
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



Aeronautics and Space Administration

B. JOHNSON SPACE CENTER
Houston, Texas

Wr

'Made available tinder NASA sponsonit

In the in	 ind wide dis-
seminat ov c' %i:t .: . .`resources Survey
Program 	 t^t^Gr , . ,;o.i and without IiWft

for any use made them"	 AS-BUILT DESIGN

FOR

LACIE PHASE III AUTOMATIC

STATUS AND TRACKING SYSTEM

Job Order 71-695

(E60-10175)	 AS-9t1ILT DESIGN SPECIFICATION
FOR LACIE PHASE 3 AUTOMATIC STATUS AND
TRACKING SYSTEM (Lockheed Electronics Co.)
158 p ,VC A08/"!F A01	 CSCL 05B

JSC-12743
ReOv%iinaA 17 5
9L 

t(ASA C4;

N60-28776

Unclas
G3/43 00175

Prepared By

Lockheed Electronics Company, Inc.

System and Services Division

Houston, Texas

Contract NAS 9-15200

For

EARTH OBSERVATIONS DIVISION

SCIENCE AND APPLICATIONS DIRECTORATE

June 1977

LEC-10419
Revision A



JSC-12743
Revision A

l

`	 AS-BUILT DESIGN SPECIFICATION

FOR

LACIE PHASE III AUTOMr.TIC

STATUS AND TRACKING SYSTEM

Job Order 71-695

Prepared By

D. L. Smith
J. L. Allison
J. M. Everette
C. C. deValcourt

APPROVED BY

LEC

L Kr	 , a viiu	 ut	 rr ^
Applications Software Section

NASA

V. M. Dauphin, Dat6 Rah—a4gi
System and Facilities Branch

Prepared By

Lockheed Electronics Company, Tnc.

For

Earth Observation. Division

Space and Life Scienr , s Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TEXAS

June 1977

LEC-10419
Revision A



t CONTENTS

Section Page

1.	 INTRODUCTION	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 1-1

1.1 PURPOSE AND	 SCOPE.	
.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .
	 1-1

1.2 BACKGROU ND .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

1.3 SYSTEM	 DES(-KIPTION .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 1-2

2.	 APPLICABLI: DOCUMENTS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 '-1

3.	 INTEGRATED TOP-LEVEL DESIGN .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-1

3.1 GENERAL	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-1

3.1.1 STANDARD UPDATE PROCIiSSING. 	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-1

3.1.2 STANDARD REPORT GENERATION. 	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-8

3.1.3 AD HOC, QUERY ANI) UPDATI . 	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-8

3.1.4 DATA	 BASK	 INTEGRITY	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-8

3.2 DATA	 BASE	 DESIGN .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-9 

3.3 RIMS	 MODIFICATIONS .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3	 13

3.3.1 ASATS STANDARD DATA BASH UPDATES.	 .	 .	 .	 . .	 .	 .	 3-14

3.3.2 SPECIAL COMMANDS FOR ANNOTATING REPORTS . 3-20

3.3.3 SOFTWARE TO ELIMINATE REDUNDANT STORAGE . .	 3-27

3.3.4 ACCESS	 CONTROL .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 3-28

3.3.5 ARITHMETIC	 OPFRA`T'IONS	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 3-30

3.3.6 MODIFICATION TO EXTSTTNG COMMANDS 	 .	 .	 . .	 .	 .	 .	 3-31

3.4 THE	 PREPROCESSOR .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-;2

3.4.1 PURPOSE	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3 - 3

3.4.2 INPUT	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 3-33 

3.4.3 OUTPUT .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 11	 . 	 . 	
3-33 

ii



Section Page

3.4.4 DESCRIPTION OF	 PROCESS .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-34

3.5 TIME	 POSTPROCESSOR	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-34 

3.5.1 PURPOSE	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-34 

3.5.2 INPUT	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-30

3.5.3 OUTPUT.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-36

3.5.4 DESCRIPTION OF	 PROCESS .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-3b

3.0 ASATS STANDARD REPORTS . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-35

4.	 CONTROL FILES .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-1

4.1 PIP UTILITY COMMAND FILES 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-1

4.1.1 UP.CMD .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-1

4.1.2 LA.CMD .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-3

4.1.3 SAMTn . CMD	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-3 

4.2 ASATS.BIS, THE BATCH RUN CONTROL CARD FILE. 	 .	 .	 . 4-6

4.3 SCRT UTILITY SPECIFICATION FILE DLSPEC.SOR. 	 .	 .	 . 4-12

4.4 ASATS/RIMS COMMAND FILES.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-14

4.4.1 RM4.COM — AN UPDATE CONTROL FILE.	 .	 .	 .	 .	 .	 .	 . 4-14

4.4.2 OP13.COM -- OPERATIONS STATUS SUMMARY OF
SEGMENTS IN TIME DAPTS DATA BASE REPORT
COMMAND	 FILE .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-15

4.4.3 OP23.COM -- OPERATIONS STATUS SUMMARY OF
ACQUISITIONS COMMAND FILE	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 4-15

4.4.4 POLIST.COM -- PACKET ORDER LIST COMMAND FILE 4-16

5.	 ASATS/RIMS FILE•USAGE.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 5-1

5.1 THE RELATION OF INTERNAL FILE DESIGNATIONS TO
EXTERNAL UNITSiLE NAMES	 .	 .	 .	 .	 .	 .	 .	 .	 . 5-1

5.2 FILE TYPES USED IN THE ASATS SYSTEM 	 .	 .	 .	 .	 .	 .	 . 5-3

5.3 BATCH RUN DATA	 FILES .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 5-3 

iii



Section
	

Page

6. ASATS EXECUTABLE TASK DESCRIPTIONS . . . . . . . . . . 6-1

6.1 TASK BUILDER COMMANDS AND OVERLAY DESCRIPTION
FILES .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0	 .	 .	 .	 .	 .	 .	 .	 .	 6-1

6.2 ASATS TASK EXECUTION INSTRUCTIONS . . . . . . . . 6-1

7. NEW AND MODIFIED P110GRAMS . . . . . . . . . . . . . . . 	 7-1

iv



FIGURES

Figure Page.

3-1 Automatic Status and Tracking; System — overall
view .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-2

3-2 Automatic Status and Tracking System — standard
update processor subsystem .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-3

3-3 Automatic Status and Tracking, System — report
generation	 subsystem .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-4

3-4 Automatic Status and Tracking; System -- ad hoc query
and	 report	 subsystem .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3

3-5 Automatic Status and Tracking, System -- checkpoint —
recovery process.	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-6

3-6 Automatic Status and Tracking; System — access control
in ad-hoc	 report generation	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-7

3-7 Special,	 Update Processor Flow	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-18

3-8 The	 Preprocessor.	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . )-.)5

3-9 ASATS — The postprocessor 	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 3-3'

4-1 The Update Card Read Command File, UP.CMD .	 .	 .	 .	 .	 . 4-2

4-2 The Packet Label Print Command File, LA.CMD	 .	 .	 .	 .	 . 4-4

4-3 The Data Base Save Command File, SAMTO.CMD. .	 .	 .	 .	 . 4.5

4-4 The Batch Run Control Card F 1e, ASATS.BIS. .	 .	 .	 .	 . 4-8

4-5 The Sort	 (SRT)	 Specification bile,	 DLSPEC.SOR . 4-13

7-1 TFORM for Normal	 Rims	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 . -"1.

7-2 TFORM for ASATS Update Processor.	 .	 . .	 .	 .	 .	 .	 .	 .	 .

v



TABLES

Table Page

3 -1 DAPTS RECORD FORMAT . 	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-10 

3-2 FLOCON RECORD FORMAT .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-12

3-3 INPUT TRANSLATION WELF FOR GENERATING SEGMENT
STATUSCHARACTER .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-22 

3-4 SPECIAL UPDATE DESCRIPTION . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-23

3-5 USE OF DATA TYPES ON INPUT . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 3-24

5-1 MEANINGS OF FILE TYPES IN ASATS SYSTEM.	 .	 .	 .	 .	 .	 .	 . 5-4

5-2 CONTENTS OF BATCH RUN FILES .	 .	 .	 .	 .	 .	 :	 .	 .	 .	 .	 .	 . 5-5

6-1 ASATS TASK FUNCTIONS .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 . 6-2

7-1 PROCESSING DESCRIPTION AND FORMATS FOR ASATS
UPDATES	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-12 

7-2 CARD TYPES VERSUS RECORD TD GENERATION TABLE.	 .	 .	 .	 . 7-13

7-3 PROCESSING DESCRIPTION CARD IMAGI:	 FORMAT.	 .	 .	 .	 .	 .	 . 7-0.3

7-4 FILM PRODUCTS STATUS TABLE (CIIRSI,	 output	 type	 5
translation) .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 . . -"2

7-5 COMPUTER PRODUCTS STATUS TABLE (CURS2, output
type 4	 translation)	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-3

7-6 CC-ANCIL-TOPO STATUS.	 .	 .	 . .	 ...	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 7-4

v 



I .	 I NTRODUCT I ON

1.1 PURPOSE AND SCOPE

This document describes the detailed design characteristics

of the LACIE Phase I1/11I Status and 'Tracking System built for

the PDP 11/45 and. as modified for the CAMS Procedure 1. This

System provides mechanisms to support the management of I,ACIE

imagery processing and associated evaluation material. For

each package of such Material, the system maintains a record

containing the history and the present status and location of

the package as that package follows its track from one I.ACIF

processing station to another. The System provides means for

generating reports on status information and on statistical

data about the flow of material through the I,ACIE stations.

This ASATS design is based upon achieving maximum use of the

Regional Information Management. System (RIMS) to perform ASATS

functions. The functional design is described in termsterms of

(1) data base design, (2) new RIMS software built to simplify

implementation of ASATS, (3) software designed for ASATS which

runs independently of RIMS, and (4) a method for constructing

standard ASATS reports.

1.2 BACKGROUND

A vers ion o f the ASATS was u e i g i na 1 I y ope rated on COMSIIARI:' s

computer system. I t was Cleve loped us ing; the CoMPOSI'T' '" dat a

management system.. In order to reduce the cost of operating

ASATS, it h,is now been implemented on the PDP 11/15.

In order that the transition from one computer system to another

cause minimal impact, the standard update pr•occdm,c1s (including

update card formats) and standard reports were made >s Nearly

as possible identical to the old ASATS system. Because a

f



different data management system was used for the PDP 11145

than for the CCMSHARI. version, the ad hoe query and update

processes are different. But the PUP 11/45 version provides
similar capabilities for ad hoc query and update. Implementation

of the PDP 11/45 version is based upon the same requirement
document (LEC-8175) that was previously used for implementing

the COMSHARE version of ASATS.

The original version of the Plat' 11/45 LACK Phase III ASATS was

completed in March 1077. Since then, additional requirements

for status and tracking; of computer products for the CAMS Pro-
cedure I have been received and implemented. These additional

data and programming; requirements were delineated in the "Metal led
Design Specification for the Automatic Status and Tracking; System
Modifications for LAUE Procedure 1" (TIRF 77-0020), LEE-10529,

JSC- 12885.

1.3 SYSTEM DESCRIPTION

ASATS operates on the PDP 11/45 using the Regionalonal Informat ion

Management System (RIMS). It also uses the RSW ID Version 6.01

operating system. ASATS System hardware requirements include:

•	 PDP 11/45 with a minimum of 04K of storage 	 (32K	 for R5X

and 32K	 for RIMS	 •and ASATS)

•	 Disk storage	 (size requirement depends upon the number of

data base records)

•	 TTY compatible terminal	 for	 interactive work

•	 Card redder	 for standard update and 	 reports

•	 Printer

•	 Card punch	 (requirement	 is	 satisfied	 by off-line	 capability)

•	 Two magnetic tape units



I	 ASATS software requirements include:

• IZSX-11D version 6.01 operating system

• FORTRAN IV-Plus ( 114P) compiler for software maintenance

9 Regional. Information Management System (RIMS)

The ASATS software is composed of (1) special processors

built for ASATS to facilitate the auditing of ASATS data base

updates, (2) RIMS commands augmented to support specific ASATS

requirements and (3) command files (sequences of RIMS commands)
which generate specified reports, (a) data base definitions

describing the ASATS data base to RIMS, (5) format descriptions
describing input file.,; and report formats, and (6) command
files which control RSX-- 1 1 I1 system utilities.

3



2. APPLICABLE DOCUMENTS

The following documents are applicable:

• Large Area Crop Inventory Experiment (LACIE) Phase III
Automatic .Status and Tracking :system Sperifie. ation;, Revision
A, dated March 1977 (document I.E.C-8075, JSC- 11401)

• RIMS Design Document, February 1970 (1.J:C-95(14)

• RIMS Maintenance Document, October 1970 (L1;C-9566)

• RIMS User Document, dated Aprit 1977 (LEE-9301, Rev. A)

• TIRF No. 76-0085

• ASATS Functional Design Document, November 1976 (LEC-9801 ,
JSC-11835)

• Operator's Guide for ASATS, March 1977 (LI;C-10401, JSC-:12729)

• ASATS Users' guide,, March 1.977 (LEC-10148, ,JSC-12535, Rev. A)

• Detailed Design Specification for the Automatic State:., and
Tracking System Modifications for LACI1. Procedure 1 (LEE-10529)

32 `



y

1

3. INTEGRATED TOP- LEWIH. DESIGN

3.1 GENERAL

An overall picture of the PDP 11/45 Status and 'Tracking System

is shown in Figure 3-1. The arrows in the diagram indicate

flow of .information.

Figures 3-3 through 3w6 show the System in more dotaail and

illustrate the data paths which satisfy the major requirements,

specified for the System as described in the following sections.

These figures break the system into units by logical function.

Section 4 will describe the wa y that separate parts of these

logical systems are actually scquenccd. For example, the data

base save operation shown in Figure 3-5 will oc=cur every night

at the end of an. update report cycle; the data base recovery

shown in Figure 3-5 is a stand-alone operation that will nevor

occur unless the data base is damaged.

3.1.1 STANDARD UPDATE PROCESSING

The processing paths of the standard batch mode daily update

and report cycle are shown in Figure 3-21 . Information flow

through these paths is controlled by command files and a batch

cont rol-card file,

The Preprocessor is a set of operations specially designeki for

the ASATS update card formats. It produces some of the require^.I

audit listings of the input cards and rearranges the cards for

the proper sequence of processing by RIMS. RIMS makes the

required updates to the data base and produces a file of' informa-

tion concerning all attempted updates. A Postprocessor uses

that information to produce the rest of the required reports

on attempted updates and to punch the cards and print the labels

that are required by certain updates.

rj

rr



Al) I IOC
t^Ul:Itl I:^» l;
UI'1)A'I Iii;

COMPUTEIR
PROCESSING:
RIMS AND
Sl'IiCIAI,-
PURI'OSIi
PROGRAMS

UPDATE
CARDS

REPORT
QU REESTS

PUNCHED--^	
CARD:

s

DATA	 1
BASE,	 I

Figure 3-1.— Automatic Status and Tracking==, System — overi317 view.

3^



UPDATE
CARDS

UPDATIi
CARD

PREPROCESSOR
	

AUDIT
REPORTS

DATA
BASE
UPDATE
KILTS

ASATS
RIMS
	

DATA
BASE

UPDATE
STATUS
INFORMATION

10YHYT&AD
ARDS (4, S,

W	 _. 

POS'TPROCESSOR

UPDATE
AUDIT
REPORTS

Figure 3-2.— Automatic Status and Tracking System — standard
update processor subsystem.

7



(

REPORT
Itl:t?Ill:ti'I'	 I

t;l 1 DS

COMMAND

1^ I L,I;ti FOR
	

DATA
It l :l' U 1:`i'
	

11,ASI;
GEN I"RA'I' I ON

i

Itl:l'c)IITS

F igure 3-3.-- A11t:G1ilat1C' Stat"115 and Track i jig  SyStom — moor'
golicrat 1011 subsystem.



OTHER
1' ROC I I'S S HS

COMMAND
DATA FILFS

1'1i101 I NAL	
IjATA

R I NIA

CARDS	 _	 i RIiI't)R'1'S 1

Rli ORT
1 1 1 LES

Not

t)7"IIIiR
1'hC)t;li^Sli;^

Figure 3-4.•— Automatic ,Status and Tracking Systom	 ad hoc gnvey
and report suhsystem.



ASATS DATA BASE
( DAY N)

IITI I,I'n' (1)cct11
COPY	

c^vrry ^I^iy 1

_.. - ^. ....._.	 _..	 _,.. SAVED
DATA--	 _ .._....._..._._ __ ..	 DATA
I1ASI:

P I P	 (0CC'IAr5 X711 a

11'I'II,	 1, clatc	 (rrtai ►1oc1 oCC-.l ii1r

COPY	 say 1)av N+K _ unt	 rcl)

i f 1 , rc111 i 1 , 0d )

(carols savecl over
days since Day N)

SAVED
UITATIi
CARDS

AD 110C

11PI)ATI:

(repeat a?.1
interactive
updates mado
since Day N)

DAY N
DATA BASE

RI.Cca^:itll)^	 II

Nlol) I F I I:1)

DATA BASE
FOR DAY N+K

Figure i-S.-- Automatic Status and Tracking systom -•- checkpoint
recovery procoss.



