some of
 

which had failed certain electrical parametric tests. It was thought
 

that differences in devices' electrical parameters could be correlated
 

with qualitative differences (for example, changes inoverall shape) in
 
photoresponse images. This approach would be valid in the case of devices
 

that are malfunctional since there are some elements that generate no photo­

response. The complete absence of a portion of a photoresponse image from
 

a malfunctioning device isvery apparent when it is compared to the photo­

response image from a functional device. However, the shapes of the
 
photoresponse images are basically the same for devices that are functional.
 

Some parametric failures can be correlated with changes in the shape of
 

the photoresponse image but most will be associated with changes inmagnitude
 

of the images. Small changes in photoresponse magnitude will not be detected
 

by visual comparisons of photographs of CRT displays on even simple micro­

circuits. The number of elements of a photoresponse image that have to be
 

compared for a complex microcircuit makes the task of visual comparison of
 

images even more difficult, if detection of variations in image brightness
 

is the main criteria.
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Figure 3-6. Photoresponse itnage of a CD4028A 
I test device whose electrical parameters were 

all within specification limits. 
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Figure 3-7. Phtcresporse imae of a CD4028A 
test device. Several of its electrical 
parameters were cutside of specification 
linits. 

I 

Figure 3-6 and 3-7 are photoresponse images from two CD4028 micro­

circuits that were used in the preceding program "Optical Scanning Tests
 
One of the images (Figure 3-6) is from
of Complex CMOS Microcircuits". 


a device that passed all parametric electrical tests and the other
 

(Figure 3-7) is from a device that failed one or more parametric elec­

trical tests. The previous discussion of the difficulty of analyzing
 

images by visual comparison can be better appreciated when an actual U
 
comparison is attempted between these two images. This particular device
 

isonly a MSI microcircuit. The photoresponse image from a LSI micro­

circuit is many times more complex.
 I
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3.4 Quantitative Image Analysis
 

Ithas been found that a defect in a microcircuit ismore likely to
 
cause a change in photoresponse magnitude rather than a change inthe
 

shape of the photoresponse image. Therefore, inorder to detect defects
 
inmicrocircuits, quantitative analysis of image magnitudes rather than
 
qualitative analysis of image shapes isrequired. Qualitative analysis
 

of image magnitudes by visual comparisons of images will not reveal small
 

differences inmagnitudes of the photoresponses. Also, due to the complex­

ity of the photoresponse images from complex microcircuits this method is
 

not very effective or efficient. For example, inthe case of a device
 
containing a hundred transistors, at least one hundred separate points
 

must be examined inthe photoresponse image and their magnitude (or bright­
ness) compared to the magnitude of the corresponding points on another
 
reference photoresponse image. To complete the analysis, the magnitudes
 
of photoresponses from all other active elements also have to be compared.
 

The complexity and quantity of the data to be analyzed has led to
 
the development of the instrumentation and techniques during this program
 

to quantitatively process the data by digital image-processing techniques.
 
Inorder to apply these techniques, each image was recorded on magnetic
 
tape along with other synchronization data. This data was then processed
 

so that each image was represented by an array of pixels (picture elements)
 
with 512 pixels per line and 512 lines per image. The magnitude of each
 
pixel isdigitized and stored as an eight bit binary number. Each image
 

isaligned so that corresponding pixels indifferent images are represented
 
by corresponding elements inthe arrays. At this point, quantitative analysis
 

or comparisons can be performed on the images by using image process techni­
ques to do comparisons of the elements of the arrays. Image enhancement
 

techniques can then be applied to the results inorder to generate an image
 
representing the results of the comparisons.
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4.0 OPTICAL SPOT SCANNER INSTRUMENTATION 

The optical scanner instrumentation used on the previous programs was used 

as a basis for the setup used in this program. Modifications were made to the 

setup which led to improvements in both electrical and mechanical stability.
 

Additional pieces of instrumentation along with required interface circuitry
 

were added to provide signal recording capability. This section describes the 

basic optical scanner setup along with the modifications, improvements and
 

additions developed for this program.
 

4.1 Basic Instrumentation
 

Figure 4-1 is a block diagram of the basic optical spot scanner set up for
 

the State Superposition Technique. The light source for the optical scanner is 

a modulatable He-Ne laser. The red light from this laser has a wavelength of
 

632.8 nm and penetrates approximately 2.5 um into silicon. The laser beam is
 

deflected by galvanometer driven mirrors in a raster pattern while passing 

through the system optics, shown schematically in Figure 4-2.
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Figure 4-i. Block diagram of optical spot scanner 
set up for the State Superposition Technique. 
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The optics consist primarily of conventional long-working distance, flat­

field, metallographic microscope lenses used in combination with two photo­

graphic lenses. A 50 mm f/l .4 lens is used in place of a microscope eyepiece. 

Two galvanometer mirror scanners separated by a 50 mm f/l.0 field-lens comprise 

a two-axis scanner assembly. A beam splitter positioned between the 50 mm f/1.4 

lens and the microscope objective directs the light that is reflected back from 

the test specimen to a photodetector.
 

The raster generator that is used to drive the galvanometer driven mirrors 

is also used to synchronously drive CRT displays. The induced photoresponse 

signal from the DUT (Device Under Test) is sensed by a small resistor (typically 

100 a) in series with either a power supply or ground terminal of the WT. This 

signal is amplified and used to intensity modulate a display CRT to generate a 

photoresponse image of the LUT. The display CRT has a P-7 long-persistence phosphor 

for easy viewing. 

Reflected light from the surface of the liT is directed to a photodetector 

which generates an electrical signal. This signal is amplified and used to 

intensity modulate a second display CRT to generate a reflected light image of 

the DUT. This image, which is essentially the same as that obtained by observing
 

the DUT through a microscope, is used to position the laser raster pattern on the 
liT.
ITEither the photoresponse or the reflected light signal can be used to intensity
 
modulate a high resolution CRT for photographic recording of the images. Its broad­

band P-4 phosphor was chosen so that false-color images could be made on color film
 

by multiple exposures through additive primary-color filters. This method is very 

effective for localizing features in the photoresponse image with respect to 

features of the reflected light image. The reflected light image is photographed 

through a green filter or without a filter; the photoresponse image'is photographed
 

through a red filter. Multiple-exposures through different colored filters are
 

also extremely valuable for comparing the photoresponse images obtained under
 

different conditions. For example, the relative effectiveness of two State Super­

position Programs in imaging all active elements can be evaluated by this method. 

The lock-in amplifier in the setup generates a signal which is used to 

modulate the laser at a particular frequency and then demodulates the induced
 

photoresponse. The use of the lock-in amplifier is necessary for separating the
 

induced photoresponse signal from the switching noise generated by the lUT when 
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the State Superposition Technique is applied. An added advantage of using a 

modulated laser and lock-in amplifier is that the zero reference level of the 

photoresponse signal is independent of the static power supply current of the 

DUT.
 

4.2 	 Modifications to the Instrumentation
 

There were basically four areas where modifications were made in the optical
 

scanner instrumentation: (1)the laser light source, (2)the mount for the
 

laser, (3)the device holder/positioner and (4)the signal processing electronics.
 

These improvements were made to meet the requirements of this program. Addition­

ally, as part of a Hughes funded effort to improve the instrumentation, new CRT 

displays were added to the optical scanner setup. 

4.2.1 	 Optical Scanner Laser
 

The Metrologic ML-669 0.5 mw modulatable HeNe laser that had been previously
 

used 	 in the optical scanner setup was replaced by a LICONIX Model 607V 2.0 mw 

modulatable laser. The Metrologic laser was adequate for the qualitative analyses 

that were performed on previous programs but it was not stable enough for the 

quantitative analyses that were the objective of this program. Itwas found that 

the output power of the Metrologic laser could drift by as much as 10% over a 

period of one hour. The long term (24 hour) stability of the LICONIX laser is 

specified to be at least as good as 0.5%.
 

Another significant advantage of the LICONIX laser over the Metrologic laser
 

is that it can be 100% modulated from full "on" to completely "off". The Metro­

logic laser output could only be modulated by 15%. Thus the signal-to-noise ratio
 

of the modulated photoresponse signal from the OUT is increased by a factor of 

almost seven through the use of the new LICONIX laser. This increase in signal-to­

noise ratio will enable the lock-in amplifier to reject more noise than with the
 

previous laser. This results in an overall gain in signal-to-noise ratio of even 3
 
more 	than seven through the use of the new laser.
 

The LICONIX laser Model 607V is modulated through the use of an acousto 

optic modulation cell internal to the laser cavity. In the constant output mode, 

a precision beam splitter-detector combination samples a small fraction of the 

output beam and compares it to a stable reference voltage. The difference signal 

is amplified and applied via a feedback loop to the acousto optic modulation cell
 

to obtain constant output power. In the modulated mode, a strictly linear relation­

ship between input voltage and laser output power is achieved by matching the
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output power to the applied modulation signal, through the feedback loop. The 
bandwidth of the feedback loop is 300 KlHz. Zero volts input to the modulation 
system fron an external source results in zero output power from the laser and 

1 volt produces peak cw power.
 

4.2.2 Optical Scanner Laser Mount
 

The new LICONIX laser that was acquired to improve the optical scanner
 

instrumentation required the design of a new mount for positioning it in the
 

optical scanner setup since it is cylindrical. Also, the mount used for the
 

previous laser was cumbersome, at best, when aligning the laser in the optical
 

setup of the scanner.
 

The new LICONIX laser and the mount that was designed for it are shown in 

Figure 4-3. Clamps hoid the cylindrical laser stationary in V-blocks which are 

fastened to a oase plate. A tilt table under the base plate is connected to a 

height aduastable table. The post which supports this entire assembly ismounted 

on a linear translation stage which is, in turn, fixed to the optical bench. 

IN 

Figure 4.3. LICONIX laser in its mount. 
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The resulting laser mount allows for precise adjustments to the positioning 


of the laser resulting in a perfectly aligned optical system. Furthermore, the 
various components were designed and selected to provide a stable mount resulting 


in a vibration-free optical setup.
 

4.2.3 Device Holder-Positioner
 

An improved holder and positioner for the DUT was designed and constructed 

for the optical scanner. The assembly was constructed from purchased optical
 
positioning components some of which were modified slightly for this assembly.
 

Two linear translation stages were used in the new assembly to provide X-Y 

positioning of the generated raster pattern on the DUT. A third linear trans­

lation stage provides motion in the Z direction for focussing the laser beam on
 
the DUT. A tilt mechanism provides 0x and 0y adjustments to orient the surface 
of the DUT perpendicular to the optical axis of the system optics. This results 
in the laser beam being focussed throughout its entire raster pattern over the
 
device. A rotation mechanism provides precise Oz motion so that the device can be 
rotated resulting in the photoresponse image being rotated on the CRT displays.
 

The new sample holder-positioner is shown in Figure 4-4. The OUT is shown 

mounted in its test socket. The socket for the DUT, as well as connections for 

cables leading to other remote circuitry which provides electrical biases and 
input signals for the State Superposition Technique, are mounted on a circuit 

board. The circuit board is mounted on stand-offs which are fastened to one of 
the positioning components. The Zero Insertion Pressure (ZIP) socket allows test
 

samples to be easily inserted and removed. Several circuit boards have been
 

assembled to allow parts with different packages and lead configurations to be
 

tested. 
As in the case of the mount that was constructed for the laser, the components 

chosen for the construction of the device holder-positioner provide a stable, vi­

bration free assembly. Also, these are precision components which enables photo­

response images to be aligned for image recording and subsequent processing.
 

4.2.4 Signal Processing Electronics 
The lock-in amplifier used for the optical scanner is a Princeton Applied 

Research HR-8 Lock-in Amplifier with a Type C Preamplifier. The maximum reference 

oscillator frequency (fm) at which it operates is 160 KHz. The manner in which 
the image information is impressed on the modulated photoresponse signal places 

certain restrictions on the choice of fm. If the photoresponse image is to con­
tain the maximum amount of information, the beam dwell time on each pixel 
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Figure 4-4. Test sanple holder - positioner. 
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(picture element) is required to equal at least one modulation period. If the
 

line scan time is ?k and there are n pixels per line, then Im > n/r,. For this
 

program n is approximately 500. If V is 100 mS, then fm > 5 KHz, If 21 is
 

10 mS, then fm> 50 KHz. The maximum frequency generated by the P. A. R. lock-in
 
amplifier exceeds both of these frequencies but would provide betier precision in
 
the second case if it were higher. m
 

The P. A. R. lock-in amplifier was modified to provide a maximum frequency of
 
approximately 300 KHz, as a result of the preceding considerations. However, 3 
experiments with the CD4028 test device revealed that the lock-in amplifier did 
not reject switching noise as well at 300 KHz as it did when operated at 160 KHz. 
Apparently, the switching noise spectrum contains components that are within the 
frequency band of the lock-in amplifier when it is operated at 300 KHz. Further 
experiments revealed that there were frequencies between 160 KHz and 300 KHz at I 
which the lock-in amplifier rejected the switching noise if the frequency of the 

State Superposition Test circuit was carefully controlled. Deviations from the 
 U 
specified frequency apparently introduced components into the switching noise
 

spectrum which were within the frequency band of the lock-in amplifier. As a 
result of these problems, along with a tendency of the lock-in amplifier to be 
somewhat unstable with these modifications (the phase angle at which maximum signal 
was obtained would drift slowly) the modifications were not used and the lock-in
 

amplifier was used at a modulation frequency of 160 KHz. As a result, the line
 

scan time was set to be 100 mS.
 

4.3 Additions to the Optical Scanner Instrumentation I
 
One of the major requirements of this program was to develop the capability
 

of recording photoresponse data from devices and then later retrieving it so that I 
it could be compared with similar data. The initial approach that was suggested 
for recording the photoresponse data was to connect the output from the optical I 
scanner directly to the input of an analog-to-digital converter on a digital com­

puter and then store the digitized data on magnetic discs. For various reasons 3 
that are discussed in Section 5.1, this approach was not used. 

