NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

"Made available under NASA sponsorshiy

Intheint : - o md wide dis- JsC- 12743
seminat.or ¢’ i't ur liesources Survey

Program unei g .00 and without liahility éeo“jlf 0- 1795
Jor any use made thereot,” AS-BUILT DESIGN NASA CR:

FOR JeteZ A

LACIE PHASE III AUTOMATIC
STATUS AND TRACKING SYSTEM

Job Order 71-695

(EB0-10175) AS-BUILT DESIGN SPECIFICATION N80=28776
FOR LACIE PHASE 3 AUTOMATIC STATUS AND
TRACKING SYSTEM (Lockheed Electronics Co.)

158 p < AOB/MF 201 CSCL 058 Unclas
G3/43 00175

Prepared By

Lockheed Electronics Company, Inc.
System and Services Division |
Houston, Texas

Contract NAS 9-15200
For
EARTH OBSERVATIONS DIVISION
SCIENCE AND APPLICATIONS DIRECTORATE

National Aeronautics and Space Administration

LYNDON B. JOHNSON SPACE CENTER

Houston, Texas
June 1977

JUN 1980

RECEIVED
NASA STI FACILITY
ACCESS DEPL.

‘{"/"/am .

LEC-10419
Revision A

T

i R

e

JsC-12743
Revisgion A

AS-BUILT DESIGN SPECIFICATION
FOR
LACIE PHASE III AUTOMIMTIC
STATUS AND TRACKING SYSTEM

Job Order 71-695

Prepared By
D. L. Smith
J. L. Allison

J. M. Everette
C. C. devValcourt

APPROVED BY

LEC NASA

iy e i i

‘\~*P L. Krumm, Supervisor . M. Dauphln, Dat& Mana
Applications Software Section System and Facilities Branch

Prepared By
Lockheed Electronics Company, Inc.
For

Earth Observation Division
Space and Life Scienr»s Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

June 1977

LEC~-10419
Revision A

CONTENTS

Section Page
1, INTRODUCTION . . & v & ¢ ¢« v v v v o o s o o« 2 o o« o« « 1-1
1 . l pURPOSE AND SC()I)H 1 nd 1

1 » 2 BACKGI(OUNB- » [} . . 1 -]
l » 3 SYS’I‘EM I?’ES{wf(IPT I()N 1 = 2

2. APPLICABLE DOCUMENTS « . . v v v o v v v o v . 2-1
3. INTEGRATED TOP-LEVEL DESIGN. . . . + « « « 4 o « » . . 3-1
3.1 GENERAL . &« + v v v v v v v v e e e e e e e 30
3.1.1 STANDARD UPDATE PROCESSING., 3-1
3.1.2 STANDARD REPORT GENERATION. 3-8
3.1.3 AD HOC QUERY AND UPDATE 3-8
3.1.4 DATA BASE INTEGRITY 3-8
3.2 DATA BASE DESIGN. . . . « « « « o v v « o o o o . 3-9

3.3 RIMS MODIFICATIONS. + « « .+ . 313

3.3.1 ASATS STANDARD DATA BASE UPDATES. 3-14
3.3.2 SPECIAL COMMANDS FOR ANNOTATTNG REPORTS 3-20
3.3.3 SOFTWARE TO ELTIMINATE REDUNDANT STORAGE 3-27
3.3.4 ACCESS CONTROL. . . + + « v v v v « v & &« « « . 3-28
3.3.5 ARITHMETIC OPERATIONS 3-30
3.3.6 MODIFICATION TO EBXISTING COMMANDS 3-31
3.4 THE PREPROCESSOR.+ « . . . 3-32

3-4:1 PURPOSE . 3"3&1

W
2

3.4.2 INPUT . . . « . v v v v v v v v v v v v i e .. 3-3E

21
wn

3.4.3 OUTPUT. « « v v v v v v v v v v v o v o 30

it

Section
3.4.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.¢

DESCRIPTION OF PROCESS. « « « . .
Tl"E pOSTpROCESSOR e e e 4 e & 4 e + e e + s e

PURPOSE . . . + « v v v v v v v v o v W W
INPUT © . v v v v v v v e e e e e e e e e
OUTPUT. . . « v v v v v v v v v v v v v .
DESCRIPTION OF PROCESS. .

ASATS STANDARD REPORTS. .

4, CONTROL FILES. . . . « v v v v v v v v v v o o o

4.1
4.1.1
4,1.2
4.1.3
4.2
4.3
4.4
4.4.1
4.4.2

4.4.3

4.4.4
5. ASATS
5.1

5.2
5.3

PIP UTILITY COMMAND FILES

UP.CMD, . . . v v v v v v o v v o«

LA.CMD. v o ¢ v v v v v v e e e

SAMTn.CMD o « ¢ v o o .
ASATS.BIS, THE BATCH RUN CONTROL CARD FILE,

SCRT UTILITY SPECIFICATION FILE DLSPEC.SOR.

ASATS/RIMS COMMAND FILES.

RM4 .COM — AN UPDATE CONTROL FILE.

OP13.COM — OPERATIONS STATUS SUMMARY OF
SEGMENTS IN THE DAPTS DATA BASE REPORT
COMMAND FILE. e e e .

0P23.COM — OPERATIONS STATUS SUMMARY OF
ACQUISITIONS COMMAND FILE

POLIST.COM — PACKET ORDER LIST COMMAND FILE
/RIMS FILE. USAGE.

THE RELATION OF INTERNAL FILE DESIGNATIONS TO
N TIJI:: ES . . . *

FILE TYPES USED IN THE ASATS SYSTEM .

BATCH RUN DATA FILES.

iii

-

Section
ASATS EXECUTABLE TASK DESCRIPTIONS

TASK BUTLDER COMMANDS AND OVERLAY DESCRTIPTION

ASATS TASK EXECUTION INSTRUCTIONS

NEW AND MODIFIED PROGRAMS.

Page

6-1

6-1
6-1
7-1

FIGURES

A S L S

System — overall

.

.

System

Y

System

.

.

.

.

L4

System

System

System

. . . . » » 3

- standard

. . . . » . . .

- report

. . . 3

— ad hoc query

. »

— checkpoint ~

.

— access control

°

The Update Card Read Command File, UP.CMD

The Packet Label Print Command File, LA.CMD

The Data Base Save Command File, SAMT@.CMD.

The Batch Run Control Card File, ASATS.BIS. . . .

The Sort (SRT) Specification File, DLSPEC.SOR . .

Figure

3-1 Automatic Status and Tracking
view., 0 0oL

3-2 Automatic Status and Tracking
update processor subsystem. .

3-3 Automatic Status and Tracking
generation subsystem.

3-4 Automatic Status and Tracking
and report subsystem.

3-5 Automatic Status and Tracking
TECOVETY ProCesSS. . . + + .+ .

3-6 Automatic Status and Tracking
in ad-hoc report generation .

3-7 Special Update Processor Flow

3-8 The Preprocessor.

3-9 ASATS — The postprocessor . .

4-1

4-2

4-3

4-4

4-5

7-1 TFORM for Normal Rims

7-2 TFORM for ASATS Update Processor.

Page

BN
i
(g%

g AT

TABLES

Table | Page
3-1 DAPTS RECORD FORMAT ., & « + &+ & & o &« &+ + « o 3-10
3-2 FLOCON RECORD FORMAT. +« « o & v « v o o o + + 3-12
3-3 INPUT TRANSLATION TABLE FOR GENERATING SEGMENT

STATUS CHARACTERG . 3] 3'22
3-4 SPECIAL UPDATE DESCRIPTION. « . + . . 3-23
3-5 USE OF DATA TYPES ON INPUT. + « « + « o « . . 3-24

5-1 MEANINGS OF FILE TYPES IN ASATS SYSTEM. 5-4
5-2 CONTENTS OF BATCH RUN FILES + . +« « + . 5-5
6-1 ASATS TASK FUNCTIONS. . . . « ¢« v « v ¢« v ¢ o o o « o 0-2

7-1 PROCESSING DESCRIPTION AND FORMATS FOR ASATS
UPDATFS) 7“12

7-2 CARD TYPES VERSUS RECORD TID GENERATION TABLE. 7-13

7-3 PROCESSING DESCRIPTION CARD IMAGE FORMAT. 7-63
7-4 FILM PRODUCTS STATUS TABLE (CURSl, output typo 5
translation). e e e . TeT2
7-5 COMPUTER PRODUCTS STATUS TABLE (CURS2, output
type 4 translation) v« v v v e v . T1-3
7-6 CC-ANCIL-TOPO STATUS. . . . « « v v v v v « v « « « . 7-4

vi

AT

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

This document describes the detailed design characteristics
of the LACLE Phase I11/I111 Status and Tracking System built for
the PDP 11/45 and as modified for the CAMS Procedure 1., This
System provides mechanisms to support the management of LACIE
imagery processing and associated evaluation material. For
each package of such material, the system maintains a record
containing the history and the present status and location of
the package as that package follows its track from one LACIE
processing station to another. The System provides means for
generating reports on status information and on statistical
data about the flow of material through the LACIE stations,

This ASATS design is based upon achieving maximum use of the
Regional Information Management System (RIMS) to perform ASATS
functions. The functional design is described in terms of

(1) data base design, (2) new RIMS softwarc built to simplify
implementation of ASATS, (3) software designed for ASATS which
runs independantly of RIMS, and (4) a method for constructing
standard ASATS reports.

1.2 BACKGROUND

A version of the ASATS was oviginally operated on COMSHARE's
computer system. It was developed using the COMPOSIT' 77 data
management system. In order to reduce the cost of operating
ASATS, it has now been implemented on the PDP 11/45.