RI"ISTRI(;TU1)
USER R I I41S r (RIiAO ONLY)

ASrA'I'S DATA
EAST; I'I?RDI.ANEN"I'
F I I,I:S

SRI : AID/IVR I'I'I;l 'I'I:A)I't)RARY
F II,I:S

.. 	 __-1

Figure 3-6.—Automatic Status and Tracking System __ accoss
control in ad-lioc report gencration.

k1l",it



3.1.2 STANDARD REPORT GENERATION

Batch motley production of standard System reports is illustrated
in Figure 3-3. For each of the standard reports there is

a "canned" stream of RIMS commands to collect the information
required for the report and put it into proper order. Selection
of different reports as desired is ma"o by different carols in

the batch input control of RIMS.

3.1.3 All IIOC QUERY AND UPDATE

The generalized data management capability of RIMS can he used

for several different purposes, as shown in Figure 3-4. Demand

production of one-of-a-kind reports can be clone through an
interactive terminal or in batch mode controlled by cards. 	 In

either batch or interactive mode, RIMS can read a command stream

or data file brought in from tape or produced by other processes.

Information extracted by RIMS from the data base can be printed

as a report or displayed at the interactive terminal or it can

be used as input; for other programs which might perform special
:analysis beyond the capabilities of RIMS itself.	 Some of the

data flow paths shown in figure 3-41 may be restricted for some

users, as will be described in section 3.1.4.2.

3.1.4 DATA BASE INTEGRITY

3.1.4.1 Checkpoint - Restart Data Base Recover

In spite of all economically feasible controls over hardware,

software and procedures, the data base is vulnerable to damage

or total destruction from such causes as computer system mal-

function, flaws in physical storage media, or accidental runnin'

of improper updates. Figure 3-5 illustrates procedures which

minimize the time and effort required to put the data base back

into its proper current status after being damaged.



3

s

s,
3

1

As shown, the data base is dumped to magnetic tape periodically

(once per day, after making all of the day's updates is

suggested; the time interval, can be adjusted after gaining some

experience with failure frequency for this system). These
i

"checkpoint" dumps on tape are stored off-line, while the active

data base is altered by batch and interactive updates on following;

days. If the active data base is damaged or lost, a checkpoint

clumped tape (the most recent one dumped before the failure) is

read back to on-line storage, which restores a previous day's

active data base. That restored data base must then be modified

by any batch-mode card updates and any interactive updates which

have been made since the time the checkpoint dump was taken.

Making those updates will bring; the active data base to the

condition it should have had if no failure had occurred.

3.1.4.2 Access Control

Accidental or malicious damage to the data base is minimized

by controls which allow data base modifications to be made only

by authorized personnel. Sonic users may produce reports without

having permission to alter the data base. For these users,

controls built into the RIMS software restrict data flow to the

paths shown in Figure 3 -6. As shown, the permanent files of

the active data base can be react by a-restricted user, but not

written. Writing of any temporary files required to collect

information for report production Is allowcd. A password system

is used to identify users with unrestricted read-write access

to the entire data base.

3.2 DATA BASE DESIGN

The data base for ASATS contains two primary types of data records.

Each DAPTS record contains information about a.segment that is

pertinent to all acquisitions for that segment. The fields of

the DAPTS records are described in 'fable 3-1. Each FLOCON

record contains information about one particular acquisition

^1



TABU.' 3-1.-DAPTS RECORD FORMAT

Pield
Name

Description Length
(Char)

Start
(Char)

Iittd
(Char)

Ivey Source
hard

SIG Segment number 4 9 12
LPI LACIE phase indicator 1 13 13
COUNTR Country designator V 14 19 X
REG Region 2 22 23
ZONE Zone 4 24 27

STIZ Stratum 4 28 31
GD Global designutor 1 32 32
WV Wheat variety 1 33 33 X
PC Priority code 2 34 35 X
TY Segment type 1 36 36

BIOW10 Biowindow 1 open (start date) 4 37 40 3
BI01V1C Biowindow l close (end date) 4 41 443
BlOW20 Biowindow 2 open 4 45 48 3
BI0W2C Biowindow 2 close 4 49 52 3
BIOW30 Biowindow 3 open 4 53 56 •3

BIOW3C Biowindow 3 close 4 57 GO 3
BlOW40 Biowindow 4 open 4 61 64 3
BIOW4C Biowindow 4 close 4 65 68 3
TOPO Date topo map received 4 69 72 4
CROP Date crop calendar received 4 73 70 5

ANCIL irate ancillary data received 4 77 80 6
SSC Segment status character 1 81 81. X 4,`t,0
PROTYP Process type 1 82 8)2
CDTAPE CUT & DTRM Tape Nwber 6 83 8S
TCARD "'I'" card transaction date 4 89 92
LUP hate of last change to this 4 93 96 (last

record Ueda t e

>,-, 
0
Y



and the processing of acquisition material packages by the

LACIE work stations. The FLOCON records are described in

Table 3-2. RI14S uses the data base to store information about

the data base; i.e., format records (as described 
in 

RIMS

documentation) for data records and for input and output records.

t



TABLE 3-2.-- FLOCON RECORD FORMAT

Field
Name Description

Length
(Char)

Start
(Chas)

Find
(Char) Key

Source
Card

SEC Segment number 4 9 12 B
LPT LACTE phase indicator 1 13 13 B
DATACQ Acquisition date 4 14 17 B
BW Biowindow 1 18 18 X B
FF Film flag 1 19 19 B

TAPE; GSFC tape number 6 20 25 B
GSFC GSFC processing date 4 26 29 B
CANT C&I update date 4 30 33 B

LPDLCO Date film products received 4 34 37 G
from LPDL

AICOMP Date segment ready for 4 38 41 If
CAMS pickup

PACKREi Date packet received by CAMS 4 42 45 1
RUNSUB Date FDB/batch data processing 4 46 49 J

request submitted
RUNCT Ryan count 1 50 50 (J)

PRODRE Date batch products received 4 51 54 K
by CAMS

REWORK Date rework begun 4 55 58 M
RWKCT Rework count 1 59 59 (Ni)
TOGAS Date to CAS 4 60 63 X
CAMSBP CAMS biophase 3 64 66 X

CATG CAMS evaluation category 2 67 68 X X
CUR51 Current film status 1 69 69 X (last)
CURS2 Current product status 1 70 70 X (last)
UTAPED Date for unload tape 4 71 74 N
UTAPEN Unload tape number 6 71 76 N
UNLOAD Unload transaction date 4 77 80 N
LSD Date of last change to this 4 81 99 X (last

record update)

,3-^
/6



3.3 RIMS MODIFICATIONS

This section identifies modifications and additions to RIMS which

have been implemented to support ASATS. These changes are

categorized as follows:

a. .Spacial. Update Processor - This processor was defined because

of the requirement to implement ASATS on the PDP 11/45

with no changes of input from the format for ASATS on COMSHARp,

using Composit 1 77. The processor handles all standard

ASATS input cards.

b. Relational Retrieval to liliminite Redundant Data - The

data base for ASATS has a hierarchical relationship between

DAPTS records and FLOCON records. RIMS commands have been

implemented to create a set of related FLOCON records for

given DAPTS records, and to create a set of related DAPTS

records for given FLOCON records. Also, a command for

displaying records containing data from both a FLOCON record

and the related DAPTS record has been provided.

provided which specifies

each of the access

users. Also, the

requires a user to

Grol word at the beginning

C. Access Control - A command has been

which RIMS commands are allowed for

control words assigned to different

system includes a modification that

identify himself with an access con-

of a session.

d. Computation on Data Base Content - A new command allows the

user to sum fields, field differences, compute a mean, and

compute a standard deviation for date fields in a set of

records.

e. pleader Control for Reports - Commands have been provided to

allow the user to specify report headers and to provide

textual description for the number of entries in a set.

3X3



3.3.1 ASATS STANDARD DATA BASE UPDATES

This section describes the ASATS data base update proc•vssor.

It also includes a description of an update command built

specifically for ASATS and describes the use of input formats

to specify processing for individual record types.

3.3.1.1 Special Update_ Processor

The Special Update Processor is a stand-alone program. 	 It

processes all standard ASATS updates. 	 It accepts the following
commaands

• BE - Begin

• RF - Reassign File

• UP - Special ASATS update command

• EN - End

• RE	 Reads processing description for ASATS cards

The construction of this Processor uses all standard RIMS

commands cxcopt thu main program and 6ubrourino update Cwhiala

processes the UP command). The construction of this processor
as a task separate from RIMS allows better core utilization,

hence better system performance. Before executing; any UP

command, an RE command must be executed to road the process

description cards which describe the processing for each status

and t rack i nq card type.

3.3.1.2 Special Update Command

Purpose: Updates data base from a set of input cards. Specific

update operations are a function of card type (specified in the

second character of each hard), data base format, and the input
format. The :input format and the data base to be used are a.

function or the card type and LACIF phase.



Input:

• Commands:  Processing is begun by a 111 1 command

• Status and tracking input cards: Any of the current Yl

t ypes of ASATS update carols (except Q card) are processed

sequentially until an 101' .

r li : Processing of an input file is ended by an end-of-
file or Fa blank record on the input file

011tput :	 Besides updating; the ASATS dataa base, the t'ol loaning
information is recorded Sequentias1.ly on as file:

• Rejected input cards

9 Cards for which the required UAPTS record does not

exist (for *, 2, 3, .1, 5, G, 11, N and T card:;)

9 Cards for which the required FLOWN record dons
not exist

• Cards for which the Fl,OCON record has not reached

required state for particaalar type of update

• Accepted input cards which created new DAPTS records

Punched carol images

Processing;: The required processing is a function of carol

type. Card types are categorized as follows:

•	 Category 1 - card types	 21,	 3	 (in	 sets)

t	 Category 2 - card types	 *,	 M,	 4,	 5	 and	 ti

•	 Cat ego ry 3 -	 carol type 3
V	 Category 4 -	 card type B

•	 Category 5 - other carol types

•	 Category G - carol types N aancl `l'

" 15



There is it generalized I'miction for adding; new records aa"l U11-

dating existing records. This function, which is driven by
input formats, data base formats, and card type, adds or modifies
the specified record. The general steps of processing input
cards arcs:

•	 head input card
•	 Generate record 1I)

•	 Generate external ( input) format 11) from table

•	 Retrieve record

•	 Retrieve formats

0	 Either add or update the record

•	 Output card Image reflecting; succ• css or vrrol,

Figure 3-7 depicts the flow of this process and variation:

dependent upon category of card type.

Tahie 3-3 indicates the data used for gencrat ing a record
depending on input category. The input format is as function
of the card type.	 Table 3 -4 indicates 1110 aac•t ic1aa to hc'

taken upon a record retrieval failurc.

The input processing ror all fields of (each card tN , pc is as
defined in the ASATS recluiroments docunacrat 	 CXc'Cl)t 1 * 01' SO.;DICnt

Status Character in 1)APTS rocor(Is ;anti Ac(1Ui 5 i t iUt'1 itaatLIS 0`11.11-O tc`r
in FLOCON records. The information from `fable 'iw . 3 is used to
sat the scgmcaat status c aa ► rac.tor.	 The Acquisition Statta5
Character is set to the card type. 'These fields are used for
generating the current station and status. 'Their use is
described in paragraplh 3.6

The type of operation, an add or a modify, to be performed is
a function of record type and whether or not a record alreidy

;40



exists. The input format for the card type identifies the

fields it updates and the field's data type. Table 3-5 describes

the processing for field types on input.



START

SET UP IOR
AUTO POSTING!

.............	 .

f _.u_	 {
RE
CARD'ICAUSE AU`T'O- 	 WRTTI: ^:.	 5-t^)P

IMAC,E	
il'OCi`I'IN(^	 1;(11;

GENI?RATE
RECORD 11)
ANI) FORMAT II) j

RETRIEVE
j INPUT

FORMAT

RETRIEVE

	

D.B.  RECORT)	 '.
ANI) FORMAT

^:I;TRIEVI -Y1;S
t^AIJAJRE

^N0

S U 1'

MOI)

FLAG 1

W

0

Figure 3-7.-- Special Update Processor Flow.

1



MODIFY
RECORD

MOD1 FYNO_ ^1SET  FIaAG^^

LEGAL

I; S

< CA'1'1:(,ORY`^ ^1:_S

NO

CATEGOR	 NO

3	 f

YI:S

SET
BIOWINDOW
TAB L I:

^TCARD	 yl;;i-^I PUNCH..^

S F G

O
_,.._...._.,...__ y .	 . ._ - . .... ..

UPDATED
ASSOC IATI:1)
FLOCON RECORDS

Figure 3-?	 Co Ilt.illlloLl.

3 X-.^



ISET FLAG TO

0 DICATI., RECOTZD_>(^)
DOES NOT EXIST

_Lj

E TR I }:V
	

YES
AILURE

NO
'0CATEGORY^r

4

YES

G E N E 1 ;Uk'r E,
RECORD ID
USING SEG#

q1

RETRIEVE
SEGMENTRECORD 

AND
FORMAT

,/l 	\,

CATEGURY`;NOJ

S UT F 1, A G
TO INDICATE

_
RECORD DOES
N01' EXIST

YES

-READ NEXT 1TWO CARD
IMAGES

GENE-RATE
BIOIVINDOIV

TABLE,

ET FLAG
S E GNI, ENI.'-.,--.j

FAD D RECORD

AT I-,GOI 
n WRITE

4	
CARDS

%,	 IMAGES

^NO

WRITE PUNCH
CARD TINIAGE
AND SEGNIENT

WRITE CARD

q2	 IMAGE WITHF LAG TO

 - -P 6 `NjlT -1 0 0	 '1

-3 UG N1 ENT 
	 UN110

ISEGNIE,N"	 C
--,,7	 f!T)J.

NO

10

Figure 3- 7.-- Continued



w-

C

11F.11, 10 U V1.
DAPTS RECORDS
AND FORMAT

RETitIliVAI '.,. 	
1V1tI'I1	 ^^ ^^

FAILURE, 	 ' URIZOR	 ----^,
MESSAGI;

UPDATE	 j

DAPTS
RECORD

FjgLl C 3-7.-- Concluded.



TAIiI,I. i-3. -INPUT TRANSLATION TABLE; FOR GENhRATING SI:GMEN"I'

STATUS CHARAC'miz

a^

^ --r ^ n Ica

as v ^
by f^ G^+ ^,
J^i

1r
1',,Y ^^' T 1

l r
T
U) ro

,H

w u u

0 >^54^



TABLE 3-R. -SITICIAL UPDATE, DESCRIPTION

Category Method of" Action on Genei ate TYI) o of Add  t ionaI
Identifying Retrieval Biowindow Operation Processing
Record Failure `I"able

1 SI;G	 11 Success: Add
Update
(I b)
Fa i l;	 A,.I d

11) Upd a t e

2 SIiG	 N Fail: Yes Update Set	 l3io-
Gone ra to window
Error Fielki	 in

Update

Acq.	 Recor(l;

3 SI;t;	 It ha i I :
Goperate
Error

Fa i I :	 411 (Ip(Ia to4 S1iG	 ft	 F

Acq.	 Date Success:
Update

41) SEG N Da i 1: Yes Ad d
Generate (Acq.
larror Record)

5 SI.G	 If	 t, Fall: Upda to
Acq.	 Date Generate

Error Update

G SI:G	 tf	 ci Fai 1 : Update
Acq.	 Date G oil era'te (Both

Error DAPTS	 t;
I LOCON

3

^7



TABLE 3-S.-USE, OF DATA TYPES ON INPUT

Data 'Type	 Process ing

c)	 Alpha	 update associated data base field as

alpha.

1 Integer - update associated data base field as

integer (standard RIMS data type, but not u:;ed

for ASATS)

3	 Set data base field value from status table

according to card type and existing value

4	 Alpha but don't update data base when input

is blank

S	 Record I.D. field (no action)

increment data base field value by I. on input

(integer field)

7	 Reject input it' associated data }ease field is

bi ank

8	 Sat data base value as a fUnCtion Of biowindow

table and acquisition date

-3 ̂ -I,- ir



if an error condition occurs when processing

i

an	 input card,	 an

error file unit number is	 put	 in column 2 when the	 image	 is

written to the message file.	 The input curd images for new

UAPTS records are also written to the message file;	 in	 them,

column 2 is the unit number for the new DAPT,S record report	 file,

Additional processing required by category 3 is the selection of

FLOCON records of the same segment and the updating of their

biowindow fields.

3.3.1.3 Use of Input Formats

An input format is required to describe certain processing a:; o-

ciated with each record type. This description includes:

• Identification of each field affecting the. update process

• Type identification of each field, which defines how the

field affects the update process (see section 3.3.1.1).

• Starting location and length of each field of information on

the data card (it should be noted that some fields affect the

processing, but do not exist on the data card, therefore do

not have a starting location and Length).

The field names used must correspond to the field names used in

the data base definition (see Tables 3 . 1 and 3--'). Field loca-

tion and field use on Input cards are described in the ASATS

requirements documents and in the ASATS User's Guide (Rev. A) .

Implementation using input format definitions allows for simple

accommodation of most types of changes in input requirements.

The addition of a new card type would require a modification of

tables within the special update command processor. The.11 and 3

type .input cards do have codes which are unique to them.