Instead, it was decided to record the photoresponse data on magnetic tape.
 

These tapes would then be later digitized for use by the digital computer that
 

would do the image processing of the photoresponse images. Because of bandwidth
 

and resolution considerations, the photoresponse data was recorded by an FM re­
corder on magnetic tape along with various synchronization and calibration signals.
 
An interface circuit was created to couple the optical scanner's outputs with the I
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FM recorderts inputs and to generate the required synchronization and calibration
 

signals.
 

The recorder used Was a Ampex Model FR1300 FM recorder witth. tape speeds of 
7.5 ips (inches per second) to 60 ips. The photoresponse data was recorded at a
 

tape speed of 60 ips which was necessary to provide enough resolution for the
 

incoming data at a frequency of approximately 5 KHz. (500 pixels per line, at one
 

line per 100 mS.) The data was recorded on Scotch Brand Magnetic Tape. Each tape
 

is 2400 feet long. Each photoresponse image requires approximately 60 seconds,
 

which uses 300 feet of tape. Therefore, 8 images could have been recorded on each
 

tape, but only seven (-or less),were recorded per tape.
 

The interface circuit provided seven channels of data to the FM recorder which
 

has the capability of recording 10 channels of data. The seven channels are listed
 

below:
 

Channel 1: Reflected Light Data (Analog)
 

Channel 2: Photoresponse Data (Analog)
 

Channel 3: "Line" Signal (Digital)
 

Channel 4: "Frame" Signal (Digital),
 

Channel 5: "Run" Signal (Digital)
 

Channel 6: "Clock" Signal (Digital)
 

Channel 7: Calibration (+5 volts)
 

Figure 4-5 is a block diagram of the interface circuit showing connections to
 

the optical scanner and the FM recorder. Basically it gates the signals generated
 

by the optical scanner to the FM recorder; generates several synchronization signals
 

which are recorded by the FM recorder and also control the optical scanner's scan
 

generators; and generates calibration signals which are recorded by the FM recorder.
 

The function of the interface circuitry can be best demonstrated by explaining 
how a single image would be recorded. The operator flips a switch which switches 

the "Run" signal from "low" (zero voltsl to "high" (+5 volts). This signal is re­

corded primarily for the convenience of the person who later digitizes the tape 
from the FM recorder, as an indication that some meaningful data is about to 

follow. The "High" from the "Run" logic starts the clock pulse generator which
 

runs at a fixed frequency (crystal controlled) of 5.013 KHz. The operator waits a
 

fixed period of time and then flips a second switch which switches the "frame"
 

signal from "low" to "high". This starts a clock pulse counter, the horizontal
 

and vertical scan generators in the optical scanner and a line counter. As soon
 

as the clock pulse counter starts, the "line" signal which it generates switches
 

from "low" to "high". Similarly, the line counter generates the "frame" signal
 

which switches from "low" to "high". These two signals indicate that a
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photoresponse image is now being started and the "line" signal turns on the
 

gates that allow the reflected light and photoresponse signals to be transmitted
 

to the recorder.
 

The clock pulse counter counts 512 clock pulses and then the "line" signal
 

switches back to "low" indicating the end of a line in the image. This signal
 

causes the gates that transmit the reflected light and photoresponse signals
 

from the optical scanner to the FM recorder to turn off. Also, the line scan
 

generator resets back to the beginning edge of the frame. The clock pulse
 

counter counts a few more pulses while the line scan galvanometer driven mirrors
 

stop ringing, then resets to zero and starts counting again. The "line" signal
 

goes "high" again and the whole cycle repeats. The line counter counts 512 lines,
 

at which point the "frame" and "run" signals go "low" indicating the end of a
 

photoresponse image on the tape. The signals supplied by the interface to the FM
 

recorder are shown in Figure 4-6.
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5.0 	 IMAGE PROCESSING OF PHOTORESPONSE DATA 

5.1 	 Approach
 

The original proposed approach for doing image processing of the photoresponse
 

data was for on-line, real time data capture and control. The output signals from
 

the optical scanner were to be connected directly into an A/D (analog-to-digital)
 

converter on a digital computer which would process and store the data on disc 

memory. Using this technique, the computer would control the optical scanner, 

collect the photoresponse data, eliminate non-critical data (idle time between images, 

scanner retrace times, etc.1 and store formatted data on a bulk storage disc. 

The 	 approach that was used was to connect the output of the optical scanner to a 

FM recorder through an interface and to record the signals generated by the optical 

scanner-along with synchronization signals generated by the interface. As they 

were needed, the images on the tapes from the FM recorder were then processed and stor 

on another tape in digital format. These tapes were then processed by the image 

processing hardware and software. This new approach accomplished the same goals as 

the original approach but there were many significant advantages to this approach. 

Some of the advantages include: 

(1) 	 less computer time and cost - the FM tapes were produced without the 

expenditure of time or cost of a computer or the use of computer 

personnel
 

(2)eliminates,optical scanner/computer interface - using this approach 

there is no need for an elaborate interface beitween the optical 

scanner and a computer
 

(31 	 less image processing by computer - a large volume of data was 

collected without the need to computer process every image; only 

selected FM tapes were digitized and computer processed 

(4)bulk processing of photoresponse images - once some photoresponse
 

images are selected for analysis, the appropriate tapes are
 

chosen and loaded; there is no need to wait for the production
 

by the optical scanner of photoresponse images.
 

(5)this approach is an economical method that could be used to apply
 

the developed techniques to do semiconductor screening.
 

The last advantage is perhaps the most important.
 

This 	 new approach that was used, evaluates anddemonstrates an economical method that 

could be used to apply the developed techniques without the need of a digital 

computer or image processing software. This approach only requires that the user
 

have 	an FM recorder to record the photoresponse images which then can be processed 
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by a separate computer facility. Use of this approach in this program will evaluate
 

its technical accuracy, and demonstrate that it is a valid method.
 

5.2 	 Image Prote sing Hardware and Software
 

Several existing Hughes Aircraft computing facilities were utilized in order
 

to meet the needs of this program in the most time and cost effective manner.
 

These facilities include:
 

(1)Flight Test Division Laboratory - for analog-to-digital data conversion,
 

(2)Simulation/Computing Center - for data reduction and reformatting 

(3)Synthetic Aperture Radar Laboratory (SAR) - for image viewing, 

processing and printing.
 

In order to show how these facilities were utilized to provide the necessary data
 

processing, the overall task of data processing will be broken down into four
 

phases:
 

PHASE I - Data Collection
 

PHASE II - Data Conversion
 

PHASE III - Data Reduction & Formatting
 

PHASE IV - Data Correlation & Display
 

PHASE I - Data Collection
 

In Phase I, the output of the optical scanner is connected to a FM tape recorder
 

through an interface so that the photoresponse data and reflected light signal can­

be'recorded. Five additional signals are also generated by the interface logic and
 

are also simultaneously recorded. These signals are (1) a run' signal to denote that
 

data 	following was significant and not tape start-up or "dead" time between images, 

(2)a frame signal to indicate the start of a new frame of data lines and pixels,
 

(3) a line signal to indicate when the pixel clock is collecting significant data 

as opposed to retrace, (4)the pixel clock which is used to identify when the data 

was collected, and (5) a calibration signal used to later establish the correlation 

between extent of modulation and actual component bias voltage present during that 

recording period. These additional signals will be used in later phases to reduce 

the 	 amount of data processed and to establish( references for the analog-to-digital 

conversion.
 

PHASE II - Data Conversion
 

After a tape of images is collected, the tape must be converted from its analog
 

state (FM) to a digital form. To perform this conversion, standard hardware and
 

software was available at Hughes Flight Test Division. However, this equipment
 

required additional signals for digitization, and an additional hardware circuit was
 

designed. The added hardware circuit allowed for the generation of a burst of 4
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convert commands whenever the recorded pixel clock switched from "low" to "high!'.
 

This command input, when combined with existing equipment, resulted in the rapid
 

digitization of a four word record Cone word per remaining recorded signal) for each
 

pixel clock. Calibration channel data was utilized to assure that digitized voltage
 

levels would accurately represent the raw data. This feature was. critical since
 

digitized results from different FM tapes would later be subtracted and cross­

correlated. The serfally recorded component data was stored on a 9 track (9T) 800 BPI
 

EBDC magnetic tape for transfer to the next phase of the data processing.
 

PHASE III - Data Reduction & Formatting
 

The simulation and Computing Center (SCC) Sigma 5 system was used to perform
 

the majority of the required special purpose data manipulation. Because the SCC
 

is active in a number of real-time signal processing and conditioning tasks, it
 

has available to it a software library of digital data filter reformatting routines
 

which were used extensively by this project. The Sigma 5 was used to read the 9T
 

raw digital data tape and apply filtering to the data. The run channel was used to
 

denote whether data was valid or riot. Once the data is valid, the software scans
 

for a frame pulse in order to start generating the 512 lines of pixels of data.
 

The Sigma 5 also formats this data so that it is readable by existing SAR Lab
 

routines, Throughout the above processing, digital software routines check to
 

eliminate noise and check for data inconsistencies which could have been introduced
 

during the capture or conversion phases.
 

PHASE IV - Data Correlation & Display
 

In this phase, as in previous phases, an attempt was made to define interfaces 

and data structures which would allow the use of existing software modules in order 

to accomplish the program goals. The equipment utilized in this phase was a Digital 

Equipment Corporation 11/70 system, a Comtal 800 display station, and a Dicomed high 

resolution film recorder. During this phase, the 9T image-format tape from te 

Sigma 5 was read and displayed on the Comtal. The Comtal allows one to store 512 

lines of 512 pixels and then display this on a raster TV monitor. The Comtal also 

allowed for a set of registration symbols to be generated and displayed simultaneously 

with the component image. Using existing routines, each image was aligned to the 

registration marks and then stored in place of its non-aligned version. Also, 

using existing software, images were subtracted and the results enhanced to highlight 

any changed features. The final step in the data processing was to print hard 

copies of each image and subtraction results.
 

Figure 5.1 shows the overall hardware flow and the way in which the various
 

facilities were integrated to provide the necessary processing. Figure 5.2 shows
 

5-3
 



ADVANCED TECHNOLOGY LABORATORY FLIGHT TEST LABORATORY 

4 PULSE BURST 

GENERATOR 

OPTICAL 
SCANNER I INTERFACE 

REFLECTED LIGHT 

PHOTO RESPONSE 

FRAME 

LINE 

PIXEL CLOCK' 

RUN CHANNEL 

CALIBRATION 

-
FM 

RECORDERR DRACONVERSION 

ANALOG TO 
DIGITAL 

I SIMULATION CENTER SAR LAB 

EuCOMPUTER DATACOMPRESSOR TAE AE11/70COMPUTER RETRIEVALFLWMPASUBTRACTION 
REGISTRATION 

DISPLAY 

< 

DiscONTROL 

> 
FcCONSOLE 

COMPUTER TAEHARD::::: 1::: IMAGE 

L ~ COPYH 

Figure 5.1. HARDWARE FLOW DIAGRAM 



READ
CHANNELSCREATE 
OF TAPE 

CREATE 

T-O
REFLECTED 

LIGHT FILE 

CREATE
 
PHOTORESPONSE 

FILE(SU 


READ 

IMAGE 

TAPE 


ALIGNED 
IMAGE 

F IL ES 

"""""" 


IMAGESOP 

IT SS
TFO 2 IMAGEREFLEC E SO 

ICHANNELS I 


R
 
HT 
DATACREATE
 

OREPN
 

TA 

LN CREATE HAD 
KEYED 

IMAGE 

FILES
 

IMAGES 
USING 

CURS ORS 


ENRACESiAG
 
(SUBTRACT, PRCSE
 

IMAGES
 

VALIDITY

CHECK OF 


IMAGE DATA 


IMAGE
 
FORMAT
 
TAPE
 

DATA 


AND 


DISPLAY 
CU RSOR[S
 

T OPO
 
IAEFRA
 

RETRIEVE
 
IMAGES
 

DISPLAY 
IMAGES
 

Figure 5.2. SOFTWARE FLOW DIAG RAM 

5-5
 



a detailed diagram of the various software modules used during the phases of this
 

program. Throughout the data processing phases, there were two goals whick were
 

maintained:
 

(1)use a modular structure, thus maximizing the use of existing routines, and
 

(2)design each phase so that it could be quickly debugged and verified
 

through the use of- a software simulation of the interface data to
 

check the input and outputs of each phase.
 

5.3 Tests of Data Processing Approach
 

During the modification and development of the various software routines
 

needed to do the image processing of the photoresponse data, additional software
 

was created which was used to test the image processing software. The additional
 

software provided a simulation of the appropriate data to check the inputs and
 

outputs of each of the phases of the data processing. In this manner, much of the
 

image processing software and hardware could be debugged and verified prior to any
 

attempts at actual photoresponse image processing.
 

The real test of the entire image processing task was the actual display and
 

comparison of some photoresponse images which had been produced by the optical 

scanner and recorded by the FM recorder. The initial test of the entire procedure, 

including all four phases of image processing was performed using photoresponse 

images from a simple test device. The device that was chosen was -a-2N2222A tran­

sistor, since its photoresponse image is not complex. Three images were recorded
 

from a single device: the first image was recorded, the second image was recorded
 

after the device had been shifted by a significant amount and then the third image
 

was recorded following attempts to manually re-position the device in its initial
 

position.
 

The three recorded images were then digitized, processed, subtracted and dis­

played. Figures 5.3 through 5.5 show the first, second and third images, respec­

tively. The only difference between the images is the position of the test device.
 

