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Abstract

A one meter diameter fiber ring optical gyro using one and one-half kilo-
meters of single mode fiber was constructed. The various noise components:
electronic, thermal, mechanical, and optical, wer evaluated. Both DC and AC
methods were used. An attempt was made to measure the earth rotation rate
(the result was questionable). Polarization properties of the fibers were
measured. The construction, design, testing and evaluation are described. It
was concluded that fiber ring optical gyroscopes using all discrete components
have many serious problems that can only be overcome by discarding the discrete
approach and adapting an all integrated optic technique that has the laser
source, modulator, detector, beamsplitters, bias element, etc., on a single

chip.
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1.0 INTRODUCTION

This final report covers the period December 12, 1977 to June 30, 1979.
The research was done at the Geospace Sciences Laboratory of the University of
Utah Research Institute, Salt Lake City, Utah. A list of those who participated
in this research are shown on page ZZ. The design, construction, evaluation,

etc., of a Fiber Ring Optical Gyroscope (FROG) are described in the report.

1.1 Purpose

Sagnac interferometers have not been considered for guidance applications
because of the lack of sensitivity compared to the ring-laser gyros and certain
mechanical gyros. However, the sensitivity of a Sagnac interferometer can be
improved by circumscribing an area many times using optical fibers. Several
Sagnac fiber interferometers have been made but no systematic study of perfor-

mance has been done. It was the purpose of this study to evaluate some of the

- characteristics of the Fiber Ring Optical Gyroscope using one kilometer or more

of optical fiber. Polarization effects, intensity variations, and reflections
are some of the optical characteristics that were studied. Mechanical motion

of the fiber holders and thermal variations are examples of other characteristics
observed during the evaluation of the system. An attempt was made to detect
earth rotation. The results were questionable, however, because of the optical

and electronic noise present during the measurement.

1.2 The Optical Gyroscope

m :
The first optical gyroscope was built in 1913 by Sagnac . In this in-
strument, an area A = 866 cm? was circumscribed by oppositely traveling light

(mercury light) beams. The rotation rate was 2 revolutions/sec. A shift of




0.07 fringes were observed. At that time, the readout accuracy was about 0.01
fringes. These results were consistent with the expected value, but the accu-
racy was marginal. The experiment was repeated by Poganyrz] in:1926, with an
area A = 1178 cm? and an angular velocity of 157 rad/sec. He reproduced the
theoretically erpected value within 2%, In 1925, Michelson and Ga]e(a‘ detected
the rotation of the earth by means of the optical gyroscope. The area in this
case was a rectangle of 640 x 320 meters.

These and other related experiments showed that the fringe shift aZ, 1)

fuh
AC

loop area, A is the free space wavelength of light, and ¢ is the free space

obeys the formula AZ = , where w is the rotation velocity, A is the enclosed
velocity of light; 2) does not depend on the shape of the surface area A;
3) does not depend on the location of the center of rotation w; and 4) does
not depend on the presence ¢f a co-moving refracting medium in the beam path(“?
One of the recent configurations of the Sagnac devices is called a
"Ring-Laser". It has successfully been used in a navigator. The accuracy of
the ring-laser gyroscope has been reported to be at least as good as 0.017°/hr.
The ring-laser gyroscope measures the beat frequency between oppositely trav+
eling optical waves in a closed Toop laser cavity. The cavity looks longer for
the waves traveling in the direction of rotation and shorter for the oppositely
traveling waves producing a frequency difference between the counterrotating
beams. This frequency difference appears as a beat frequency in the output
proportional to the rotation velocity. There are three different types of
errors that appear: A null-shift error which arises when the laser cavity is
anistropic with respect to the light traveling in the cavity. Gas flow due to
discharge current with the associated Fresnel drag, Faraday effect in the gas,

etc., can cause the anisotropy. Mode pulling effects are caused by the changes

in the scale factor of the gyroscopes. Lock-in which occurs at small beat
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frequencies (small angular velocities) makes the beat frequency equal to zero
before the angular velocity becomes zero. This is due to coupling between the
oppositely traveling waves. The effects of lock-in, for example, can be mini-
mized by dithering.

Some of the problems with the ring-laser can be eliminated when the laser
is outside the ring (i.e., when the rotation sensor is a ring interferometer).
In general, the sensitivity of a ring interferometer is lower than the ring-
laser, but unlike the ring-laser can be increased several orders of magnitude
by making the light beam travel around the loop many times. The sensitivity
for the interferometer can thus be increased without accompanying pulling,
lock-in, and zero shifts.

It is, however, difficult to direct the light beams around an area many
times when the beam path is in air or in vacuum. For multiple round trips,
mirrors would have to be large or various optical devices would have to be used
to maintain the small beam size. Some of the difficulties are removed by
using optical fiber waveguide to form the beam path.