In order that the transition from one computer system to another

cause minimal impact, the standard update procedures (including
update card formats) and standard reports were made =s nearly
as possible identical to the old ASATS system. Because a

%
(

different data management system was used for the PDP 11/45

than for the COMSHARE version, the ad hoc query and update
processes are different. But the PDP 11/45 version provides
similar capabilities for ad hoc¢ query and update., Implementation
of the PDP 11/45 version is based upon the same requirement
document (LEC-8075) that was previously used for implementing

the COMSHARE version of ASATS.

The original version of the PDP 11/45 LACIE Phase [T1 ASATS was
completed in March 1977. Since then, additional requirements

for status and tracking of computer products for the CAMS Pro-
cedure | have been received and implemented. These additional
data and programming requirements were delineated in the "Detailed
Design Specification for the Automatic Status and Tracking System
Modifications for LACTE Procedure 1'" (TIRE 77-0020), LEC-10529,
JSC~- 12885,

1.3 SYSTEM DESCRIPTION

ASATS operates on the PDP 11/45 using the Regional Information
Management System (RIMS). 1t also uses the RSX-11D Version 0.01
operating system. ASATS System hardware requirements include:

e PDP 11/45 with a minimum of 04K ol storage (32K for RSX
and 32K for RIMS and ASATS)

» Disk storage (size requirement depends upon the number of
data basc records)

e TTY compatible terminal for interactive work

e Card rcader for standard update and reports

e Printer

e Card punch (requirement is satisflied by off-line capability)

e Two magnetic tape units

égﬁ

T i L A 7 ik b L ookl Sl S SR A D

ASATS software requirements include:
e RSX-11D version 6,01 operating system
e FORTRAN IV-Plus (F4P) compiler for software maintenance

e Regional Information Management System (RIMS)

The ASATS software is composcd of (1) special processors

built for ASATS to facilitate the auditing of ASATS data bhase
updates, (2) RIMS commands augmented to support specific ASATS
requirements and (3) command files (sequences of RIMS commands)
which generate specified reports, (4) data buase definitions
describing the ASATS data basce to RIMS, (5) format descriptions
describing input files and report formats, and (6) command
files which control RSX-1ID system utilitices.

2. APPLICABLE DOCUMENTS

The following documents are applicable:

Large Area Crop Inventory Experiment (LACIE) Phase 111
Automatic Status and Tracking System Sperifications, Revision
A, dated March 1977 (document LEC-8075, JSC-11401)

RIMS Design Document, February 1976 (LEC-9504)

RIMS Maintenance Document, October 1976 (LEC-9500)

RIMS User Document, dated April 1977 (LEC-9301, Rev. A)
TIRF No. 76-0085

ASATS Functional Design Document, November 19760 (LEC-9861,
J5C-11835)

Operator's Guide for ASATS, March 1977 (LEC-10401, JSC-12729)
ASATS Users' Guide, March 1977 (LEC-10148, JSC-12535, Rev. A)

Detailed Design Specification for the Automatic Status and

Tracking System Modifications for LACIE Procedure 1 (LEC-1052Y9)

3, INTEGRATED TOP-LEVEL DESIGN

3.1 GENERAL

An overall picture of the PDP 11/45 Btatus and Tracking System
is shown in Figure 3-1, 'The arrows in the diagram indicate
flow of information.

Figures 3-2 through 3-6 show the System in morc detail and

illustrate the data paths which satisf{y the major requirements
specified for the System as described in the following sections,
These figures break the system into units by logical function,
Section 4 will describe the way that scparate parts of these
logical systems are actually sequenced., For example, the data
basc save operation shown in Figure 3-5 will occur every night
at the end of an update report cycle; the data base recovery
shown in Vigure 3-5 is a stand-alone operation that will never
occur unless the data base is damaged.

3.1.1 STANDARD UPDATE PROCESSING

The processing paths of the standard batch mode daily update
and report cycle are shown in Figure 3-2. Information {low
through these paths is controlled by command files and a batch
control-card file,

The Preprocessor is a set of operations specially designed for
the ASATS update card formats. It produces some of the required
audit listings of the input cards and rearranges the cards for
the proper sequence of processing by RIMS, RIMS makes the
required updates to the data base and produces a file of informa-
tion concerning all attempted updates. A Postprocessor usces

that information to produce the rest of the required reports

on attempted updates and to punch the cards and print the labels
that are required by certain updates.

AD HOC
QUERTES &j
UPDAT LS

-

Lm._T._"_']

UPDATE
CARDS COMPUTER
PROCESS ING:
RIMS AND

SPECIAL-
PURPOSE
PROG S
REPORT —_— GRAM
REQUESTS e
P S ”"’“'\\
_—.—/)%
DATA |

Figure 3-1.— Automatic Status and Tracking System — overall view.

PUNCHED |

= CARDS

3| REPORTS

UPDATE
CARDS

Pa s—

o lumMﬂ{{
o CARD
PREPROCESSOR | S| AuDiT |
!
t REPORTS__|
i T
DATA
BASE
UPDATE
FILES . :
o ASATS
= DATA
S BASE
UPDATE
STATUS
INFORMATION
— Jouncisy |
7 CARDS (4,5,
- 5{6,6,1,T,UNLD
POSTPROCESSOR |
o o e —— |
UPDATE
AUDIT
REPORTS
_‘//’-

Figure 3-2.— Automatic Status and Tracking System — standard

update processor subsystem.

35
7

REPORT !
REQUEST |
CONTROL
CARDS

S,

M v —

— AW e e

COMMAND RIS > ASATS
FILES FOR | | '™ DATA
REPORT - BASE
GENBRATION <

N~ L | |

-

REPORTS

Figure 3-3.- Automatic Status and Tracking System — report
generation subsystem.

}g/}

ST AR

‘ N
TAPE v

USER
TERMINAL

Tl

,»‘ e

!

[CARDS

g
s " L e

OTHER

PROCESSES

|

|

L

RIMS

™

L

REPOR'
FILES
1

ot
OTHER
PROCESSES
S
]

35

7

s Seaarmt P

COMMAND IFTLES !
DATA FILES

ey
et . bl e

DATA
RASE

~ !
REPORTS |
?
j

|
|
|
.

L

-

Figure 3-4.— Automatic Status and Tracking System -~ ad hoc quevy
and report subsysten.

;
:
|
2
3
:
E
!
3
;
:
3
|
E
£
;

PIP S
UTILTTY]| loccuts
COPY every day)

(ocaeurs on a
lator date

say Day N+
if required)

UTTLITY
cory

ASATS DATA BASE
(DAY N)

_——-'/

s
o ym——— ->
- .

(retained off-1line
until neeoded)

(cards saved over -
days since Day N) f

SAVED

UPDATE

e A i i ettt

CARDS ——

/“"‘“‘"’""““\
[-;

AD HOC
UPDATE)

RIMS

(repeat all T

interactive
updates made
since Day N)

Figure 3-5.— Automatic Status and Tracking System -- checkpoint -

recovery process.

3//(&

)

RESTORED
DAY N
DATA BASE

RECOVERED }
MODLIFTED
DATA BASE
FOR DAY N+K

/

,RI‘*}’I‘RH"I‘L‘I)‘ T2 L
USER | R GRan onny)
N | e >
(READ/WRITI)
o=
y
Vo
REPORTS |
o
-
L~

Figure 3-6.—-Automatic Status and Tracking Sys
control

37
!

ASATS DATA
BASE PERMANENT
FILES

—

TEMPORARY
FILES

_.__‘ -

tem — 4eeess

in ad-hoc report genceration.

.

RO —

3,1.2 STANDARD REPORT GENERATION

Batch mode production of standard System reports is illustrated
in Figure 3-3. For euch of the standard reports there is

a "canned" stream of RIMS commands to collect the information
required for the report and put it into proper orvder. Selection
of different reports as desired is mawe by different cards in
the batch input control of RIMS,

3.1.3 AD HOC QUERY AND UPDATE

The generalized data management capability of RIMS can be used
for several different purposes, as shown in Figure 3-4. Demand
production of onec-of-a-kind reports can be done through an
interactive terminal or in batch mode controlled by cards. In
cither batch or interactive mode, RIMS can read a command stream
or data file brought in from tapce or produced by other processes.
Information extracted by RIMS from the data base can be printed
as a report or displayed at the interactive terminal or it can
be used as input for other programs which might perform special
analysis beyond the capabilities of RIMS itself. Some of the
data flow paths shown in Figure 3-4 may be restricted for some

users, as will be described in section 3,1..1.2.

3.1.4 DATA BASE INTEGRITY

3.1.4.1 Checkpoint - Restart Data Base Recovery

In spite of all cconomically feasible controls over hardware,
software and procedures, the data base is vulnerable to damage
or total destruction trom such causces as computer system mal-
function, flaws in physical storage media, or accidental running
of improper updates. [Figure 3-5 illustrates procedures which
minimize the time and effort required to put the data base back
into its proper current status after being damaged.

Ve

/P

el

P TR

As shown, the data base is dumped to magnetic tape periodically
(once per day, after making all of the day's updates is
suggested; the time interval can be adjusted after gaining some
experience with failure frequency for this system). These
"checkpoint" dumps on tape are stored off-line, while the active
data basce is altered by batch and interactive updates on following
days. If the active data basc is damaged or lost, a checkpoint
dumped tape (the most recent one dumped before the tailure) is
read back to on-line storage, which restores a previous day's
active data base. That restored data base must then he modified
by any batch-mode card updates and any interactive updates which
have been made since the time the checkpoint dump was taken.
Making those updates will bring the active data base to the
condition it should have had if no failure had occurred.