/I- I - ̂11 ̂ f



3.3.2 SPECIAL COMMANDS FOR ANNOTATING REPORTS

A new command (heavier) allows the user to include text which is

not a part of the data base and to include printer carriage con-

trols. Another new command is included which allows the user to

print a set count with text which lie specifies.

3.3.2.1 Header Command

Purpose: To insert header or comment on report.

Input: 11DN, Text

where: HD is the command nmenom is

N is the number of input lines (1 or 2)

Text is the header contents

Output: N lines of text

Processing: Text is transferred from the command file to the

report file with the first character after the comma being used

for carriage control. Standard FORTRAN conventions are used for

carriage control.

3.3.2.2 Count Command

Purpose: To print the number of entries in a set along wit}', teat

comment.

Input: SCSN,LOC, 'Text

where: SC is the command

SN is the set number for the count which is to be

printed

LOC is the column count where the set count is to

be printed

Text is the text data to be printed

Processing: Text is transferred from the command file to the

report file and the number of entries is printed with it. The

first text character is used for ca r iage control.

3



3.3.3 SOFTWARE TO ELIMINATE REDUNDANT STORAGE

The following new RIMS commands were designed in order that cer-

tain data does not have to be stored redundantly in both DAPTS

and FLOCON records. The DAPTS and FLOCON records of the ASATS

data base have a hierarchical relationship. The DAPTS record

(the parent record) contains information common to possible

several FLOCON records.

3.3.3.1 Generate Parent Set

Purpose: To generate a set of parent records (DAPTS records, for

ASATS) from a child set (FLOCON records, for ASATS)

Input: GPSN

where: GP is the command mnemonic.

SN is a temporary child set number

Output: A set (next available temporary set number) of parent records

Processing: The parent record II) for each child record 11) in t}ic:

input set is placed in the output set.

3.3.3.2 Generate Children Set

Purpose: To generate a children set (FLOCON records in ASATS)

for a set of parent records (DAPTS record i.n ASATS).

Input: GCSN

where: GC is the command mnemonic

SN is the temporary parent set number

Output: Children set (whose set number is the next available

temporary set number)

Processing: The record pointer address is computed for each

record ID in the parent set. The addresses for potential children

records (up to 16 records following the parent records) is searched

to discover whether children records exist. Each child ID that

is found is then put into the output set.



3.3.3.3 Display Data from Two Data Base Levels

Purpose: To display a set of FLOCON records with selected

information from the associated DAPTS records, as specified by

a format (,joint Display Formatted).

Input: .II-SN, FMT

where: ,JI' is the commend mnemonic

SN is the temporary set number for a s et of

FLOCON records

FMT is the format ID for displaying; data

Output: Specified set in specified format on report file.

Processing: The format for displaying data is retrieved. Then

for each record Ill in the input set, the Following actions are

taken:

• Get record ID from set

• Retrieve record and its format

• Transfer data from the child (FLOCON) record to an output

buffer according to the display format

• Generate record ID for associated parent (DAPTS) record

• Retrieve DAPTS record and associated format

• Transfer data from the DAPTS record to output buffer according

to the display format

• Write output buffer to the report file

3.3.4 ACCESS CONTROL

The following new commands, software, and RIMS modifications are

defined to satisfy access control requirements. Each user will

have an access control word. It will control which RIMS commands

he can or cannot use.

',r^



3.3.4.1 Add Access Control Word

Purpose: To add an access control password for the data base.

Input: S+

PASSWORD>XXXXX

BIT MASK>1110111....

where: S+ is the command mnemonic:

XXXXX is an 8 -Cilarilc ;er access Contro l 1 or d

1.110111... is :.i 2 .1-character string; idejitif%Ang:
which commands the user slaving; this access code

can utilize.

Output: Access code and character string; are stored in data

Processing: A record is generated contain ing; the character string;.
A key is generated by hashing the character string;. The record

is posted to that key. NOTE: The key cannot be reconstructed

by the display from the expand function.

3.3.4.2 Delete Access Control Word

Purpose: To delete an access control password.

Input: S-

PASSWORD> XXXXX

where: S- is the command mnemonic

XXXXX as the access Control wor('

Output: No reply - access code and character string are deleted

from the data base.

Processing: The record posted to the password is deleted and the

key associated with the control word is deleted.

3.3.4.3 Modifications to Allow Password Control

Purpose: To allow identification of a user to RIMS by access

control word following first begin command.

3 9̂-,,



Output: PASSWORD> (prompt to user)

Input: Access Control password

Processing: The record associated with the control word is

retrieved. If the given control. password does not exist, RIMS

is aborted.

3.3.4.1 Modification to RIMS Control Routine Car Acces:; Control

Purpose: To prevent execution of unauthorized commands.

Output: Message file - '.illegai command'.

Processing: Before calling the subroutine to process ► the associ-
ated command, the character string containing indicators of user's

authorized commands is examined. If the user is not authorized
to use the command, the message is output and the subroutine is

not executed.

3.3.5 ARITHMETIC OPERATIONS

A new RIMS command has been included to provide the typical sta-
tistical and arithmetic operations required by ASATS in the
ad hoc environment.

3.3.5.1 Compute Command

Purpose:	 to provide for a sca t of` records (1) summatio ►► of idoli--
tified field, (2) mean of the difference of two fields,

(3) standard deviation of the differences of two fields.

Input:	 ARSN, RID, VN I , FN2

where: AR is the command mnemonic
SN is the set number for which all computations

are to be performed

RIU is the record ID for the record where the

results of the computation are to be stored

FN 	 is a field ltta ► i1v

FN 2 is a field na ►ne

r,_



Output: Sum of both fields, mean of difference, standard devia-

tion of difference, count of the number of records used in mean

computation, and the count of the total number of records are

stored in the specified record.

Processing: Each record in a set is retrieved and processed.

The following computation is performed for each record..

• Each field is summed over all records in which both fields

are not blank.

• A count of the number of records is maintained.

• For each record where either field is blank

• Count of the records is maintained

• Sum of the difference of the two fields is maintained

After all records have been processed, the mean and the standard

deviation of the differences are computed. All computed results,

are then stored in the specified record.

3.3.6 MODIFICATION TO EXI.)TING COMMANDS

In order to implement sta'.,,dard reports by executing a RIMS com-

mand file containing the klMS commands for reports, two new

capabilities have been implemented. Tliey are:

• The ability to generate null sets

• The ability to assign a file by name

The following modifications provide these capabilities.



3.3.6.1 Modification to Reassign Idle

input modifications: The previous syntax was RI1 IU,EU. The

syntax has been modified to allow another form: REIU,EU,PNA.

where: RF is the command

IU is the internal unit number

I;U is the external unit number

FNA is the file name

so that if .IIJ is 0 (zero), then EU is scat to the included file

name.

Output modifications: None

Processing modification: If the internal unit is zero, the

external unit is closed then re-opened with the specified file

name. Otherwise, processing is the same.

3.3.6.2 Null Set Option Addition

Input: ZZOP

where ZZ is the command mnemonic

OP is the option: 1 for null sets to he kept; zero for

null sets not kept. At sign-on, the

default mode of the system will be for

null sets not to be kept..

Output: None

Processing: A flag is set in a common block to indicate the null

set mode.

3.4 THE PREPROCESSOF,

3.4.1 PURPOSE

PF

The Preprocessor prod

listings of the input

between the unsorted,

required for the RIMS

uces several. of the required audit report

update cards and acts as an interface

unedited input form and the form of input

data management software.

^ ^3^



J

3. 4.2	 1N11UT

The Preprocessor adepts update carols of all types as described
in the ASATS Speci fications Document, LEC-8675 (Rev. A) , and
ASATS I,ACII, Procedure i Detailed Design specification, lEC— 10529,
The carols may be in any order and must include one and only one Q

card, The input update cards for the Preprocessor make up the

last of three files read in by the operator before each daily

update and report batch run. 	 (The first two files are for report

(generat ion.)

3.4.3 OUTPUT

The Preprocessor outputs two types of data. The first type is

the listing of input cards:

• A listing of all carols in the order of their input

• A listing of all carols having invalid card types

• A listing of all cards rejected as duplicates

• A listing of all cards submitted for this update run, sorted

into order by caret type.

The second type of output from the Preprocessor is a set of

files containing update carol :images which are combined to drive
the RIMS system for actual update of the data base. The files

are:

• A file of all sets of *, 2, 3 cards, where a complete set is

given for any segment

• A file of *, 2 9 3 cards in which only one or two of the card:;

appears for any segment

• A file of other update cards sorted into the order: 4, 5, 6,

13, 7, 8, 9, G, 11, I, N, J, l;, 141, T, \, U.

3

,^7



..	
3.4.4 DESCRIPTION OF PROCESS

The preprocessor consists of a sequence of operations performed

by special-purpose FORTRAN programs and by calls to the RSX-11D

system SORT utility program. Data flow for this sequence of

operations is shown in Figure 3-8.

The first operation shown, gives two of the input listings and

separates update cards by LACIE phase into separate files. In

this operation, cards with invalid type or LACIE phase are

rejected, and a check is made to be sure there is one Q card.

The second operation is performed by the RSX-11D system ,SORT

utility, to put the cards into order by card type.

The next operation shown is a separation of cards by type. The

type *, 2, 3 cards will be sorted by segment number to find those

segments for which all three are present and which may, therefore,

be new segments for entry among the DAPTS records. Cards not

part of a set will be sorted back into carol type order with

* cards first, then 2 cards, then the 3 cards. Cards of other

types (4, 5, 6, B, 7, •••) are put into another separate file.

3.5 THEI POSTPROCESSOR

3.5.1 PURPOSE

The Postprocessor is required because of core space limitations

on the number of output files that can be defined in' RIMS. The

RIMS update task for ASATS writos several logical output files

into one actual output f"il.e and attaches a f1 ag to each recc ril

to allow the Postprocessor to separate the output files.

3	 ^I

^O



ALI, MIT
;e,2,3

CARDS

1, I S'1' o F

INVALID
1)111'1, 1 CAI'Ii,

R) RIMS)

S'1'1:P 4

$ SUIt'I'
ll'l'lLf'1'

uNSOR 11'Isl) 13Y
1:G,M1:NT
11NIl^l:lt

STEP 5^
1;1NU

3

3 NOT

CON1I' L I's11:

CONI1'11I:T1:

S

► 	 (TO I: I Nis)
ST1.) .

ri SORT
U'I' 11,.I'1'Y

R1 :, - s0R'1'l:l)

STEP 1

11l'UATF,	 1,1 ST ' F I NI)

CARDS	 INVALID CARDS,
SIiPARA`I'I"
PHASE 1 1 / 1 .I 1

r.

UNSORTIA)
1,1 S'1' IN(^
01' CARDS

STIIII'
	

I NVAL 11)
CAR1)

S0RTI:1) 1 NTO
	

$ SORT'
	

TYPE'S

OR1)1:1t; Q, x ,
a

l:'1'(..

s0RT1:1)

I.,IS'1'ING

STEP 3

----	 I, l S'1', SI-WARA'I'1:

' 3	 < ARDS
CARTS	 FROM OTHERS

^ TO l: I NIS )

11'111:

FIGURE 3-8

 11IMPROCl:SISOR

'9



3.5.2 INPUT

Input to the Postprocessor is a file of information about updates

made or attempted by RIMS.

3.5.3 OUTPUT

Output From the Postprocessor consists of one :Cite of card images

to be punched and several fil^s of report listings, as follows:

• Cards punched (4, 5, 6 cards for each *, 2, 3 set that created

a new DAPTS segment record; G, II, and UNLD cards lunched for

each B card that created a new acquisition (FLOCON-record); and

and T card punched from each T-100 segment J card submitted.

• A listing of the cards punched

• A ,listing of all new DAPTS segment records added

• A listing of invalid acquisitions (B cards for which no DAPTS

record has the same segment number)

• A listing of invalid attempts to modify a DAPTS record (modi-

fications from *, 2, 3, 4, 5, 6 cards such that no existing

DAPTS record has the given segment number)

• A listing of invalid modifications to ILOCON records (no

matching segment number and/or acquisition date for input G,

H, I, J, K, M, N, T, U, X, 7, 8, or 9 cards) or a required

data base field has not previously been set (as required for

card types H, I, J, etc.).

• Packet labels

3.5.4 DESCRIPTION OF PROCESS

The Postprocessor will read the output file from RIMS and write

into the proper output file(s) chosen on the basis of a flag

included with each record from RIMS. See fi;,,ure 3-9.

V

 V



(FROM RIMS)

INFORMATION
ON STATUS OF
UPDATES MADE
OR ATTEMPTED

PUNCHED
4,S,6,G,II, T,

UNLD CARDS

POSTPROCESSOR
LISTING OF

NEW DAPTS	 PUNCHED CARDS
RECORDS

INVALID	 INVALID	 I INVALID
ACQUISITIONS	 DAPTS	 FLACON

MODIFICATIONS	 MODIFICATIONS

;FACT_ K)JT LAI3EL5

^I

FIGURE 3-9

ASA`.I'S - THE POSTPROCESSOR



v

N.	

3.6 ASATS STANDARD REPORTS

All standard reports identified, as required for ASATS, can be

produced using RIMS commands (as augmented in section 3.4 of

this document) and the added output translation function. Once

a data base has been established as described in this document,

RIMS provides the functional capabilities required for these
reports.

In order to satisfy the standard report and ad hoc report require-

ments using the data base design as described in section 3.2, it

is necessary to perform output translation for some data elements.

This translation generates the output field value as a function

of the input field value using a predefined table.

Three tables are required for the necessary output translations.

They are:

• Film products status table as a function of Acquisition Status

Character CURS1.

• Computer products status table as a function of Acquisition

Status Character CURS2.

• Table indicating crop calendar, ancillary data, and topographic

data status as a function of the segment status character.

Two additional data types are required for output processing.

They are:

• Data type 5 - Perform output translation using :film products

status table.

• Data type 4 - Perform output translation using computed pro-

ducts status table.

For each data type, the input format specifies the location of

1i

l

w:



f

I

data to be used for the table look-up. The output format speci-

fies the location where the table results are to be placed in

the output record.

These records have been implemented by building separate files

containing the necessary RIMS commands for each report. The

report can then be produced by assigning the file as a RIMS

command file. The reports are initiated as part of the batch

run by a "starter" file that is copied to the standard RIMS

command file. The starter file reassigns the command file to

the actual report file.

The requirements for each report have been translated directly

into RIMS commands. Individual report command files are described

in section 4.

3 9

#3



4. CONTROL FILES

This section describes the files which control the operational

ASATS system: utility command files, batch run control card

files, and "canned" RIMS command files. Command files used to

build tasks will be described in section 6, and data files are

described in section S.

4.1 PIP UTILITY COMMAND FILES

4.1.1 UP. CMD

This file of PIP commands uses three files from the daily input

card deck to prepare files for the daily update and report run:

the date to be on reports, the reports desired, and the updates

to be made to the data base. The text of this file appears in

figure 4-1.

This command file is invoked by the operator:

MCR>HEL [(ASATS UIC)]

MCR> PIP @UP

The card deck to be processed must contain three files (each

terminated by the standard PDP-11 RSX-11D end-of-file card);

1. A RIMS HD command for the header date line in reports

2. A file of PIP commands that copy RIMS report command files

into successive versions of the file REP.COM

3. The standard ASATS update cards, including one Q-type card.

The output files produced are

1. File DATE.COM which contains the HD command giving the date

and an RF13,;13 command.

2. As many versions of REP.COM as were specified by the input,

plus five additional dummy versions to prevent RIMS from

trying to read a nonexistent file.

a



DATE.CDMNENORILE
DATE;COMi*/DE
DATE;CDMSCRI
DATE;,COM*RF1313.COPjAP
MLD.CMDPENDFILE
8LDotmDI*/DE
9LD,CMDwFNDFILE
NLD,CMDxfPI
REP,COMmFNDFILE
REP,COM1 * /DE
•SLD;CMD
REP,CnmsENOFILE
REP,GOMwFNDFILE
REP,CO4mfNOFILE
REP,Co MmFNDFILE
REP,CDMsENDFILE
PPFII,CRF*FNDFILF
PPFI I ,C P € ire/DF
PPFII,CPE6CR1

Figure 4-1.—The Update Card Read Command File, UP.CMD.



3. The fade PPFII.CRE of ASATS update card images.

In the process of creating the above files, any files left over

from previous days are deleted,. Deletion of files is always

preceded by creation of a dummy file (a copy of the empty file

ENDFILE.;l) so that the delete operation will not give any

meaningless error messages to the operator.

4.1.2 LA.CMD

This file is used by the operator to print packet labels on the

Line printer. The text of this file appears in Figure 4-2. It

is invoked with the command:

MCR>PIP @LA

The input is the label file created by the Postprocessor,

POST8.ZIP. It is copied to the line printer.

4.1.3 SAMTn.CMD

There are two files which can be used to do the daily save of

the data base. The file SAMTO.CMD saves it on MTO: and SAMTI.CMD

saves it on MT1:. The file SAMTO.CMD is shown in Figure 4-3.

The operator must initialize and mount a tape, and then issue

a command:

MCR>PIP @SAMTn

The command file copies the DATE.COM  file to the tape as a check

of the date the tape was made, and then copies all the data base

files to the tape. The command file then gets a directory of

the tape and saves that directory on disk, prints it on the line

printer and prints it on the terminal, to assure the operator

that the files have been saved on tape.

i



LPtwOMSTA•ZIP

Figure 4-2.--The Packet Label Print Command File, LA.CMD.