These results show that the overall approach can at least reconstruct the photo­

response images from the optical scanner. Figure 5.6 shows the result of subtracting
 

the first recorded image (Figure 5.3) from the second (Figure 5.4). Figure 5.7 shows
 

the subtraction reversed; that is, the second image subtracted from the first.
 

These results show that the subtraction routines function correctly. As expected,
 

there are differences between the two images because the device was intentionally
 

shifted. (Normally, attempts would be made to align the photoresponse images prior
 

to the image subtraction, but this case was just an initial test of the procedure.) 

Two subtractions are necessary since negative results of subtractions appear the 
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same as a subtraction where the result is zero. For example, if two aligned images 
of equal intensity are subtracted, the result would be a black image (zero differencel. 
If two aligned images are subtracted and one image is more intense (brighter) than 
the other image, the result would again be a black image if the brighter image was 
subtracted from the other image (negative result). When the less intense image was 
subtracted from the brigher image, an image would result revealing that there was 

a difference between the images. 
Figures 5.8 and 5.9 show the results of the subtractions of the first image 

(Figure 5.31 from the third (Figure 5.5) and vice versa. These results show that
 
there is very little difference in the position of these images. This shows that 
devices can be positoned manually using the sample holder-positioner so that they 

are closely aligned. 

The second test of the overall image processing procedure was performed using 
images recorded from two of the actual C04028A test devices. Figure 5A0 shows the 

photoresponse from S/N 18 and Figure 5-11 shows the photoresponse from S/N 19.
 
These results show that the software can reconstruct complex data that was produced 
by the optical scanner. 

In order to align images from such complex devices, the images were first 
manually aligned using the precision sample holder-positioner. Particular care 
was used at this point to eliminate any rotation (9z) differences. When the 
images are then displayed at the image processing facility they are then more 

carefully aligned in the X-Y directions using cursors generated by the software. 

Each image is displayed simultaneously with the cursors and then stored In place of 

its non-aligned version. Figure 5r12 shows the cursors generated by the software.
 

Figured 5-13 through 5-15 show a photoresponse image with the cursors superimposed
 

on it, after the appropriate features on the photoresponse image have been aligned 
to the cursors. Of course, different shape cursors are created for each device 

type to align to a prominent feature on its photoresponse image. 
Figures 5-16 and 5-17 show the results of the subtractions between Figures 5-10
 

and 5-11 after they had been aligned. Itcan be seen that the subtractions were
 

fairly successful leaving only slight residues, some of which were real differences
 

and some of which are results of minor misalignment which still remained. This
 
shows that the subtraction routines work for complex photoresponse images. 
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Figure 5.16. Image resulting 
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6.0 TESTS ON THE CD4028A TEST DEVICE
 

6.1 CIRCUIT DESCRIPTION
 

The CD4028A is a fully static BCD-to-decimal decoder. A positive­
true logic input BCD number (0-9) applied to the inputs DCBA causes the
 
corresponding decimal output to go high while the other outputs remain low.
 
The logic diagram of this microcircuit is shown in Figure 6-1. The circuit
 
diagram is shown in Figure 6-2 with the individual MOSFET's labelled by
 
numbers 1 to 120. Although not shown explicitly, the p-well is connected
 
to the V- terminal, and the n-substrate is connected to the V+ terminal.
 
The p-well/substrate junction is also omitted from the diagram.
 

Figure 6-3 is a micrograph of the CD4028A chip with the MOSFET's
 
labelled on the gate electrodes.
 

I0
 

I
 

Figure 6-. Logic diagram of the CD4028A microcircuit.
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Figure 6-3. Micrograph of the CD4OZSA microcircuit chip. (1. 70 mm x 1. 50 mm) 



I 

6.2 STATE SUPERPOSITION TEST DEVELOPMENT
 

In the previous NASA funded optical scanner program, a state super­

position program was developed for the CD4028A along with a test circuit I
 
to generate the appropriate logic sequences. The state superposition pro­

gram consisted of the BCD input numbers 0 through 9. This sequence of four 

bit input words caused all circuit elements on a CD4028 chip to appear in 

the resulting photoresponse image. A conventionally clocked decade counter 

was used to generate the sequence of BCD input numbers. Since the duration I 
of each input number was approximately the same, each output inverter driver
 

was imaged with approximately the same intensity. 3
 
Also, experiments performed during the previous program revealed that
 

a CD4029A binary/decade presettable up/down counter could not drive the 3
 
CD4028A directly. A pulse generator was used to clock the CD4029A in the
 

decade upcount mode. The test circuit that was used to drive the CD4028A
 

test devices for the previous program is shown in Figure 6-4.
 

was decided that it would be desirable to image
For this program, it 


all the devices connected directly to the inputs with approximately the same
 5
intensities. This was decided since some of the electrical tests that were 


devised monitor the characteristics of these transistors. With the previous
 

state superposition program, some of the transistors connected directly to
 

the inputs are imaged with far more intensity than the others simply because
 

they are biased in the correct mode more often. In order to achieve more
 I 
similar densities from these transistors, it was decided to repeat some of
 

the BCD inputs, specifically the numbers 8 and 9. The circuit used to imple­

ment this sequence is shown in Figure 6-5. The input transistors' duty cycles
 

obtained using the circuit developed for this program are shown with those
 

previously obtained in Table 6-1. It can be seen that the duty cycles are not
 

equal but at least the range of duty cycles has been decreased. (For this cir­

cuit, it is not possible to obtain equivalent duty cycles for the input
 

transistors.) As a result, the p-channel FETs in the output inverter drivers no
 

longer have exactly the same duty cycles. Instead of each p-channel FET having
 

a duty cycle of 10%, eight have a duty cycle of 8.33% and 2 have a duty cycle
 
1
of 16.66%. 
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TABLE 6-1. Comparison of duty cycles for
 
two state superposition programs
 

TRANSISTOR 


1 


2 


3 


4 


5 


6 


7 


8 


9 


10 


11 


12 


DUTY CYCLE 1 (M) 


50 


50 


40 


20 


40 


40 


40 


20 


40 


40 


20 


80 


DUTY CYCLE 2 (%) 

50
 

50
 

33.3
 

33.3
 

33.3
 

33.3
 

33.3
 

33.3
 

33.3
 

33.3
 

33.3
 

66.7
 

Duty cycle 1 is the one achieved using the circuit from the previous
 

program.
 

Duty cycle 2 is the one achieved using the circuit developed for this
 

program.
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----------------------

6.3 Electrical Test Description and Results
 

6.3.1 Electrical Test Description
 

Electrical parameters were measured on each of the 25 CD4028A test devices
 

prior to any life tests and also after each life test interval. The devices were 

also tested at these times to determine if they passed a logic funtion test (at 

VDD = 3.0 volts and VDD = 15.0 volts) and a noise immunity test (at VDD = 5.0 volts, 

10.0 volts and 15.0 volts). All of these tests were performed on the Tektronix
 

S-3260 Automatic Test System.
 

The parameters that were measured on these devices include the following:
 

TPDHL: propagation delay when switching from "high" to "low" 

TpDLH: propagation delay when switching from "low" to "high" 

I L : quiescent device current for each of the ten possible 

input conditions 

IIL : input leakage current with input "low"
 

IIH : input leakage current with input "high" 

VTH N : N-channel FET threshold voltage
 

VTH P : P-channel FET threshold voltages
 

I0 : output drive currents of bo9thNand-P-channel--output-

FET's
 

6.3.2 Electrical Test Results
 

Tables 6-2a, b and c are computer printouts of the typical results of one of
 

the electrical tests on CD4028A device S/N 1.
 

As a result of program requirements and the results of the electrical tests
 

following each life-test interval, electrical parameters were measured on the test
 

devices four times during test Runs 1 through 4. The various runs were performed
 

at intervals as described below:
 

Run 1: Initial electrical parameters prior to any life testing
 

Run 2: Electrical parameters following 24 hours of life test
 

Run 3: Electrical parameters following an additional 100 hours
 

of life test (total of 124 hours of life test)
 

Run 4: Electrical parameters following an additional 376 hours
 

of life test (total of 500 hours of life test)
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ThBL 6-2a. pamputer Printout of results of Electrical Parameter Tests 

of CD4028A Test Device S/N 1. 
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TA rq, P2h3.51,:S ahfl.'NS MAY 78.P0N8 .80.NSMAY 
113 n/ ?1, PNS480 ,IANS MAY 7;3. 9S I8S.9NS MAY 
IC 
10 

01 
i52C13.$NS 

8IIB.rANS 
4/8J0.tNS 

MAY 
MAY 

6/1. 9mKIS 
7,.q0NS 

180.tNS MAY 
189'oNS PAY 

IA n6b 194.NS 460.ONS MAX 62.9oNS 18.INS PAY 
IB r,( 233.SNS 480.IANS MAY 6Q.9VM5 180.0NS MAY 
Ic r16 191.4$p* 'AV.INISMAY 60.-ONS i8R.0NS MAY 
II) 1.)e23.W's 4131.ANS 'PAY 7.50kIS 18V.eNS MAY 
TA l w71tjlNlb U8r.14NS MAY S.NS I7. MAY 
TB n7 IINMS4IA.ONS HAY 75.&IVNS 18e.qNS MAY 

tC f7"1 A.wS Itdb0NSNAY 6I°.rVtS i8?,,NS MAY 
11) 07 jqq.5hJs 181'*ONSi M4AYVf A.t10 S l8eCNS MAY 
1A n8 p 13 NS J8M.fNS MAY 1Q.OqP:,S189.tNS PAY 
Its rl. ?IG,.I'hS fttf40. hS MAY 77 .'I('S 18..9NS PAY 

Ic n8 Pt .0NS /I$.AANS MAY 7P.50' 18i0NS PAY 
To r'd 2 ns my'S 48rA.nNS "AY 5tR'0OMS 18MPNS PAY 
IA '19 pt;pflri5 tIAO.M'q FlAy Ir.vJiW0.'7NS MAY 
IvL 9 15f,. S 'JBm.NI MAY 95.90W6 180.9N$ MAY 

IA 01m IJ.INs 4f8.lt'0 "AV 6.Y.9$NS 18V.PNS MAY 
To 10u 1.9S N17'.MrNS MAY 4A.STS IeP.Ns MAY 
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TMML 6-2b. Canpouter Printout Of Results Of Electrical Paramter Tests Of' 
CD4028A Test Device S/N 1,. 

pROPA;A rl I' "jLAYTF8T TP(JLH 

[0.ov LIMITINPUT Of TPUT 5s. r4V IIMIT 
1;56 '9;s too].V'NA MAY
TA 01 afe';Sms 480.O NS MAY 

Tri ---- m ? 7 0 *-k3hl.9 48IBM NS MAY I 19'.SN ")1 ,,ON9 MAY 

Ir nt p5y,,5NS 480.qNS MAY It6rOHq 180).0,NS MAY
 

it) F)l k82p,5NS 980.ONS MAY IP7.ONS J80.,'NS MAY
 

1A 0?2 202rONS 4$V;J,,0Sq MAX eq.F@Ns 180.?N$ MAY
 

1B "-02 2S1?5N5 48M.ONS MAY IrAF 1SB t8BMNS VAX
 
Ifle.eNS MAX
1C 02 26frmNls 480.JN8 ,4AW ItTpSMS 

TO 02 R95,,5 S 480,00S MAY 130 'ONS I8V.qNS MAY 

T'A n3 213pONS 480,,MNS fiAY 124.ONS tgo.P-NS MAi 

IB n3 19A.5NS 480ONS MAY 7n. (AMNS 180,O NS MAY 

1C C3 2rG 55N 4 8rM.t41S MAY N teo,.V.N$ MAX 

:ID r13 265,.5NS 48M.MNS MAAY liO(NS 180.NS M AY
 

1A Oil 20CI.NS 4Bn.nNS MAY 85,OO NS 180.ONS MAW
 

IS 114 ?08.9Nb 480,.ONS MAY go .91NIS i8g .ONS MAY
 
ISO!.NS MAY
1C O4266rONS 480.,IN$ MAY 11; tON8 


TIC) Ot 27z4.5N'8 480.MNS MAY 117pSiS' 18V,,NS MAY
 

TA n!) 284eSNo 46M.n NS MAY 124P.5NS 1.80,ONS MAY
 

Is 095 27bFSNS 480.ONS MIAY 118.5N8 jap.eNS MAY 

1C OJ5 Iga,,5ri 480,ONS 14AY 70IQOs ISBr,N8 MAX 
t. V,,NS MAY
To 05 282rotN$ 1180,MNS M4AY i a.qNs 


TA 06 19gsls 480,INS MAY 87.90N5 18ao.oNs MAY
 

To nF. PA7.5MS 480.,ONS MAY IP6,.ows J80.7NS MAX
 

TC t1 I q 0 HS 480,0148 MAY 70 . 70is 18P.ONS MAY 

it) r)6 287.95"S /480,ONS MAY IP7?ON8 I89.0NS MAY
 

JA 07 2q5S;SN8 /U60.MNS tMOVY 130r.5NS 18qeNg MAY
 

-{IC-r .. --. #§ 9N8-.. . 80,MNS MAY 77.p[ONS 180.ON8 PAY 

TO r) 4 r Vj N 14AM [AA 180.ONS MAY2pek S ANS 5.ONS 


JA 08 pop2pmNs 48nMNS MAY g?.90tNS 180.QNS MAX 
1B 08 alarO)NS 48SOtONS MAY 8q.MOt,S 180,VNS MAY( 

1C 08 ;['870NS 4891,0N8 MAY 7A.MONS 180. N8 MAYt 
IO 08 223.5NS 48BM.INS MAY 107;5NS 180.0 N8 VAX 

JA, 09 2&!L?[(NS 480,ONS MAY IPra.5N$ 180.ONS MAW 

ID 09 151 ,. t; It 80,VN S MAY 6q .00M/S 18@.9N$ MAY 

?A 010 16 '.ON,' 4..IM,NS MAY 80.01OS 180.PNS MAY 

11) niv. J43.5NS 48MA.MNS MAY 66.OON8 )OV.fN8 MA-W 

fLiITESCFNT r, EvjrF CI~kR tT TL 

CON0 ITI N,I ,-F A .1 :P Fm L'T LIMIT 

U C" b A
 
'0 p k0 C '.8'91J; 10.OUA MAY
 

09 V 1 7 .920IA 1(!.,,mtA FlAY 

} 0 1, 0 71.641r9l]A IMIU A MAY
 

0 1 01 V 7. c t511A 10.MUA MAX
 

0 1 j I 7,.k P fl l 10MrUA MAY
 

0 1 1 p 7 .r'9151A lr,.rtJA MAY
 

0 1 1 1 7 . 7-0UA 1P.MLIA V'AX
 

1 0 V: V, 7 ,.7951JA I P. 9 1) A v
 
P I0 0 1 "1? I{'.PUA MAYZ 
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TABLE 6-2c. Carputer Printout of results of Electrical Paramter Tests of 

CD4028A Test Device SIN 1. 