3.1.4.2 Access Control

Accidental or malicious damage to the data basc is minimized

by controls which allgw data base modilfications to be made only
by authorized personnel. Some users may producc reports without
having permission to alter the data base. For these users,
controls built into the RIMS software restrict data flow to the
paths shown in Figure 3-6. As shown, the permanent files of

the active data base can be rcad by a-restricted user, but not
written. Writing of any temporary files required to collect
information for report production is allowed. A password system
is used to identify users with unrestricted read-write access

to the entire data base. ‘

3.2 DATA BASE DESIGN

The data base for ASATS contains two primary types of data records.
Each DAPTS record contains information about a segment that is
pertinent to all acquisitions for that segment. The fields of

the DAPTS records are described in Table 3-1. Each FLOCON

record contains information about one particular acquisition

TABLE 3-1.-DAPTS RECORD FORMAT

Field Description Length | Start | End Key |Source
Name (Char) | (Char)| (Char) Card
SEG Segment nunber - 4 9 12 *
LP1 LACIE phase indicator 1 13 13 *
COUNTR Country designator 0 14 19 X *
REG Region 2 22 23 *
ZONE Zone 4 24 27 4
STR Stratum 4 28 31 #
GD Global designutor 1 32 32 *
WV Wheat variety 1 33 33 X 2
PC Priority code 2 34 35 X *
TY Segment type 1 36 30 2
BIOW10 Biowindow 1 open (start date) 4 37 40 3
BIOW1C Biowindow 1 close (end date) 4 41 44 3
BIOW20 Biowindow 2 open 4 45 48 3
BIOWZC Biowindow 2 close 4 49 52 3
BIOW30 Biowindow 3 open 4 55 56 3
BIOW3C Biowindow 3 close 4 57 60 3
BIOW40 Biowindow 4 open 4 6l 04 3
BIOWA4C Biowindow 4 close 4 65 08 3
TOPO late topo map received 4 69 72 4
CROP Date crop calendar reccived 4 73 70 5
ANCIL Date ancillary data received 4 77 80 0
SSC Segment status character 1 81 81 X 1,5,6
PROTYP Process type 1 ,) , %
CDTAPE | CCIT & DTRM Tape Number 6 g | 8 | °
TCARD "T'' card transaction date 4 89 S92 T
LUP Date of last change to this 4 93 96 Uast
record ; update)

I

and the processing of acquisition material packages by the

LACIE work stations. The FLOCON records are described in

Table 3-2, RIMS uses the data base to store information about
the data base; i.e., format records (as described in RIMS
documentation) for data records and for input and output records.

TABLE 3-2.— FLOCON RECORD FORMAT

Field Length | Start | End Source
Name Description (Char) | (Char) | (Char)| Key | Card
SEG Segment number 4 9 12 B
LPI LACIE phase indicator 1 13 13 B
DATACQ | Acquisition date 4 14 17 B
BW Biowindow 1 18 18 X B
FF Film flag 1 19 19 B
TAPE GSFC tape number 6 20 25 B
GSFC GSEC processing date 4 20 29 B
CANI C&l update date 4 30 33 B
LPDLCO Date film products received 4 34 37 G
from LPDL
AICOMP | Date segment ready for 4 38 41 i
CAMS pickup
PACKRE | Date packet received by CAMS -4 42 45 I
RUNSUB | Date FDB/batch data processing 4 46 49 J
request submitted
RUNCT Run count 1 50 50 J)
PRODRE Date batch products received 4 51 54 K
by CAMS
REWORK Date rework begun 4 - 55 58 M
RWKCT Rework count 1 59 59 3]
TOCAS Date to CAS 4 60 63 X
CAMSBP | CAMS biophase 3 64 66 X
CATG CAMS evaluation category 2 67 68 X X
CURS1 Current film status 1 69 69 X (last)
CURS2 Current product status 1 70 70 X (last)
UTAPED Date for unload tape 4 71 74 N
UTAPEN Unload tape number 6 71 76 N
UNLOAD Unload transaction date 4 77 80 N
LSD Date of last change to this 4 81 99 X (last
record update)

fo

3.3 RIMS MODIFICATIONS

This section identifies modifications and additions to RIMS which
have been implemented to support ASATS. These changes are
catagorized as follows:

a. Special Update Processor - This processor was defined because
of the requirement to implement ASATS on the PDP 11/45
with no changes of input from the format for ASATS on COMSHARL
using Composit '77. The processor handles all standard
ASATS input cards.

b. Relational Retrieval to Lliminate Redundant Data - The
data base for ASATS has a hicerarchical relationship between
DAPTS records and FLOCON reccords. RIMS commands have been
implemented to crecate a set of related FLOCON records for
given DAPTS records, and to crcate a set of related DAPTS
records for given FLOCON records. Also, a command for
displaying records containing data from both a FLOCON record
and the related DAPTS record has been provided.

¢. Access Control - A command has been provided which specifies
which RIMS commands are allowed for each of the access
control words assigned to different users. Also, the
system includes a modification that requires a user to
identify himself with an access control word at the beginning
of a session,

d. Computation on Data Base Content - A new command allows the
user to sum fields, ficld differences, compute a mean, and
compute a standard deviation for date fields in a sct of
records. ’

e. lHeader Control for Reports - Commands huve been provided to
allow the user to spccify report headers and to provide
textual description for the number of entries in a set.

.
.
’

3.3.1 ASBATS STANDARD DATA BASE UPDATES

This section describes the ASATS data base update processor,
It also includes a description of an update command built
specifically for ASATS and describes the use of input formats
to specify processing for individual record types,

3.3.1.1 Special Update Processor

The Special Update Processor is a stand-alone program, It
processes all standard ASATS updates, It accepts the following
commands
e Bl - Begin
RF - Reassign File
Ur - Special ASATS update command
EN - End
RE - Reads processing «description lor ASATS cards

The construction of this Processor uses all standavd RIMS
commands c¢xcept the main program and subroutine update (which
processes the UP command). The construction of this processor
as a task separate from RIMS allows better core utilization,
hence better system performance. Before executing any UP
command, an RE command must be executed to read the process
description cards which describe the processing for cach status
and tracking card type.

3.35.1.2 Special Update Command

Purpose: Updates data base from a set of input cards. Specifiv
update operations are a function of card type (specified in the
second character of each card), data base format, and the input
format. The input format and the data basc to be used are a
function of the card type and LACIE phase.

P T T e R

N T

Input:
e Commands: Processing is begun by a UP command

e Status and tracking input cards: Any of the current 1
types of ASATS update cards (except Q c¢ard) are processed
sequentially until an EOF,

e LEOF: DProcessing of an input file is ended by an end-of-
file or a blank record on the input file

Output: Besides updating the ASATS data base, the tollowing
information is recorded sequentially on a tile:

e Rejected input cards

e Cards for which the required DAPTS record does not
exist (for *, 2, 3, 4, 5, 0, B, N and T cards)

‘ e Cards for which the required FLOCON record does
not exist

e Cards for which the FLOCON record has not reached
required state for particular type of update

e Accepted input cards which created new DAPTS records

® DPunched card images

Processing: The required processing is a function of card
type. Card types are categorized as follows:

Category 1 card types *, 2, 3 (in scts)

t

Category 2 card types *, 2, 4, 5 and 6
Category 3

Category 4

card type 3

i

card type B

T

Category 5 other card types

. Category 06 card types N and T

There is a generalized function for adding new records aml up-
dating existing records. This function, which is driven by

input formats, data base formats, and card type, adds or modifies

the spccitied record, The general steps of processing input
cards dre:

Read input card

Generate record ID

Generate external (input) format ID from table
Retrieve record

Retricve formats

Either add or update the record
Output card Image reflecting success or error

Figure 3-7 depicts the flow of this process and variations
dependent upon category of card type.

Table 3-3 indicates the data used for generating a record
depending on input category. The input format is a function
of the card type. Table 3-4 indicates the action to be
taken upon a record retricval failure.

The input processing for all liclds of cach card type is as
defined in the ASATS requirements document except for Segment

Status Character in DAPTS reocords and Acquisition Status character

in EFLOCON records. The information from Table 3-3 is nuscd to
set the segment status character. The Acquisition Status
Character is set to the card type. These (ields are used for
generating the current station and status. Their use is
described in paragraph 3.0

The type of operation, an add or a modify, to be performed is
a function of record type and whether or not a record already

3/1»(’

20

e s b L i

exists., The input format for the card type identifies the
fields it updates and the field's data type. Table 3-5 describes

the processing for field types on input.

THE X T NPT

(sTART

Vo

SET UP FOR ‘
AUTO POSTINGi
j

W

>
SV

READ 'pop: . N
CARD HodicAustk AUlO-%“Jh WRTTE
{
i

o

|

e

IMAGL | POSTING pop T STOP

o

| GENERATE {
| RECORD ID
AND FORMAT ID]|

b

' RETRILVE
' INPUT :
! FORMAT |
<

} z @7
'RETRIEVE ol
D.B. RECORD A
AND FORMAT :

I

| ‘ i s

PP

W) ‘
=

BN .,

RETRIEVE YIS R
FATLURE -

Iigure 3-7.— Special Update Processor Flow.

;;ﬁ&”f

s

MOD1FY
RECORD

A
1 SET FLAG — s
-'[REJECTED —=12°

TEHOOR ‘;S"
\cmgmmY»IW@)

SET
BTOWINDOW
TABLE

YIS,

o

UPDATED ‘
ASSOCTATED —
FLOCON RECORDS

Figure 3-7 .— Continued.