4



MTOonDATF@ *#*

MTOtPxxo*f*
LP,TF8%mTAt *.*t *4I
LPteLP.TES
TIsoLp'TFB

M

Figure 4-3.—The Data Base Save Command File, SAMTO.CMD.

Ile



4.2 ASATS.BIS, THE BATCH RUN CONTROL CARD FILE

The control card file for the daily batch run of updates and re-

ports is designed to satisfy several criteria which prevent it

from always being straightforward, namely:

It should not give the operates any specious error messages-

e.g., J.f a file which may or may not be left over from a pre-

vious run must be deleted, the message that the file does not

exist should be suppressed.

0 The operator should interact with the operations as little as
possible, and his choice of interaction should always be

clear.

• Status information should be given periodically to allow re-

start, if possible.

• The many filesccreated during a run should be deleted auto-

matically, within the run or on the next run.

Keeping those principles in mind to explain the other "extra"

operations, the basic required sequence of operations is this:

• Run step 1 of the preprocessor

• Sort the separate LACIE Phase update card files into order

by card type

o Run step 3 of the preprocessor

9 Sort the *,2,3 card files into sets by segment number
a Run step 5 of the preprocessor to recover complete sets of

*,2,3 cards

o Put the non-set *,2,3 cards back sorted by card type order

rr Append the separate update files into a single file for each

LACIE Phase

• Run the ASATS task (RIMS data base update) for LACIE Phase

3. (Phase 2 updates have not yet been incorporated as an

automatic operation in the daily run)

rT



0 Run the postprocessor to convert the single report file from

the update run into 8 separate files: 6 audit listings, the

packet labels, and a file of card images to be punched,

0 Run RIMS five times as a hatch mode task to produce as many

as five reports requested for this run. The input data for

the batch run is all from disk files. The data base is per-

manently resident on disk and other data input (the date to

be put onto reports, the RIMS command files that start re-

ports, and the update cards) are read in immediately prior

to the batch run (see the description of the PIP command file

UP.CMI)).	 Much of the output of the batch run goes directly

to line printer spool files. Three of the outputs are left

in disk files and copied to output media by the operator:

packet labels are copied to label stock in the line printer

with PIP command file LA.(MD, they newly updated data base

is retained on disk and a backup copy on tape is made with,

one of the PIP command files SAMTO.CMD or SAMTI.CMD.	 And

cards are made from the file PUNCEI.ZIP by Using the utility

program CRDUUT to produce .^ card-image tape. The "control

card" file ASATS.BIS is actually a disk file of control card

images. The batch run is initiated by the operator with the

batch command: BAT ASATS (ALT) (The alternate mode key in-

stead of carriage return allow:, MESSAGE card information to

appear on the operator console).

The complete text of ASATS.BIS is shown in Figure 4-4.



^,^ SJtSS/NAMFaASATSI4/1_XMITa440/Mr,; a
SM94061 AJATS. S^TCH . STREAM V ERSION . 14, (14 JUNE. 1977)6

SMISSACE FIXED TO SnRT PUNCHED CARDS INTO ORUR BY TYPE.
$MESSAGE OF-SURE YO6 HAVE(
SME89AGE	 READ IN CARD DECK.
$MESSAGE	 t WITHt	 PIP PUP	 )
$MESSAGE IN CASE OF TRMUSLE, CALL(
SMMAGf	 JOE G"rRET T E 3336311 (DAYS) OR 554.3660 ( NIGHTS)
$MESSAGE OR	 DAVE jMITH	 333.63JI ( DAYS) 04 482-06114 (NIGHTS)
SM23SAGE OR	 JOHN rDON , 	4A3.6427 ( DAYS) OR 491 .0339 (NIGHTS)
$MESSAGE IF CARDS NrT O.K.• ABORT THIS RON AND RESTART
$MESSAGE WITH ANOTHER RAT A S ATS AFTER READING CARDS*
SMCR PIP DUM.TESsENmFILE
.SMCR P IP _I,^P3s*.T^s).,^LZ...
SMES$AGE /WAIT NOW # T YPE IN CON(C R ) TO CONTINUE, OR A40 ( C p ) TO ABORT,
SMCR PIP LPta,► ;TFS14/L1,
$MESSAGE START PREPpnCESSOR
S I CLEAN UP FILFS
SMCR PIP
OUM Y. . T_EPENpP, IR E	 ...	 .

S I STEP 1 READS PPEII;CRE AND WRITES CUT THE FOLLOWING:
4 I	 PPF14r AND PPF143 (PHASE 2 AND 3 FOR LATER PROCESSING)
S 1	 OTHER FILES T^ LINE PRINTER
S I SORT OPERATION WILL ALWAYS HAVE INPUT AND ALWAYS PUT OUT
0 1 SO METHING _IF IT RUNS SUCCFSSFULLY.
$RUN STEFi.TSK
$MESSAGE START SnRT
SMCR SRT PPF242rT E SdPPFi42.TES / SIZEIPO#DLSPEC.SOR
S I CAN NOW SAVF SPACE BY RF M nVI A'G INPUT T O THAT 30RT.
SMCR PIP PPF142► .TES,jt/OE
SMCR SRT pPF,24.3, TES T eP" . 43. T ,ES / S I ZE, t 9 p . D LSPEC. SOR
SMCR PIP PPFiu3.TFS11/DE
$ 1 SET UP NOW FOR yTEP3.
s I STEP 3 WRITES Tien FILES F OR EACH LACIE PNASEI
S 1 PPF35(2 AND 3) OF NON.*, 2., 3 CARDS
S I	 PPF33(i? AND 3) MF er a 2 0 3 CARDS
3 1 ALL FOUR MUST EYTST IF NO MFSSAGFS ARE TO BE GIVEN.
SMCR 0'IP
PPF332.TESsENDFILE
PPF333.TESmENDFILE
PPF3 52.TESaENDFILE
PPF353 . TESsENDFILE
$RUN STEP3.TSK
$ MCR PIP PPF74P-TES;*/"DF
SMCR PIP PPF243.TESi*/DF

Figure 4-4.—The Batch Run Control Card Rile, ASATS.BIS.

.-ek<



i

IT•
SM183AGE STEP 3 'OF PRE oRACEIf"SOR FINISHED
S 1 BEFORE DOING THR SORT S PUT UP A DUMMY OUTPUT FILE FUR
SMCR PIP OPF42PSTES^FNDFILF
SMCR SRT PPF42P•TESePPFI_l3,TES/SIZCISO/KEYSICN4•4tCNt#$O
S 1 ' NOW CLtAN ' UP YN;Cif FTLES TO THAT SOO# AND
I 1 UP DUMMY OUTPU'T'S FOR STE P S•
SMCR PIP
OPF333.TE81*/DE
PPF33P.TFSOENDFILE
PPF55P. TES!ENDFILE,._
PPP37P. TES ofNDFILE
SPUN STEPS.TSK
SMCR PI P PPFA2P,TES;*/nF
$MESSAGE STEP S FINTBHFM FOR PHA SE 3
s 1 NOW SORT THE *•2,3 NON . SE T S PACK INTO CARU . TYPE ORDER.
s 1 FIRSTr PUT UP A D1,IMMY SORTEm OUTPUT FILE..

SMCR PIP PPF6S3 . TES^FN6FILE
SMCR 89T PPF65311TFSSPPFSSP.TES/SIZE180/KEYStCN1.90
S 1 NOW DELETE INPUT TO THAT SORT AND CONCATENATE ALL THE
SMCR PIP
LPouPPFS?P,TF'S
PPFSTP , TES1*1DE
00t5P. TES 1 */0E
PHASE3,TESPPPFS3P•TcS/R
PMASF3.TFSsPPF653•TcS/AP
PHA8F.3.TESRPPF3S3•TcS/4p
PPFS3P, TFSrENDFI1.E
PPF93P,.TFS1*/D,F
PP ► b33.TFSl*/f^E
PPF3S3, TE3I*/DE
PPF4jP,TESmENDFILF
$MCP SAT PPF42P S TES;PPF33?. TES/SIZkt90/KEYStCN4,41CN1,80
$ 1 NOW CLEAN JJP INpiiT TO THAT SORT A N N GIVE: 0UM M Y OUTPUT

$MCR PIP
PP0332. TEA 1 * /DE
PPF5 3 P, TFSrENDF IL E

PPFSSP , TEBPENDFILE
PPF9?PoTF80ENDFILF
$RUN STEP'S.TSK
$MCR_PIP PPF42PgT4 $j * /qF
SMl984GE 00 S FINTSHED FnR PHASE 2.
3 1 SORT *•,2,3 NON . A FTS BACK INTO CARO•TYPE ORDERS
$ 1 FIRSTr CREATE A DUMMY SORTED FILE•
SMCR PIP PPF6S20TES^ENDFILE
$MCR SHT PPF69 2. TFS•PPF55P ; TF5/SIZEjA0/KEYS1CN1,80
«MCR SRT W F+ PbS2.Tt`Jt 7̂ Fi ^5 >r. rra/ai ^C1oU /^c ratio. ^1,aU

UPDATE FILES,

FOR STEP 5„

Figure 4-4. —The Batch Run Control Card File, ASATS.BIS. (cont)

^f^



S 1 DELETE INPUT . TO_THAT 1MRT, CONCATENATE Uw4ATE FILES,
SMCR PIP
PPFSSP,TFS1*/DE
LPIwPPF57P.TES
PPF87P,TES1*/DE
PHASEE.TES^PPFS3P.TF!^/RF
PHASE2.TE'SDPPF^41 ?.TES/AP
PHASES .IF-SWO0 1FIS2. for $ / AP
PPF53P.TESRENOFILE
PPFs3P8TES1*/DE
PPF652,TE81*/DE
PPF352.TFS1*/DE
S 1 ALL FILES ARE NSW M A N E. Q UP AND UPMATES ARE IN 2 FILES,
3 1' SEPARATED BY P44SFl OHASE3.TFS A ND PHASE2,TF'S,
$MESSAGE PHASE 3 UP;ATE.S WILL NMW HEGIN.
$MCR PIP
PPF3S % TESmPHASE3,7t8/RF
FOR012,DATNENDFIIE
FOA01t.0ATI*/DE
F046j 2 . bA T 6ENOFIL E .

FOROOT.DATsENnFILF
FOR007.0AT1*/DE
$MESSAGE THIS I BS MiQ LAST CHANCE '10 STOP OFDATES
$MCR PIP LPIv*;TES1,;4T
SMESSAGE / W AI T (IF YM11 AM PAST THIS POINT O YOU CA NNOT

WR PIP L`^1iri;YE31,^/LT
$RUN ASATS.TSK
SMCR PIP Ld.TESR*,*;*/LI
$MESSAGE; PHASE 3 UPM- ATES COMPLFTFD,
SMCR PIP
RM2s P0S *FNDFILE
RM?.Pnsl*/DE
RM?,POSsFOR0I2.DAT
DUM,xIPsE. NDFILE
*. 2IP1*/DE
WSSAGE PREPARE OUTPUT REPORTS.
$RUN POSTP.TSK
SMCR PIP CARDS.TESvp11NCH,ZIP/RE
SMCR SRT PUNCH . LTPs' .ARDS.TES / SIZF1d0 / KEY5ICNI.AO
SMCR PIP LM , TESs *.*i*/Ll
SMCR PIP PUNCH ,ZI P n ;ATF .CCM/AP
SMCR PIP LP1s*.ZTPIt
S j START THE OTHER DAILY REPORTS,
SMCR PIP UNITS.SAT1a0mAATCH.SAT
SMCR PIP BAT . COMvFNCFILE
SMCR PIP 9AT.COM1*/bF
SMCR PIP 8AT.COMmREp.COM11/RF
SRUN RIMSI.TSK

Figure 4-4.—The Batch Run Control Card File, ASATS.BIS. (cont)

IM

rP

^h

^r

s 1►

1^

ar

s

(CON OR, AdO).

RESTART),



SMCR P I P LO,TES=*.*i*/LI
SMCR PIP DUM.SHIwFNnFT1.E
SMCR PI P *,SHI1*/DF
SMCR PIP 3AT,COM1*AF
SMCR PIP RAT.COMsREp:CnMIZ/RF

$' $RUN PIM32.TSK
SMCR PIP LO,TESs *,+i*/LI
$MCA PIP 011M,SHIsENnFTLF

S. SMCR PIP *4 4HI1*/DE
SMCR P IP RAT.COMI*/QF
SMCR PIP 5AT,COMsREp.COM13/RF
SPUN RIMS3.TSK
SM C R PI P LO.TESs*.*jA/LI
SMCR P IP OUM.SMImFN;FTLE
SMCR PIP *.SHIP*/DQ
SMCR PIP SAT,COMI*/nE
SMCR PIP 8AT.COMsRE';COM14/RF

' 	 SPUN RIM84.TSK
SMCR PIP L M , T ES s *.*;f/L I
SMCR PIP DUM.SHIsEN;FILL~
SMCR PIP *,SH11*/DF
SMCR PIP BAT,COMI*/nF
SMCR PIP 9AT.COMeRE;p;COmf5/PF
SRUN RIM356TSX
SMCR PIP L.O * TESs*,*j* /L T
SMCR P I P a11M . SHIsENmFTLF
$MCR PIP *.SHIP*/DE
SMCR PIP BAT,COMI*/nF.
SMCR PIP LIN ITS, SAT I?A/DF
SMCR PIP LP1sPHASE21 * 1*/LI
$MESS A GE **** r*r***,1***,r***,tr*try * rr**+*****,t*^r**********,err*
SME56AGE * END OF AgATS PNASF 3 H ATC W 1 ► PDATES AND REPORT5 +
$MESSAGE * RFMFMRER Too
$MESSAGE *	 MAKE CAPS (USE.' CRDOUT ON THE
$MESSAGE *	 FILE PUNCH O ZIP)	 +
$MESSAGE*	 ANA	 MAKE LABEL$ (LOAD LABELS INTO
$MESSAGE *	 PRINTE R AN D OU PIP OLA	 )
$MESSAGE *	 AN'	 SAVE f210,0041 ONTO TALE
$MESSAGE *	 f HFI, f 5.51
$MESSAGE *	 TNT M T01P3 0ATE:/UIC s f210,004)	 +^
$MESS A GE *	 Mfl ► 1 M TO1/OVR	 r

$MESSAGE *	 HEL !710,004)
3MESSAGE *	 PIP •SAMTOI	 +►
$MESSAGE *	 EASTcN THE DTRF,CTI RY TO T HE TAPE 1
$MESSAGE * THIS TS THE E ND OF THE ASATS PHASE 3 BATCH RUNT
SMESSAGE ******,r***+**,r******r,r*******+*+tr*r**+r******rrr**+t**
SMCR PIP L P 1 s *.TFSJ;4 I
$MESSAGE NOW LOAD 5 .'PA R T PAPF4 INTO T HE PRINTER AND

$MESSAGE / W AIT TYPE TN CO N (C P ) T n PRINT REPORTS,
SMCR PIP, LLPI• *. TFSI;/LI
$eoa

Figure 4-4.— The Batch Run Control Care) File, ASATS.RIS. (Concluded)



4.3 SORT UTILITY SPECIFICATION FILE DLSPEC. SOR

This file controls the sort utility (SRT) for the two sorts of

update card files which occur between step 1 and step 3 of the

preprocessor. The purpose of the sort is to put the cards into

order by card type (column 2) for proper order of processing of

two or more updates on a single segment or acquisition, and to

be sure that duplicate cards are detected (because after the

sort, duplicates will be together in the file). The ordering of

card tapes is effected by a "force" (F in column 7 of the des-

cription of the type field) which, in effect, changes the collat-

ing sequence only in that field. Otheix fields are sorted on the

standard ASCII collating sequence.

The text of DLSPEC.SOR is shown in Figure 4-5.

44 0'^



00 HSORTR 90A	 X	 90	 HEADER CARD
_ 01 FFC 2 f; * _..._._„_.
02 FFC 2*2•
03 FFC	 r.  . 2230
00 FFC 2300
OS FFC  245•
06 PFC 2560

08 F FC 2P9•
09 FFC	 _.._ ..	 279+
10 FFC tea•
It RFC	 _... 2aG•
12 FFC 2AH•

. 13 FFC --2H I •	 :.
10 FFC Vie

16 FFC 2JM•
17 FFC: 2WNw
18 FFC

__.200

-- 19 F F C._______r___. 2 7 T_•
^20 RFC 2XU•

21 FFC 2 11X.
22 F'NC	 3 80
23 FDC	 i 80

Figure 4-5, The Sort (SRT) Specification F.Ile, DLSPPC.SOR.

.5



.

4.4 ASATS/RIMS COMMAND FILES

An ASATS/RIMS command file is a series of RIMS commands. Report

files tend to be repetitive. The most frequently used command

files represent a query report situation where a lengthy series

of commands would otherwise have to be manually input interactively

each time the specific report is desired. The command files,

therefore, provide for consistency of reports and, perhaps more

importantly, for convenience to request an already debugged

stream of commands to the ASATS data base. The command file

approach also offers convenience in that the files may be used

as often as required in either batch or interactive mode. Other

command files may be used for controlling processing sequences

such as the Update Control File (RM4.COM ).

