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Summary
A simple energy approach to study the problem of control-structure inter-

actions in large space-structures is presented. For the illustrative case of a

free-free beam, the vibrational energy imparted during operation of constant,

step, and pulsed thrusters is found in a non-dimensional closed form. Then

1

based on a parametric study, suggestions are made on the choice of parameters
tc minimize the control-structure interactions. The study of this simple sys-

tem provides physical insight and understanding for more complex systems.
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Notation
energy and its non-dimensional form

flexure rigidity coefficient

force due to thruster

transverse moment of inertia :
ratio of energy in flexure, flexure mode L

kinetic energy

strain energy

mode-shape

T 'CL/ T;

pulse number

roots of eq. (9) defining mode-shape

length : g
mass per unit length L
total number of pulses
frequency

time

distance from one end of beam

transverse deflection |
m .

>

t=f
time between pulses

L th

period of mode

pulse-width
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Subscript

f ; flexure mode
i ith mode
max max imum

min minimum

r rigid mode

Dots indicate differentiation with respect to time and primes indicate differen-

tial with respect to X,

Introduction

The problem of control-structure interactions in large spacecraft has been
of concern in recent years. A number of studies have been conducted on the sub-
ject by many authors. Generally one has to resort to extensive numerical simu-

lation. Any a priori knowledge of the system helps in reducing the computational

effort involved. This paper presents a simple energy approach which provides
considerable insight into the problem. As an illustration a free-free uniform
beam subjected to continuous, step and pulsed operation of a transverse thruster
is chosen. It represents a rectangular solar power satellite or a slender
rocket with large length to width/diameter ratio. To control the orientation
(rigid-mode), transverse thrusters, usually placed near the ends, are operated.
Their operation can impart significant undesirable vibrations.

Here the ratic of energy in flexure mode and rigid mode is found in a closed
form. It is then used for an extensive parametric study. Non-dimensionalization
makes the results applicable to a wide range of systems. Based on the analysis,
suggestions are made for a strategy minimizing the control-structure interac-

tions.




Analysis

Consider a free-free beam (Fig. 1a) subjected to a concentrated transverse

Yoad (thrust) F. Under the action of the force the beam will translate, rotate

| and vibrate. The first two are designated as rigid-mode, and the last is called
flexure-mode of motion. Let us consider three types of loading - constant, step

and pulsed.

A. Constant (continuous) Thrust
Ion-thrusters generate a loading of this nature (Fig. 1b). Under its ac-

tion, energy in the rigid mode is given by
2 2
E,o=Tr =(I o™+ mlur)/2 "

where 0 and U} are rational and translational speed. If the thruster is at one

enda (Xyq= 1) we get

2
E, = &F tz/mQ (2)

The kinetic and strain energy in the flexure mode are given byl

(3)

Under concentrated loading the response of a beam can be written in terms of
modal components as1

v XiXu (Gq sinp (t-t) dt
y=2 P L S,%() L (4)

I T I I




T e wqr— o .

5

where XH is lth mode calculated at the point of application of F, and g-%.

For a constant force, the response is

Y=g 2 xi;_ﬁ“ (1-cospt)

For a free-free beam the normal modes can be taken as

(5)

X = # (coskx +cosh k) £ (sinkx + amh k=),

vhere

By =VEL/mk:

coskl cosh kl =1

Noting that
P !
J ‘xf‘dx=9 : fXLXJC‘I=O

2

and using (5) - (8), eq. (3) can be written as

2 3 ‘n2 P,
T, -E s %y SmP.ZPtf

¢ ={@nh Kkt s sinkl) /(sinh ki — Sink1)}*2

L]

(7)

(8)

(9)

(10;

(11)
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E, = E miaet Ty = ST sinere /)

The total energy in the flexure mode is therefore

2
Ep =T +VUp =07 Zxd (4~ cospb)/pr

(12)
2
For the force acting at one end xd=4 , and
_ BF*? 2
E;_’ = W Z (-Sln Pil:/Z)/Pg" (13)

Eq. (2) and (13) can be written to yield non-dimensionalized components of

energy as

£l = E, mherr - (b/0)

(14)
{

(15)

The energy-ratio is given by

3
R= Eg/Er = Z <s'm Zi /ZL> =ZRL (16)

where Z{ = Wt/Ti
Thus we obtain simple expressions for flexure-energy and energy-ratio. A high
value of R corresponds to large control-structure interaction. Our aim is to

minimize it. This will be discussed in the next section.