]I.f- 'T CIFP 5!-1r TFST 

I .T "YT 	 ILT;-MrTTIPIL 
Y 7?'/ ;0'A IVQ.NA MAXTI ?.lA-,I.A 	 '1.010 A 

-.I *390Nl"A t Q.NA MAX
IL -4i* I t / -1 rn., A HAY 

- ;?StR 0 'A I.IO.KA MiAX
lb 3-rI I 	 l. O. ANA 1C 

A MAY
t. . <', I - in ,r I A MAAJ.A 

L.IPi r-n F' HiH FIT 

tr. .ANNFI : 

flUTF I 1 VrPr.-tV I T,h T 	 vnri:j fA'V IN 1 
VTN 	 1P.'*CV3 A MINU1 I,.-711A E4WA.'IA 

02 I.flIh tI iIN SJ.IIHA 1 ? 7Q VA MTNb V"CU 
l . PL, 	 11' f-TN 'AI MA IrflMA MTN6 ,tlA 

('4 1.V5VA fM.'iItA IN ?.PHA 1r2IW'A MIN 

L9 .1 . 61-".011A VIk I .79MA I 29feI A MIN 

1 *f.Y.N U'VI'1A VIN %IbMA 1r29'NA MIN 

C7 1. 33 ia 6rAI7I'UA lN P. ?7 A flrG. MA'AMIN 
08 1.P3t t 6f10.1411A lN I. t I ImA IF;2RV A MTN 

0q 1 ,71 ,4A 6, '10111 , Ttv 1.47M4 I,2PVMA MIN 

I~.7 A 614,1 * s P~.'2HA 1. 	 2PO3A MTN 

T.rir- , ft tI 

PuTP( 1 iA WiTI V I lv Au MTN 

U - . rT. -Y/,I'IIA "I. -;I..-I 4 A -q0 .eL A MIN 
"]? -. i-"*. -37W r"ilA TN .).,Pi k -,9fi,eUA lMIN 

t ,It - .. UA I'N .. 1 qSMA WA01.01A MIN 

1i4 MTr HA :qf7C3? EU.z>'AIrIN-PM -9PL~eL 

05 ­-1 *f7 A -. f'JA iv T i -P..qMA -900I.UA MINI 

H .9OI?9.0LA 
0? -2;3 , Vr -1?(,. I1A PIN -I.77MA .901rU MTN 
UL A , .I'A -,?C ,i'A vIN .l 	 MA MIN 

08 ,,,kf-/JI A -'/7kAIUA 'It, uut.&AMIA .9m0@,0! A MAIN 
'A .qtl ,.t. -.370 .LiJA P N -1.YtIMA -9rA0 1UA MTN 
0I(9 -. 1(.1-A -37l.r, ItA PIN .1.74mA .q0,.OLA MTN 

14Pt-SHnLr VOLT,,( F 	 ORIGINAL PAGE 1 

OF POOR QUALITY 

t - ChANNEL 
1~~ ] V 1, V IT4S : 	 Il.0(1 -R.P11 	 -71W H"V T 1 - 3.0p V 

VTIHN1 * -2.1 V MT it M 	 f 

TO0..V hI.N )( -PP.21 V I UT.5: - I ' -3 V 

VTHN ( 3:c-r : ) -?.P' V LImTTS: 7ti0 V Tfl 3i V 

VTHHf /I.-	 v "Ipi,I.v : -2 , Tv VI3.MV 

P-CHANNEL,
V iP-C N Ip g R 14 IMtITS: 1' ef V T(1 70 V' 

VTIAP 2 .s o 2.?7 V I liITS: 3'.O V TO 7MOj.*V 

VTPP C 3.WV )r 2., V LIMITS. 3'. V TQ 7,.'V 

V1HpC 1.009 ) P '.46 V I IMITS: 3'01' V TO 7@O',Mv 
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Summaries of the electrical test results for the following parameters are 

presented in the table shown: 

Table 6.3: Maximum and minimum values of all TPDHL and TPDLH 

times for each device at each run 

Table 6.4: Average of the ten IL values for each device at each run 

Table 6.5: Average of the four VTHN values for each device at each run 

Table 6.6: Average of the four VTHP values for each device at each run
 

Table 6.7: Average of the ten 10 values for the N-channel FET's and the
 

P-channel FET's at each run
 

The parameters IIH and IIL were not tabulated since the numbers were not very
 

accurate due to the sensitivity of the test. These values were typically on the
 

order of a few nanoamperes or less. All the devices IIH and IIL parameters were
 

well within specified limits except for device S/N 2. At Runs 3 and 4, 1IL for
 

this device was 100 microamperes which is far above the specified maximum of 100 nA.
 

All devices passed all function tests and noise immunity tests except device
 

S/N 21 which failed all these tests at Runs 3 and 4.
 

The electrical tests can be summarized by stating that most parameters were
 

fairly constant throughout the testing, except for the parameters of devices S/N 2
 

and S/N 21. The average power supply current TLI dropped for most devices from
 

Run 1 to Run 2 but then stayed fairly constant throughout the rest of the tests.
 

Thishas beenattribu±edto-_he-dev-ibceshavirg-bi-opened to ambient atmospherE
 

for a long period prior to Run 1 and becoming somewhat leaky. Following Run 1
 

the devices were subjected to a 24 hour life test at 125°C which reduced the
 

leakage currents back to the original levels.
 

CD4028A test devices S/N 2 and S/N 21 both failed several parametric tests at
 

Runs 3 and 4. Examination of these devices revealed that the causes of these
 

failures were not related to the life-testing to which they had been subjected.
 

Rather, both had suffered mechanical damage to their internal bonds during handling.
 

Device S/N 2 had one of its internal input leads squashed against the edge of the
 

chip, causing a resistive short between this input and VDD. Device S/N 21 had one
 

of its internal output leads broken. Scanning electron micrographs of the two
 

failed devices are shown in Figures 6.6 through 6.9
 

6.4 Life Tests
 

The CD4028A test devices were submitted to three life-test intervals. The 

initial life test interval was 24 hours long. Following this life test, the 

electrical parameters of the devices were measured and reviewed. Since there had 
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TABLE 6.3 CD4028: PROPAGATION DELAY TIMES
 

RUN I RUN 2 RUN 3 RUN 4-

DEVICE S/N MAX MIN MAX MIN MAX MIN MAX MIN 

1 296 143 295 140 304 148 301 148 

2 269 129 268 126 274 133 273 135 

3 250 123 250 120 257 127 252 128 

4 238 116 239 114 247 121 245 121 

227 113 226 ill 235 118 232 117 

6 267 130 267 126 275 133 272 134 

7 307 142 305 139 311 146 307 146 

8 279 139 277 136 287 144 284 143 

9 259 131 259 129 267 137 263 137 

277 137 275 130 282 139 277 138 

11 282 137 281 133 292 142 287 141 

12 272 128 271 125 277 133 271 132 

13 284 133 283 130 289 138 283 137 

14 266 128 264 124 274 132 270 131 

281 135 279 133 285 140 280 140 

16 257 124 255 121 260 129 255 128 

17 250 119 247 117 256 125 252 123 

18 188 93 186 90 (A) (A) 192 98 

19 174 90 173 87 181 94 178 93 

154 78 152 75 158 83 155 81 

21 232 116 230 113 (B) (B) (B) (B) 

22 260 128 259 124 268 132 263 131 

23 266 130 265 128 273 137 268 135 

24 278 132 276 129 282 137 277 135 

253 128 251 124 258 132 252 132 

Average 255 124 253 121 265 130 258 129 
StandardDvation 
Deviation 

36 16 36 16 34 15 36 16 

ALL VALUES ARE NANOSECONDS 

(A)PARAMETERS WERE NOT MEASURED ON DEVICE S/N 18 AT RUN 3 

(B)DEVICE S/N 21 FAILED AFTER RUN 2 
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TABLE 6.4 CD4028: AVERAGE POWER SUPPLY CURRENT (T
 

DVICE S/N RUN 1 

1 7.80 

2 7.17 

3 7.06 

4 8.14 

5 8.74 

6 8.88 

7 7.36 

8 7.10 

9 7.06 

10 7.22 

11 7.99 

12 8.57 

13 8.84 

14 7.70 

15 7.19 

16 7.08 

17 7.05 

18 7.60 

19 8.28 

20 8.53 

21 8.75 

22 7.57 

23 7.16 

24 7.07 

25 7.05 

Average 7.72 


Standard 0.66 

Deviation
 

ALL VALUES ARE MICROAMPERES
 

RUN 2 


7.00 


6.99 


6.98 


7.01 


7.00 


7.00 


6.98 


6.99 


7.00 


6.99 


6.99 


7.00 


6.98 


6.99 


6.98 


6.98 


7.00 


-7-.0--
7.00 


7.01 


6.99 


6.99 


7.00 


6.99 


7.00 


6.99 


0.009 


RUN 3 RUN 4 

6.96 

8.09 

6.96 

6.97 

6.96 

6.95 

10.47 

7.07 

6.95 

6.96 

6.97 

6.97 

6.97 

6.97 

6.97 

6.96 

6.95 

6.96 

6.96 

6.96 

6.97 

6.97 

6.97 

6.97 

6.97 

6.96 

6.95 

6.95 

6.95 

6.95 

6.97 

6.96 

-(-A 
6.97 

6.97 

6.96 

6.96 

-6T96­

6.96 

6.95 

(B) 

6.97 

6.96 

6.96 

6.96 

(B) 

6.95 

6.96 

6.96 

6.95 

6.97(C) 6 .96(C) 

0.004 0.02 

(A) PARAMETERS WERE NOT MEASURED ON DEVICE S/N 18 AT RUN 3
 

(B)DEVICE S/N 21 FAILED AFTER RUN 2
 

(C)DEVICE S/N 2 VALUES NOT INCLUDED IN THESE CALCULATIONS
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TABLE 6.5 CD4028: AVERAGE N-CHANNEL FET THRESHOLD VOLTAGES (VTHN
 

DEVICE S/N RUN 1 

1 -2.32 

2 -2.28 

3 -2.23 

4 -2.18 

-2.17 

6 -2.27 

7 -2.26 


8 -2.24 

9 -2.20 


-2.20 

11 -2.26 

12 -2.24 

13 -2.28 


14 -2.24 


-2.25 

16 -2.26 

17 -2.07 


18 -2.11 

19 -1.83 

-1.45 


21 -2.18 

22 -2.25 


23 -2.21 


24 -2.26 


-2.26 

Average -2.18 


Standard
 
Deviation 0.18 

ALL VALUES ARE VOLTS
 

RUN 2 


-2.22 


-2.26 


-2.21 


-2.17 

-2.18 

-2.25 

-2.24 


-2.24 

-2.21 


-2.20 

-2.24 


-2.23 

-2.27 


-2.24 


-2.24 

-2.25 

-2.07 


-2.11 

-1.82 

-1.44 


-2.18 

-2.24 


-2.23 


-2.25 


-2.25 

-2.17 


0.17 

RUN 3 RUN 4 

-2.23 

-2.26 

-2.23 

-2.18 

-2.18 

-2.25­

-2.29 

-2.24 

-2.20 

-2.19 

-2.26 

-2.25 

-2.24 

-2.23 

-2.21 

-2.29 

-2.28 

-2.26 

-2.26 

-2.23 

-2.25 

-2.24 

-2.27 

-2.25 

-2.25 

-2.28 

-2.26 

-2.30 

-2.26 

-2.27 

-2.26 

-2.08 

(A) 

-1.83 

-1.46 

-2.27 

.­2.09 

-2.12 

-1.84 

-1.47 

-2.19 

-2.25 

-2.25 

-2.25 

-2.25 

-2.18 

-2.20 

-2.27 

-2.27 

-2.27 

-2.27 

-2.20 

0.18 0.18 

(A)PARAMETERS WERE NOT MEASURED ON DEVICE S/N 18 AT RUN 3
 

6-15 



TABLE 6.6 CD4028: AVERAGE P-CHANNEL FET THRESHOLD VOLTAGES (VTH
 

DEVICE S/N RUN 1 

1 2.37 

2 2.31 

3 2.28 

4 2.27 

5 2.30 

6 2.30 
7 2.40 

8 2.29 

9 2.36 

10 2.40 

11 	 2.37 


12 	 2.35 

13 	 2.34 

14 	 2.28 

15 	 2.39 


16 	 2.30 


17 	 -2_-43--

18 	 1.89 

19 	 1.92 

20 	 1.84 

21 	 2.28 
22 	 2.31 


23 	 2.37 


24 	 2.37 


25 	 2.27 


Average 	 2.28 


Standard 0.15 

Deviation
 

ALL VALUES ARE VOLTS
 

RUN 2 


2.38 


2.31 


2.27 

2.27 

2.30 


2.30 
2.40 


2.29 


2.36 


2.40 


2.37 


2.35 

2.34 

2.28 

2.39 


2.30 


2.43 

1.89 


1.92 
1.84 

2.28 
2.30 


2.37 


2.37 


2.27 


2.28 


0.15 


VTp 

RUN 3 RUN 4 

2.37 

2.09 

2.28 

2.27 

2.30 

2.37 

1.87 

2.27 

2.27 

2.30 

2.30 
2.40 

2.29 

2.36 

2.40 

2.30 
2.40 

2.29 

2.36 

2.40 

2.38 

2.35 

2.34 

2.28 

2.39 

2.37 

2.35 

2.34 

2.28 

2.39 

_2-30-

2.44 

(A) 