An initial effort was carried out under NASA, ONR, and NSF sponsorship to
study the physics of interferometers using optical fiber waveguides. It was
first shown that the wavefronts remain well defined and stable in a single
mode optical fiber(sw. Thus, it was possible to use optical fibers as the
beam path in an optical gyroscope. A ring interferometer was then built using
10 meters of fiber, and a similar experiment was performed using 950 metersfe\
of single mode fiber. Next, a portable rotating Sagnac interferometer was
constructed using 85 m of single mode fiber on a 20-inch diameter ring(7\

A fringe shift of 1072 was measured which corresponded to about 2.1 degrees/sec
(7600 degrees/hr). While the accuracy of this rotating Sagnac interferometer

was not adequate for detailed evaluation as a gyroscope, it did indicate a
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need for future studies in specific areas such as temperature effects, optical
noise, mechanical noise, laser noise and electronics. In this report, although
all these areas were studied, the fiber noise (optical noise) was the primary

item of concern.
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2.0 TECHNICAL DISCUSSION

2.1 Introduction

Experiemnts which demonstrated that fiber ring interferometers could be
built have been comp]eted(SN(s\. The next research step in the study of the
fiber gyroscopes is the investigation of noise sources.

It was apparent from previous research, for example, that motion of the
interferometer components cause relatively large fringe (phase) shifts. There-

fore, it was essential that the focusing lenses, beamsplitters, etc., be rigid

or even replaced with equivalent fiber optical components. A fiber beamsplitter

has been developed by NRL and NOSC. In addition, directional couplers are being

developed by JPL for use in the fiber gyroscope. These, however, were not
available for this research study.

Qur research centered on the optical noise problems. We attempted to elim-
inate reflection by submerging the optics and detectors in an immersion fluid
Some recent experiments (UURI and JPL) have shown that the polarization effects
in the fiber (which cause fringe contrast fluctuations) can be eliminated by
winding the fiber so that the coil remains in one plane. Therefore, one phase

of our research was a study of polarization properties of fibers and fiber con-

figurations.

2.2 Goal

The goal of this research was to evaluate experimentally the noise sources
in a Fiber Ring Optical Gyroscope (FROG). There is interest in this type of
research because of the potential advantages of an optical ring interferometer
compared to conventional mechanical gyroscopes which are: 1) reduction of

the instrument weight by at least an order of magnitude, 2) instant on
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and off operation, 3) reduction of the instrument complexity, 4) cost reduction

of the instrument, 5) no moving parts, thus higher reliability, 6) reduction

of the required operating rower, and 7) the potential of all solid state con-

struction.

The UURI proposed to carry out the following tasks:

1.

Design a laboratory breadboard experiment to determine the optical
noise sources in the fiber ring optical gyroscope.

Fabricate the fiber ring optical gyroscope.

Investigate the optical effects which gave rise to instrument noise
which will include, but not limited to the following:

a) Polarization effects
b) Intensity effects
c) Reflection effects

Attempt to measure earth rotation.

Report the results.

2.3 Construction

The initial plan was to build a 20 cm diameter ring using 1 kilometer of

optical fiber. It was, however, determined that a more useful system might be

one with a 1 km diameter ring using approximately 1 mile (1.57 kilometers) of

optical fiber. The coil and optics were to be mounted on a Genesco rate table

and tilted at the local latitude as shown in Figure 1.

Because of the delay in dbtaining the fiber, a fringe follower readout was

first installed in the already existing fiber interferometer gyroscope (FIG)

previously built for the NASA Office of University Affairs.

tem was built, such that the angular rate w and angular position 6 of the FIG

were computed and displayed on LED's.

and had‘85 m of fiber on the ring. An accuracy of only ~10° in position

An electronic sys-

Recall that the FIG was 50 cm in diameter
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Figure 1.

Fiber Ring Optical Gyroscope (FROG I). The top (a) shows
the 1.57 kilometers of fiber mounted on the Genesco rate
table. The bottom (b) shows the optics, fiber holders,
and detector in the matching fluid.
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(relative to a fiducial mark) was obtained. The fringe follower design was not
pursued further. Fiqgure 2 shows the FIG with the fringe follower and the LED
readout.

To reduce the FROG optics to a small volume and eliminate one of the micro-
scope objectives, 5 min cube beamsplitters were mounted directly on a microscope
objective. The microscope objective was sealed with a slipcover and the entire
optical system includin¢ the detectors were immersed in a matching fluid to
eliminate refl=zctions. Figure 3 shows the container with the optical components
immersed in flui!. The matching fluid had an index of refraction of 1,4%8
0.005 (nC = 1.4557). The light from the laser was injected into the fluid
through a partially submerged prism. Figure 4 shows various positions of the
1 mm diameter Toop mounted on the Genesco rate table. The styrofoam was wrapped

around the cnil to promote thermal stability. The ITT optical fiber (as tested

by the manufacturer) had 14.2 db/km attenuation at 6,300 A. The attenuation at

8,800 A was reported to be 3.11 db/km. The fiber was tested using an integrating

sphere and a 3 mW laser source. An attenuation of approximately 8 db/km was
obtained in the 1 m diameter coil configuration. In winding the fiber on the

1 m diameter loop, it was necessary to continually clean the fiber because of
dirt on the outside covering. The winding device was constructed from a bicy-
cle wheel to make the stringing of the fiber on the 1 m diameter ring more con-
venient. During the winding, the fiber was maintined under a tension of approx-
imately 15 gmf. The fibers were wound side-by-side with about 60 turns across
a 1-inch U-shaped based (see Figure 5). A sheet of mylar was placed between
each 1ayer.unti1 8 layers were obtained with a total of 500 turns. Several
bulges in the fiber were found. It appeared that blobs of material (1ooks>like
sawdust) were introduced during the teflon coating process. Subsequent dis-

cussions with ITT revealed that the teflon base which comes in the form of
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Fiqure 2. Fiber Interferometer Gyroscope (FIG) showing the fringe
follower, LED read-out of position, and angular rate.