PUNCH]
TCARD

.:." w1
d

NO

//*\\NO SET FLAG
Bf/EATEGORY‘F.t.TO INDICATE
1

®—>< CATEGORY

p . RECORD DOES“‘Eﬁ@
[NOT EXIST
\bYF.S
'GENERATE .READ NEXT
RECORD ID TWO CARD |
USING SEGH ‘
(IMAGES N
A -
RETRIEVE
SEGMENT !
RECORD AND
FORMAT

~ SET FLAG TO
) >x INDICATE RECORD—3(2)

DOES NOT EXISTi

ETRIEVEN_YES
TAILUR

GENERATE
BIOWINDOW
TABLE

v

SET FLAG |

NN A [WRITE CARD |
ADD RECORD ' IMAGE WITII | .
, @—= e o 20
ETLE
- PUNCII
WRITE /)
e CARDS | UNLOAD =N

IMAGES CARD

WRITE PUNCH
CARD TMAGE
AND SEGMENT

&

Figure 3-7.- Continued

1

o b -

RETRIEVE
DAPTS RECORDS

AND FORMAT

/’L‘ .

RETRIEVAL ™
FATLURE

A/"'
.

Ve

(‘WRITH E

S\

- ERROR —

‘ MESSAGE |

T < me e A s epaatpna o o j

UPDATE
DAPTS
RECORD

I

Figure 3-7.-- Concluded.

37]

m/

PP R

O T e TP

g A

FABLE 3-3.-INPUT TRANSLATION TABLE FOR GENERATING SEGMENT

STATUS CHARACTER

t i

0]

=

L

] -t N \\e]

o

(]] (]

‘on jaf] 24 joh

C: :)\ [>
o) H) i)
e

n vl e o
e - - ~
o] « «]
88|)] |&]]
0 1 2 4
1 1 3 5
2 | 3 2 | o
3 3 3 7
4 5 0 4
5 5 7 5
6 7 0 0
7|7 717

Heé

B ST E I T PP

P U S o

TABLE 3-4,-SPECIAL UPDATE

DESCRIPTION

Category| Mcthod of Action on | Generate Type of Additional
Identifying| Retricval |Biowindow | Operation | Processing
Record Failure Table

1 SEG # Success: Add
Update
(1b)
Fail: Add
1b Update
2 SEG Fail: Yes Update Set Bio-
Generate window
Error Field in
Acq. Records
3 SEG Fail: Update
Generate
lirror
4 SEG # § Fail: JB Update
Acq. Date success:
Update
4b SEG # Fail: Yes Add
Generate (Acq.
Error Record)
5 SEG # § Fail: Update
Acq. Date Generate
Error Update
0 SEG # § Fail: Update
Acq. Date Generate (Both
Lrror DAPTS §
FLOCON

Data Type
()

6

TABLE 3-5.-USE OF DATA TYPES ON INPUT

Processing

Alpha - update associated data base ficld as
alpha

Integer - update associated data base field as
integer (standard RIMS data type, but not uscd

for ASATS)

Set data base field value from status table
according to card type and existing value

Alpha but don't update data base when input
is blank

Record I.D. {iecld (no action)

Increment data basce field value by 1 on input
(Integer ficld) ’

Reject input if associated data base field is
blank

Set data basce value as a function of hiowindow
table and acquisition date

e

b e s o ame o

>

If an error condition occurs when processing an input card, an
error file unit number is put in column 2 when the image is
written to the message file. The input card images for new
DAPTS records are also written to the message file; in them,
column 2 is the unit number for the new DAPTS record report f[ile,

Additional processing required by category 3 is the selection of
FLOCON records of the same segment and the updating of their

biowindow fields.

3.3.1.3 Use of Input Formats

An input format is required to describe certain processing asso-
ciated with each record type. This description includes:

e Identification of each field affecting the update process

e Type identification of each field, which defines how the
field affects the update process (sce section 3.3.1.1).

e Starting location and length of each field of information on
the data card (it should be noted that some fields affect the
processing, but do not exist on the data card, therefore do
not have a starting location and length).

The field names used must correspond to the field names used in
the data base definition (see Tables 3-1 and 3-2). Field loca-
tion and field use on input cards are described in the ASATS
requirements documents and in the ASATS User's Guide (Rev. A).

Implementation using input formut definitions allows for simple
accommodation of most types of changes in input requirements.
The addition of a new card type would require a modification of
tables within the special update command processor. The.B and 3
type input cards do have codes which are unique to them.

Af

R YDA

3.3.2 SPECIAL COMMANDS FOR ANNOTATING REPORTS

A new command (header) allows the user to include text which is
not a part of the data basc and to include printer carriage con-
trols. Another new command is included which allows the user to
print a set count with text wkich he specifies.

3.3.,2.1 Header Command

Purpose: To insert header or comment on report,
Input: HDN, Text

where: HD is the command mnenomic
N is the number of input lines (1 or 2)
Text is the hecader contents

Qutput: N lines of text

Processing: Text is transferred from the command file to the
report file with the first character after the comma being used
for carriage control. Standard FORTRAN conventions are used for
carriage control.

3.3.2.2 Count Command

Purpose: To print the number of entries in a set along with text
comment.,

Input: SCSN,LOC, Text

where: SC is the command
SN is the set number for the count which is to be
printed
LOC is the column count where the set count is to
be printed ,
Text is the text data to be printed
Processing: Text is transferred from the command file to the

report file and the number of entries is printed with it. The
first text character is used for cargiage control.

e

3.3.3 SOFTWARE TO ELIMINATE REDUNDANT STORAGE

The following new RIMS commands were designed in order that cer-
tain data does not have to be stored redundantly in both DAPTS
and FLOCON records. The DAPTS and FLOCON records of the ASATS
data base have a hierarchical relationship. The DAPTS record
(the parent record) contains information common to possible
several FLOCON records.

3.3,3,1 Generate Parent Set

Purpose: To generate a set of parent records (DAPTS records, for
ASATS) from a child set (FLOCON records, for ASATS)

Input: GPSN

where: GP is the command mnemonic
SN is a temporary child set number

Output: A set (next available temporary set number) of parent records

Processing: The parent record ID for cach child record ID in the
input set is placed in the output set.

3.3.3.2 Generate Children Set

Purpose: To generate a children sct (FLOCON records in ASATS)
for a set of parent records (DAPTS record in ASATS).

Input: GCSN

where: GC is the command mnemonic
SN is the temporary parcnt set number

Output: Children set (whose set number is the next available

temporary set number)

Processing: The record pointer address is computed for each

record ID in the parent set. The addresses for potential children
records (up to 16 records following the parent records) is searched
to discover whether children records exist. FEach child ID that

is found is then put into the output sect.

<1

3

3.3.3.3 Display Data from Two Data Base Levels

Purpose: To display a set of FLOCON records with selected
information from the associated DAPTS records, as specified by
a format (Joint Display Formatted).

Input: JFSN, FMT

where: JP is the command mnemonic
SN is the temporary set number for a set of
FLOCON records
FMT is the format ID for displaying dJata

Output: Specified set in specified format on report file,

Processing: The format for displaying data is retrieved. Then
for each record ID in the input set, the following actions are

taken:

e Get record ID from set

e Retrieve record and its format

e Transfer data from the child (FLOCON) record to an output
buffer according to the display format

e (Generate record ID for associated parent (DAPTS) record

® Retrieve DAPTS record and associated format

e Transfer data from the DAPTS rccord to output buffer according
to the display format

e Write output buffer to the report file

3.3.4 ACCESS CONTROL

The following new commands, softwarc, and RIMS modifications are

defined to satisfy access control requirements, Each user will

have an access control word. It will control which RIMS commands
he can or cannot use.

o

R

e

3.3.4,1 Add Access Control Word

Purpose: To add an access control password for the data base.

Input: 5+
PASSWORD>XXXXX
BIT MASK~1110111....

where: S+ is the command mnemonic
XXXXX is an 8-character access cvontrol word
1110111... is a 24-character string identifving
which commands the user having this access code
can utilize,

Output: Access code and character string are stored in data basc,

Processing: A rvrecord is generated containing the character string.
A key is generated by hashing the character string. The record

is posted to that key. NOTE: The key cannot be reconstructed

by the display from the expand function.

3.3.4,2 Delete Access Control Word

Purpose: To delete an access control password.

Input: S-
PASSWORD> XXXXX

where: S- is the command mnemonic
XXXXX is the access control word

Output: No reply - access code and character string arc deleted
from the data base.

Processing: The record posted to the password is deleted and the
key associated with the control word is deleted.

3.3.4.3 Modifications to Allow Password Control

Purpose: To allow identification of a user to RIMS by access
control word following first begin command.

3

e

OQutput: PASSWORD> (prompt to user)
Input: Access Control password

Processing: The record associated with the control word is

retrieved. If the given control password does not exist, RIMS
is aborted,

3.3.4.4 Modification to RIMS Control Routine for Access Control

Purpose: To prevent execution of unauthorized commands,
Output: Message file - 'illegal! command!',

Processing: Before calling the subroutine to process the associ-

ated command, the character string containing indicators of user's

authorized commands is examined. If the user is not authorized

to usc the command, the message is output and the subroutine is
not executed.

3.3.5 ARITHMETIC OPERATIONS

A new RIMS command has been included to provide the typical sta-
tistical and arithmetic operations required by ASATS in the
ad hoc environment.

3.3.5,1 Compute Command

Purpose: to provide for a sc¢t of records (1) summation of iden-
tified field, (2) mean of the Jdifference of two fields,
(3) standard deviation of the differences of two fields.