1.92 
1.84 

-2_30-­

2.43 

1.89 

1.92 
1.84 

2.28 
2.30 

2.37 

2.37 

2.27 

2.29 
2.30 

2.37 

2.37 

2.27 

2 .30(B) 2 .28(B) 

0 .14(B) 0.I6( B ) 

(A)PARAMETERS WERE NOT MEASURED ON DEVICE S/N 18 AT RUN 3
 

(B-) 	 DEVICE 2 NOT- INCLUDED IN CALCULATION OF THESE VALUES
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TABLE 6.7 CD4028: AVERAGE OUTPUT DRIVE CURRENT 

RUN I RUN 2 RUN 3 RUN 4 

DEVICE S/N N P N P N P N P 

1 1.42 0.94 1.41 0.94 1.41 0.92 1,43 0.94 

2 1.42 0.96 1.42 0.95 1.43 0.93 1.43 0.94 

3 1.47 1.00 1.46 0.99 1.47 0.97 1.48 0.99 

4 1.54 1.08 1,52 1.06 1.54 1.04 1.55 1.06 

5 1.61 1.12 1.59 1.11 1.60 1.08 1.62 1.10 

6 1.39 0.98 1.39 0.98 1.40 0.96 1.41 0.97 

7 1.39 0.87 1.39 0.86 1.40 0.85 1.41 0.86 

8 1.40 1.00 1.39 1.00 1.40 0.97 1.42 0.99 

9 1.43 0.93 1.41 0.93 1,42 0.91 1.42 0.93 

10 1.49 0.89 1.48 0.88 1.48 0.87 1.50 0.88 

11 1.38 0.90 1.37 0.90 1.38 0.88 1.40 0.90 
12 1,47 0,93 1 .46 0,93 1.46 0.91 1 ,48 0.93 

13 1.42 0.89 1,42 0.89 1.43 0.87 1.44 0.88 

14 1.43 1.03 1,42 1.03 1.43 1.01 1.45 1.03 

15 1.41 0,87 1,40 0,86 1.41 0.85 1.43 0.86 

16 1.44 1,01 1.42 1,00 1.44 0.99 1.46 1.01 
17 1.68 0.98 1.66 0,97 1.67 0.96 1.69 0.97 

18 1.69 1.27 1.68 1.26 (A) (A) 1.71 1.26 

19 1.70 1.36 1.69 1,35 1.71 1.32 1.73 1.35 

20 1.89 1.35 1.87 1.35 1.88 1,32 1.90 1.35 

21 1.58 1.06 1.58 1.06 (B) (B) (B) (B) 

22 1.45 0.96 1.44 0.95 1.45 0.93 1,47 0.95 

23 1.44 0,91 1.42 0.91 1.43 0.89 1.44 0.91 

24 1.42 0,91 1.41 0.91 1.42 0.89 1.44 0,91 

25 1,43 0,98 1.42 0.98 1.43 0.96 1,44 0.97 

Average 1.50 1.01 1.49 1.00 1.48 0.97 1.51 1.00 

Standard 
Deviation 

0.13 0.13 0.12 0.13 0.12 0.12 0.13 0.14 

ALL VALUES ARE MILLIAMPERES
 
(A)PARAMETERS WERE NOT MEASURED ON DEVICE S/N 18 AT RUN 3
 

(B)DEVICE S/N 21 FAILED AFTER RUN 2
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%I 
Figure 6.6. Scanning electron micrograph shcwing the overall 
chip and internal bonds of CD4028A test device SIN 2. The bond 
indicated by the arrow is shown in Figure 6.7. 

NI
 

I ME 

Figure 6.7. Scaming electron micrograph of oe of the bonds 
in iD4028A test device SIN 2. It can be seen that it has been 
mech ically med and it is in otact with the edge of the 

chip. 
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I 

Figure 6.8. Scanning electron micrograph of the die cavity of 
CD4028A test device SIN 21. The bond indicated by the arrow 
is shown in Figure 6,9. 

U-1 

Figure 6.9. Scanning elctron micrrah of a b~nd in CD4028A 
test device SIN 21. Mechanical damage has resulted in the bond 
having been broken. 

ORIGINAL PAGE 18 
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been no significant changes in the electrical parameters, the next life test 

period was chosen to be 100 hours in duration. Review of the electrical para­

meters measured following this life test interval again revealed no significant 

changes. The third life test was chosen to be 376 hours long, which when added 

to the two previous intervals, totaled 500 hours of life test on each part. This 

was the maximum amount of life testing required for this program and also the
 

maximum amount of time available within the limits of the program schedule. Un­

fortunately, there was still no significant change in the electrical parameters
 

of the devices. (Devices S/N 2 and S/N 21 both failed several electrical para­

meters at Runs 3 and 4 but these failures were not related to the effects of the 

life-tests.) 

The test devices were life-tested using the circuit shown in Figure 6-10. 

The parts were heated to 1250C during the life tests in ovens that were purged 

with dry nitrogen gas. Since the devices had been unlidded for optical access 

to the chip, the dry nitrogen gas was used to prevent the devices from being 

subjected to gases or water vapor which might contaminate the semiconductor chip. 

6.5 Photoresponse Image Recording 

Photoresponse images of all twenty-five CD4028A test devices were recorded on
 

magnetic tape. These images were recorded prior to any life tests (Run 1), following 

24 hours of life tests (Run 2), following an additional 100 hours of life tests
 

(Run 3))and following an additional 376 hours of life test (Run 4). At each
 

interval images from devices S/N 1 through S/N 7 were recorded serially on one
 

magnetic tape, images from devices S/N 8 through S/N 14 were recorded on another
 

tape, images from devices S/N 15 through S/N 21 were recorded on another tape, and
 

images from devices S/N 22 through S/N 25 were recorded on another tape. Four 

tapes of serially recorded images were recorded at each test interval.
 

During the optical scanner examination of each device, the device was run 

with a power supply voltage of 5V. The test device was switched using the State 

Superposition test circuit described previously. The CD4029A counter in the test 

circuit was run with a clock frequency of 3.5 MHz. All circuits were fully opera­

tional under these conditions.
 

6.6 Correlation of Photoresponse Images with Electrical Test Results
 

Obviously, due to time and financial limitations not all of the photoresponse 

images from all of the test devices could be subtracted from each other in order to 

try to find differences that could be correlated with electrical test results 
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B Terminals are BCD (Binary Coded Decimal) Inputs. 

D Terminals are Dectmal decoded outputs. 

+15 V 
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- D 6 SA10 

8Vss D8 

Figure 6-10. Life-test circuit for CD4028A.
 
(Connections to all terminals
 
except 8 and 16 are made through 
47K resistors.)
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(or to try to find differences that could not be correlated with electrical test 
results). In order to attempt to pick sane meaningful photoresponse images which 

would be analyzed, the electrical test results were reviewed. 

Correlation I
 
The first correlation that was to be attempted was to try to correlate differ­

ences 
in devices' electrical parameters with differences in photoresponse images. 
The electrical test data was reviewed in order to try to find devices whose electrical 
parameters were different from the others. If a device's electrical parameter differed 
from the average value for that parameter by more than two standard deviations, itwas 
classified as "significantly different". (A simple criteria such as a parameter being 
outside of specification limits could not be used, since all of the devices initial 
electrical parameters were well within specification limits.) As a result of this
 
criteria, two devices were quite consistently shown to be "mavericks". These two
 

devices were S/N 19 and S/N 20. (Test device S/N 18 had two parameters which were 
"significantly different" from the average.) Table 6.8 lists the various tabulated 
parameters and shows which devices had parameters significantly different from the 
average. Except for devices S/N 18, S/N 19 and S/N 20, all other devices' parameters
 
were less than two standard deviations from the average. 

TABLE 6.8 

Summary of Devices with "Significantly Different" Parameters
 

PARAMETER S/N 18 S/N 19 S/N 20 
TpD (max) N D D 
TPD (min) N D D 

IL N N N 

VTN D D 

VTHP D D D 

To(N) N N D 

Tow D 0 D 

"D" indicates the devices parameter, was more than 2 standard deviations from the 
average. 
"N" indicates the devices parameter was less than 2 standard deviations from the 
average. 
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Devices S/N 19 and S/N 20 were chosen to represent devices whose electrical
 

parameters were different from the average. (Device S/N 18 had only two parameters
 

that were "significantly different" from the average.)
 

In order to perform comparisons several devices had to be chosen to represent 

a "normal" or average device. As previously noted, when the photoresponse images 

were recorded, the images from devices S/N 15 through S/N 21 were recorded on one 

tape. For ease of data handling and a reduced number of tapes that would have to
 

be processed, the parameters from devices S/N 15, 16, 17 and 21 were reviewed to
 

determine if they represented fairly average samples. It was found that their 

parameters were all fairly close to the average values of the parameters for the 

entire group. Therefore, these devices were used as "average" devices for purposes 

of comparisons. 

Figures 6-11 through 6-16 are the photoresponse images of devices S/N 15, S/N 16,
 

S/N 17, S/N 19, S/N 20 and S/N 21 recorded at Run 1. (These figures are photographs
 

created at the image processing facility.) The image from device S/N 15 has some
 

"noise" in its background from an undetermined cause.
 

The first subtractions that were performed were between images of "average" 

devices to determine if there were large differences between devices with similar 

parameters. Figures 6-17 and 6-18 show the results of subtractions between the 

images from devices S/N 15 and 16. It can be seen that there are no large differ­

ences except for some caused by a slight misalignment of the two images. 

Figures 6-19 and 6-20 show the results of subtractions between the images from
 

"average" devices S/N 16 and 17. Figure 6-1%gwhich shows the results of subtracting
 

the image from device S/N 16 from the image of device S/N 17, reveals some significant
 

differences in the area of the device inputs. Another examination of the electrical
 

data revealed that these two devices had quite a large difference (more than one
 

standard duration) in their VTHN parameters and a considerable difference in their
 

V-Tp parameters (almost one standard deviation). Since these parameters measure
 

threshold voltages on the devices inputs, it is apparent that there is a good 

correlation with the observed differences in the photoresponse images and the differ­

ences in the electrical parameters. Subtractions between the images from devices
 

S/N 15 and S/N 17 are shown in Figures 6-21 and 6-22. Again the subtractions re­

vealed differences in the areas of the device inputs which correlated well with a
 

large difference in the devices' VTHN parameters.
 

Subtractions between the other "average" device images, the images from 

device S/N 21 and the image from device S/N 16 revealed virtually no differences.
 

The results from the subtractions of these two images shown in Figures 6-23 and
 

6-24, show that there is virtually nothing left, indicating that the alignment
 

between these two devices was also particularly good.
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Figure 6.11. Photcrespmse image 
fra device SIN 15. The cause of fl 
the bacIground noise was unieter­
mired. Device S/N 15 was an 
"average" device. 

Figure 6.12. Phoorespanse image 
fran device S/N 16, an "average" 
device. I 

Figure 6.13. Piotcresponse image 
frm device S/N 17, an "average" 
device. 
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Figure 6.14. Photcrespunse iae 
from device SIN 19, a "significantly 
different" device. 

Figure 6.15. Phhnresponse image 
fram device SIN 20, a "significantly
different" device. 

Figure 6.16. Photrespcwse image
fron device SIN 21, an "average" 

device. 
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Figure 6.17. Image resulting from the subtraction of Figure 6.11 
from Figure 6.12. 

Figure 6.18. Image resulting fram the subtraction of Figure 6.12 
from Figure 6.11. 
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Um 
Figure 6.19. Imag1e resulting fram the subtraction of Figure 6.12 
fromFigure 6. 13. Arrows indicate some significant results in the 
area of the device inputs. 

Figure 6.20. Image resulting fran the subtraction of Figure 6.13 
frcm Figure 6.12. 
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Figure 6.21. Image resulting Fro the subtraction of Figure 6. 1 
fram Figure 6.13. Arrows indicate scme signif icart results in the 
area of the device irputs. 

Figure 6.22. Image resulting from the subtraction of Figure 6.13 
fram Figure 6.11. 
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Figure 6.23. Image resulting from the subtraction of Figure 6.16 
from figure 6.12. 

Figure 6.24. Dmoge resulting from the subtraction of Figure 6.12 
from Figure 6.16. 
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As a result of the subtractions between the devices that were chosen to 

represent "average" devices, the image from device S/N 16 was chosen to represent
 

an average device. The image from device S/N 15 was rejected because of the "noise" 5 
in the background. The image from device S/N 17 was rejected because of its unique 
characteristics near the inputs. The images of devices S/N 16 and S/N 21 were
 

shown to be almost exactly the same, so S/N 16 was chosen. I 
Subtractions between the image from device S/N 16 (an "average" device) and
 

the image from device S/N 19 (a"significantly different" device) are shown in
 

Figures 6-25 and 6-26. Figure 6-26 which is the result of the subtraction of the image 
of device S/N 19 from the image of device S/N 16, reveals the most differences. It 3
 
can be seen that the image from device S/N 16 contained many more diffuse portions
 
of response than did the image from device S/N 19. This can be correlated with the 
large differences in all of these devices' parameters. 