Fiqure 3. Top view of FROG I with matching fluid. The 8 meters of
fiber are taped to the surface of the table to allow
preliminary alignment. |
:
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Figure 4.

P v e B TR X

Various positions of the FROG I. In this version, the
detector/amplifier was outside the fluid. The styrofoam
was wrapped around the coil to promote thermal stability.

10




Figure 5. Winding mechanism was a bicycle wheei with the 1 meter
ring mounted on the periphery (a). The coil was wound |
with the fiber side by side (b). !
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pellets may have aged. This does not affect the performance of the fiber.
It would be useful in the future to request only new material be used. To
accomodate these bulges, small holes were cut in the mylar sheet to minimize
the effect on subsequent layers. Another problem found during the winding of
the coil was that the fiber was twisted on the original drum. It was necessary
to manually rotate the supply drum to take the twist out of the fiber. The
gyro had the following parameters: The coil was mounted at 40.74° (the lati-
tude of Salt Lake City, Utah), the average 1oop diameter was 100 + 0.05 cm.
The measured deviation from a circle of the coil was less than 0.1 cm. The
coil consisted of 500 turns plus 0.3 of a turn due to the connecting optical
components; therefore, the total length of the fiber was estimated to be
L =1571.7 £ 0.3 meters. The fiber core diameter was about 5.5 micrometers.
Preliminary testing (Section 2.4) indicated that immersion in matching
fluid of the interferometer parts including the fiber ends appeared to be
successful in eliminating unwanted fringe patterns. The plan was then to rotate
the coil very slowly which modulated the fringe shift and thus, which would
detect the earth rotation. If the system turned out to be too noisy, it was
planned to advance the coil several degrees at a time and leave stationary
while measurements were made. Figure 6 shows the geometry of the mounting,

The modulation expected was,

- 2uwlLR
Az v .
-5 5
AZE _ 2-7.27-10 "-1.57-10"-50

6.33 107°.3.10!°

AZg = 6.01 x 107" fringe shift due to Earth rate.

12
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, X LATITUDE
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TABLE TOP

—t i < 31°3
LATITUDE (SLC) = 40.74

Figure 6. The geowetry of the mounting used in the attempt to detect
earth rotation rate.
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The modulation predicted would be
AZE sin 81749 = 0.989 AZE

In July of 1978, a performance review was held at the Jet Propulsion Lab-
oratory. As a result of this performance review, a new test plan was developed
which included rework of: the electronics, preamplifier, amplifier, ratio cir-
cuit, etc. The new plan was to: measure the noise level, evaluate the ratio
circuit, incorporate a synchronous detection system, test optical isolators,
test for stress-induced birefringence and po]ariiation effects, observe and

record thermal effects, and observe and record mechanical effects. The results

of these tests will be discussed in Section 3.0 Evaluation.

On May 3, 1978, Dr. Vali left the Geospace Sciences Laboratory of the Uni-
versity of Utah Research Institute. At that time, Dr. Glen J. Morris was
appointed Principal Investigator and continued so to the end of the project.

On July 5, 1978, Dr. Lawrence D. Weaver joined the Geospace Sciences Laboratory

and was responsible for carrying out the remaining portion of the research.

2.4 Preliminary Testing

The FIG (Fiber Interferometer Gyroscope) with an electro-mechanical fringe
follower (visa-corder mirror galvo) was tested and found to have a pointing
accuracy of only +10°., The test of this system was discontinued because of the
poor results. Mechanical instability was assumed to be the primary cause of
the difficulty.

The optical system of the FROG (Fiber Ring Optical Gyroscope) was immersed
in a matching fluid to reduce the fiber end reflections. Figure 7 shows the
method used. A small loop of fiber (8 meters) was taped to the surface of the

table (see Figure 3). A substantial reduction in the end reflections was

observed visually.

14
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Figure 7. Diagram of FROG I optics immersed in matching fluid.
See Figure 8 for detail of PRISM.
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A second system was constructed using another 5 mm Cube beamsplitter to
observe the complementary fringe pattern. Figure 8 illustrates the arrangement.
Reflections, however, from the surface of the liquid made it inconvenient to use
detector #1. In the final configuration, only detector #2 was used to measure
fringe shift as shown in various views in Figure 9.

The configuration used in the attempt to detect earth rotation was shown in
Figure 4. The results of this test by Vali and Berg are given in Appendix A.
Their results were interpreted in terms of nonreciprocity noise in the fiber

gyroscope. There is no evidence that the earth rotation rate was detected.
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3.0 EVALUATION

As originally conceived, the FROG I was to utilize a DC detection method for
the measurement of fringe intensity. After the results of the preliminary test-

ing, a synchronous detection scheme was added. The dominant sources of noise

that were present in the FROG I were attributed to: source laser intensity fluct-

ations, electronic noise, opto-mechanical noise, and stray reflections. Each of
these were separately evaluated in order to ascertain their relative contribution

]
to the total noise.