Input: ARSN, RID, Ny, N,
where: AR is the command mnemonic
SN is the set number for which all computations
are to be performed
RID is the record ID for the record where the
results of the computation are to be stored
FNl is a field name
IN, is a field name

5

2

Output: Sum of both fields, mcan of difference, standard devia-
tion of difference, count of the number of records used in mean
computation, and the count of the total number of records are
stored in the specified record.

Processing: Each record in a set is retrieved and processed.

]

The following computation is performcd for cach record.

e Each field is summed over all records in which both fields
are not blank.

e A cuunt of the number of reccords is maintained.
e For cach record where cither fiecld is blank
e Count of the records is maintained

® Sum of the difference of the two fields is maintained

After all records have been processed, the mean and the standard
deviation of the differences arc computed. All computed results
are then stored in the specified record.

3.3.6 MODIFICATION TO EXI»TING COMMANDS

In order to implement sta.:dard reports by executing a RIMS com-
mand file containing the KIMS commands for reports, two new
capabilities have been implementcd. They arc:

e The ability to generate null sets |

e The ability to assign a file by name |

The following modifications provide these capabilities.

o me i

P

T T e — e T e T

3.3.6.1 Modification to Reassign File

Input modifications: The previous syntax was RFIU,EU. The
syntax has been modified to allow another form: RFIU,EU,ENA.

where: RF is the command
IU is the internal unit number
EU is the external unit number
I'NA is the file name

so that if IU is 0 (zero), then LU is set to the included file
name.

Output modifications: None

Processing modification: If the internal unit is zero, the
external unit is closed then re-opened with the specified file
name. Otherwise, processing is the same.

3.3.6.2 Null Set Option Addition

Input: ZZ0P

where ZZ is the command mnemonic
OP is the option: 1 for null sets to be kept; zero for
null sets not kept. At sign-on, the
default mode of the system will be for
null sets not to be kept.

Output: None

Processing: A flag is set in a common block to indicate the null

set mode,

3.4 TILE PREPROCESSOK

3.4.1 PURPOSE

The Preprocessor produces several of the required audit report
listings of the input update cards and acts as an interface
between the unsorted, unedited input form and the form of input
required for the RIMS data management softwarec.

26

B TV R VT L

“~

3.4.2 INPUT

The Preprocessor accepts update cards of all types as described

in the ASATS Specifications Document, LEC-8075 (Rev. A), and

ASATS LACIE Procedure 1 Detailed Design Specification, LEC- 10520,
The cards may be in any order and must include one and only one Q
card. The input update cards for the Preprocessor make up the

last of three files read in by the operator before each daily
update and report batch rvun, (The first two files are for report
(generation,)

3.4.3 ourpur

The Preprocessor outputs two types of data. The tirst type is
the listing of input cards:

@ A listing of all cards in the order of theiv input

e A listing of all cards having invalid carvd types

e A listing of all cards rejeccted as Jduplicates

e A listing of all cards submitted for this update run, sorted

into order by card type.

The second type of output from the Preprocessor is a set of

files containing update card images which are combined to drive

the RIMS system for actual update of the data base. The files

are:

e A file of all sets of *, 2, 3 cards, where a complete set is
given for any segment

e A file of *, 2, 3 cards in which only one or two of the cards
appears for any segment

e A filec of other update cards sorted into the order: 4, 5, 0,
B, 7, 8, 9, G, 1, I, N, J, K, M, T, X, U.

)43(

37

3.4.4 DESCRIPTION OF PROCESS

The Preprocessor consists of a sequence of operations performed
by special-purpose IORTRAN programs and by calls to the RSX-11D
system SORT utility program. Data flow for this sequence of
operations is shown in Figure 3-8.

The first operation shown, gives two of the input listings and
separates update cards by LACIE phase into separate files. In
this operation, cards with invalid type or LACIE phase are
rejected, and a check is made to be sure there is one Q card.

The second operation is performed by the RSX-11D system SORT
utility, to put the cards into order by card type.

The next operation shown is a separation of cards by type. The
type *, 2, 3 cards will be sorted by segment number to find those
segments for which all three are present and which may, therefore,
be new segments for entry among the DAPTS records. Cards not

part of a set will be sorted back into card type order with

* cards first, then 2 cards, then the 3 cards., Cards of other
types (4, 5, 6, B, 7, +++)} are put into another separate file.

3.5 THE POSTPROCESSOR

3.5.1 PURPOSE

The Postprocessor is required because of core space limitations
on the number of output files that can be defined in RIMS. The
RIMS update task for ASATS writes scveral logical output files

into one actual output file and attaches a (lag to each recciil

to allow the Postprocessor to separate the output files.

UPDATE
CARDS

STE

P 1

| Ll

ORDER: Q, =

SORTED INT

0

“1 IN
P

ST, FIND
VALID CARDS,

SEPARATIE

ASE T1/1T1

S

THP 2

[$SORT
UTTLITY

"______”_.,,,_..r“/

UNSORTED
LISTING
OF CARDS

INVALTD

| CARD
TYPES

»_.,/ -

SORTED

STEP 3 @

I.1

e

STEP_4

$SORT
UTTLTTY

SORTED BY
SEGMENT
NUMBLR

st sy

%,2,3 I *
CARDS R

ST, SEPARATE
2,3 UARDS
OM OTHERS

Se—.
P

IND

THE

N

e st

ALL BUT
2,3

CARDS

S| LISTING

LIST O
INVALID

DUPL FCAFES

"

e o’

(0 RIMS)

FIGURE 3-8

PREPROCESSOR

325 39

-
-

v

5 (1O RIMS)
CSTEP 0

$SORT]

UrLIry

RIT-SORTED
INTO ORDER

y hl
:&9“‘7‘.’

(TO RIMS)

T T T T T

- — g

3.5.2 INPUT

Input to the Postprocessor is a file of information about updates
made or attempted by RIMS,

3.5.3 OUTPUT

Output from the Postprocessor consists of one file of card images

to be punched and several files of report listings, as follows:

3

Cards punched (4, 5, 6 carcds for each *, 2, 3 set that created
a new DAPTS segment record; G, H, and UNLD cards punched for
each B card that created a new acquisition (FLOCON-record); and
and T card punched from each T-100 segment J card submitted.

A listing of the cards punched
A listing of all necw DAPTS segment records added

A listing of invalid acquisitions (B cards for which no DAPTS
record has the same segment number)

A listing of invalid attempts to modify a DAPTS record (modi-
fications from *, 2, 3, 4, 5, 6 cards such that no existing
DAPTS record has the given segment number)

A listing of invalid modifications to FLOCON records (no
matching segment number and/or acquisition'date for input G,
H, I, J, K, M, N, T, U, X, 7, 8, or 9 cards) or a required
data base field has not previously been set (as required for
card types H, I, J, etc.).

Packet labels

.5.4 DESCRIPTION OF PROCESS

The Postprocessor will read the output file from RIMS and write
into the proper output file(s) chosen on the husis of a flag
included with each record from RIMS. See fijure 3-9.

NEW DAPTS
RECORDS

INVALID
ACQUISITIONS

LE*—*—POSTPROCESSOR

(FROM RIMS)

INFORMATION
ON STATUS OF
UPDATES MADE
OR ATTEMPTED

N

///;UNCHED
4,5,6,G,1, T,

UNLD CARDS

J“/ﬁ’_‘“

o

—

ASATS - THE

LISTING OF
PUNCHED CARDS

g_/~/

INVALID
DAPTS
MODIFICATIONS

’»

A c———" ;
‘PACKET LABELS |

L]
[
i ’

FIGURE 3-9

’;,afkgkf

VR

-

INVALID
FLOCON
MODIFICATIONS

L._/_\/

POSTPROCESSOR

B Sl bt S E

3.6 ASATS STANDARD REPORTS

All standard reports identified, as required for ASATS, can be
produced using RIMS commands (as augmented in section 3,4 of
this document) and the added output translation function. Once
a data base has been established as described in this document,
RIMS provides the functional capabilities required for these
reports.

In order to satisfy the standard report and ad hoc report requirc-
ments using the data base design as described in section 3.2, it

is necessary to perform output translation for some data clements.

This translation generates the output field value as a function
of the input field value using a predefined table.

Three tables are required for the necessary output translations.
They are:

e Film products status table as a function of Acquisition Status
Character CURSI.

e Computer products status table as a function of Acquisition
Status Character CURS2Z.

e Table indicating crop calendar, ancillary data, and topographic
data status as a function of the segment status character.

Two additional data types are required for output processing.
They are:

e Data type 5 - Perform output translation using film products
status table.

e Data type 4 - Perform output translation using computed pro-
ducts status table.

For each data type, the input format specifies the location of

=7

T T

data to be used for the table look-up. The output format speci-
fies the location where the table results are to be placed in
the output record.

These records have been implemented by building separate f{iles
containing the necessary RIMS commands for each report. The
report can then be produced by assigning the file as a RIMS
command file. The reports are initiated as part of the batch
run by a "starter" file that is copied to the standard RIMS
command file. The starter file reassigns the command file to
the actual report file. ‘

The requirements for each report have been translated directly
into RIMS commands. Individual report command files are described
in section 4.

P A

T —— T T T T -

4. CONTROL FILES

This section describes the files which control the operational
ASATS system: wutility command files, batch run control card
files, and '"canned" RIMS command files. Command files used to
build tasks will be described in section 6, and data files are
described in section S.

4.1 PIP UTILITY COMMAND FILES
4.1.1 UP.CMD

This file of PIP commands uses three files from the daily input
card deck to prepare files for the daily update and report run:
the date to be on reports, the reports desired, and the updates

to be made to the data base. The text of this file appears in
figure 4-1.