Subtractions between the other image from a "significantly different" device, 
device S/N 20, and the image from device S/N 16 are shown in Figures 6-27 and 6-28.
 
Again, when the "significantly different" device image was subtracted from the 
"average" device image many differences were revealed in the amount of diffuse re­
sponse from the two devices. (This is the same result as obtained In the other 
"average" device - "significantly different" device subtraction.) However, in this 3 
case where the "average" device image was subtracted from the "significantly differ­

ent" device image, a very unique area of photoresponse was noted on the significantly 
different device. The differences between these two devices images again correlates 

well with the large differences in their electrical parameters. 

It has been shown that correlations could be formed between differences in 
devices' electrical parameters and differences in their photoresponse images. In
 

some cases, these correlations were made between subtle differences in the images,
 
but the differences in the electrical parameters were not large. None of the 
devices' electrical parameters were different enough that they were outside of 
specification limits. 

Correlation2 5
 
The second correlation that was to be attempted, was to try to correlate
 

changes in the devices' electrical parameters following life tests with changes in
 
the photoresponse images. The changes that were to be considered significant were
 
those caused by inherent defects in the devices which caused the devices' electrical 
 3 
parameters to fail or degrade. Unfortunately, the only device parameter that changed 
was the average power supply current for the devices which dropped considerably be­

tween test Runs 1 and 2. This has been attributed to the devices having been opened 
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Fiue6.25. Image resulting from the subtraction of Figure 6.12 
from Figure 6.14. 

Figure 6.26. image resulting from the subtraction of Figure 6.14 
from Figure 6.12. 
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Figure 6.27. Image resulting fran the subtraction of Figure 6.12I 
from Figure 6.15. The arrow indicates a very unique area of difference. 

Figure 6.28. Image resulting from the subtraction of Figure 6.15 
frCm Figure 6.12. 
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to ambient atmosphere for a long period prtor to Run 1 and becoming somewhat leaky. 
Following Run 1 the devices were subjected to a 24 hour life test at 125°C which
 

reduced the power supply currents back to a consistently lower level. 
Comparisons of images from devices from Runs I and 2 revealed very little 

difference in their photoresponse images even in the case of devices whose power 

supply currents decreased appreciably. Apparently, the ambient contamination pro­
duced a small effect over many areas, causing an appreciable change in the power 
supply currents but a small change in the photoresponse images. The only correlation 

that could be made between changes in device parameters and changes in photoresponse 
images was that neither changed appreciably, except for the devices' power supply 

currents. But this change has been attributed to an effect that was not inherent 
in the devices and is therefore not considered significant. 

Correlation 3
 

It was hoped that a correlation could be made between. devices whose parameters 
degraded or failed and unique elements in their initial photoresponse images. This 
correlation could not be made since none of the devices' parameters failed or degraded. 
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7.0 TESTS ON THE CD4034A TEST DEVICE
 

7.1 CIRCUIT DESCRIPTION
 

The CD4034A is a fully static eight-stage parallel/serial bilateral bus 
register. It isa very versatile microcircuit that can be operated in any one
 
of several modes. Depending on inputs to the control terminals, it can operate 
as a serial-input shift register, a data-recirculating register, or as a parallel­

load register. The parallel load can be performed either asynchronously or 
synchronously (i.e., controlled by the clock input). Each stage has two parallel 
input/output data lines, which are labelled A and B, whose functions are selected 
by two control inputs: A/B and A-enable. The A/B control selects either the 
A or the B data lines as inputs; the non-selected lines then serve as outputs. 
The A-enable control must be high to enable the A data lines. A low input on 
the A-enable control and a high input on the A/B control puts the microcircuit 
in the data-recirculating mode. 

The logic diagram for the CD4034A microcircuit is shown in Figure 7-1 . The 

circuit diagram is shown in Figure 7-2 with the individual MOSFET's labelled. 
and of the n-substrate to the V+

The connections of the p-well to the V- terminal 


terminal are not shown explicitly. Also omitted from this diagram is the p-well/
 
substrate junction. A micrograph of the CD4034A chip is shown in Figure 7-3 with
 
the MOSFET labels on the gate metallizations.
 

7.2 STATE SUPERPOSITION TEST DEVELOPMENT 
The CD4034A is basically a simple type of circuit, an eight-stage register,
 

which is complicated by an elaborate set of control functions. The State Super­
position Program developed for this device on the previous program was reviewed 
and it was decided to use the same one for this program. The operation of the 
test device and the flow of the State Superposition Program are described below. 

Each stage in the register can be either in a high or low state. The data 
flow into a register stage proceeds along three paths: through one of the two 
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selectable parallel inputs, or through the serial transfer input from the
 

previous stage. These paths tan be exercised by using them to alternately
 

load ones and zeros into each stage. The sequence of operations chosen for
 

the State Superposition Program is as follows:
 

1. Do an asynchronous parallel load of ones into the even­

numbered A inputs and zeros into the odd-numbered A inputs.
 

2. 	Do the above operation with complemented input data.
 

3. 	Do operations 1 and 2 synchronously (i.e., under control
 

of clock input).
 

4. 	Do operations 1, 2 and 3 into the B inputs.
 

5. 	Do a serial input load of alternating ones and zeros for 
eight cycles of the clock.
 

The input and control signals required to carry out this sequence of operations
 

can be derived from a clock square wave signal divided down by a four-stage
 

counter or frequency divider. A timing diagram of the input and control signals
 

to be applied to the DUT is shown in Figure 7-4.
 

In addition to generating the signals in the timing diagram, the State
 

Superposition test circuit must perform two additional functions: it must
 

generate a clock signal that lags the input data so that the data signals are
 

properly set up when the clock pulse loads them in (during synchronous loading
 

operations), and it must disconnect the A or B terminals from the data sources
 

when these terminals are selected as outputs. This latter function is imple­

mented with transmission gates that are turned on only when the terminals to
 

which they are connected are selected as inputs. The State Superposition test
 

circuit that performs all these functions is shown in Figure 7-5. The following
 

CMOS microcircuits are used in it:
 

CD4016 - quad transmission gate
 

CD4024 - seven stage binary counter (only four stages employed)
 

CD4011 - quad two input NAND gate
 

CD4049 - hex inverting buffer/converter
 

CD4050 - hex non-inverting buffer/converter
 

7.3 ELECTRICAL TEST DESCRIPTION AND RESULTS 
7.3.1 Electrical Test Description
 

As in the case of the CD4028A test devices, electrical parameters were
 

measured on each of the 25 CD4034A test devices prior to any life tests and
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also after each life test interval. The devices were also subjected to a
 

functional test (at both 5.0 and 15.0 volts) and a truth table test (also
 

at both 5.0 and 15.0 volts). All of these tests were performed on the
 

Tektronix S-3260 Automatic Test System.
 

The parameters that were measured on the devices include the following:
 

TPLH: propagation time for switching from "low" 

to I!high" 

TPHL: propagation time for switching from "high" 

to "low" 

VOL : output voltage when output should be "low"
 

VOH : output voltage when output should be "high"
 

IIH : input leakage current with input "high"
 

IIL : input leakage current with input "low" 

VICP: positive input clamping voltage 

VICN: negative input clamping voltage 

ISS : power supply current for various input 

conditions
 

VTH:N N-channel FET threshold voltages
 

Vp: P-channel FET threshold voltaces
 

7.32--ilectrical Test Results
 

Tables 7-la and b are computer printouts of the typical results of one of
 

the electrical tests on CD4034A device S/N 1.
 

As in the case of the CD4028A test devices, electrical parameters were
 

measured on the CD4034A test devices four times during test Runs 1 through 4.
 

These runs were performed at the same intervals as Runs 1 through 4 for the
 

CD4028A test devices.
 

Run 1: Measurement of initial electrical parameters 

Run 2: Electrical parameters following 24 hours of life test 

Run 3: Electrical parameters following an additional 100 hours 

of life test
 

Run 4: Electrical parameters following an additional 376 hours
 

of life test
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TAE 7-1a. 	 Campter Printout of Electrical ParametEr aest Results for 
CD4034A Test Device SIN 1. 

CD'4P S4A ET-F)RECTTnM'IAI, StIAL.PARALLEL SUS flRTVER SPEC NUMBER: Q32626 
TEMP; 29 SN: I 

PASSEF-I FtjMTTOUAI TFST VfDm5'.0 0 V 
PA5b) PNC1TON1AI. TEST VDD=.5.4 V 
PAS 1I'TRUTH TA$L E TEST VOns5" , V 
PASWr' TRITh TABLE TEST Vflnumt.0 V 

PIN PTi TPLHd TPHL2 TPLH4 TPHL4 
TPLHt T"H[.1 TPLH3 TPHL3 
MA M4AX MAX MA) 

CLK A .11.I 1j'-N s 7?NS 47L3NS 
fLJ ?) :s 1 f ,1 735,NS 700 
CL A , S dAjo 490 NS, 75NS 
QLIA A4 16hr.NS 116v" Ns 10S 40NCLV A; 't4 ,,S 	 790, J,.hi,,'s 	 ,,
 

CILK A" 4O4,NNS 7 F5.IjS 119 S 1 N5 
CLk a74Aq .,Is 0,r S N 1S '465 FNS 
CLK AS tho .15 460N 74SNS T70FNS 

rL A'75*bS 119.N8 780NS 4oq 0 ,N 
CLK R7 /ktNS 4A5rNS 740,NS 48009 

,775,NS
CL1 F't 5,5.NS 595 rNS 	 5M0 rNS 
CLK R5 7;3 5."N S u75rNS 7;SfNS 465, N 
CLK i' 70.,,,S 485?NS 7'4,oN$ MIIrNS 
CLK i ACf.5)biS 91 NS 7q90FNS 500 ,N8 
CLK bR $.NS 47.,NS7AV..Js 	 760,NS 
CLK B 7tl4dIS A9.NS 7;.NS 46 .NS 

PIUN, 	 VOLt VL02 VOHt VOHE
 
MAY MAY MIN MT
 

@614.V 	 3.5Vl 4 ,5I V t5 V 

88 jS.MV 350,UlV 4 at V 1.2 5 V 
K7 j415,mv 145,pUV 4;82 V 't,5V 
86 1420,V .otA0.UV 4,82 V f, 5 V 
B5 138,MV /15M.[JV 4 82 V 1 ,5 V 
84 It4.MV nt90.UV 8 V 1 ,s V 
R3 I i.MV I35o.IJV 4,02 V 12,5 V 

Smv &3ISoPU"V 4p82 V laps V 
B1 138.M1V %)o tiy 40,82 V .1aP9V 
Al 140.MIV w100,[JV 40SR V 12 5 V 

Aa140.M V '00,[IV q,82 V taP!s V 
A3 138,1HV r30UV 4,88 V iers v 
A4 136,siMv 30.I 4p'2 v 1 5a.v JRGINAL PAGE IS 
AS 136.MV 300,UV V i,ri8V OF POR QAL~jjf 
A6234,PIV .300.IV 4' ' V 184! V 

AT 13?.MV Rsp.iV 4,6a V 18#?I V 
ASt39.tIV *50-,UV 4fl V 12.5 V 
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MUM 7-lb. Carpuinr Printout of Electrical Parameter Test Results for 
CD4034A Test Device S/N 1. 

PN tj IlL VICP VICN 
NAV AY VAY MAY 

CLKA f- .,P. P. ,3M.MV V
5NA -2A.4 
AF 0 .li0.A .3YifA 8a5.HU 23 v 
ps %M.i P A f, 1A F130,M &? .38 v 

Ad-50.1P A -6A'.fIPA i3vi,HV -. Ile V 
AS -651.PA -pt3.PA 834 .HV -2p3 V 
SER .otflA -.373.PA A4V'.MV p.4e V 
At 5BPA - 77.PA 
A2 ,,650PA -66.7PA
 
A3 4 IPf? iqP
A 4 I .. ,4, ,1 P;". O 

AS - Ir PA 13s. A 
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A8 95?-.pn -73.3PA 
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,86 90n.!-)A -173.PA 
85 145rl. PA -;)b,7p A 
fA41 -qOO~.pL 3W/PA 

45,.:15C, PAf J P?23.3rW'A82 .P A 

Ml -.3V~.P ASb.PA 

MTxS: :LI Ip, !, 
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T !SS: - 6 rt;",A
 

TSSt t 4 96fl 
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VT-it rit r 3,.4) ..7lAi,t'v. V 

VI H . I 
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Summaries of the electrical test results are presented in the following 

tables for the parameters listed: 

Table 7.2: Maximum and minimum values of all TPHL and TPLH times
 

for each device at each run
 

Table 7.3: Maximum VOL for each device at each run
 

Table 7.4: Peak ISS for each device at each run
 

Table 7.5: Average of the four VTHN values for each device at each run
 

Table 7.6: Average of the four VTHP values for each device at each run
 

Parameter VOHl was not tabulated. VOHl varied from 4.82 V to 4.89'N for
 

all devices during all runs except for device S/N 7 which was a functional
 

failure. The values of VOHI for device S/N 7 are shown below.
 

Run l Run 2 Run 3 Run 4 

llOMV 90MV 85MV BOMV 

These values are all far below the minimum specified value of 4;5V for VOH. 

Parameters VOL2 and VOH2 were not tabulated or correlated. These 

parameters were measured with VDD = 15.0V. Since the photoresponse images 

were recorded with VDD = 5.OV, there would be little or no correlation between 

these parameters and the photoresponse images. 

Parameters IIH and IIL were not tabulated since the values varied consider­

ably from run to run. This was due to the sensitivity of the test with typical 

values for these parameters being on the order of hundreds of picoamperes or 
less. All of the devices' IH and IIL parameters were less than 45nA which is
 

the limit specified in military specification MIL-M-38510/57. The limit that 
was specified on the test program and on the printouts was incorrectly specified 

as 1.0 nA. 