4.4.1 RM4.COM -- AN UPDATE CONTROL FILE

The following is a listing of the standard card file update con-

trol commands:
NOTE: The RE and UP commands

9EDROIXx	 UP	 as used herein are
RF0,12#RFD .DAT 	UP	 special ASATS commands
RF12.12	

UP	
to read and interpret

RE	 UP	 the Procedure 1/normal
RFe.t2 0 FoQ012 9 n AT 	UP	 ASATS processing type
RF'0j11 , 090IPPF353 . T S5 	 code and to update the
Rf11 ► 11	 FN	 ASATS data base. Thus,
UP	 the RE and UP commands
UP	 as used here should not
UP	 be confused with the RIMS
UP	 commands of the same
UP	 n►nemonic; i.e., ..
tip	 RE for "Restructure" and
UP	 UP for "Unpost".
UP
UP
UP
tl P
UP
UP
UP
UPUP

_̂S7



W	 CAM CA
F RG PC GSF'C	 COMMENT
C W	 SP TG LSD

A	 G

4.4. 2 OP13.COM w OPERATIONS STATUS SUMNtARY 01' SEGMENTS IN TIlli
DAPTS DATA BAST: REPORT CO MMAND FTLF,

The following list represents the standard report generating

commands to produce the frequently requested OPS Status Summary

of Segments in the DAPTS DB:

BE
$KCOUMTRPCOL ► NTRZ
RF12r10
NDir1
NDir
N D,2 r

TS DH
RF0r12r0901DATErCOM
RP13r12
Hp1,0
HD2r SEG
I RW u 8W u

HD ?r N O S CNTRY RG TOME STR
8E OPFN CLOSE. TOPO CROP ANCL

NDir
PF1r69
EN

LACTE P H ASE T11
OPS STATUS SU MMARY OF SEGS IN "AW

C W	 9w 1	 04W 1 9w 2	 HW 2 B e, S	 dw

LAST
C V PC TV OPEN CLOSE O P EN CLOSE OPEN CLO
CHA^'GE

This report command file additionally illustrates use of the

report header commands available to the user plus demonstratitlg

how another conunend file may be called to become an integral Dart

of this command stream (see line 81 1 0, I:'., D110: DATE. COM ) .

4.4.3 OP23.COM — OPERATIONS S'T'ATUS SUMMARY OF ACQUISITIONS
COMMAND FILE

The following list represents the standard report generating

commands to produce the :frequently requested OPS Status Summary

0.14. 	 report (similar to the report commands of par. 4.1.2).

BE
Sx8W	 •8w	 o
Rf f ^, 1 0
HD1r1	 LACTE PHASE lI
HD2r	 OHS STA T US SUM M AR , OF AL
dUISTTIONS
RF002,0900ATF.COM
RF13, 12

_H,p1, 0

HD2r SEG ACG H W TAPE F

R

H D2r 1 ' 0	 DATE W V	 Nn
H	 I	 i	 C K	 M

J"F1
E

r7n
N



4.4.4 POLIST.COM — PACKET ORDER LIST COMMAND PILE

The following partial list illustrates a quite lengthy, but

mostly repetitive type of report generating commands to produce

the daily requested packet order list. This redundancy is

fairly obvious in the report header commands; however, note

that the data set isolation command (SKPC 2, SKPC 3, etc.)

changes with each iteration. The purpose here is to provide

standardized format for a group of reports which operate

sequentially upon different data sets.

RE
RF12 ► 10
14020 	 DAILY PACKET J R OE K L.

IST
RF001?rDATE.COM
RF13.12
HID s
HDIv PH ASE III	 113	 Pr2

Kul ►
HDir
HD? ORS SEG	 L P I APO	 REr. 7n NE STR 8 w CNT	 LAST	 DtL0
TX	 RE C 	 CA M S /LPDL	 COMMENT

HD?g	 X10 r)ATE w	 V	 CHNG

ATE
RF12#7
SKPC	 2
GC1
?N? # ATC nN!P . N E. ► PACKRF.F^J. ►
RF1?.10

JF3 ► 90
R^3 i ub r 	 TO TAL ACAL^ T 9TTrAuS
BE

HD2
10

HD^
0

t LDAILY	 PACKET	 URUER

3 SIT
RF6pIP o DATE,COM
IRT 110 1 2

HD1 ►
HD1 0 	 PHASE	 III US	 Pri

HD1v
HD1,
HD?r	 ORD SEG L P I	 AC O 	RFO VNE	 SIR H	 w	 CNT	 LAST	 GEL
TV . _

"R
EC -	 ti-Wf LPDL. 

_ 
t 0 M m F NiT 

H D2P	 NO SA TE iy	 V	 CHNG	 1

A Tt
RF12 ► 7
GXPt	 3
GC1

SN2pAICOM P ,NE. .PACKRF.F©. r

RF12 ► 10
J F 3 r p C,
8C3 0 u6 0 	 TOTAL. ACMpTSTTTO K'S

ORIGINAL PAGE IS

OF' POOR QUALITY

d



S. ASATS/RIMS FILE USAGE

This chapter describes the data files used in the daily opera-

tions of the ASATS interactive and batch mode systems. The

control files which control sequences of utility or batch oper-

ations have already been described in chapter 4. Command files

for building the system (indirect task builder files, etc.) will

be described in chapter 6.

5.1 THE RELATION OF INTERNAL FILE DESIGNATIONS TO EXTERNAL
ttXlT+r-

Most of the tasks in the ASATS/RIMS system have a flexible re-

lation between internal unit designations and external file

names that can be varied at load time or during a run, rather

than being fixed by default FORTRAN complier and/or task build-

er assignments. This generalized relation is built from two

independent relations on three independent sets of designators:

a relation of fixed internal designations to external logical

unit numbers, and another relation established between those

logical unit numbers and system file names (device: name. type;

version). The first relation is established by an array of

logical unit numbers read by the program at the beginning of a

run and possibly changed again during the run. The second re-

lation is established by a call to the system subroutine ASSI(;N,

and can also occur either at the beginning of a run or during

the run. The complete relation is the composition of the two

relations:	 (read)	 (ASSIGN)	 device:

logical	 file name.
internal	 > unit	 ------> type;
variable	 number	 version

(RF n,m)	 (RFO,m, name)

The RF command to RIMS can be used in its two different forms

to alter either relation, as shown above. The relations are

both established at the beginning of a RIMS run by the sub-

routine UNITS, which always reads a file UNITS.SAT. That file



i
1

contains one record of logical unit numbers to establish the

first relation, and five more records that give a unit number

and a file name to establish the second relation. One version

of the file UNITS.SAT is permanently on the disk and will be

picked up for interactive runs to establish command file input

from the user terminal. TI:. A batch run will precede the RUN

of RIMS by a copy operation from the file BATC,H.SAT to a new

version of UNITS.SAT. The batch run of RIMS will therefore

supersede the usual interactive command file from the TI: with

an assignment to the disk command file. That file can contain

RF commands which will further alter either relation. It should

be noted that the form "RFO,m,name" will close any file already

associated with logical unit m and re-open m. This means that

file m will be positioned at the beginning of the new file.

This provides a means for using one command file several tames.

It could also cause an infinite loop if the command file re-opens

itself. It also allows run-time manipulation of command or data

files. A file of commands could conceivably be written as a

report file, closed and re-opened as a new version of a command

file. Or, a report file could be created, closed, re-opened as

a data input file, and used to update the data base.

The tasks of the preprocessor and the postprocessor and the

ASATS utility tasks CONTAP and JJ were all built with similar

file-assignment capabilities. Each reads its own file, with a

file type "IUN", at the beginning of a run to establish both

logical unit numbers and file names, These tasks do not change

file assignments later in execution.

_>1^1



5.2 PILE TYPES USED IN THE ASATS SYSTEM

Table 5-1 lists the file type mnemonics used in the ASATS system.

Some of the file types are standard RSX-11-D type conventions.

5.3 BATCH RUN DATA FILES

The data files used in the preprocessor are named with 5- or

6-character names, The first 3 charac;.ters are always "PPFII

and the next two digits indicate, respectively, the step of

the preprocessor which uses the fa.le and the logical unit number

in the program. A final digit "2" or 11 3" is used if there are
two similar files for the two LACIi;; phases. Sometimes the final
digit is replaced by the letter "P" to indicate that one file

name is used in two runs of a program for the two LACIE phases.

The contents of these files are described in table 5-2.

O'k

y



TABLE 5-1.— MEANINGS OF FILE TYPES IN ASATS SYSTEM

File type	 Usage

.(blank); 1. Report "sta „ ter” files, usually contain-

ing RIMS commands: BE, password, and an

RF to the command file (same name, type

COM) that produces the report.

2. Also used as the file type for ENDFILE

and BLANK (two empty files used to create

dummy files).

.BIS;	 Batch input stream

.CMD;	 System utility indirect comanand files

.COM;	 RIMS "canned" command files

.CRE;	 A card-image file from the card reader

.DAT;	 Data files (FORTRAN default type)

.IUN;	 Unit-name assignment files (as described in

section 5.1)

.POS;	 The input to the postprocessor

.Rn;	 Data base files

(.R1;,

.SAT;	 Unit assignment files for RIMS (see

section 5.1)

.SOR;	 A file for the system sort utility (SRT)

.TES;	 Update card image and listing files in the

preprocessor

.TSK;	 Task-built Executable modules

.ZIP;	 Output print label, or punch files from the

postprocessor

54



TABLE 5-2.-- CONTENTS OF BATCH RUN FILES

File Name	 Content

PPFII .CRE	 The input to step 1 of the Preprocessor.

PPF13.TES	 The unsorted listing of input cards with record

count.

PPF142.TES	 The LACIE Phase II cards, with a Q card.

PPF143.TES	 The LACIE Phase III cards, with a Q card.

PPFI6.TES	 Input cards with invalid type found by step 1 of

the Preprocessor.

PPFI7.TES	 Cards found by step I of the Preprocessor to have

invalid LACIE Phase.

PPFI8.TES	 Cards found by step 1 of the Preprocessor to have

some non-blank character in columns which step 1

checks for blanks. The images fed to RIMS will be

forced to blank in those columns.

PPFI9.TES	 A. file produced by step 1 of the Preprocessor, con-

taining counts of cards and other statistics from

the first reading of the update cards.

PPF242.TES	 Input for step 3 of the Preprocessor (Phase 2)

PPF243.TES	 Input for step 3 of the Preprocessor (Phase 3)

PPF332.TES	 The output from step 3. It contains all the *, 2,

and 3 cards with LACIE Phase = 2.

PPF333.TES	 The output from step 3. It contains all *, 2, and

3 cards with LACIE Phase = 3.

PPF352.TES	 All Non-*, 2, or 3 cards put out by step 3 of the

Preprocessor for LPI = 2.

PPF353.TES	 All Non-*, 2, nor 3 cards put out by step 3 of the

Preprocessor for LPI = 3.



TABLE 5-2.-- Concluded.

File name	 Content

PPF34.TES	 A listing of all input cards sorted by type (or as

received by step 3 of the Preprocessor.)

PPF38.TES	 A listing of invalid duplicates found by step 3 of

the ASATS Preprocessor.

PPF42P.TES	 The input file for step S.

PPF53P.TES	 Output from step S. It is the file of complete

sets of *, 2, 3 for a single segment.

PPF55P.TES	 Output from step 5 of the Preprocessor. it is the

Mile of all *, 2, and 3 cards which do not fall into

complete sets for a segment.

PPF57P.TES	 The listing file of step 5 of the Preprocessor.

PPF653.TES	 Non-set *, 2, 3 found by steps 5 and sorted back

into card type order; * cards, then 2 cards, there

3 cards.

ell^ <J,"'



6. ASATS EXECUTABLIi TASK DESCRIPTIONS

This chapter describes ASATS program sets at the task level.

There are three types of tasks in the ASATS system: data base

manipulation tasks, batch run edit, audit and report formatting

tasks (pre- and post-processor), and utility tasks used to build

or pack the data base. The tasks are listed by type in table 6-1.

6.1 TASK BUILDER COMMAND AND OVERLAY DESCRIPTION FILES

The ASATS tasks are each built with an indirect command file for

the RSX-llD Task Builder. Each command file has the same name

as the task, and file type ".M.". Two of the ASATS tasks,

ASATS.TSK and RIMS.TSK are built in overlay form, and the re'.;Pect-

ive command files refer to Overlay Description files ASATS.ODL

and RIMS.ODL. Listings of .CMD and .ODL files are included in

Attachment A to this document.

6.2 ASATS TASK EXECUTION INSTRUCTIONS

Most of the ASATS tasks are well documented in terms of user

application in the ASATS and RIMS user guides. Two additional

tasks were created expressly for ASATS and have no direct rela-

tion to RIMS. These tasks were used to manipulate files prior

to the initial load of the data base transferred to us on tape

from COMSHARE. The tasks have been retained because there is a

continuing need for utilities to read foreign tapes and break

down large sequential files into smaller pieces. These two tasks

are described on the following pages.

.6114



TABLE. 6-1.-- ASATS TASK FUNCTIONS

ITask type 'Task name Function

Data Base ASATS.TSK Updates the data base	 in the hatch run.

Management (a subset of RIMS)

RIMS.TSK Interactive data base update, and

report generation in both interactive

and batch modes.

Edit and STEPI.TSK Makes first pass over the update cards

separate and separates diem by LACIF: Phase

u	 atc,s;p ST'EP3.TSK Separates *,	 2, and 3 card types from
produce all other types;	 inserts dates	 from
report the Q card.
listings

STEPS.T'SK Finds complete sets of *, 	 2,	 3 cards

for a segment and separates the sets

from individual *,	 2,	 3 update cards.

POSTP.TSK Separates output from the update tasR

into separate listings and punch files.

Utilities CONTAP.TSK Reformat a sequential data base file

in preparation for loading by RIMS.

CR.	 TSK Create direct-access files for use as

a data base.

CREATE.T'SK Initial creation of a data base.

JJ.TSK Copies selected records from one

sequential	 file to another.

NiWFILB.TSK Builds new files	 for an empty data base

PFl.TSK Pack data base	 files	 .Rl	 and	 .R2.

PF2.TSK Pack data	 base	 files	 .R3 and	 .Rai.



i
TASK DESCRIPTION

Task Name: CONTAP

Purpose: To read and reformat a sequential file to prepare it

for loading into a data base. The reformatting is

generalized, table driven, and programmable.

Setup Required Before Run:

• Files Required: CONTAP.IUN (which specifies other file

names)

Control table file (as unit 3 in CONTAP.IUN)

Input and output files written by the

control file.

• Other: Can mount a tape as an input file, if desired.

Run Instructions:

9 Interactive Mode: The user must make available a reformat

control table in one file to be read by

CONTAP and put the name of that file

into CONTAP.IUN along with the names of

any input or output files to be processed

by the reformat table. The reformat

table is a sequence built from the follow-

ing operations:

a. Read a file to the input buffer and

skip next table row unless end-of-

file.

b. Move field from input buffer to out-

put buffer.

C. Convert characters from EBCDIC to

ASCII.

d. Check field for non-numeric and skip

next row of table if numeric.

."'k. e^kr



e. Write out the output buffer.

f. Jump to row N of the table.

g. Stop.

There are several other possible opera-

tions that were specifically built for

conversion of data from COMSHARE formats

to the new PDP-11 ASATS formats. A

detailed description of the parameters

required in each table row is found in

the program listing.

la'



TASK DESCRIPTION

Task Name: JJ

Purpose: To break ,a sequential file into smaller files.

Setup Required Before Run:

Files Required: JJ.IUN, which must specify an input file

name for unit 2 and an output file name

for unit 1.

Run Instructions:

Interactive Mode: MCR>R1JN JJ	 ALT

ENTER START AND END RECORD NUMBERS

AND RECORD LENGTH IN 315 FORMAT

1280

CZ

JJ--STOP

(The above run would copy the first 12

records from the input file to the out-

put file with a record length of 80

characters).

Output Files: The output file is selected by the JJ.IUN unit

assignment file.



F

n

7. NEW AND MODIFIED PROGRAMS

This chapter contains the as-built design details of Individual

programs (main programs, functions, and subroutines). Included

are all new programs built especially for ASATS, plus programs

from the RIMS system which had to be modified for the ASATS

application.

For documentation of those RIMS programs which have remained

unchanged, refer to the RIMS Maintenance Document (LEC-9566,

October 1976).

Complete listings of the ASATS program source tiles are given in

Attachment B to this document.

^^f



Name:	 ABORT (preprocessor step 1)

Purpose:	 If two different Q cards exist, then this

routine will abort the job.

Linkage:	 • Calling sequence: CALL ABORT

• Common blocks used: UNITS

• Subroutines or functions used: .EXIT

• Files used: Logical Units 4, 5, 10

Input Description:	 Unit numbers from array TUN - logical unit

numbers for the listing file and output

data files.

Output Description:	 Update card files 4 and 5 are erased.

Process Description:	 A check of the count of Q card images is

made. If Q-type count is not exactly one,

the job will abort sending ABORT messages

to the operator's console and the line

printer file. Units 4 and 5 get rewound

and have a file mark written into them.

This prevents making any updates to the

data base.

7



E

Name:	 ABORT (preprocessor step 3)

Purpose:	 To prevent making a data base update when

the update card file is pathological.

Linkage:	 • Calling sequence: CALL ABORT

• Common blocks used: UNI'T'S

• Subroutines or functions used: EXIT

Files used: Unit 7

Input Description:	 Listing file unit number in IUN(7)

Output Description:	 A banner message on the print file and a

message to the operator that the update

run is to be aborted.