This command file is invoked by the operator:

MCR>HEL [(ASATS UIC)]
MCR>PIP @UP

The card deck to be processed must contain three files (each
terminated by the standard PDP-11 RSX-11D end-of-file card);

1. A RIMS HD command for the header date line in reports

2, A file of PIP commands that copy RIMS report command files
intc successive versions of the file REP.COM

3. The standard ASATS update cards, including one Q-type card,.

The output files produced are

1. File DATE,COM which contains the HD command giving the date
and an RF13,13 command,

2. As many versions of REP.COM as were specified by the input,
plus five additional dummy versions to prevent RIMS from
trying to read a nonexistent file,

2o

BRI PO PR TP S Sy S

e

e

DATE ,COMNENDFILE
DATE,COMI®/DE
DATE,COMBCRY

DATE COMBRF1313,60M AP
BLD,CMDEENDFILE
BLD.CMDIn/DE
BLD,CMDBENDFILE
ALD,CMDsCRY
REP,COMBENDFILE
REP,COMI#/DE
#BLD,CMD
REP,CNMSENDFILE
REP,COMBENDFILE
REP,COMSENDFILE
REP,COMBENDFILE
REP,COMSENDFILE
PPF{y ,CRESENDFILE
PPEYY ,CREIw/DF
PPF1t,CRERCRY

Figure 4-1.-The Update Card Read Command File, UP.CMD.

e

MM._‘WM_WM

ot S e A

3, The file PPF11.CRE of ASATS update card images.

In the process of creating the above files, any f{iles left over
from previous days are deleted. Deletion of files is always
preceded by creation of a dummy file (a copy of the empty file
ENDFILE.;1) so that the delete operation will not give any
meaningless error messages to the operator.

4.1.2 LA.CMD

This file is used by the operator to print packet labels on the
line printer. The text of this file appears in Figure 4-2. It
is invoked with the command:

MCR>PIP QLA

The input is the label file created by the Postprocessor,
POST8.ZIP, It is copied to the line printer.

4.1.3 SAMTn.CMD

There are two files which can be used to do the daily save of
the data base. The file SAMT@.CMD saves it on MT@: and SAMT1.CMD
saves it on MTl:. The file SAMTP.CMD is shown in Figure 4-3.

The operator must initialize and mount a tape, and then issue
a command:

MCR>PIP @SAMTn

The command file copies the DATE.COM file to the tape as a check
of the date the tape was made, and then copies all the data base
files to the tape. The command file then gets a directory of
the tape and saves that directory on disk, prints it on the line
printer and prints it on the terminal, to assure the operator
that the files have been saved on tape.

Ve

LPisPNSTA,21IP

Figure 4-2.-The Packet Label Print Command File, LA.CMD.

s S

MTOsSDATE ,w)w
MTOssXX ,0)w

LP TESEMTOra ,ndw/L Y
LPtsiP, TES
TItolLP,TFS

Figure 4-3.-The Data Base Save Command File, SAMTQ@.CMD.

4:8"

“yg

4.2 ASATS.BIS, THE BATCH RUN CONTROL CARD FILE

The contrnl card file for the daily batch run of updates and re-
ports is designed to satisfy several criteria which prevent it
from always being straightforward, namely:

It should not give the operatur any specious error messages-
e.g., if a file which may or may not be left over from a pre-
vious run must be deleteﬂ, the message that the file does not
exist should be suppressed.

The operator should interact with the operations as little as
possible, and his choice of interaction should always be
clear.

Status information should be given periodically to allow re-
start, if possible.

The many filesc¢created during a run should be deleted auto-
matically, within the run or on the next run.

Keeping those principles in mind to explain the other "extra"

operations, the basic required sequence of operations is this:

Run step 1 of the preprocessor
5ort the separate LACIE Phase update card files into order
by card type

Run step 3 of the preprocessor

Sort the %,2,3 card files into sets by segment number

Run step 5 of the preprocessor to recover complete sets of
x,2,3 cards

Put the non-set x,2,3 cards back sorted by card type order
Append the separate update files into a single file for each
LACIE Phase

Run the ASATS task (RIMS data base update) for LACIE Phase
3. (Phase 2 updates have not yet been incorporated as an
automatic operation in the daily run)

G

Run the postprocessor to convert the single report file from
the update run into 8 separate files: 6 audit listings, the
packet labels, and a file of card images to be punched,

Run RIMS five times as a batch mode task to produce as many
as five reports requested for this run. The input data for
the batch run is all from disk files. The data base is per-
manently resident on disk and other data input (the date to
be put onto reports, the RIMS command files that start re-
ports, and the update cards) are read in immediately prior

to the batch run (see the description of the PIP command file
upr.CcMD). Much of the output of the batch run goes directly
to line printer spool files. Three of the outputs are left
in disk files and copied to output media by the operator:
packet labels arc copied to label stock in the line printer
with PIP command file LA,CMD, the newly updated data basc

is retained on disk and a backup copy on tape is made with
one of the PIP command files SAMT@,CMD or SAMT1.CMD. And
cards arec made from the file PUNCH.Z1P by using the utility
program CRDOUT to produce . card-image tape. The '"control
card" file ASATS.BIS is actually a disk file of control card
images. The batch run is initiated by the operator with the
batch command: BAT ASATS (ALT) (The alternate mode key in-
stead of carriage return allows MESSAGE card information to
appear on the operator console).

The complete text of ASATS.BIS is shown in Figure 4-4.

T TR T W

$JOB/NAMEBASATS LU/ TMITRO99/MER

SMESSAGE ASATS BATCy STREAM VERSION 14 (14 JUNE 1977),
SMESSAGE FIXED Y0 SaRT PUNCHED CARDS INTO ORNDER BY TYPE,
SMESSAGE RF -SURE Y0, MAVE}

SMEBSAGE READ IN CARD DECK,

IMEBUAGE C WETHy PIP eUP)

SMESSAGE IN CASE OF TROUBLFE, CalLLy

SMESSAGE JOE. zysgervs 3336341 (DAYS) OR 554w3660 (NIGHTS)

SMESSAGE OR DAVE 5M!TH 31324351 (DAYS) OR 4B82e06UH4 (NIGMHTS)
SMESSAGE OR JOHN pAON, UR3w6427 (DAYS) NR 4B1=0339 (NIGHTS)
SMESSAGE IF CARDS NnY O,K,, ABORT THIS RLIN AND RESTART
SMEBSAGE WITH ANOTHER BAT ASATS AFTER READING CARDS,

SMCR PIP DUM,TESSENRFILE

SMCR PIP QP1-¢‘Tfsj glkl .

SMESSAGE/WATY NOW, vvnz IN CONCCR) TO CONTINUE, OR ARO(CR) TO AHQRT,
IMCR PIP LPimw, YFS:,/L!

SMESSAGE STARY PREPRNCESSOR

$ | CLEAN UP FILFS

SMCR PIP

DUMY, TESSENRFTLE

9,TES) w/DE |

$ | STEP { READS PPpi1,CRE AND WRITES OUT THE FOLLOWING:

$! PPFL42 AND PPrlaS (PHASE 2 AND 3 FOR LATER PROCESSING)
s ! OTHER FILES Tm LINE PRINTER

8 | SORT OPERATION _WILL ALWAYS MAVE INPUT AND ALNAYS PUT OUurY
S 1 SOMETHING IF I3 RUNS SUCCESSFULLY,

SRUN STEP{,T8K

SMESSAGE START SORTY

SMCR SRY PPF242,TES, PPF102.TES/SIZElao.DLSPEC SOR

$ | CAN NOW SAVE saacz BY REMOVING INPUT TO THAT SORT,

SMCR PIP PPF142,TES, 1 /DE

SMCR 8RT Ppraax.rcs,ppr1as TES/S12E180,DLSPEC.SOR

SMCR PIP PPFIUY,TES,{/DE

$ | 8ET UP NOW FOR q?EP}

$ | STEP 3 WRITES Tuo FILES FOR FACH LACIE PHASEY

$ | PPFIS(2 AND 3) AF NONww, 2, 3 CARDS

8 | PPF3I3Ct2 AND 3) OF w, 2, 3 CARDS

$ | ALL FOUR MUSY Zy?8Y IF NO MESSAGFS ARE TO BE GIVEN,

SMCR P1p

PPF332, TESRENDFILE

PPFSBB.TES-ENDFILE

PPPI%2, TESRENDFILE

PPP3SS TESEENDFILE

SRUN BTEP3,TS8K

SMCR PIP PPF242,TES, w/DE

$MCR PIP PPFRUY,TES,w/DE

Figure 4-4.-The Batch Run Control Card File, ASATS.BIS.