B. Step Thrust:
Generally. chemical thrusters are operated for a limited time like a step-

function (Fig. 1c). During the application of force all the relations found
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above hold. After the termination of thrust at ti. the energy will remain con-
stant and will correspond to the value at tafa. Hence with t replaced by ti ,

relations (12) - (16) are applicable. The response after tiis given by

y= Z X; Xy {cosp, <t -ty — cospE3/eE ()

C. Pulsed Thrust:

In many applications control is achieved using pulsed thrusters. In this
case control-structure interactions can severe if the system parameters, namely
thrust level F , pulse-width & , period between pulses T , and number of pulses
n , are not chosen properly.

The responsa at the end of n uniform pulses can be expressed as
Fos XXy 2 .
= -r—ﬁl Z-——-—__.PLZ Zi {COS PL (‘t-—%;} — Cos Pi'(t'— tJO)} (18)
Jd=

where fjp and tj(>refer to the final and initial time of _jth pulse. They can

be expressed as

(G-DT+8 , to=G-DT

(19)
Using (19), the j series in (18) can be summed2 to yield
p s XiXus SunPn/z[ _ n-d
y- O cosp(t-6 - B2 T) (20)
i

— COS P-L(L-- Q’%D]

- vaid
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Using (20) in (3) with (6) and (10) yields the vibrational kinetic and strain

energy at the end of N p ses as,

.‘zml Z[ Xi4 Sin PiNT/o is‘n FL Ct__ ____'C)—- S'l:l PL(L"-;‘

FLSH‘\ P .C/ -Lt)ﬁ

T > =T PL.C/Z/‘ Serp(e-S-n5ly) (@
__C‘osP(l— n- iT}?TJ

The total flexure-mode energy is
. 2
5 S P-n‘C/9_> < _Cosp.d
EP mi z ( p. SN P T/ 4 P > (22)

With the thruster at one end, this can be written in non-dimensional form as

et Eemd ml SL T,-SinnT T/t Sin TS/ T }?—

f ;zr T TTy =inT T/ (23)
Corresponding component of energy in the rigid-mode is given by
# Ecmf -
E, =5, - (nc?/'z.‘O
2F ™ T, (24)

From these, R can also be written. Note the similarity with (16) -'(18). The
limiting values of the energy introduced into the flexure-mode can be easily

found from (23) as follows.

Since

(5’\!’\ nrrt/E‘\ n at "C/"C(_ - "n*eaer

Sin Tr'z:/‘cc/m <
Ma

=0 af n‘L/‘C = \n"eaer and T/'[L mh?aef
( >m\n (25)
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we have from (23),

! n s S/T-z y '
E:fhnax:('gzﬁmw '> = Ef‘m'm =0 (26)

Also,
{ A e b S/t = Ny T
(t‘?c.ma%)qu— " /%(’ “ / - -
= Ef as N —cw
| (Efcmaxsm'm =0 ak 9/t =N (27)

? where N is an integer. With a proper choice of S ,NV ,T it is possible to
minimize the total E},, as discussed in the next section.
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Parametric Study

In the case of continuous constant thrust, the only parameter under control
is the th;ust level F . Both E, and E}increase as square of F . The energy-
F ratio R varies with time. Initially for each mode, Ry is near unity. It goes
down to zero when t equats the period of that mode (Fig. 2a). Fig. 2b compares
the energy-ratio in the first 10 modes at three instants from the start. Gen-

erally the first three modes dominate. At some instants the higher modes may

contain more energy than the lower ones. The}overal] energy ratio is very high
in the beginning. Gradually, it reduces with the increase in time (Fig. 2c).
Fig. 2d shows that initially only flexure modes are excited. Then the rigid-
mode gains energy and keeps building up. Energy in the flexure-mode, however,
keeps fluctuating between 0.01 and 0.11, which occur near NT and (bb&#é)'ﬂ' R
respectively (Fig. 2d).
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These observations are applicable for the case of step-thrust also. Here,
for a given amount of control ( &€, constant), it is possible to trade between F
and ti to minimize the energy introduced into the flexure-mode using Fig. 2d.
Generally a choice of £3xNT Ty will give minimum flexure-energy. After
choosing ti , F can be fixed. From eq. (13) and (15) one may also note that
for a given bi and F more modes are excited for a more flexible system.