3.1 Characterization of the FROG I Detection System *

The block diagram of the electronics system used in,/FROG I is shown in Fig-

ure 10. In this method, fluctuations in the laser intensity were to be handled by

splitting off a portion of the He-Ne beam before allowing it to enter the fiber
ends, measuring the beam intensity, and forming the ratio of the output fringe
intensity to the reference beam intensity. This method does not, however, take
into account changes in fringe intensity that are brought about by changes in
the coupling efficiency of the beam into the fiber. These changes in the coup-
1ing efficiency were a major source of drift and noise in the FROG I. A better
approach would have been to use a second fringe detector (looking at the compli-
rnentary fringe pattern), form the difference and sum signals, and take the ratio
between the two. Unfortunately, the FROG I was designed in such a way that the
complimentary fringe pattern was not readily obtainable.

Each component illustrated was a source of noise and consequently was char-
acterized. For example, the output of the fringe detector preamp was typically

300 mv at w = 0. The detector/preamp combination (Silicon Detector Corporation

19
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Figure 10. Block diadram of the electronic system used in FROG I.
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SD-100-42-12-231) had a rms noise output of 230 pv. Although the preamplifier
had only a 100 Hz 3 db signal bandwidth with respect to incoming light, the
noise bandwidth (at the output of the preamp) was somewhat greater (the 10 Hz
Jow pass filter was not available for these measurewents). Thus, the fringe

detector preamp had a signal-to-noise ratio

s/N=—3Y - 1300.  (D.C. signal/AC RMS noise)
.23 x 10 v

The x 10 amplifier in the fringe detector circuit had an output noise level of

about 60 uv(again, wideband). Since 10 x 230 pv = 2300 uv >> 60 pv, the detector

or/preamp combination was the major source of electronic noise for the measure-

ments described in Appendices A. Similar considerations for the reference detectc

(laser intensity monitor), but with different noise and sianal levels, indicated
a signal-to-noise ratio of S/N = 1750.

The divider, or ratiometer (Analog Devices Model 436A), was another source
of instrumentation noise. This device was extensively characterized over a
wide range of input levels and modulation depths. Since the output of the laser
was constant to within £(0.5 - 1.0)% on a RMS basis and with peak excursions to
+2%, the output noise level measured in a simulated experiment indicated a
S/N = 4300. 1In that measurement, the denominator input was 10v + 1.5% and the
numerator was at midrange (-3v) corresponding to a fringe detector output biased
to a 90° phase shift. Again, the S/N quoted is a wideband f{gure.

For the experiments whose descriptions follow in the next section, the
bandwidth of the electronics was restricted to about 10 Hz. Thus, the signal-
to-noise ratios were greatly improved. The actual S/N (of the electronics)
for these experiments were not measured since the results indicated a much

lower value than would be anticipated even with the wideband S/N ratios.

21
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3.2 Performance of FROG I - DC Detection System

In order to assess the performance of the FROG I, the output of the fringe
detector was monitored for several minutes at each data point thereby obtaining
drift and noise data. The 10 Hz bandwidth of the electronics should have pro-
vided an adequate S/N ratio (S/N >> 1300) for detecting Earth rotation (pro-
vided the interferometer is biased to approximately 90°). In the experiments
that were conducted (see Appendices A), the outputs of the fringe and reference
detectors were not ratioed. In view of the results obtained, this step was not
required. |

Figures 11 and 12 are x-y plots of the fringe and reference detector outputs
with no rotation. During the course of the;e measurements, it was observed that
spurious signals were being generated by the interference between beams that
were (most likely) derived from reflections with the cube beamsplitter or else
from the fiber ends, recalling that all of the optics were immersed in index-
matching fluid to eliminate these reflections. However, the index of refraction
was only matched to the fiber to reduce end reflections and not reflections
from other components. These effects (fringes caused by reflections) could be
reduced by upconversion to a frequency (via an audio speaker attached to the
rate table) outside the bandwidth of the electronics (refer to Figures 11 & 12).
However, for rotation rates > 0, this technique did not result in any improvement
in the noise level (Figures 13 & 14) because of the vibration introduced by the
table during rotation. The residual higher frequency components observed in
Figure 10 could be reduced by allowing the matching fluid to settle overnight
(Figure 15). The upper trace in Figure 15 is the one obtained after the system
was allcwed to settle overnight, and the lower trace was obtained after a minor
perturbation of the fluid. Figure 16 shows the traces obtained after highly

perturbing the fluid. These measurements (Figures 15 & 16) were obtained with
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the speaker on, thus reducing the noise components associated with stray reflect-
ions.

Thus, it must be concluded from these measurements that another source of
"noise" is that due to the fluid. More precisely, the source is due to particles
suspended in the fluid which in turn produce scattered and diffracted components
in the beam. Even in the absence of external perturbations, Brownian motion of
the particles therefore is capable of inducing temporal changes in the received
flux (i.e., "noise").