e

Y

L .-

$ | BEFORE DOING THp SORT, PUT UP A DUMMY OUTRUT FILFE FOR IT,
SMCR PIP PPFU2P,TES FNDFILE

SMCR 8RT PPFU2P,TESLPPFIY3, TES/STZEIB0/KEYSICNU,4ICN1,80

$ 1 NOW CLEAN UP 'INpliIT FILES TO THAT SORT, AND

$ | UP DUMMY OUTPUSS POR STFP §,

SMCR PIP

PPF3ISS,TESI#/DE

PPPSIP , TESRENDFILE

PPPSSP , TESSENDFILE

PPFSTP TESSENDFILE

JRUN STEPS,TSK o

SMCR PIP PPFU2P ,TES,a/DF

SMESSAGE STEP & FINYSHED FOR PHASE 3

$ | NOW SORT THE w,3,3 NONeSETS RACK INTO CARDeTYPE ORDER,
$ | FIRSY, PUY UP A _NUMMY SORTEN QUTPUT FILE,

SMCR PIP PPFOSY,TES,FENDFILE

SMCR SRT PPF6S3,TFSyPPF5SP, TES/SIZEIBO/KEYSICNY,80

$ | NOW DELETE INPUY YO THAT SORT AND CONCATENATE A{| THE UPDATE

SMCR PIP

LPiuPPFSTIP, TFS

PPFSTP TESIw/DE
PPFSSP , TES)w/DE

PHASEY, TESBPPFS3P,TeS/RE
PHASFS, TESSPPF6SY, TeS/AP
PHABES ,TESEPPF3ISS, TrS/AP
PPPFSSP, TESEENDFILE
PPFSIP TESI#/DE

PPFo8Y TESIw/DE
PPF353,TES8)I«/DE

PPFU2P, TESBENDFILE
SMCR SRY PPFU2P TES.PPF312,TES/812k3RO/KEYSICNU,4ICN1,80

PILES,

$ | NOW CLEAN UP INpiIT TO THAT SORT AND GIVE DUMMY QUTPUY FOR STEF S,

SMER PIP _

PPF332,TE8)»/DE

PPPEXP TESRENDFILE

PPFSSP TESNENDFILE

PPFSTP, TESSENDFILE

SRUN B8TEPS, T8k _

SMCR PIP PPFU2P,TES,#/0E i

SMESSAGE STEP & FINYSHED FNR PHASE 2,
§ | SORY »,2,3 NONegFTS BACK INTN CARD=TYPE ORDER,
$ | FIRST, CREATE A DyUMMY SORTEN FILE,
SMCR PIP PPF6S2,TES,ENDFILE

SMCR BRY PPFeSI TES PPFSSP TES/STZE1AD/
SMCR SRY PFPFO%D TESgRPPRSr tro/aiiciouys

X
nN
-
fx
-
(4 &
a2
e

Figure 4-4.-The Batch Run Control Card File, ASATS.BIS. (cont)

7S

7

.

g —

™

’p

)

‘¥

$ | DELETE INPUT TO_ THWAY S0RT, CONCATENATE UPNATE FILES,
SMER PIP

PPFSSP TES)u/DE

PPFSTIP,TES 2 /DE

PHASE2,.TEBEPPFS3IP, T /RE

PNASER2, TESmPPFAS2, Tps/Ap

PHASER, TESEPDPF 152, Yrs/Ap

PPFSYP TESRENDFILE

PPFS3P TES)w/DE

PPP6S2,.TES) % /DE

PPF:S:.?ES:.;D!

$ | ALL FILES AR® an ALEANED UP AND UPDATES ARE IN 2 FILES,
3 | SEPARATED BY PLASF, PHASEY,TES AND PHASER,TES,
SMESSAGE PHASE 3 UPRATES WTLL NOW BEGIN,

SMCR PIP

PPF3SY, TESuPHASES, TeS/RF

FORO12,0ATSENDFII E

FORO012,04T)w/DE

POROI2,DATSENDFIILE

FOROOY, DATRENNFILE

FOROOTY DATIw/DE

sM[SSAGE THIS I8 YN/\R LASY CHANCE TO STOP UPDATES (CON on ABOY,
SMCR PIP LPymw TES) /L]

SMESSAGE/WATY tIF Yal! RO PASY THIS POINT, YOU CANNOTY RESTART),
SMER PIP LPgaw,TES) /LT

SRUN ASATS, TSK

SMER PIP LO,TESEe ,wyw/LY

SMESSAGE PHASF 3 UPRATES COMPLFTFD,

SMCR PIP

RM2,POSFNDFILE

RM? POSIw/DE

nna.vos-wunoxz.OAr

DUM,2IPSENDFILE

", 2IP)n/0E

suzssacz PREPARE OUYPUT REPORTS,

SRUN P(STP,TSK

SMCR PIP CARDS.TES-pHNCH.ZIP'RE

SMCR SRT PUNCH,ZTPxrARDS,TES/SIZFE180/KEYSICNL A0
SMCR PIP LA, TESmw, wyw/L]

SMCR PIP PUNCH‘ZIPlnATF COM/AP

SMCR PIP LPimw,21P),

$ | START THE OTHER DAILY REPORTS,

SMCR PIP UNITS.SAT!:o-nAYCH.SAT

$SMCR PIP BAT,COMBENRFILE

SMEZR PIP BAT, COMIiID!

SMCR PIP BAT,COMRREp’ COMIY/RF

SRUN RIMS1, ts«

Figure 4-4.-The Batch Run Control Card File, ASATS.BIS. (cont)

S

L o z; rﬁﬁh R’IA“K‘ 5‘;
IC': m.)ﬂ @Uﬁ\ﬁﬂ""

]

e

$

»

LY

SMER PIP
SMCR PIP
SMCR PP
SMCR PIP
SMCR PIP

LO,TFSEw wy w/l Y

OUM SHImENRFILF
w,SHT)n/DE
BAT,COMsw/pF
AAT,CNHERER cNMY 2 /RF

SRUN RIMS2, 18K

SMCR PP
$SMCR PIP
SMCR PIP
SMCR P1P
SMCR PIP

LGQYES'*Q*iﬁ/LI
DUM,SHISENRFTLE
03“!'/06
BAT,COMy#/pF
8AT,COMRRER’ COM) 3/RE

SRUN RIMS3,TSK

SMCR P1P
SMCR PIP
SMCR PIP
SMCR PIP
SMCER PIP

LO,TESEw ,wqn/L1
DUM,SHISENRFTILE

* ,SH1)w/DE
BAT,COM)a/RE

BAT ,COMBRER.COMIY/RE

SRUN RIMBL, T8K

SMECR PIP
SMCR PIP
SMCR PIP
SMCR PIP
$MCR PIP

bAJTESES wqw/LY
DUM,SHISENRFILF
x,SHIIw/DE
BAT,COMyw/RF
BAY,COMeRER’ COMIS/RF

SRUN RIMS85,T8K

SMCR PIP
SMCR PIP
SMCR PIP
SMCR PIP
SMCR P1P
SMER PIP
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGF
SMESSAGE
SMESSAGE
SMESSAGE
SMESSAGE
SMCR PIP
SMESSAGE

$MCR PIP.

SEOV

LO,TESBu, wyn/LY
DIM, SHIRENRFILE
v, SHYIIw/DE
BAY,COMp%/nE
UNI*S.SAT|§0/DE
LPtsPHASER2 are/l. 1

LA AR R 2 e R R R A R R R R R T R TSR R A

* END OF AQATS PHASF 3 RATCHW [IPDATES AND REPORTS

* REMEMBER YO

2 % % % & B & % % & & % »

* MAKE CAPNS (USE CRDOUT ON THE
* FILE PUNCHM,ZIP)Y

* ANR MAKE LABELS (LOAD LABELS INTO

v PRINTER AND DU PIP eLA)
* ANR SAVE [210,004) ONTO TACE

. ¢ HEL 15,%)

L INY MYOIRY DATEZUICB[210,004)

* MO MTOt/0VR

> HEL 1210,004)

» PIP 88AMTY(Q}

* FASTEN THE DIRECTORY TO THE TAPE)

* THIS 18 yHE END OF THE ASATS PHASE I BATCH RUN, «

AR R R I N R R e R A R R R S R AR R Y

LPima, TES) /L1

NOW LOAD SZPARY PAPER INYD THE PRINTER AND
SMESSAGE/WAIT TYPE 3N CON (CR) TN PRINT REPORTS,

LPymu,TPSy, /LT

:51

Figure 4-4,— The Batch Run Control Card File, ASATS.BRIS. (Concluded)

o

N T N e

e e e s e L

L T TR e e

4.3 SORT UTILITY SPECIFICATION FILE DLSPEC. SOR

This file controls the sort utility (SRT) for the two sorts of
update card files which occur between step 1 and step 3 of the
preprocessor. The purpose of the sort is to put the cards into
order by card type (column 2) for proper order of processing of
two or more updates on a single segment or acquisition, and to
be sure that duplicate cards are detected (because after the
sort, duplicates will be together in the file). The ordering of
card tapes is effected by a "force" (F in column 7 of the des-
cription of the type field) which, in effect, changes the collat-
ing sequence only in that field. Other fields are sorted on the
standard ASCII collating sequence.

The text of DLSPEC.SOR is shown in Figure 4-5,

|
3

P T

00 HSORTR 904 X 00 MEADER CARD
0y FFC 2ne ~

92 FFC 2wlde

03 FFC . 223e . o

64 FFE 234de

0S PFC . ___ 24Se . _ .

06 FFC 256

07 F¥C 247

08 FFC 2RBe

09 FFC . _. . 279~ SR
10 FFC 288e

t1{ FFC ... - 28Ge ___ . .

12 FFC 2GMNe

_ VY FFC ______ 2Hle

14 FFC 27Je

{s FPFC .. &NKe — - -
16 FFC 2JMe

17 FFC. . __ 2KNe __ __ o B
18 FFC 2MBe
19 FFC____217e :

20 FFC 2¥Ue]

21 FFC 1) C ~

22 FNC 3 8o

23 FDC 1t 80 e

Figure 4-5.— The Sort (SRT) Specification Vile, DLSPLEC.SOR.

T —T T T v

———

4.4 ASATS/RIMS COMMAND FILES

An ASATS/RIMS command file is a series of RIMS commands. Report
files tend to be repetitive. The most frequently used command
files represent a query report situation where a lengthy series
of commands would otherwise have to be manually input interactively
each time the specific report is desired. The command files,
therefore, provide for consistency of reports and, perhaps more
importantly, for convenience to request an already debugged
stream of commands to the ASATS data base. The command file
approach also offers convenience in that the files may be used
as often as required in either batch or interactive mode. Other
command files may be used for controlling processing sequences
such as the Update Control File (RM4.COM).