Process Description: A FORTRAN write statement and a PAUSE

message.



1
i

Name:	 ACCNO

Purposes	 To produce a binary accession number

(record ID) corresponding to a character

string.

Linkages	 • Calling sequence:

number - AtCND (string, start, length)

where

number is the output value,

string is a character string array,

start is the starting character position,

and

length is the number of characters to be

converted

• Common blocks used: None

• Subroutines or functions used: INDEX,

TNPARM

• Piles used: None

Input Description:	 Start and length should be typed INTEGER*4.

String should contain a string of characters

that is either: (a) two strings of digits

separated by an "@", or (b) a single string

or digits terminated by either the end

of string or by a non-numeric character

other than t1@11.

;--le"



i

Output Description:	 The output is in double-word (INTEGER**)

form and is, for a single number, the

binary value of the number. For the

double-number form of input, int 1 @ int 2,

the value of int 1 is put in the second

output word, with value of int 2 in the

first word.

format
	

output word 2	 1 output word 1

integer zero (or overflow) value of integer

int 1 @ int 2 value of int 1 value of int 2

Process Description:	 hook for the "@", and then convert one or
two integer parts.



r

Name:
	

APSEL

Purpose:

	

	 Same as SELECT, except that an empty set

will be selected independent of the ZZ

(retain empty set flag) status.

Linkage:	 • Calling sequence: CALL APSEL

6 Common blocks used: SYSCOM

• Subroutines or functions used: LOCATE

• Files used; U(3), U(4), U(7)

Input Description:	 See SELECT In the RTMS Maintenance Document

Output Description:	 See SELECT

Process Description: See SELECT



Name:
	

nSN

I

Purpose: Assigns file RM4.COM to a specified unit.

Note: Subroutine exists in order to pro-

vide better control of position of system

subroutines in overlays.

Linkage:	 a Calling sequence: CALL ASN (FN)

• Common Mocks used: None

a Subroutines or functions used: None

Files u-ed: Unit specified on input

Input Description: 	 FN contains the unit assignment on file to

be assigned (RM4.COM ).

Output Description: 	 None

Process Description: File RM4.COM is assigned to specified unit.

ooee



i

Name:	 AUDATE

Purpose:	 Updates data base from set of input cards.

Specific update operations are a function

of card type (specified in second character

of each card), data base format, and the

input format. The input format and data

base to be used are also a function of the

card type.

Linkage:	 • Calling sequence: CALL ".0DATE

• Common blocks used: SYSCOM, SY2COM, PDT

• Subroutines or functions used: GETREC,

LODFMT, AUREC, CHFLD, APSINT, AUPOST,

APSTUP, SUBSTR, KOMSTR, APSCNT, SHOUT,

XONT, ENDAT, GETCLD

• Tables used: Processing Description
Table (PDT) which contains card type
versus type of record ID generation

and the category type table. The bio-

window table from segment record.

Files u g ed: Units 1, 2, 3, and 4 are

updated. Units 5, 6, J, and 10 are

scl'at-ch files. ASATS cards are on the

RIMS data file. The RIMS message file

is used for ASATS postprocessor data.

Input Description:	 • Command: Processing is begun by a UP

command

• Status and tracking input cards: Any of

the 21 types of ASATS update cards

(except. Q cards) are processed sequen-

tially until an EOF.

•



T,

Input Description:	 • EOF: Processing of an input file is
(continued)	 ended by a blank card (inserted by the

preprocessor) or by actual end-of-file.

Output Description:	 Besides updating the ASATS data base the

:Following information is recorded sequen-
tia^ly on a file.

• Rejected input cards

• Required DAPTS record does not exist

(for *, 2, 3, 4, 5, and 6 cards)

• Required FLOCON record does not exist

• FI,OCON record has not reached required

state for particular type of card.

• Accepted input carols which create new

DAPTS records.

• Punch cards

Process Description:, The required processing is a function of

card type. Card types are categorized as

fol"ows:

•	 Category 1 - card type 2

•	 Category 2 — card types *,	 2,	 4,	 5,	 o and T

•	 Category 3 — card type 3

•	 Category 4 — card type B

•	 Category 5 - other card types

•	 Category G	 - N card

A generalized function fox , adding new

records and updating existing records will

exist. This function, which is driven by



input formats, data base formats, and card

type, will add or modify the specified

record. The general, steps of processing

input cards are as follows.

• Read input card

• Generate record ID (See table 7-2)

• Generate external (input) format TD from

table

• Retrieve record

• Retrieve formats

• Either add or update record (or both in

case of "N" card)

• Output card image reflecting success or

error

Figure 3-7 depicts the flow of this process

and variations dependent upon category of

card type.

Table 7-1 indicates the data used for gen-

erating a record depending on input category.

The input format is a function of the card

type.

The type of operation, an add or modify, to

be performed is a function of the category

for the record type and whether or not a

record already exists. The input format

for the card type identifies the fields it

updates and the field's data types. 'fable

3-5 describes the processing for field

types o^,, input. The processing of individual

fields is transparent to this routine (it

8O



Process Description: is performed by AUREQ .
(continued)

If an error condition occurs when processing

an input card, an error type is put in

column 2 when the image is written to the

message file. The input card images for

new DAPTS re^4ords are also written to the

message file; column 2 for them is the

logical unit number for the DAPTS record

file.

Additional processing required by category 3

is the selection of FLOOON records of the

same segment and the updating of their

biowindow fields.

7 1



t'

TABLE 7-1.— PROCESSING DESCRIPTION AND FORMATS FOR ASATS UPDATES

6

6

Card type

Z (*,2,3)

*

2

3

4

s

6

B

G

H

I

J

K

M

x

U

7

8

9

N

T

Method for
Gen. RID

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

Input format
number

21 (52 for ADD)

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

36

38

40

41

Cate or

1

2

2

3

2

2

2

4

5

5

5

5

5

5

5

5

s

s

7-



TABLE 7-2.-- CARD TYPE VERSUS RECORD ID GENERATION 'TABLE.

Card Type	 Method of Generating Record ID

Z,	 2,	 3 Se^'ment number
* Sog.^^^nt number

2 Segni.,it number

3 Sep;ment number

4 Segment number

5 Segment number

6 Segment number

T Segment number

B Segment number and lwq. date

Others Segment number and Acq. date

,P

^'3



Name:	 AUREC

Purpose:	 To either add or update a record to the

data base.

Linkage:	 • Calling sequence: CALL AUREC (J, IFUN, STAT)

• Common blocks used: SYSCOM, SY2COM,

UPDCOM

• Subroutines or functions used: LMVTAB,

APSTUP, TFORM, ADDR, REPR

• Files used: Units 9 and 10 for auto

posting.

Input Description:	 IFUN = 1 indicates ADD, IFUN = 2, indicates

update

SY2COM contains the record to be added or

modified

J = record ID

STAT = status return

Output Description: Data base is up(; " ►:ed or modified
Key changes are on Unit 9 and 10

Status reflects results of operat4.on

- status = 0

- status = 1

Process Description: The system move table is updated

Fields are transformed from input array to

output array according to move table

Fields are posted if required

Fields are unposted if required

aatkow I



3
1

i

Process Description: Records are theft added or modified using

(Continued)	 ADDR or REPR



a

Name:	 BLKLN (preprocessor step 3)

Purpose:	 Prints a blank line

Linkage:	 • Calling sequence: CALL BLKLN

• Common blocks used: UNITS, LINES

• Subroutines or functions used: None

• Files used: UNIT = 7

Input Description:	 Unit number IU37

Line counter LINE

Output Description:	 Writes one blank character to unit 7,incre-

ments the line counter LINE

Process Description: Write unit 7 and increment LINE.



BLNKCK (preprocessor, step 1)Name:

Purpose:

Linkage:

Input Description:

To check update cards for nonblank charac-

ters and force blanks in columns that will

be used for flags.

e Calling sequence: CALL BLNKCK

• Common blocks used: UNITS, IMAGES, BCHK

• Subroutines or functions used: None

• Files used: Logical unit 9

Update card image in IMG array; a list of

card columns in array ICOL

Output Description: 	 The same card image,with listed columns

forced to blanks. ,

A list of cards in which forcing was

required on unit 9

Process Description: Each column in the list ICOL is checked for

a blank.

If any column is nonblank, the unchanged

image is written to a list file, and all

columns are then forced blank.

A non-blank is not a fatal error of the

update.



Name:	 CARTP (preprocessor step 3)

Purpose:	 To

fr

Linkage:	 •

•

•

•

separate cards with types *, 2, or 3

om all other update cards.

Calling sequence: CALL CARTP

Common blocks used: FLAGS, UNITS, LINES,

TRIAGES

Subroutines or functions used: PAGE,

HDR, BLKLN, COLABL

Files used: Units 1, 3 0 5, 7

Input Description:	 Card images in array IM1

Current phase's unit number for *, 2, 3

cards in IU33P

Unit number for other card types in IU35P

Output Description:	 A count of cards of one type in ICTCT.

Card images to the listing file (unit 7)

and to other units as follows:

Unit Type Phase

3 *,2,3 2
4 *,2,3 3
5 Other 2
6 Other 3

Process Description: Appropriate unit numbers for the phase now

being processed are selected by card type

of the image in the IM1 array. Calls to

subroutines provide page and column headers

and page number control.



r

Name:
	

CHAR

Purpose:

Linkage:

Input Description:

To convert an integer to a string of ASCII

digits.

o Calling sequence: CALL CHAR (string,

start, length, value)

where

value is the integer to be converted,

length is the number of digits to be

produced,

start is the leftmost character position

in the output string, and

string is the output string.

• Common blocks-used: None

Subroutines or functions used: None

• Piles used: None

Value, length, and start should be typed

INTEGER*4

Value should contain a non-negative integer

in the range 0 S value < 2 31 - 1

The array string should be long enough to

hold start + length - 1 characters

Output Description:	 A field of length characters is filled with

the ASCII codes for the decimal representa-

tion of value. Leading zeros are not sup-

pressed. Overflow of the field is not

detected: the low-order digits will be

given with no error indication.



Pv ,,-^zessinjq Description:	 Standard divide-by-modulus-and-use-
remainder conversion algorithm.



CKTYLP (preprocessor step 1)

To check update cards for type and pha

Calling sequence: CALL CKTY;UP

Common blocks used: IMAGES, VALID,

FLAGS, UNITS

Subroutines or functions used: 	 QCHCK

Files used:	 Logical units 4, 5, 7, 8

•

•

•

•

Name:

Purpose:

Linkage:

Input Description:
	

Update card image in array IMG

Output Description: 	 The updated card image list of invalid

card type on unit 7 and invalid phase on

unit 8.

Card images of phase 2 and phase 3 are

written on units 4 and 5, respectively.

Process Description: Each card is initially checked for Q-type

in column 2.

If Q-type, the card is treated as a special

case.

If element 2 of the image has an invalid

type or phase, the image is written to a

list file (units 7 and 8, respectively).

All valid phase 2 and phase 3 images are

written to output files (units 4 and 5,

respectively).

__



Name:	 CL,

Purpose:	 To

Linkage:	 •

•

•

•

DSEL

insert a trailing comma if necessary.

Calling sequence: CALL CLOSEL (STR, S,

L)

Common blocks used: None

Subroutines or functions used: LAST

Files used:

Input Description:	 STR - string name

S	 - start

L	 - length

Output Description:	 STR with a trailing comma.

Process Description: Find the last non-blank character and

insert a comma a s command delimiter.

_^w



Name:	 CMDRI

Purpose:	 To control the process of the arithmetic

command CM.

Linkage:	 • Calling sequence: CALL CMDRI

• Common blocks used: SYSCOM, SYZCOM

• Subroutines or fur:ctions used: INDEX,

INPARM, SUBSTR, CMPUTE

• Files used: None

Input Description:	 User's command string through common block

SYSCOM (STR)

Output Description:	 Mean, standard deviation, count of records

used in computation and count of total

number of records in a given set. (See

output description of subroutine CMPUTE).

Process Description: The following processing is performed.

The command string is parsed.

A format array is set up with the two

field names.

Working program (CMPUTE) is called.

93



Name:	 CMPUTE

Purpose:	 To compute mean and standard deviation of

the differences of two fields from a set

of records.

Linkage:	 • Calling sequence: CALL CMPUTE (RID,SET)

e Common blocks used: SYSCOM, SY2COM

• Subroutines or functions used: ADDR,

CLOSEP, GETREC, INPARM, LMVTAB, SETINI,

VERIFY, XXIN1, SSORT, LODREC

6 Files used: None

Input Description: 	 RID is the record ID for the record where

the results of the computation are to be

stored.

SET is the set number for which all compu-

tations are to be performed.

Output Description: Mean and standard deviation of differences

of two fields, count of number of records

used in mean computation and the count of

the total number of records are stored in

the specified record.

Process Description: The following processing is performed.

Get record ID from set

Retrieve record and associated,format

Process retrieved record as follows:

Differences of two fields is computed

for records in which neither field

is blank.



Process Description:	 Count of number of records used in corn-

(continued)	 putation of mean and standard deviation

is maintained.

The mean and standard deviation are computed

after all records have been processed.

Encode all computed results to alphanumeric.

Call ADDR to store encoded results in the

specified record.

4.<O



Name:	 COLABL (preprocessor step 3)

Purpose:	 Provides a printed header giving field

identification for the update caxd listing.

Linkage:	 @ Calling sequence: CALL COLABL

• Common blocks used: LINES, UNITS

• Subroutines or functions used: BLKLN

o Piles used: Logical UNIT = 7

Input Description:	 LINE (current line number on the page now

being printed)

ICOLAB (a flag that indicates whether col-

umn labels have already been printed on

the current page. The flag is reset when

11DR starts a new page)

Output Description:	 Column headers for the fields of update

cards (card type, segment number, etc.)

Process Description: If the flag is reset (ICOLAB = 0) the

headers are printed and the flag is set

(ICOLAB = 1)

7- 
Y 

A

i



Name:	 COMSTR

Purpose:	 To compare two strings (SEE KOMSTR).

Linkage:	 • Calling sequence: I = COMSTR (A, S1,

L1 0 B, S2 0 L2)

• Common blocks used: None

• Subroutine er functions used: None

• Files used: None

Input Description: 	 A - first string

Sl - start in first

Ll - length in first

A - second string

S2 - start in second

L2 - length in second

Output Description:	 -1 - A<B

0 - A=B

+1 - A>B

Process Description: If Ll j L2 the shorter string is considered

to be blank filled.

70.



Name:
	

COUNT (preprocessor step 3)

Purpose:
	

Puts out a count of the current card type.

Linkage:	 a Calling sequence: CALL COUNT (IC)

• Common blocks used: LINES, UNITS

a Subroutines or functions used: None

• Files used: Logical UNIT - 7

Kaput Description:	 The integer card count in parameter IC

Output Description: 	 On the listing file 7, a 6-digit integer

starting in print column 88

Process Description: A FORTRAN write statement.

^7 2'8"



Name:
	

CREATE

Purpose:
	

Initial data base load

Linkage:	 • Calling sequence: Main program

• Common blocks used: None

• Subroutines or functions used: GETLEN,
GETSTR, GETKEY

• Files used: None

Input Description: Depends on application.

Output Description: 	 A RIMS-format data base

Process Description: For a large initial load this is the most

efficient method. The three routines used
are application dependent, and must be user

supplied.

9f



Name:	 DASHES (preprocessor step 3)

Purpose:	 Writes out a line of dashes to separate

counts from totals.

Linkage:	 * Calling sequence: CALL DASHES

• Common blocks used: LINES, UNITS

• Subroutines or functions used: None

• Files used: Unit 7

Input Description:	 Listing file unit number in IU37

Output Description:	 lO hyphens in print columns 84 through 93

Process Description: A FORTRAN formatted write.



Name:	 DSJFM

Purpose: To control the process of the JF command

(display data from two data base levels)

and to load the display format.

Linkage:	 • Calling sequence: CALL DSJFM

• Common blocks used: SYSCOM, SY2COM

• Subroutines or functions used: INDEX,
INPARM, LODFMT, RECTRC

• Files Used: None

Input Description:	 User's command string through common block

SYSCOM (STR)

Output Description:	 A set of records containing data from two

data base levels is displayed.

Process Description: The following processing is performed:

The command string is parsed.

The display format record is loaded by

given format ID.

Working program (RESTRC) is called.



Name:
	

ENDSET

Input Description:

To enter a set into the status table.

Calling sequence: CALL ENDSET (HIT,

UNIT)

• Common blocks used: SYSCOM

	

ALT. ENTRY POINT:	 MODE

• Subroutines or functions used: NHITS, XXOU'I

Files used:

HIT	 # items in set

UNIT	 logical unit containing set

Purpose:

Linkage:

Output Description:	 Updated status table.

Process Description: Test for non-empty set and use XXOUT to

write set to file S.



Name:	 EQUALS (preprocessor step 3)

Purpose:	 Writes out a line of equal signs to separate
count from grand totals,

Linkage:	 • Calling sequence: CALL EQUALS

• Common blocks used: LINES, UNITS

• Subroutines or functions used: None

• Files used: Logical UNIT - 7

Input Description:	 Print file unit number in IU37

Current line number in LINE

Output Description:	 10 "-" signs in print columns 84 through 93

Process Description: A FORTRAN formatted write statement.