Parameters VIC P and VIC N were not tabulated for the devices since there was
 

not much of a spread in these values. All values of Vic P and VIC N were well
 

within specified limits. Vic N values ranged from 2.3V to 2.5V and Vic P values
 

ranged from 815MV to 850MV. (This parameter is basically a test of the input
 

protection circuitry on each input. Unless these parameters are outside of
 

specification limits, slight differences in their values from device to device
 

will cause no difference in the operation of the different devices. Also,
 

slight differences in these values would be extremely difficult to correlate
 

with changes in photoresponse images.)
 

7-11
 



TABLE 7.2.CD4034: PROPAGATION DELAY TIMES
 

EVICE S/N 
RUN 1 

MIN MAX 
RUN 2 

MIN MAX 
RUN 3 

MIN MAX 
RUN 4 

MIN MAX 

I 

2 

3 

4 

5 

460 

520 

470 

430 

440 

805 

675 

585 

505 

535 

455 

515 

465 

425 

435 

765 

630 

560 

525 

525 

500 

565 

510 

475 

480 

795 

670 

590 

525 

550 

500 

570 

515 

475 

480 

835 

700 

610 

530 

560 

6 

7 

8 

9 

10 

445 

630 

460 

435 

465 

520 

840 

585 

500 

525 

445 

625 

455 

430 

455 

515 

845 

560 

495 

510 

485 

670 

495 

475 

500 

535 

880 

590 

520 

545 

485 

675 

505 

475 

505 

545 

880 

610 

520 

555 

11 
12 

13 

14 

-15 -. 

430 

430 

445 

445 

- -435-

500 
500 

525 

495 

- -­ 540--- -

425 

425 

440 

440 

4-30- -

490 

490 

515 

490 

525 

465 520 
470 515 

480 535 
480 570 
4 F70---540 -

470 

475 

485 

485 

475 

525 

520 

545 

515 

545 

16 

17 

18 

19 

20 

435 

435 

435 

485 

460 

510 

495 

505 

550 

565 

430 

425 

430 

480 

455 

495 

485 

495 

545 

555 

470 

470 

475 

525 

500 

515 

515 

530 

555 

585 

475 

475 

475 

525 

500 

520 

520 

530 

575 

590 

21 

22 

23 

24 

25 

Average 

445 

485 

475 

450 

495 

462 

535 

635 

575 

535 

600 

566 

440 

475 

475 

445 

490 

456 

520 

610 

575 

525 

595 

554 

485 

520 

515 

485 

535 

500 

555 

635 

590 

555 

610 

578 

485 

525 

515 

490 

540 

503 

560 

665 

600 

565 

620 

590 
Standard 
Deviation 41 88 41 84 42 87 43 92 

ALL VALUES ARE NANOSECONDS
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TABLE 7.3.CD4034: MAXIMUM VOL (OUTPUT "LOW" VOLTAGE)
 

DEVICE S/N RUN 1 RUN 2 RUN 3 RUN 4 

1 148 146 149 146 

2 176 174 174 174 

3 166 165 164 164 

4 144 143 142 142 

5 141 140 139 139 

6 153 153 151 152 

7 (4.97V)(A) (4 .97V)
(A) (5.OOV) (A) (5.OOV)(A) 

8 165 163 162 162 

9 147 145 144 144 

10 159 156 155 155 

11 143 142 141 140 

12 144 143 142 142 

13 147 146 146 146 

14 153 152 150 150 

15 148 146 145 145 

16 153 151 150 150 

17 144 141 141 141 

18 141 139 139 139 
19 175 174 172 173 

20 146 145 144 145 

21 149 147 147 146 

22 168 165 165 164 

23 152 154 152 152 

24 146 145 144 144 

25 165 164 163 164 

Average 153(B) 152(B) 151(B) 

Standard I0(B) IO(B) ia(B) 

Deviation 

ALL VALUES ARE MILLIVOLTS UNLESS OTHERWISE NOTED 

(A) DEVICE S/N 7 WAS A FAILED DEVICE 

(B) PARAMETERS FROM DEVICE 7 NOT INCLUDED IN CALCULATIONS
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TABLE 7.4.CD4034: PEAK POWER SUPPLY CURRENTS Q ss)
 

)EVICE S/N RUN 1 


1 116 


2 59 


3 59 


4 60 


5 63 


6 62 


7 61 


8 62 


9 63 


10 63 


11 64 


12 64 


73 64 


14 64 


-15 65-


16 63 


17 63 


18 58 


19 58 


20 53 


21 54 


22 61 


23 57 


24 56 


25 58 


Average 62.8 


Standard
 

Deviation 11.3 


RUN 2 


98 


59 


58 


58 


58 


54 


60 


57 


56 


57 


61 


59 


61 


62 


58 


57 


58 


56 


68 


55 


56 


57 


57 


56 


58 


59.8 


8.3 


RUN 3 RUN 4 

110 85 

47 47 

59 51 

60 40 

50 50 

53 39 

45 37 

50 43 

51 50 

50 44 

45 42 

43 53 

49 55 

47 51 

50 53 

53 46 

54 46 

45 37 

53 47 

49 44 

57 45 

54 38 

61 43 

56 52 

60 52 

54.0 47.6 

12.5 9.3 

ALL VALUES ARE NANOAMPERES
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5 

10 

15 

20 

25 

TABLE 7.5.CD4034: AVERAGE N-CHANNEL FET THRESHOLD VOLTAGES (VTTFVN
 

DEVICE S/N RUN 1 RUN 2 RUN 3 RUN 4 

1 -1.66 -1.61 -1.62 -1.64 

2 -2.20 -2.17 -2.17 -2.19 

3 -2.15 -2.12 -2.12 -2.14 

4 -2.30 -2.29 -2.32 -2.33 

-2.31 -2.30 -2.31 -2.34 

6 -2.38 -2.34 -2.37 -2.40 

7 -3.00 -3.01 -2.97 -3.02 

8 -2.13 -2.10 -2.10 -2.12 

9 -2.31 -2.28 -2.33 -2.34 

-2.35 -2.33 -2.37 -2.37 

11 -2.30 -2.28 -2.32 -2.32 

12 -2.30 -2.31 -2.33 -2.34 

13 -2.38 -2.35 -2.35 -2.39 

14 -2.32 -2.30 -2.34 -2.34 

-2.32 -2.30 -2.35 -2.35 

16 -2.35 -2.33 -2.37 -2.38 

17 -2.29 -2.27 -2.31 -2.32 

18 -2.29 -2.27 -2.31 -2.31 

19 -2.46 -2.43 -2.44 -2.48 

-2.34 -2.29 -2.32 -2.36 

21 -2.32 -2.29 -2.34 -2.35 

22 -2.15 -2.12 -2.14 -2.16 

23 -2.33 -2.31 -2.31 -2.35 

24 -2.31 -2.28 -2.33 -2.34 

-2.36 -2.33 -2.34 -2.36 

Average -2.30 -2.28 -2.30 -2.32 

Standard 0.20 0.21 0.21 0.21 
Deviation 

ALL VALUES ARE VOLTS
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5 

10 

15 

20 

25 

TABLE 7.6,CD4034: AVERAGE P-CHANNEL FET THRESHOLD VOLTAGES (VTHp
 

rVICE S/N RUN 1 

1 3.12 

2 2.51 

3 2.41 
4 2.25 

2.28 

6 2.17 

7 2.28 

8 2.41 

9 2,20 

2.21 

11 2.23 

12 2.20 

13 2.18 

14 2.17 

2.26 

- 1-6 -­2-.2-1-

17 2.21 

18 2.25 

is 2.17 

2.27 

21 2.22 

22 2,48 

23 2.37 

24 2.26 

2.37 

Average 2.31 

Standard 
Deviation 0.19 

RUN 2 


3.12 

2.50 

2.41 

2.24 

2.28 

2.17 

2.29 


2.41 

2.20 


2.21 

2.23 

2.20 


2.18 

2.17 

2.26 


-2-.21-

2.21 

2.25 


2.17 

2.27 

2.22 

2.47 

2.37 

2.26 


2.37 

2.31 


0.19 


ALL VALUES ARE VOLTS
 

RUN 3 RUN 4 

3,12 

2.51 

2.41 

2.24 

2.28 

3.12 

2.51 

2.41 

2.25 

2.28 

2.17 

2.29 

2.41 

2.20 

2.22 

2.17 

2.29 

2.42 

2.20 

2.21 

2.23 

2.20 

2.18 

2.17 

2,26 

2.23 

2.20 

2.18 

2.17 

2.26 

2.21 
2.21 

2.25 

2.17 

2.27 

2.21 

2.21 

2.25 

2.17 

2.27 

2.22 

2.47 

2.37 

2.26 

2.37 

2.22 

2.48 

2,37 

2.26 

2.37 

2.31 2.31 

0.19 0.19 



The electrical tests can be summarized by stating that there was very
 

little change in most of the significant electrical parameters for the
 

The values for tne peak power supply currents for the
CD4034A test devices. 


devices showed the most change. The average of the peak power supply currents
 

decreased throughout the life-testing from a value of 62.8 nanoamperes at the
 

initial test prior to life-testing, down to 47.6 nanoamperes following 500
 

hours of life testing. Figure 7-6 is a graph of the average of the peak power
 

supply current of the test devices plotted as a function of accumulated life­

thosetest time. The only parameters that were outside of specified limits were 

of device S/N 7 which was included in all testing even though it had failed
 

initial electrical tests.
 

62
 

59.
 

S56­
w 

C-, -C 

-53j 

0
 

Soo
100 200 300 400
0 

ACCUMULATED LIFE TEST TIME (HOURS) 

FIGURE 7.6 GRAPH OF PEAK POWER SUPPLY CURRENT
 
AS A FUNCTION OF ACCUMULATED LIFE TEST TIME. 
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7.4 LIFE-TESTS
 

The CD4034A test devices were subjected to three life-test intervals.
 

The initial life test interval was 24 hours long. Review of the devices'
 

electrical parameters following this interval, revealed no significant change
 

from the initial parameters. The next life test period was chosen to be 100
 

hours long in order to try to obtain some significant changes in electrical
 

parameters. Again, the electrical parameters showed no significant changes
 

after this life test interval. The third life test which was 376 hours long,
 

resulted in a total of 500 hours of life testing on the test devices. This
 

was the maximum amount of life testing required for this program and also the
 

maximum amount of time available within the limits of the program schedule.
 

Unfortunately, as in the case of the CD4028A test devices, there was still no
 

significant change in the electrical parameters of the CD4034A test devices.
 

The test devices were life-tested using the circuit shown in Figure 7-7.
 

The devices were heated to 1250C during the life tests in ovens that were
 

purged with dry nitrogen gas.
 

7.5 PHOTORESPONSE IMAGE RECORDING
 

Photoresponse images of all twenty-five CD4034A test devices were recorded 

on magnetic tape. These images were recorded rdoir oanyij-fe-tests-(Run-l--,. 

following 24 hours of life tests (Run 2), following an additional 100 hours of 
life test (Run 3) and following an additional 376 hours of life test (Run 4).
 

At each run, four tapes of serially recorded images were recorded. Devices
 

S/N 1 through S/N 7 were recorded on one magnetic tape, devices S/N 8 through
 

S/N 14 were recorded on a second magnetic tape, devices S/N 15 through S/N 21
 

were recorded on a third tape and devices S/N 22 through S/N 25 were recorded on
 

a fourth tape.
 

During the optical scanner examination of each device, the device was run 

using a power supply voltage of 5V. The test device was switched using the 

State Superposition test circuit described previously. The test circuit was run 

at a frequency of 3.5 MHz.
 

One of the improvements of this program over the last one-, was the addition
 

of a 2.5X microscope lens to the optical scanner setup. Using this lens itwas
 
possible to obtain a single photoresponse image that covered the entire CD4034A
 

chip. In the previous program, it was necessary to cover the CD4034A chip with
 

two overlapping photoresponse images in order to image all the elements. 
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9 A ENABLE 16 
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11 A/B A/S 14 

E 12 VSS P/S 13 

Figure 7-7. Life-test circuit for CD4034A,
 
(Connections to all terminals
 
except 12 and 24 are made through
 
47K0 resistors.)
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7.6 CORRELATION OF PHOTORESPONSE IMAGES WITH ELECTRICAL TEST RESULTS 

As in the case of the CD4028A test devices; due to time and financial limita­

tions not all of the- photoresponse images from all of the CD4034A test devices 

could be subtracted from each- other in order to try to find differences that 

could be correlated with electrical test results. The electrical test results 

were reviewed in order to attempt to pick some meaningful photoresponse images 

which would be analyzed. 

Correlation 1
 

The first correlation that was to be attempted was to correlate differences
 

in devices' electrical parameters with differences in photoresponse images. The
 

electrical test data was reviewed in order to find devices whose electrical'
 

parameters were "significantly different" from the others. As in the case of the
 

CD4028A test devices, if a device's electrical parameter varied from the average
 

value for that parameter by more than two standard deviations, it was classified
 

as "significantly different". Device S/N 7 was automatically included in the
 

class of "significantly different" devices since it had failed initial electrical
 

tests. As a result of this definition, two devices (other than device S/N 7)
 

were shown to be "mavericks". These two devices were S/N 1 and S/N 2. Table
 

7.7 lists the various tabulated parameters and shows which devices had parameters 

significantly different from the average or outside of specification limits. 

Except for devices S/N 1, SN 2 and-S/N-7-a--o-other--devices-'-par-me-ters-we- .. 

less 	than two standard deviations from the average and within specification limits.
 
TABLE 7.7
 

Summary of Devices with "Significantly Different" or Failed Parameters
 

PARAMETER S/N 1 S/N 2 S/N 7 

Tpd (max) D N D 

Tpd (min). N N D 

VOL N D F 

ISS D N N 

VTHN 	 D N D
 

VTHp D N N
 

"D"indicates the device's parameter was more than 2-standard deviations from
 

the average.
 