Although the fluid was quite‘"dirty" after several months of use and
undoubtedly was a source of ever-increasing noise, its utility as an inhibitor
of end reflections is open to question, particularly since it does not eliminate
stray reflections from other optical components. Of greater concern were the
slow temporal variations present in Figures 11-16. These are discussed in the

next section.

3.3 Performance of FROG II - Synchronous Detection Method

A serious problem with DC detection methods is the offset drift always
present in DC amplifiers. Offset drift errors in the preamplifiers and ampli-
fiers used in the .FROG 1 amount to a few millivolts (over periods of 30 minutes
to an hour or more) and are especially large when referred to the fringe detector
preamp output. In that case, the error due to drift is somewhat larger than the
S/N ratio indicates.

One means of circumventing the electronic drift problem is to convert the
optical signal to an AC signal and use synchronous detection methods. There
are, in general, other advantages to this technique, but these shall not be

discussed here.
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In the method used for FROG II, the laser beam entering the fiber ring
interferometer was mechanically chopped at ~1600 Hz (see Figure 17). The beam
impinging on the referencé detector was unchopped due to lack of a 2nd channel
in the lock-in amplifier. The output of the fringe detector was synchronously
detected by an Ithaco Dynatrac Lock-In Amplifier.

Figure 18 illustrates typical outputs from the fringe and reference detec-
tors. The bandwidth of the lock-in is 0.03 Hz and the output time constant was
4 sec. The high noise level could be due to: (1) Intensity fluctuations pro-
duced by particles in the fluid. (2) Noise generation due to polarization
fluctuations produced in the fiber by changes in the birefringent properties
of the fiber. (3) Changeé in the optical coupling efficiency into the fiber.

In Figure 19, the bandwidth was reduced to 0.001 Hz with a corresponding
increase in the output time constant to 125 seconds. It is seen here when the
noise component has been smoothed, that there are long-term drifts in the out-
put of the fringe detector which are not correlated with changes in the laser
output. The most probable cause for this effect are changes in the coupling of
the beams into the two fiber ends. The five-axis fiber positioners used were
not stable alignment devices. In addition to vibration, which can be readily
transmitted to these positioners, they also possess a slow hystersis which is
responsible for long-term drift in the fringe detector output.

Incorporation of a synchronous detection system‘into the FROG II cannot
solve these drift problems since any real changes in the received optical power

(due to either laser intensity changes or changes in the coupling efficiency)

are synchronous at the chopping frequency (i.e., they are correlated with respect

to the signal). Noise components that are uncorrelated with respect to the sig-

nal are the only one rejected.
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Figure 17.

Photograph of FROG I1. In the top photo (a), the laser L, polari-

zer P, beamsplitter BS, laser reference intensity monitor detector/
amplifier D, chopper C, are shown. In the lower photo (b), the |
detector/amplifier for observing the fringe pattern F are shown.
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3.4 Source Isolation

Feedback of energy into the Helium-Neon laser source was not a problem with
the FROG II since other sources of noise and drift dominated the measurements.
However, one method of isolating the source from feedback was investigated.

This involved the use of quarter-waveplate optical isolators. These were found

to be somewhat effective in reducing the laser intensity fluctuations as moni-
tored with the reference intensity detector. In general, they may not be useful
in a fiber interferometer since their effectiveness is determined by the polariza-
tion state of the returned beam.

A better method for eliminating the feedback, as well as reducing the inter-
ference effects from stray reflections, is to pulse the laser source on and off

at a rate determined by the propagation time in the fiber.

3.5 Polarization Measurements

A fiber interferometer is an example of a class of interferometers known
as common path interferometers. In this type of interferometer, both beams
traverse, in opposite directions, the same geometrical, if not the same optical,
path. Consequently, this class of interferometers is relatively immune from
the effects of vibration and reciprocal path length changes. A single mode
optical fiber, so named because only one transverse mode of propagation can be-
cause only on transverse mode of prépagation can be supported, is actually capa-
ble of propagating two orthogonal modes of polarization. Single mode optical
fibers are known to exhibit linear birefringence and perhaps circular birefrin-
gence (optical activity). Some researchers have expressed concern that the
polarization cannot be preserved in a fiber due to stress- and temperature-
~induced changes in the birefringence. Three principle design techniques in the

production of bo]arization conserving fibers have been attempted, with only

34
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some degree of success. They are: (1) collapsed circular preform with cladding,
(2) the use of preforms which permit the incorporation of a permanently-induced
assymetric radial strain acting on the fiber core and (3) elliptical core fibers.

The nonconservation of polarization in an optical fiber, particularly if
it is undergoing spontaneous changes, is equivalent to the presence of nonre-
ciprocal random phase changes between the two counter-propagating waves travers-
ing the interferometer. These nonreciprocal random phase changes (and hence,
intensity fluctuations) are sources of optical noise in a fiber interfarometer
rotation sensor.