7 -
;,^A



Name:	 GETCLD

Purpose:	 To form a set of children records for a

given set.

Linkage:	 • Calling sequence: CALL GETCLD (SET)

• Common blocks used: SYSCOM

• Subroutines of functions used: SETINI,

SETOUT, XXIN1, XXOUT, ENDSET, LOCREC,

GET

• Files used: Input set on Unit (5) or

Unit (3) and output set is on Unit (5).

Input Description: 	 Set

Output Description: The

the

Res

Process Description: 1.

2.

3.

4.

5.

contains the parent set number.

children set description is placed in

next available set of the status table.

tilting set is on Unit S.

Initialize input/output files, counters

Get next record ID from input, end

Error check

Position data base unit 2 to parent

Follow logical sequential read in unit

2, writing children record ID's in

target set until left half of word does

not match parent record ID.

7. Close output file, update status table,

TABNO, etc.

^r..,s
7-34

00`/O



Name:	 GI."rLFN

Purpose:	 To return, via KEYI&N, the length of" the

keys in words,

Linkage:	 • Callinging sequence : CALL Gla`i'I EN ` KFYLEN)

• Common blocks used: Unknown

• Subroutines or functions used: Unknown

• Tiles used: Unknown

Input Description:	 (As desired by the user of CREATE)

Output Description:	 KI;YI,EN

Process Description: (TO be SuPhl Od by the usor)

5



Name:	 GETPAR

Purpose:	 To form a set of parent records for a

given set.

Linkage:	 • Calling sequence: CALF GETPAR(SET)

• Common blocks used: SYSCQM

• Subroutines or functions used: SETINI,

SETOUT, XXIN1, XXOUT, FNDSET

e Files used: Tnput on 3 or S, output on

S.

Input Description:	 SET contains children set number.

output Description:	 The parent set description in the next

available set in the status table — the

set is on unit S.

Process Description: 1. Initialize I/O files, counters

2. Get next record ID from input, end

3. Error check

4. Dorm parent. record ID by setting right

half of ID to zero, write result on

output unit, ignore duplicates

S. Go to 2

6. Close output file, update status table,

TABNO, etc.

,ra &

^r



To use Q card files (only) in setting

tr%i, ,4-i.Jion dates.

Purpose:

Name:
	

GI:TQ (preprocessor step 3)

Linkage:

Input Description:

Calling sequence: CALL rl!TQ (IPX)

• Common blocks used: UNITS, FLAGS, IMAGES,

LINES

• Subroutines or functions used: ABORT,

IIDR, BLKLN, COLABL, DASHES 0 COUNT, PAGI?

• Files used:	 Units 1,2,3,4,5,6,7,5

The input parameter IPX is the LACIE Phase

(2 or 3 in integer form)

Array IUN contains logical unit numbers for

input and output files.

Subroutine IMIGET is called to get card

images through array IMI.

Output Description:	 Page headers and the Q card image are

written to the report file. The default

transaction date from the Q card is saved

in array IMQ.

Process Description: This routine follows two separate paths

for the two LACIE phases. Different input

files and output files are set up for the

two phases. The first Q card from the

Phase II file is saved to provide the trans-

action date for those cards in which it has

not been punched. Duplicate Q cards are

detected: an exact duplicate is allowed,

but 2 different Q cards will cause step 3

to abort.

.V."



Name:
	

GETSTR

Purpose:
	

To provide a record to CREATE

Linkage:	 • Calling sequence: CALL GETSTR(ACC,REC)

• Common blocks used: Unknown

• Subroutines or functions used: Unknown

• files used: Unknown

Input Description:

Output Description:	 ACC,RLC

Process Description: Upon return, ACC should contain the record

number in ascending sequence, and REC

should contain the record. The first

word of REC should contain the record

length, not counting itself. ACC = 0

signals end of file.



1	 f

Name:	 HDINIT (postprocessor)

Purpose:	 Puts h,aders on output files

Linkage:	 • Calling sequence: CALL HDINIT

• Common blocks used: UNITS

• Subroutines or functions used:

• Files used: Units ' l, 2, 3, 4, 5 0 6, 7, 8

Input Description:	 Logical unit numbers in array IUN

Output Description:	 Appropriate header lines are written out

to the output files

Process Description: FORTRAN formatted write statements



Name:	 HDR (preprocessor step 3)

Purpose:	 Print the header label information at the

top of a page.

Linkage:	 • Calling sequence: CALL HDR

• Common blocks used: LINES, UNITS, IMAGES

• Subroutines or functions used: BLKLN

• Files used:	 Logical UNIT = 7

Input Description:	 Header date in IMQ array (Q card image)

Output Description:	 LINE counter set to 12

Column label flag reset (ICOLAB = 0)

Header printed on listing file (Unit 7)

Process Description: Write the header and two blank lines, then

set the line counter and column label flag.

..1



Name:	 HEADER

Purpose:	 To print a line of text report. Provides

for comments and headers.

Linkage:	 • Calling sequence: CALL, HEADER
• Common blocks used: SYSCOM, SY2COM

• Subroutines of functions used: INDEX,

INPARM, SUBSTR

• files used: Report file (12), message

file (7) and command file (13).

Input Description:	 User's command string through common block

SYSCOM (STR).

Output Description:	 One line of the header contents or com-

ments is printed.

Process Description: The following processing is performed:

The command string is parsed.

Print header or comment up to 66 char-

acters long as input if N = 1.

Read record line of header or comment up

to 62 characters long from command file

and print it's contents immediately after

where first line ended if N = 2.

N should be either 1 or 2 syntax error is

printed otherwise.

7

^/f

-rr^



Name:	 IMIGET (preprocessor step 3)

Purpose:	 To

wr

Linkage:	 •

•

•

check card. images for duplicates and

ite them out.

Calling sequence: flag - IMIGET (unit)
t

Common blocks used: FLAGS, IMAGES, UNITS

Subroutines or functions used: None

• Files used: UNIT IUNX, IU38

Input Description:	 Input update card file unit number in param-

eter unit and either (a) a card image already

read into array IM2 or (b) flag IM2MT-1 when

IM2 is empty because an end-of-file was read

from the unit file. Unit number of error

file for duplicates, IU38.

Output Description:	 = 0 where a new card

The flag value	
image is in IM1

from tETs function	 1 when no image is
available

If available, one more image has been read

into IM2 and checked for duplication of IM1.

Duplicates are written to error file IU38.

The next card image to be used is in IM1.

Process Description: Move card image 2 into card image I (if there

is a card image in card image 2). Read

another image (if any) into card image 2,

checks the two images (card image I and

card image 2) for duplicates. Duplicates

are written to the error file and reading

continues until a different card is



Process Description: encountered or the end of the input file
(concluded)	 is reached. At end-of-file, the flag IM2MT

is set - 1 to indicate that array IM2 is
empty.

7



Name:	 INTT (preprocessor step 1)

Purpose:	 Initializes step 1 output files.

Linkage:	 • Calling sequence: CALL INIT

* Common blocks used: UNITS

• Subroutines or functions used: None

* Files used.- Logical units 7, 8, and 9

Input Description:	 Array of logical unit numbers, IUN.

Output Description:	 Header lines for the listing files for

invalid cards.

Process Description: 1. Set unit numbers to values from TUN

2. Write header records to those files



Name:	 IRECK (preprocessor step 5)

Purpose:	 To read input card images.

Linkage:	 • Calling sequence: f!a& - IRECK(index)

• Common blocks used: CARDS, UNITS

• Subroutines or functions used: None

• Files used: *Unit IUN(l), the input file

input Description: Input parameter index specifies which of

the four card buffers in array TM should

receive the card image from the input file.

Output Description'.	 The fl 	 value of this function is wO if an
image war. -,, ead, -1 after an end-of-file.

The card image is left in the specified

slot of array IM.

Process Description: Read the input file and set the flag.



Name:	 IUNLD

Purpose:	 To test for unload (UNLD) cards and reformat
them into an ' I N" card.

Linkage:	 9 Calling sequence: CAM, IUNLD (imai7e)

• Common blocks used: None

• Subroutines or functions used: None

• Files used: None

Input Description: The input array image is an 80-character
ASCII code card image.

Output Description: The array i)R42e is reformatted in place

to the usual ASATS format.

Process Description: if the image does not match the string

I UNLD',	 return,	 If it does match,	 leave

the	 I N'	 in column 2, move the segment

number from columns 10-13 to columns 4-7,

move the acquisition date from 17-20 to

9-12 and	 insert	 a 11311	
in 

column	 8.	 The

tape number frain columns 45-50 will be

moved to columns 19-24.	 The transaction

date field columns 14-17 will be left

blank for insertion of the default date

from the Q card, and the remaining unused

columns will also be set blank.



Purpose:	 To

AS,

Linkage:	 •
•

control execution of bulk update from

ATS cards.

Execution: RUN ASATS

Common blocks used; SYSCUM, PDT

Subroutines or functions used: BE, Rt3AF,

CLOSEP, END, AUDATE, ASN, RED

Files used; U(14) is used for reading

commands.

Process Description: Reload and interprets commands. Causes

appropriate subroutines to be executed to

process Riven commands. Acceptable commands

are: BE, RF, RL', UP, EN.

..^ <7

//7
__



Name:	 KSGEQ (preprocessor step S)

Purpose:	 To compare the segment number of the card

just read to the first card in the buffer

Linkage:	 • Calling sequence: flag = KSGEQ Cindex)

• Common blt.;cks used: CARDS

• Subroutines or functions used: None

• Files used: None

Input Description:	 The input index specifies which card slot

in array IM is to be compared to the card

in the first slot. The two card images are

both in array IM.

Output Description: 	 The value of the output flag is =1 if the

segment numbers are equal and =0 if they

are different.

Process Description: Loop through the 4 segment: number digits

and set the flag to zero if they are

different.

.g
//Jr



Name:	 LAST

Purpose:

Linkage,

Input Description:

Output Description:

To find the last non-blank character in a

string.

• Calling sequence: I = LAST (STRING,

START, LENGTH)

• Common blocks used: None

• Subroutines or functions used: None

• Files used: None

STRING = string name

START = starting position

LENGTH = length of substring

Location of last non-blank.

Process Description: Establishes index pointer to last non-blank

character in the string.

40"'^



N.0 o.	 MAIN (postproc•essor)

Purpose:	 Givesves a list ink, of now se};nvnt rec orV ,

invalid new acquisitions, cards to he
punched, a f11e for images of cards punohod,

updates for records, and packet lapel

for a RIMS update input file.

L Wage:	 • Ca 1 1 i ttti; sequence : No t app 1 i ca p l e

• Common blacks	 UNITS, 111RA)S

Suhrout roes or fund ions usod:	 IiNI\1IT,
1111 I N IT

•	 F i I o ; II!,od:	 111lit",	o, S,	 l0

hall ► t Description:	 Input file from RINK update procc ss. Vach
input record contains a carriage control in
the first character and an ASCII di"it donQ
nat inn the output file in the Second
character.

oil tput Dosc ript- ioll: 	 The records Crow the input t'i icy arc s copiod
to the output l i lets) dosiynatod b y the
sec'olld character of each record. 	 ('fate
second character itself in not went+' out).

Process Description: A header record is written to idontiCv eduh

of the output files. 	 After copyint; ;all the
input records to the appropriate output
,Jos, the choice of program ;)TOP statements

will give a message on the operators console
to let him know whether the hunch and lahcl
Cites are empty for today's run.



Name:	 Blain program, preprocessor stet) 1

Purpose:	 To control listing of update cards and

the checking for invalid cards.

Linkage:	 • Calling sequence: Not applicahlo

• Common blocks used: 	 IMAGFS, I;CIlK,

1IOLCON, UNITS, VALID, VI,AGS

•	 sul)1-()tit ines or funk't ions used:	 ABORT,

RI.NKCI:, CK - 1 - Y1,1 1 , FXIT, INIT, IiNINIT
I

• Files used: nogical units I, 3, W Iii

Input Description:	 ASATS update card images from logical unit I

Output Description:	 Unsorted listing of :input on unit 3, counts

of valid and invalid cards on unit 10, error.

abort message on unit 10

Process Description: This program reads the update cards anti

lists them.	 It calls subroutines to cheek

them for validity and write the vol id

cards to files for later processing.



Name:
	

Main program (preprocessor step 3)

Purpose:	 Gives a report: of the update carol images.

The report includes counts of each card

and total counts for each phase.

Linkage:	 • Calling; sequence: Not applicable

• Common blocks used: UNITS, LINES,

IMAGES, FLAGS, LI:G'l'Y

• Subroutines or functions used: UNINIT,

CETt„ PHASE, 11DR, COLABL , FQUALS , COUNTS,

PACE, EXIT, NONQ, ABORT, IM1GET, 1'AGI,

•	 Idles used:	 Logical UNITS -- I„3,3,4,5,o,7,8

Input Description:	 ASATS update card Wages

Output Description:	 Audit files for update cards and the update

card files themselves.

Process Description: This program controls the sequence of calls

to produce a combined report of update cards

for Phase ' and Phase 3, separated within

the phases by carol type. Page headers and

page numbers and as grand total count of'

card: are Liven.



Name:
	

MAIN (preprocessor step 5))

Purpose: To control the separation or completo so..-

ment descriptions (*, 2, and 3 cards for a

segment), which may be either nvv segments

or updates for existing segments, from

single upstate cards,

Linkage:	 • Calling sequence: Not applicable,

• Common blocks used: CARDS, UNITS

• Subroutines or functions used: IIN1NIT,

WRNUK, MVMR1 , IR1 CK, KSGEO,

• Files used:	 Units 1, 3, 5, 7

Input Description:	 The input file (unit 1) contains all the

*, 2 1 3 cards in today's update deck sorted

into order by segment so that all cards

for one segment will be found in sequence.

Output Description:	 Output files units 3 and 5 contain, respect-

ively, the complete sets, with the "*" card

changed to a "Z" type, and the incomplete

sets.

Process Description: Cards are read (by subroutine IRFCK) into

the 4-card buffer IM until either a change

of segment number occurs, or the buffer is

full, or the end-of-file is reached. A

check is then made to see whether 3 cants

for one segment of the three types *, 2,

and 3 have been read. If so, they are

saved as a set. Otherwise, they are saved
as a nonset, and the process repeats.



Name:
	

MOVSI-G

Purpose:	 To parse the command for MO and to movo

information from the status table into a

record.

Linkage:	 • Calling sequence: CALL MOVSFG,

• Common blocks used: SYSCOM

• Subroutines or functions used: GETREC,

CHAR, REPR

• riles used: U(7)

Input Description:	 S'I'R, the text of' the (17 0mrn,111d 1h10

Output Description:	 Updated record in hale,

Process Description: The set count from 'rAB is Converted to
character form and placed in the proper

record.

-11^iv

err



Name:	 MVMRl (preprocessor step 5)

Purpose:	 To move a line in an arrays to the beginning

of the same array.

Linkage:	 o Call ink; sequence: CALL, MVMRl (index)

• Common blocks used: CARDS

• Subroutines or functions used: None

• Piles used:	 Noi.-,

Input Description:	 Input parameter index specifies which card

image slot in array INI should have its data

moved up to the first slot.

Output Description:	 The card image in the first slot of IM,

Process Description: Loop through the image and mono one charac-

ter at a time.



Name:
	

NONQ (preprocessor step 3)

Purpose:	 Puts the default value of transaction date

from she Q card into those card images

which need them.

Linkage:	 • Calling sequence: ffla - NONQ (unit)

• Common blocks used: FIaAGS, IMAGES,

LEGTY, UNITS

• Subroutines or functions used: IMIGFT

• Files used: Update card input file (unit)

Input Description:	 An update card image in array IM1 is supplied

by the call to IM1GIT. Array IMQ contains

the transaction date from the Q card.

Output Description:	 ASATS card image in IM1, with the transac-

tion date inserted in those cards which

need it. The fj^j& value from NONQ is n

when a new card is in IM1, , 1 otherwise.

Process Description: Get a card image (and quit at end of file).

If the card type field matches one of the

list of card types in array IVTYP, tho

transaction date field is checked. If that

field is blank, the default date from the

Q card image is inserted into it.

i



Name:	 I'MIE.

Purpose:	 Writes out a page number at the bottom or

a page.

Linkage:	 • Calling sequence: CALL Pj,Gr-

• Common blocks used: LINES, UNITS

• Subroutines or functions used: BLKLN

• Files used: UNIT = 7

Input Description:	 Logical unit number of the I i!;t ing fi I v in

IU37

Current page cowit 1PA61:

Current line number LINE,

Output Description:	 Incremented page ininiber -in TPAGE..

On the listing file: enough blank Iiiies to

reach the bottom of the current page, and

the page number

Process Description: The page number is negated to get a lea-ding

hyphen, and a trailing liyl)hcji is supplied

by the format.

7;p.



Name:
	 PARSEC

Purpose:
	 To parse the command string For t-C.

Linkage:	 • Calling sequence: CALL, PARSEC

• Common blocks used: SYSCOM

• Subroutines or functions used: Gf:TC1.11

• riles used:

Input Description:	 Command line in STR

Output Description: 	 Set number in parameter h to

Process Description: tall tNI)ARM to convect sot inwil,or to
binary, and c,711 tHiTC1,l).

to ? -



Name:	 PARSI:P

Purpose:	 To parse the command string for GP.