Use of pulsed thrust introduces 4 parameters, F , S ,T ,and N, any
three of which can be chosen at will for a given amount of control. Fig. 3 and
4 generated using (23) show the effect of varying these parameters. Fig. 3(a)
shows the maximum energy in a mode (Eq. 26) as a function of the pulse-width.

As expected, for a pulse-width equal to an intepral multiple of the modal period,
the energy in that mode is minimum. However, this may enhance energy in the
other modes. So the choice of the pulse-width which minimizes the total flexure
energy will require some effort and trade-offs. For a given thrust level and
rigid-mode energy, Fig. 3(b) shows that the maximum energy in a mode increases
as we increase the number of pulses (and reduce the pulse-width). They asymp-
totically reach the value corresponding to the rigid-mode. The energy in higher
iodes fluctuates between zero and a small value up to some N before increasing
monotonically. Hence it seems gbod to keep N Tow. It is possible that energy
in some modes may be more than in the lower modes. It is interesting to note
that for the case considered only the first mode is excited at h= 3.

After fixing & and N (and thereby, F for:' a given Er) to yield the mini-
mum of peak flexure-energy, it is possible to then reduce it further by a proper
choice of the pulse-period T . Generally it is desirable to keep T as small
as possible to complete the operation soon. However, one should avoid resonance

with any mode, otherwise, the energy in flexure-mode can be very high. This is
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shown on Fig. 4, which presents variation of E; as a function of T for two
cases (N=4,S=095T; and n=fo, S=0.4 T4 ) with a given level of
thrust and rigid-mode ¢ 2rgy. With the increase in the number of pulses higher
modes are also excited and the resonance peaks get higher and narrower. The
choice of T , therefore, becomes more critical. At (T/Ty ), . the puised
thrust case reduces to a step function. Fig. 4(c) shows the total energy in
flexure-mode as a function of 'C/‘C_L . For Nn=4, ’C/’[.P o5 results in min-
imum total energy. For N=4¢0 minima occur at T/'ci = .75, .5, .62, .8, etc.
At higher N a slight change from the 'optimum T ' can result in a significant
increase in E§ . ‘

Based on these observations, a possible approach to minimize the control-
structure interactions can be as follows:

e from attitude-control considerations, select the mode of control.
This will also fix the energy per operation in the rigid-mode.

o thrust level is decided by the available hardware

* for the given E, and F generate plots like Fig. 3 and select &
and N to give lovest E ¥ . |

o for the given E, , F and N use eq. (23) to obtain a plot like
Fig. 4(c). Then choose T T4 to yield the lowest Ef-*‘ .

Note that one may interchange the last two steps.

Alternatively, one may employ the variation of parameter approach to find
the set of parameters corresponding to minimum E';* (eq. 23). For this purpose
the series may be truncated judiciously.

After establishing EF » the maximum amplitude of vibration in a mode can

be found by equating Eﬁ to the component of strain-energy in that mode.

bk kbt

g
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Concluding Remarks

A simple approach to study the problem of control-structure intera:tiv .
in large space-structure is presented. The energy considerations applied to
the case of a free-free beam, subjected to continuous, step and pulsed thrust,
yield much insight into the system behavior. This also leads to find a way to
minimize the interactions. The approach can be used for many systems. It should

reduce the computational effort involved in such analysis significantly.
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(a) Free-free beam

F
Force
time
(b) Continuous constant thrust
F ,
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(c) Step thrust
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(d) Pulsed thrust

FIGURE 1: A FREE BEAM SUBJECTED TO CONCENTRATED LOAD
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