"F" indicates the device's parameter was outside of specification limits
 

"N"indicates the device's parameter was less than 2 standard deviations from
 

the average.
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Devices S/N 1, S/N 2 and S/N 7 were chosen to represent devices whose
 

electrical parameters different from the average. Device S/N 7 was, of course, 

considerably different from the average since several of its electrial 

parameters failed to meet specification requirements. 

In order to perform comparisons soe devices were chosen to represent 
"average" devices. As noted previously, the images from devices S/N 1 through
 

S/N 7 were recorded on one magnetic tape. For ease of data handling and a
 

reduced number of tapes that would have to be processed, the parameters from 

devices S/N 3, S/N 4, and S/N 5 and S/N 6 were reviewed to determine if they
 

represented fairly average samples. Two of the electrical parameters of device
 

S/N 3 were about one standard deviation away from the average, so this device 

was rejected as an "average: device. Devices S/N 4, S/N 5 and S/N 6 were to be 

used as examples of "average" devices. 

ien the images for the devices that were chosen to represent "average" 

devices were displayed, itwas discovered that the image for device S/N 4 was 

not usable. Unfortunately, it could not be recorded again since the device 

had already been submitted for its initial life-test. Figures 7.8 through 7.12 

are the photoresponse images of devices S/N 1, S/N 2, S/N 5, S/N 6 and S/N 7 

recorded at run 1. (These figures are photographs created at the image processing 

facility.) 

The first subtractions that were performed were between images of the two 
"average" devices to determine if there were differences between devices with
 

similar parameters. Figures 7.13 and 7.14 show the results of the subtractions
 

between the images of devices S/N 5 and S/N 6. It can be seen that there are 

no differences except for some slight misalignment between the two devices. As 

a result, either device could be used to represent an "average" device. 

Subtractions between images from an "average" device, S/N 5 , and a 
"significantly different" device, S/N 1, are shown in Figures 7.15 and 7.16. 

It can be seen that there were major differences between the images of these 
devices. The large bright areas in these figures are concluded to be correlated 
with the large differences in the maximum propagation delay time parameters (TpD) 

for these devices. The previous program revealed that CMOS devices exhibited 

anomalous areas in their photoresponses as their maximum operating frequencies 
were approached. Apparently, the large TpD for device S/N I caused it to exhibit 
these anaomalous areas in its photoresponse image. Subtractions between this 

device's image and the image for the faster device S/N 5, clearly revealed 
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Figure 7.8. Phobtoresponse image 
from device S/N 1, a "significantlyf 
different" device. 

° 	 I 
!I 

Figure 7.9. Photcresponse image ­
~from device SIN 2, a "significantlyI
 

I different" device.
 

!I
 

Figure 7.10. Photoresponse image

Vfron device S/N 5, an "average" l
 

different"
device. 
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Figre 7 .1. Photcresponse image frcm device SIN 6, 

an"aerage" device. 

Figure 7.12. Photoresponse image from device SIN 7, 
a failed device. 
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Figure 7.13. image resulting from the subtraction of Figure 
7.10 fram Figure 7.11. 

Figure 7.14. Image resulting fram the subtraction f Figure 
7.11i from Figure 7.1i0. 
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Figure 7.15. Image resulting fran the subtractin of Figure
7.10 frcm Figure 7.8. 

Figure 7.16. Image resulting fran the subtraction of Figure 7.8 
fromt Figure 7.10. 

ORIGINAL PAGE IS 
7-25 OF POOR QUA!!Ty 



these differences. Also, there appeared to be a slight overall intensity 
difference (best observed in Figure 7.15) which can be correlated with the 
large difference in the ISS parameter for these devices, since this is the 
only other parameter which is a result of the overall operation of the entire 
device. 

Subtractions between images from device S/N 2, a "significantly different" 
device and device S/N 5, an "average" device are shown in Figures 7.17 and 7.18. 
Differences between these devices' images were observed. However, there is no 
definite basis for a correlation between the observed differences in the images
 
and the measured differences in these devices' VOH and VOL parameters. 

Subtractions between images from the failed device S/N 7, and the "average" 
device S/N 5, are shown in Figures 7.19 and 7.20. Many differences between the 
devices were revealed by the subtractions. Since so many differences were found 
between these device's images, no attempt was made to directly correlate all 
the differences to device S/N Ps failure. Itwas concluded that it was sufficient 

to note that there were many differences between the two images. 

Correlation 2 
The second correlation that was to be attempted was to try to correlate 

changes in the devices' electrical parameters following life tests with changes
 
in the photoresponse images. The changes that were to be considered significant
 

were those caused by inherent defects in the devices which caused the devices' 

electrical parameters to fail or degrade. Unfortunately, none of the devices' 
parameters changed significantly through a total of 500 hours of life tests. 
Subtraction between a device's images from Runs 1 to 4 revealed little or no 
change for several devices for which this comparison was performed. For some 

devices, there was a slight change inoverall image intensity between Runs 1 
and 4 which can be correlated with the tendency for the power supply current 
(Iss) to drop from Run I to Run 4. As in the case of the CD4028A test devices, 
the only general correlation that could be made between the devices' photo­
response images and their electrical parameters was that neither changed sig­
nificantly as a result of the life tests. 

Correlation 3
 

It was hoped that a correlation could be made between devices whose 
parameters degraded or failed and unique elements in their initial photoresponse 
images. This correlation could not be made since none of the devices' parameters 
failed or degraded. 
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Figure 7.17. hage resulting frm the subtraction of Figure 7.10 
fran Figure 7.9. 

OF POOR QUJALrm 

Figure 7.18. Imae resulting from the subtraction of Figure 7.9 
from Figure 7.10. 
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Figure 7.19. Image resulting from the subtraction of Figure 7.10 fran 
Figure 7.12. Arrows indicate samre of the significant differences re­
vealed in this image. 

Figure 7.20. Image resulting from the subtraction of Figure 7.12 from 
Figure 7.10. Arrows indicate some of the significant differences re­
vealed in this i:mage. 

7-28 



8.0 	CONCLUSIONS
 

To best review and evaluate the results of this progi to 

recall the overall purpose with which it was undertaken. The purpose of this 

program was to investigate a new approach for the development of the optical 

scanner as a screening inspection instrument for microcircuits. The new 

approach was to compare quantitative differences in the photoresponse images and 

to correlate them with electrical parameter differences in test devices. There 

were four major tasks that were completed in order to implement and investigate 

this 	approach:
 

(1) 	 The existing optical scanner instrumentation was modified so
 

that the photoresponse data could be recorded and subsequently
 

digitized.
 

(2) 	 A method was developed to apply digital image-processing
 

techniques to the digitized photoresponse data in order to
 

do quantitative comparisons of the data.
 

(3) 	 Electrical tests were performed and photoresponse images were 

recorded before and following life test intervals on two groups 

of test devices. 

(4) Correlations were made between differences in the photoresponse
 

data and differences or changes in the electrical parameters of
 

the test devices. 

The first task, to modify the existing optical scanner instrumentation for
 

recording and subsequently digitizing the photoresponse data, actually was composed 

of two objectives: 

(1) 	 To provide quantitatively significant data. 

(2) To provide a means of recording and digitizing this data. 

This task was successfully completed by modifications and additions to the pre­

viously existing instrumentation. The new laser that was incorporated into the 

system greatly increased the stability and useful signal level of the signal
 

generated by the instrumentation. The addition of a FM magnetic tape recorder 

along with an interface designed to provide the appropriate logic signals created 

the means for recording the photoresponse signals. The resulting magnetic tapes
 

were 	 digitized so that they could then be analyzed using procedures developed in 

the next task.
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The second task of the program, the development of a method to apply digital
 

image-processing techniques to the digitized photoresponse data, was accomplished
 

by the modification and subsequent application of some established image processing
 

software routines and hardware facilities. After the recorded photoresponse data
 

had been digitized, the software applied algorithms to reduce the data to an array 

representative of each photoresponse image from each device. The data was then 

reformatted so that it could be processed by the facility which was used to dis­

play and photograph both the recorded data as well as the data resulting from image 

subtractions and other image processing routines. 

The third task of the program, to perform electrical tests on test devices
 

and record their photoresponse images before and following life test intervals was
 

the most straightforward of the tasks. Prior to any life testing, the electrical
 

parameters and photoresponse images from a group of twenty-five CD4028A test
 

devices and a group of twenty-five CD4034A test devices were measured and recorded.
 

All of the electrical parameters of all of the CD4028A test devices were within
 

specification limits. One of the CD4034A test devices failed several electrical
 

parameter tests, but all of the other devices' parameters were within specification
 

limits. Following three intervals of life-tests which totalled 500 hours for each
 

test group, there was very little or no change in the electrical parameters of the
 

test devices. Two of the CD4028A test devices failed during the testing, but both
 

failures were discovered to be a result of mechanical damage incurred during_ 

handlin-Thie-fi-ur-ews-eedisr-egarded since the only change that was con­

sidered to be significant for the purposes of this program was electrical parameter 

degradation or failure resulting directly from the life tests. 

The fourth task, correlation of changes or differences in electrical parameters
 

of the test devices with differences in their photoresponse images, consisted of
 

three specific parts: 

(1) Correlation of differences in the initial electrical parameters
 

from device to device with differences in the initial photo­

response images.
 

(2) Correlation of changes in electrical parameters of each device
 

following life tests with differences in its photoresponse
 

images.
 

(3) For any device which failed at some point in the life test (or
 

whose electrical parameters significantly degraded)
 

determine if there is anything unique in its initial 

photoresponse image which ban be correlated with its
 

subsequent failure.
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The extent to which these various correlations could be made would be the test 
of this new approach for the development of the optical scanner as a screening 
inspection instrument.
 

Some correlations were made between differences in initial electrical para­

meters and differences in photoresponse images for both the CD4028A and CD4034A 

test device groups. The most obvious correlation was made for the one CD4034A 
test device which was a parametric failure at the initial electrical test. Sub­

tractions of this device's photoresponse image from photoresponse images of other 

devices whose specifications were all within specification limits revealed many 

obvious differences. The other correlations between differences in initial elec­

trical parameters and differences in photoresponse images were not made from 

observations of obvious differences in photoresponse images for the other test 

devices. Rather, these correlations were made through comparisons of subtle 

differences in the images that resulted from the subtraction of two photoresponse 

images. However, this did demonstrate that the new approach of quantitative 

analysis was successful . Many of the differences that were revealed by the sub­

traction of two images were virtually undetectable by visual comparison of the 

two images. 

Initially, it would appear to be a somewhat negative result that the differ­

ences in the device's electrical parameters could only be related to subtle differ­

ences in their photoresponse images (except for the one CD4034A test device which
 
failed several initial parametric tests). Even though there were differences in
 

their electrical parameters, these devices were all fully functional and their
 

electrical parameters were all within specification limits. Therefore, an effec­

tive screening inspection technique using the optical scanner should not reveal
 

large differences between these devices. The results of this program did not
 

conflict with this requirement. Also, an effective screening inspection technique
 
using the optical scanner should reveal large differences between a device whose
 

electrical parameters are outside of specification limits and one whose parameters
 

are acceptable. The results of the comparison of the optical scanner examinations
 

of the one CD4034A test device whose parameters were unacceptable with other test
 

devices revealed significant differences as required.
 

The other correlation between electrical parameter changes following life
 

tests and photoresponse image differences could not be made. Except for two
 

CD4028A devices that weremechanically damaged during handling, there were no
 
significant changes in electrical parameters for any of the test devices following
 

a total of 500 hours of life testing. The only correlation that could be made
 

was that there were also no significant changes in the photoresponse images
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following the life tests.
 

The other endeavor of the program, to analyze the initial photoresponse
 

images from the test devices in order to determine if they contained information
 

which could be used to predict future device degradation or failure, could not
 

be investigated. Since none of the test devices failed or degraded as a result of
 

inherent defects during the life tests, there was no possibility of analyzing the
 

initial photoresponse images for indications which could have been used to predict
 

the failures.
 

In summary, it was shown that it is possible to implement a method, to perform
 

quantitative analysis of the optical scanner photoresponse images using digital
 

image-processing techniques. Some correlations were made between the test devices' 

electrical behavior and the differences in the photoresponse images as a result of 

the new approach that was implemented. Unfortunately, no significant correlations
 

between devices failed or degraded electrical parameters and photoresponse differ­

ences could be made except in the extreme case of one device which failed several
 

electrical tests from the beginning of the program. This was due to the fact that 

the devices electrical parameters did not fail or degrade due to inherent problems 

during the life tests.
 

The results of this program suggest that additional studies be performed using 

new groups of test devices which would be subjected to either longer life test 

durationsor life tests of more severe test conditions. Since it was shown that
 

-cor-elat-ions-could-be-made-between-subt-le-differences-in-devi-ce-electrica-paramters
 

using the quantitative analysis approach, it should be possible using minimal
 

effort to correlate failed or degraded electrical parameters with changes in photo­

response images. At this point, evaluation of the initial photoresponse images
 

can be performed to determine if there is information in the initial photoresponse
 

image of a device that can be used to predict the failure of the device. If this
 

information does indeed exist, then an extremely valuable screening inspection
 

instrument and technique would be the result. The major developmental effort at
 

that point would be to expand the capabilities of the instrument to include all
 

technologies since CMOS microcircuits have been the main technology investigated
 

up to this point. Also, additional techniques still need to be developed and'
 

evaluated for some of the more specialized microcircuit types, such as memories.
 

Once all of these problems were solved and the required techniques were developed, 

the result would be semiconductor devices whose reliability was greatly improved 

through the application of the optical scanner as a screening inspection instru­

ment.
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