The experimental arrangement is shown in Figure 20. Light from a polarized
Helium-Neon laser is passed through a polarizer in order to produce a very highly
polarized source of radiation. The light is chopped by a mechanical chopper
which also provides a reference signal to the lock-in amplifier. A half-wave
plate w is used to adjust the polarization azimuth angle of the input light
which is focused onto the fiber by a 20x microscope objective. The output light
from the fiber is collimated by another 20x microscope objective and passed
through a dichroic polarization analyzer A before being synchronously detected
by a photodiode detector S and lock-in amplifier. A Babinet-Soleil compensator
was inserted for accurate phase measurements between the two orthogonal polariza-
tion components.

The polarization measurements performed on the fibers were the polarization
ratio R (R = 20 10910Tm$5), the azimuth angle of the output polarization ellipse
and the relative phasem;?fference between the two orthogonal modes of polariza-
tion. Imax and Imin are the intensities of the two polarization components.

Four different optical fibers were evaluated during the course of this
work. Two of these fibers were used in working models of a fiber interferometer

rotation sensor. These were the FIG and FROG systems. Both fibers were
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manufactured by ITT, had lengths measuring 85 m and 1.57 km, and each had a

core diameter of 4.5 um. These fibers were snugly wound on cylinders having
diameters of 0.26 m and 1.00 m, respectively. Two other fibers were also avail-
able for evaluation. These were small core fibers (2.4 um) and were manufactured
by ITT and FCI. The 30 m FCI fiber had no buffer or covering, was loosely wound
on a 50 cm storage cylinder which hung from the laboratory ceiling. This fiber
was very fragile, had no contact support and was simply allowed to droop on the
optical table. The 10 m ITT fiber did have a RTV buffer and outer covering,

as did the longer 85 m and 1.5 km fibers, although it tco was loosely wound

(on the original shipping spool).

Figures 21-24 are plots of the polarization ratio R as a function of the
azimuth angle of the input polarization vector. These results are in qualitative
agreement with those of Ramaswamy, et aZ.(BX In all four figures, the large
polarization ratio corresponds to a polarization state that is very nearly
linear (within the limits of source polarization). There are two such input
azimuth angles, ninety degrees apart, for which the output is linearly polarized.
This observticn is consistent with the fact that the fiber behaves, in some in-
stances, like a simple birefringent wave-retarder.

However, all the fibers did not behave the same. Although the radiation
exiting from the 30 m FCI fiber exhibited a high degree of polarization, there
was a considerable amount of drift observed in the azimuth angle of the polar-
ization vector for both input and output beams. This drift amounted to several
tens of degrees over periods of 20-30 minutes. The primary source of this
drifting was found to be due to changes in the thermal environment. Also,
changes in the polarization state could be brought about by simply moving or
touching the fiber lightly. The short 10 m ITT fiber (2.4 um core) exhibited

a similar behavior, although irn that case a state of linear polarization could
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be preserved over longer periods of time (10's of minutes) without changing.
In contrast to the FCI fiber which had no buffer or covering and the 10 m
ITT fiber which was wound loosely on the shipping spool, the 85 m and 1.57 km

ITT fibers exhibited no measurable drifts in the polarization ratio for fixed

input azimuth angles. In particular, the large polarization ratio observed when
the input polarization vector was aligned parallel to one of the two principle
axes of the fiber was maintained for a period of several weeks without any
adjustment or alignment of the input azimuth angle. Thus, a state of linear
polarization at the input could be preserved at the output over long periods of
time. (Note: Although input and output polarization were highly linear, the
polarization vectors were never parallel to one another and seemed to have
preferential orientation with respect to the fiber coil.) This could be due

to either twists in the fiber or optical activity.

The second type of measurement performed on these fibers was the relative

- orientation of the output polarization ellipse as a function of the input polar-

ization angle. The results of these measurements are illustrated in Figures
25-28. The behavior of the FCI and 10 ITT fibers is similar to that observed
at Bell Laboratories. These were loosely wound on a cylinder and the Bell Lab
fibers were stretched out in a linear fashion. The correlation between the
input and output polarizations for the 85 m and 1.57 km ITT fibers, snugly
wound in coil forms about cylinders, is distinctly different from that of the
lToosely wound fibers. It is seen in Figures 25 and 26 that the output azimuth
angle is somewhat independent (although never completely) of the input polariza-
tion vector alignment until it approaches 45° (or a suitable odd multiple). At
this point, the orientation of the output ellipse changes dramatically (almost
90°). This behavior does not seem to be typical of that expected if we were

to treat the fiber as a simpie birefringent wave-retarder since a smoother
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Figure 25. Orientation of the polarization ellipse 6, as a function
of input angle 6;. The fiber is in the form of a ring
one meter in diameter, core diameter 4.5 um, cladding
diameter 83 um, optical attenuation 8 dB/km and the
source wavelength 633 nm.
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Figure 26. Orientation of polarization ellipse 6o as a function of
input angle 6. The fiber is in the form of a ring 52 cm
in diameter, core 4.5 um, cladding diameter 83 um, optical
attenuation 17 dB/km and the source wavelength 633 nm.
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transition would be expected. Clearly, this departure is somehow related to
the wave-guiding properties of the fiber.