Linkage:	 • Calling sequence: CALL PARSIT

• Common blocks used: SYSCOM

• Subroutines or functions  used : tit"I'lIAR

• Liles used:

Input Description:	 Command I inc in S'I'R rirrav

Output Description: 	 Set n1zmbVI° ill h4ir1111rtol, R to (11'"1ITA

Process Description: Use INI'ARM to convort number, check it is
legal scat number, and call GWITAR



Name:	 PBASF (preprocessor step 3)

Purpose:	 Output all cards of all types found in one
phase.

Linkage:	 • Calling sequence-, CALL PHASE (IP)

• Common blocks used: UNITS, LINES, FLAGS

Subroutines or functions used*. 11DR,
BLKLN, CARTP, PAGE, COLA ►OL, DASHES
COUNT

• Files used: Logical 11NIT = 7

Input Description: 	 Input parameter 11) 
in 

the, LACIE phase

(Integer 2 or 3.)

Output Description:	 Count of cards for the phase in IPCT.

Audit report on unit 7.

Process Description: This routine (by calling -subroutines) for-
mats a complete audit listing of all cai,ds
for one phase. It starts with a page
header for the phase, steps through all
card types in the file for that pha s e, and
produce.,; a total card count for that phase.

i

;

7

,--j  ̂O .4
1"4d



Name:	 PSWRD

Purpose:	 To read the password, scramble it and
overstrike it on the scope.

Linkage:	 • Calling sequence: CALL PSWRD (l)

• Common blocks used: SYS)COM

• Subroutines or f lint"t 1 oll:; used:	 Nnnk,

• Filos used:	 H(7), 11(13)

Input Description:	 Password

Output Description:	 Scrambled password (in T)

NOTE: The scrambled password will b y Wised

as a record i.d. for a record containing;
the biv mask.

Process Description:



rte°

Name:
	

QCIICK (preprocessor stem 1)

Purpose:

Linkage:

Input Description:

Check for duplicate or illegal Q card

• Calling sequence: CALL QUICK

• Common blocks used: FLAGS, IMAGES, UNITS

9 Subroutines or functions tised: ;voile,

• Piles used: Units 4, 5, 7

Update card image in IMG array

Output Description:	 A list of Q card images to an output file

(units 4 and 5, respectively).

A list of duplicate or different Q card

images to unit 7 (if more than one Q card

has inadvertently entered).

Process Description:	 If counter IQC'T=o, the first Q card is

written to units 4 and 5, respect.ivety.

Then a check for duplicate or di f fere ►1t
Q cards is made.

If a duplicate is found, the counter IQCT

is left=l.

If a different Q card is found, counter

IQCT is incremented by 1 and an error flag

is set.

/3^-



Name:
	

RED

Purpose:	 To read processing description for update

card types and build processing description

table.

Linkage:	 • Call ing sequence: CAL1, RED

• Common blocks used: /PD'I'/C`I'AB, FNO,

RID1', PTT

• Files used; Card images are read from

unit 12.

Process Description: Card images are read until a blank caret

type is encountered. 'fable 7-3 illustrates

format of cards. The results of the card

.images are stored in CTAB (card type table),

FND ( format number) , RI in (record 11) type),

and PTT (processing type table).

TABLE 7-3.— PROCESS DESCRIPTION

CARD IMAGE FORMAT

Field	 Columns

Card Type	 I

Input Format	 2-4

Record ID	 5
Generation Type

Processing Category	 6

7

153



Name:	 RESTRC

Purpose:	 To display a set of records containing;

information from both the records within

a specified set and their parent records.

Linkage:	 • Calling sequence: CALL RESTRC (SET)

• Common blocks used: SYSCOM, SY2COM

Subroutines or :functions used: DISFNIT,

INPARM, LMVTAB, LODFMT, LODREC, SI;TIN1,

SUBSTR, TFORM, XXINI

Files used: None

Input Description:	 SET is the set number for a set of records

with same format ID (i.e. a set of FLOCON

records)

SY2COM contains the display format.

Output Description:	 Records within a given set and their parent

records are displayed as specified.

Process Description: The following processing is performed.

(1)Get record ID from set.

(2)Retri%ve record and associated format.

(3)Transfer data from retrieved record

(FLOCON) to an output buffer according

to the display format.

(4)Generate record ID for associated record

with different format (DAPTS).

(5)Retrieve record with generated record

ID and its's associated format.

-64 ,



Process Description: (6)Transfer data from retrieved record

(Continued)	 (DAPTS) to output buffer according to the

display format

(7)Display program (DISINT) is called. (to
write output buffer to report filet.

—

;110 i 5 .0'

/^



Name:	 SMINUS

Purpose:	 To delete a password from the base.

Linkage:	 • Calling sequence: CALL SMINUS

Common blocks used: SYSCOM

• Subroutines of functions used: DECK,11SWRD

• miles used: u(7)

Input Description: 	 PASSWORD

Output Description:	 Record removed from base.

Process Description: Hash the password, find it, and remove

that record.



Name:	 SPLUS

Purpose:	 To add a password to the base.

Linkage:	 • Calling sequence: CALL SPLUS(SRCURF)

• Common blocks used: SYSCOM

• Subroutines or functions used: PSWRP,ADDR

Files used: U(7) , U(13)

Input Description:

Output Description:

PASSWORD, BIT MASK

New record in base,

Process Description: I-lash the password and generate a new

password record.



Name:
	

STCNT

Purpose:	 To print a lane of text followed by the

number of entries in a given set. Pro-

vides for printing number of entries in a

set with a label.

Linkage:	 • Calling sequence: c'ALL STCNT

• Common blocks used: SYSCOM, SY2COM

• Subroutines of functions used: INDIA,

INPARM, SUBSTR

• Files used: Report file (12), message

file (7).

Input Description: 	 User's command string including set number,

column count and text comment through

common block SYSCOM (STR).

Output Description:	 Text comment with number of entries is

printed.

Process Description: The following processing is performed:

The command string is parsed.

A format is formed according to the given

column count.

The text comment and. number of entries

are printed using the formed format.

The length of text comment is limited to

(column count-4) characters long. Dis•-

regard any character exceeding the limit.

7

Ilse



Name:

Purpose:

Linkage:

TnORM (normal version)

To transform data from one format to

another format.

• Calling sequence: CALL TFORM(I)

• Common blocks used: SYSCOM,UPDCOM

• Subroutines or functions used: SUBSTR,

VERIFY, :INPARM, CHAR

• Files used:

Input Description:	 • UPDCOM/BIOTAB, FLAG type of card being

processed

• I is the source record

• /SY2COM/Buff contains input record

• /SY2COM/Buff contains output record

• /SY2COM/FMTID contains format ID's

• /SY2COM/length contains record. lengths

• /SY2COM/MOVTAB contains pointers to

fields of each record

• /SY2COM/NMOV is the number of fields to
be transformed

• /SY2COM/FMT contains formats for both

records

Output Description:	 • SY2COM/buff contains the resulting record.

• /UPDCOM/FLAG contains reject indicator



Process Description: The resulting record in the target buffer

is constructed by moving data into a
specified field. Data is moved according

to the output type as follows:

9 Output type 0 is a straight move of

characters from the source buffer to

the target buffer.

e Output type 9 moves data from the CC-

ANCIL-TOPO table to the target buffer

based on the source buffer value.

• Output type 5 moves data from the f=ilm

ProducTs table to the source buffer value.

• Output type 4 moves data from the Computoi,
Products table to the target buffer base

on the source buffer value and the status

(whether it is blank or not) of the

"N" field.

Figure 7-1 depicts the program flow.

Table 743 reflects the use of the film
status table. Table 7 . 4 reflects the com-

puter products status table. Table 7  5

reflects the CC-ANCTL-TOPO table.



CBEGIN	 LL
FIELDS

N0 ROC
ESSE a

r	 SET POINTERS	 YES
FOR NEXT
FIELD

RETURN

^^	 NO	 MOVE FIELD
^INPU'f TYE'E	 :.-.^ FROMBUl' (1)
IS 4,5, OR	 TO BUI:.(J)

YES,/

BRANCN
ON INPUT>

TYPE,.

q

S SOURCE.	 MOVE LSD	 SET POINTERS

FIELD, 7,	 NO	 TO TARM'	 FROM FIELD

8, OR 9	 FIELD	 VALUE

YES

SET POINTERS	 MOVE DATA FROM
FROM FIELD	 FILM STATUS
VALUE

	

	 TABLE TO
BUFF(J)

ADJUST POINTER
BASED ON VALUE
OF "N" FIELD

MOVE DATA FROM
COMPUTED PRODUCTS
STATUS TABLE TO
u► Mr f IN

9

V	 - _

SET POINIt^'R

FROM FIELD
VALUE

MOVE DATA FROM

(CC-ANCTL-TOPO)
TABLE TO BUI'i•(J)

Figure 7-1. — TFORM for Normal RIMS,

ORIGINAL pgpE IS
OF FWR QUAUF*

^r



I

TABLE 7-4.—FILM PRODUCTS STATUS TABLE (CURS1, output type 5
translation)

MESSAGE

PFC WORK

LPDL RECID

PKT AVAL

Al WORK

CANC

REOR

REJT

VALUE

B

G

H

I

7

8

9

;;<v 1---'



TABLE 7-5.— COMPUTER PRODUCTS STATUS TABLE
(CURS2, out put type 4 translation)

UNLOAD
VALUE	 CONTENTS	 MESSAGE

B	 NA

N	 NA

i	 NO

i	 YES

K	 NO

K	 YES

M	 NO

M	 YES

T	 NA

X	 NA

7	 NA

8	 NA

9	 NA

C & I WORK

I-100 RDY

BATCH STD

BATCH 1-100

ANAL STD

ANAL 1-100

RERUN STD

RERUN 1-100

I-100 ANAL

Complete

"LSD" Contents

"LSD" Contents

"LSD" Contents

7

f

A



TABLE 7-6.— CC - ANCIL-TO110 STATUS

STATUS
VALUE WORD -

0 Await C/A/T

I Await	 C/A.

2 Await	 A/T

3 Await	 A
4 Await	 C/T
5 Await	 C,

6 Await	 T

7 Complete

7.POK--"'
,,^ 15wv



Name:
	 TFORM (update version)

Purpose:	 To transform data from one format to

another format.

Linkage s	 • Calling sequence-, CALL TFORM(I)

o Common blocks used: SYSCOM,UPDCOM

• Subroutines of Functions used: SUBSTR,

VERIFY, INPARM, CHAR

• F i les t is o d :

Input Description:	 o UPI)COM/1110TAB, FLAG typo of card b y ilg

processed

9 1 is the source record

• /SY2COM/Buff contains input record

o /SY2COM/Buff contains output record

o /SY2COM/FMTID contains format ID's

o /SY2COM/length contains record longths

• /SY2C0M/MOVTAB contains pointers to

fields of* each record

• /SY ?.COM/NMOV is the number of fields to

be transformed

• /SY2COM/FMT contains formats for both

records

Output Descriptio ,A: 	• SY2COM/BUFF contains the resulting record

# /UPDCOM/FLAG contains reject indicator

Sys'



Process Description: Fields are moved from the input record to

the corresponding output record according

to the input and output format specifica-

tions. Figure 7-2 reflects the detailed

flow.



BEGIN

---V^ . __.._.

SET POINTERS
TO NEXT
FIELD

BRANCH
`,,ON INPUT

'-,TYPE

TYPE
i	 0

TYP L' 1 ---

TYPE 2;-- -- QU

TYPE, 3,-

TYPE 4 -

TY PL 5 -	 -	 -

TYPLi 6 -	 - d

T Y P I.: 7 ---;

TYPI; 8 Q

I'YP u 9^

— ^-
, I

FF .

0'y -

MOVE FIELD DATA
,FROM INPUT RECORD!
ITO OUTPUT RECORD

_ ._.

FIELDS''.. NO
ROCESSEI^'

YES

rRETURN
o^ MGR PAfif N5

QU,glj?r

Figure 7-2..- TFORM for ASATS Update Processor.



V

RETRIEVE FIELD	 SET POINTERS	 MOVE DATA FROM
(A) VALUE FROM	 - = USING FIELD	 ^ INPUT RECORD TO'V

TARGET FIELD	 VALUES	 OUTPUT RECORD

IS

tB}---	 SOURCE N
,,BLANK,,

YES

T

CONVERT TARGET	 r	 CONVERT TO ALPHA

FIELD TO	
ADD	 ND MOVE TO	 ( T

^TNTEGER	 i	 TARGET FIELD

LOOK UP FIELD	
IS	 SET

;(-	 POINTER IN	 F> 
!1S O

I FIELD
l:D YES REJECT	 rT

SSOCIATED TABLE,	 FLAG
BLANK 

NO

(T.'-

COMPUTE
(Fl,	 BW=1	 AQ DATE

!	 AND BEGIN

S-\"
COMPUTE` DATA YLS
AQ DATE 	 BETWEEN(G^
AND END !	 DATES

(N0
W

RW-BW+11

YES..., BW<4 NO BW=9

UI' .P^^ QUALITY

7-

Figure 7-2.— Continued.
( )I^IGINAL PAGE IS



^ SET POINTERS	 MOVE DATA FROM
F--BUSING CARD TYPE---^TNPUT RECORD TO _'-,*T

AND FIELD VALUE	 RUI-MiR RECORD

CONVERT TO ALPHA
->AND MOVE TO	 !='(T

FARGET FTELD	 I{

Figure 7-2.-- Concluded.



Name:	 UNINIT

Purpose:	 Assigns logical unit numbers to file narnes

at run time.

Linkage:	 • Calling sequence: Call UNTNIT

• Common blocks used: UNITS

Subroutines or functions used: System

subroutine ASSIGN

• hiles used: STI.P.I.ION as unit 20

Input Description:	 Leads 2-digit Unit inunhers from the
first. record with format 1912, Rest of

records to end-of-file are o.i the form

212, 1SA2 and each contains a unit number,

the number of characters in the file name,

and the file name itself.

Output Description	 Unit numbers are saved in array 1UX. Unit-

numbers -to-file-name associations are given

to the system I/O control..

Process Description: Read the unit numbers and the file names

and call the system routine ASSIGN.

NO`1'l,:	 Slightly different versions of' this
routine are used by steps 1, 3, and 5 of

the Preprocessor, by the Postprocessor,

and by tasks 4J,J and CONTAP. The differences
are just the name of the file containing

the file names and the common block used

to Store unit numbers.

•

0-;^04^



Name:	 UN

Purpose:	 To

Linkage:	 •

•
•

C.00 K

unlock the base.

Ci^l l ing scqucncc : BALL UNLOCK (Si;CURE)

Common blocks 11"od: SYSCOM

StIbrout Ines or functions 11sed: 11SWR11,

110DREC

•	 F i I o5 (Isod :

Input Description:	 Password

Output Description:	 Bit mask in SECURE

Process Description:	 The hit mask is used to lock (0)	 or unlock

('11 the command.	 Soo JI,IISYS of the RTIAS

MaIntrnance Document for the command list.



Name: WRNUK (preprocessor step 5)

Purpose: To write lines of an array to an output.

unit.

Linkage: •	 Calling sequence:	 CALF WRNUK (number,

unit)

e	 Common blocks used:	 CARDS, UNITS

•	 Subroutines or functions used:	 None

o	 Files used:	 Output file unit selected

by calling program.

Input Description: number card images in array IM, and the

unit number for the output file.

Output Description: The card images for a set or for a partial

set are written to the appropriate file.

Process Description: A FORTRAN formatted write statement is exe-

cuted the specified number of times.

4


	1980020275.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.tif
	0001F13.tif
	0001F14.tif
	0001G01.tif
	0001G02.tif
	0001G03.tif
	0001G04.tif
	0001G05.tif
	0001G06.tif
	0001G07.tif
	0001G08.tif
	0001G09.tif
	0001G10.tif
	0001G11.tif
	0001G12.tif
	0001G13.tif
	0001G14.tif
	0002A02.tif
	0002A03.tif
	0002A04.tif
	0002A05.tif
	0002A06.tif
	0002A07.tif
	0002A08.tif
	0002A09.tif
	0002A10.tif
	0002A11.tif
	0002A12.tif
	0002A13.tif
	0002A14.tif
	0002B01.tif
	0002B02.tif
	0002B03.tif
	0002B04.tif
	0002B05.tif
	0002B06.tif
	0002B07.tif
	0002B08.tif
	0002B09.tif
	0002B10.tif
	0002B11.tif
	0002B12.tif
	0002B13.tif
	0002B14.tif
	0002C01.tif
	0002C02.tif
	0002C03.tif
	0002C04.tif
	0002C05.tif
	0002C06.tif
	0002C07.tif
	0002C08.tif
	0002C09.tif
	0002C10.tif
	0002C11.tif
	0002C12.tif
	0002C13.tif
	0002C14.tif
	0002D01.tif
	0002D02.tif
	0002D03.tif
	0002D04.tif
	0002D05.tif
	0002D06.tif
	0002D07.tif
	0002D08.tif
	0002D09.tif
	0002D10.tif
	0002D11.tif
	0002D12.tif
	0002D13.tif
	0002D14.tif
	0002E01.tif
	0002E02.tif
	0002E03.tif
	0002E04.tif
	0002E05.tif
	0002E06.tif
	0002E07.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