Another matter of potential concern was the observation of a relatively
strong time-dependent coupling that existed between the two orthogonal modes of
polarization whenever the input radiation was coupled into the fiber with the
polarization vector approximately 45° to the principal axes of the fibers. The
coupling was confirmed by the observation of the intensity changes in either of
the two orthogonal modes of polarization. This suggests that great care must
be exercised in the coupling of the laser beam into the fiber since these inten-
sity fluctuations can be interpreted as phase fluctuations induced by rotation
(i.e., a gyroscope operating in this mode would have a high "drift-rate" error).

The last type of measurement performed was that of the relative phase
difference between the two polarization modes (using the Babinet-Soleil compen-
sator) for each of the two longer fibers. In both instances, the phase differ-
ence amounted to approximately 1.4 A, consistent with the minimum polarization

ratio R.
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4.0 CONCLUSIONS

It was the goal of this research project to evaluate the fiber ring optical
gyroscope in terms of noise sources, particularly optical. A one meter diameter
ring with about 1600 meters was constructed. To eliminate reflections from the
fiber end, the optics, detectors, and fiber holders were immersed in a matching
fluid. This reduced the end reflections significantly. However, this was not
as successful with the other optical surfaces and reflections were still present.
Thermal variations in the fluid and electronic noise prevented the detection of
earth rotation rate with the FROG I system (DC detection). Even with the syn-
chronous detection system and subsequent improvement of the electronic design
(FROG I1), thermal drifts were still a serious problem (see Figure 29). The
diode laser was used in place of the HeNe laser, but reflections from the fiber
ends and other surfaces were a serious problem (see Figure 30). No further
work with the diode laser was done. Further configuration suggestions for the
FROG are shown in Figure 29.

The final conclusion from the FROG study is that a discrete system has
very serious limitations. Not only were there optical noise sources which were
hard to control, but thermal and mechanical stability requirements could not be
met with the configuration used. Modulation techniques were not investigated
as shown in Figure 29 (FROG IV and FROG V). McLandrich and Rastrg\ at NOSC
have built and tested a system similar to FROG IV which operated successfully
very close to earth rate but had some of the same problems that were encountered

with FROG I and II.

Many of the problems could be avoided with an all integrated optic approach,

with the laser source, modulator, detector, beamsplitter, bias element, etc.,

. . (10,11)
on a single chip .
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We recommend that development of integrated optic components be encouraged.
In the initial stages, perhaps only individual functions would be developed

(i.e., beamsplitter/modulator) while the laser source and detector would be dis-

crete as before.
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30. Photograph of fringe patterns produced with a diode

laser. The fiber ends were in air.
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6.0 APPENDICES

A.

Measurements of V. Vali and M. F., Berg

This paper was published in the proceedings of SPIE. The paragraphs marked

with asteriks were completed more than four months after the authors were no

longer in the employment of the lniversity of Utah Research Institute.

B.

Presentations, Seminars, Published Papers

A list of presentations, seminars, and published papers are listed below:

1.

"Fiber Gyroscopes", V. Vali and M. F. Berg, SPIE talk given August 31,
1978, Session 11, Laser Inertial Rotation Sensors, Town and Country
Motel, San Diego, California. Presented by V. Vali.

ONR Workshop, "Optical Fiber Gyroscopes Theory" presented by V. Vali,
and the "Experimental Results" obtained at the Geospace Sciences
Laboratory presented by R. W. Shorthill.

"Optical Fiber Gyroscope", R. W. Shorthill, G. J. orris, L. D. Weaver.
Presented at IFAC Conference, Oxford, England, July 2-6, 1979. VIII
IFAC Symposium on Automatic Controls in Space presented by R. W. Shorthill.

Various presentations and descriptions of the work in progress were brief-
ly reported in proposals made to potential sponsors.
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NONRECIPROCITY NOISE
IN FIBER GYROSCOPES
AND MEASUREMENT OF FIBER
DISPERSION

V. Vali and M. F, Berg*
Univeraity ol Utaty Resod b instinate
Salt Lake City. Utah 84108

1t has been shown previously (1) that
the dispersion term in the Fresnel drag co-
efficient can be detected using a moving
single mode fiber as the beam path. This
letter reports on the results of a study of
optical noise sources in fiber gyroscopes as
well as on determining the dispersion term
with higher accuracy.

The fringe shift aZ

in a fiber ring
interferometer is:

2:LR
A Y

n'{(1—n)eosy) (1)

where o is the angular velocity, 1, is the
fiber length, R is the fiber coil radius, |
is the freo space wavelengyth of light, ¢ is
the free space velocity of light, n is the
index of refraction of the fiber, o+ is the
Fresnel drag cocfficient, and ¢ is the angle
botwoen the fibor coil axes and the rotation
axes. The Fresncl drag coefficient is:

a.

n
\ (2)

T
n n

a

The last term in this expression is the
dispersion term,

In this experiment the fibor coil was
mounted on a Genesco rate table (Model C-181).
The angle between the rate table rotation
axes and the fiber coil axes was made cqual
to the latitude of Salt lLake City - 40.74°.

The fiber coil was made such that when
the fiber was layer wound {10 layers) the
average fiber loop diameter was 100 * 0.05
en.  The deviation from a circle was less
than 0.1 ecm. A total of 500 full turns of
fiber was uscrd.  The qgeometry of connecting
the fiber ends to the interferometer compon-
ents that were located in the coenter of the
fiber coil, added another 0.3 turns to the
coil. Therefore, L = 1571,7 % 0.3 meters
The fiber was made by I'TT and has an attenu-
ation of about & JdB/km at A= 6328 K. Its
core diameter is 5.9 am. A Spectra Physics
Hete laser (Model 138P) was used as the
light source,

To eliminate the optical noise associ-
ated with fiber end reflections (and

reflections from other optical components)
the intorferometer parts including the
fiber ends were immersed in index matching
fluid. Without this precaution the extra
fringe patterns that are formed betweon
the fiber ends, the cube beam splitter
sides and fiber onds, etc. would have
cuased intensity fluctuations in the conte
of the crrenlar fringe pattern that are
cquivalent to a larqge fraction of o
fringe.

To acasure the fringe shift vz as
a function of the angular velocity w , thoe
ratio of photocurrents at the center of
the circnlar fringe pattern and the dircct
laser light was roecorded.  Phe anqular
velocity of the fiher coil was increased
in increments of about 1 dey/scc.  Thoe
rotation velocity was varied between 0
deqg/scce. and 115 deg/see. A scection of
such a recording is shown in Figqure 1. For
the calibration of this fiber interfero-
.meter gyroscope, eloven complete fringoes
weore usoed.  The rosult is:

9.20 i 0.01 deg, sec/lringe

The largost uncertainty of this
study arcse from the nonreciprocal eoffcects
caused Ly variaticns in the clasto-
optically induced optical activity and
lincar birefringence., (2)  The magnitude
of this variation changed the appraront
fringe puase by about 57 of the distance
between tringes.  ‘This effect i seen in
Figurce 1 as the apparent intensity floe-
tuation when the anqgular velocity is kept
constant . ,

Using equation (1) and n = 1,457,
one qots:

< =0.5324 £ 0.0005

and from cquatinon (2):

~(791£10)-107° A~

dn
d

This distersion is about a factor of 3
smaller than the value of material dis-
porsion {or bulk fusced oo taz, Tho
reduction 1y presusably dae to the of foet
of vaveauide dispersion (Ghich has the
onposite aan of the matoerial disaersion)
since the fringe position depends on tie
total digcprersion,

*‘ When the rate table is rotated
around the local vertical axes, the anqu-
lar relationship between the fibeor gyro
sonse coil axes and the carth's rotation
axes varies in osuch a way as to be
alternately parallel and perpendicular.,
Since the instroment measures the vector

* Vali and Berq are presently at Rockwell International, 3370 Miralowt Ave. Anaheim; CA 92803
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| sum or these two rotataons, the obscrved

| tringe sttt as composced of a small

) sinusordally varying fringe shift (pro-
duced by carth rotation)

vidod to o constant

frange sttt produced by the rate tabl

! rotation,

)

} *‘ Since Sult Lake City is not at the
v earallel, Lut 18 located ot 40.7*
frath ot itudd, tix st e it wiau Coun=
itructed su that the $3baar Jyro senune coijl
o woula become porpendicalar to the
carth's rotation axes during rotation of
the rate table, and therctore could not be-

I Nt \.\;lhi,lutt'l',' .ﬁ.ll‘ullx'l to the carth

1 totat i on asxes. Theretore, only 98,90 of

4 thic vaamam addaitional fringe shitt due to
carth rotation was obtajined,

‘) To average the optical path non-
reciprocity noise, the table was r1otated at
whoat 80 deg/sce. for, 20 minutes.,  The
ratio ot photodetector outputs was recorded,
fU the beginnang of cach revolution, the
scope was triggered, The result is shown
i bigure 2, 'he earth rotation contri-
batiron anounts to about 1.9% small scale

b davisions, It 15 jJust obscervable witthnn
the random fluctuations 1n the fring

} pesition as caused by the birefringonce.

Therefore, at present the variations
i the uptical path nonteciprocity of the
tiber limt the accuracy ot the faber ring
interterometer gyroocore to about 10 times
the carth rutation rate,

keterences

shorthill)l and M. I,
$19727) .

‘ . V. Vali, R. W,
boerg, Appl. opt. 16, 2609

2 Ik, Ulrich and A, Si1mon, Polarization
prics of ‘'wisted Single-Made Vibers,
‘ to be published in Applicd Optics,
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Figure 1

A section of recording the fringe shift
as a function of the rotation velocity.
The angular velocity 1n degrees per
scecond 1s indicated on the recording,
The optical nonreciprocity nolse 18 seen
as the apparent frange position fluctu-
ation as the angular velocity 1s kept
constant.,

*— Fiqure 2

A photographic integration of the fringe
position «t an anqgular velocity of about
80 deg/scc. The scope was triggered at
the beginning of each revolution. About
300 revolutions were recorded. The large
t luctuations of the fringe position werce
duc to variations in optical nonrecipro-
city. The caleculated contribution of
carth rotation 1s indicated by the bLlack
line,
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