4.4.1 RM4.COM — AN UPDATE CONTROL FILE

The following is a listing of the standard card file update con-

trol commands:
NOTE: The RE and UP commands

BENROIXX 3: as used herein are
RFO,12,RED,DAY . P special ASATS commands
RF12,1¢ up to read and interpret
RE Up the Procedure 1/normal
RFO,12,FOR012,NAT UP QSATS processing type
RFO,11,DB0sPPF353,TgS up code and to update the
RF11,11 EN ASATS data base. Thus,
up ' the RE and UP commands
up as used here should not
up be confused with the RIMS
up commands of the same

up mnemonic; i.e., ...

] RE for "Restructure' and
up UP for "Unpost".

ue

ue

UpP

up

ue

up

ue

up

up

I N T I S

4.4.2

0P13,COM — OPERATIONS STATUS SUMMARY OF SEGMENTS IN THE

DAPTS DATA BASE REPORT COMMAND FILE

The following list represents the standard report generating
commands to produce the frequently rcquested OPS Status Summary

of Segments in the DAPTS DB:

BE
SKCOUNTROCOUNTRZ

RF12,10

HWD1, 1

WO1t,

HD2,

TS DB

RF13,12
HD1,0

HD2, SEG
Y AW 4 BW 4

HWp2, MO, CNTRY RG 70NfF STR

BE OPFN'CLOSE TOPD cROP ANEL
HD1,

PFY,69
EN

G W
LAST

oPS

Rw § AW 1| Bk ¢

LACIE PHASE 111
STATUS SUMMARY 0OF SEGS IN TaAP

Hw 2 Bn § B»

DV BC TY OPEN CLOSE NPEN CLOSE OPeN CLD

LHAMGE

This report command file additionally illustrates use of the

report header commands available to the user plus demonstrating

how another commend file may be called to become an integral part
of this command stream (see line RE@,12,DBA:DATH.,COM).

4.4.3
COMMAND FILE

OP23.COM — OPERATIONS STATUS SUMMARY OF ACQUISITIONS

The following list represents the standard report generating

commands to produce the frequently rcquested OIS Status Summary

of Acquisition report (similar to the report commands of par. 4.4.2).

Be

SKkBw *BW 9
RFI2,10

WD,

D2,

GUISTITIONS
RFO,12,DB01DATF, COM
RFi3,12

MDY, 0

HD2, SEG ACG & W TaPF F
R W
HD2, *O DATE W
T S
JF1,70
EN

K M C

v NG F RG

CAM CA
PC GSFC

XY BP

LACTE PHASE I
OPS STATUS SUMMARY QF AL

COMMENT) G

T6 LSO

3

4.4,4 POLIST.COM ~ PACKET ORDER LIST COMMAND FILE

The following partial list illustrates a quite lengthy, but
mostly repetitive type of report generating commands to produce

the daily requested packet order list.

This redundancy is

fairly obvious in the report header commands; however, note
that the data set isolation command (SKPC 2, SKPC 3, etc.)
changes with each iteration. The purpose here is to provide
standardized format for a group of reports which operate

sequentially upon different data sets.

BE

RF12,10

HD2, 1

187

RF0,12,0ATE,COM

RF13,12

WO,

HD1, PHASE 11} ne Pe2

“WDY,

MDY

HD2, CRD SEG LPI ag@ RER 20NE STR
TX | REC CAMS/LPDL COMMENT

HD2, ND NATE

ATE

REY12,7

SKPC 2

GC1

8N2, ATCOMP NE,
RF12,10
JF3,90
8C3,Us,
BE
RF12,10
HD2,1
187
RFO,12,DATE COM

'PACKRE.EQC ’

TOTAL ACR;;TS8TrYONS

REY, 18- T

D1,

WD3, PHASE Il1 e Pry

HD%,

HDt,

Hpe, OKD SEG LPI ac® REf 2NNE STR

YK T URECT CAMS/LPDL COMMENT

HDe, NO PATE

ATE

RF12.7

BKPC L)

GC1
SN2,)AJCOMP NE,
RF12,10

JF3,90 1(
$C3,46, TOTAL ACAUTSITIONS 4
%9

,PACKRF ,FQ, '

DAILY PACKET URDER L

W CNT LASY DEL

v CHANG 1

DAILY PACKET URDER L

W ENT [.ASY LEL

v CHNG J

ORIGINAL PAGE I8
OF POOR QUALITY

5. ASATS/RIMS FILE USAGE

This chapter describes the data files used in the daily opera-
tions of the ASATS interactive and batch mode systems. The
control files which control sequences of utility or batch oper-
ations have already been described in chapter 4. Command files
for building the system (indirect task builder files, etc.) will
be described in chapter 6.

5.1 THE RELATION OF INTERNAL FILE DESIGNATIONS TO EXTERNAL
UNITS AND FILE NAMES '

Most of the tasks in the ASATS/RIMS system have a flexible re-
lation between internal unit designations and external file
names that can be varied at load time or during a run, rather
than being fixed by default FORTRAN complier and/or task build-
er assignments. This generalized relation is built from two
independent relations on three independent sects of designators:
a relation of fixed internal designations to external logical
unit numbers, and another relation established between those
logical unit numbers and system file names (device: name. type;
version). The first relation is established by an array of
logical unit numbers read by the program at the beginning of a
run and possibly changed again during the run. The second re-
lation is established by a call to the system subroutine ASSIGN,
and can also occur either at the beginning of a run or during
the run. The complete relation is the composition of the two

relations: (read) (ASSIGN) device:
. logical file name.
internal > unit > type;
variable number version
(RF n,m) (RF@,m, name)

The RF command to RIMS can be used in its two different forms
to alter either relation, as shown above. The relations are
both established at the beginning of a RIMS run by the sub-
routine UNITS, which always reads a file UNITS.SAT. That file

o’

contains one record of logical unit numbers to establish the
first relation, and five more records that give a unit number
and a file name %o establish the second relation. One version
of the file UNITS.SAT is permanently on the disk and will be
picked up for interactive runs to establish command file input
from the user terminal TI:. A batch run will precede the RUN
of RIMS by a copy operation from the file BATCH.SAT to a new
version of UNITS.SAT. The batch run of RIMS will therefore
supersede the usual interactive command file from the TI: with
an assignment to the disk command file. That file can contain
RF commands which will further alter either relation. It should
be noted that the form '"RFP,m,name" will close any file already
associated with logical unit m and re-open m., This means that
file m will be positioned at the beginning of the new file,
This provides a means for using one command file several times,

It could also cause an infinite loop if the command file re-opens

itself, It also allows run-time manipulation of command or data
files. A file of commands could conceivably be written as a
report file, closed and re-opened as a new version of a command
file. Or, a report file could be created, closed, re-opened as
a data input file, and used to update the data base,

The tasks of the preprocessor and the postprocessor and the
ASATS utility tasks CONTAP and JJ were all built with similar
file-assignment capabilities. Each reads its own file, with a
file type '"IUN", at the beginning of a run to establish both
logical unit numbers and file names. These tasks do not change
file assignments later in execution.

5

T T e — g T e

5.2 FILE TYPES USED IN THE ASATS SYSTEM

Table 5-1 lists the file type mnemonics used in the ASATS system.
Some of the file types are standard RSX-11-D type conventions,

5.3 BATCH RUN DATA FILES

The data files used in the preprocessor are named with 5- or
6-character names, The first 3 characters are always '"PPE"

and the next two digits indicate, respectively, the step of

the preprocessor which uses the file and the logical unit number
in the program. A final digit "2" or "3" is used if there are
two similar files for the two LACIE phases. Sometimes the final
digit is replaced by the letter "P" to indicate that one file
name is used in two runs of a program for the two LACIE phases.

The contents of these files are described in table 5-2.

4

File type

TABLE 5-1.— MEANINGS OF FILE TYPES IN ASATS SYSTEM

.(blank);

.BIS;
.CMD;
.COM;
.CRE;
.DAT;
.IUN;

.POS;

.Rn;
(.R1;

.SAT;

.SOR;
.TES;

.TSK;
LIP;

R2;,

see)

Usage

1. Report "starter" files, usually contain-
ing RIMS commands: BE, password, and an
RF to the command file (same name, type
COM) that produces the report,

2. Also used as the file type for ENDFILE
and BLANK (two empty files used to create
dummy files). |

Batch input stream

System utility indirect command files
RIMS "canned'" command files

A card-image file from the card reader
Data files (FORTRAN default type)

Unit-name assignment files (as described in
section 5.1)

The input to the postprocessor

Data base files

Unit assignment files for RIMS (see
section 5.1)

A file for the system sort utility (SRT)

Update card image ahd listing files in the

- Preprocessor

Task-built executable modules

Output print label, or punch files from the
postprocessor

Swffﬂ#
L 4D

T T T T T

e e it e

File Name

PPF11.CRE
PPF13.TES

PPF142.TES
PPF143.TES
PPF16.TES

PPF17.TES

PPF18.TES

- PPF19.TES

PPF242.TES
PPF243.TES
PPF332.TES

PPF333.TES

PPF352.TES

PPF353.TES

TABLE 5-2.— CONTENTS OF BATCH RUN FILES

Content

The input to step 1 of the Preprocessor,

The unsorted !isting of input cards with record
count,

The LACIE Phase II cards, with a Q card.
The LACIE Phase III cards, with a Q card.

Input cards with invalid type found by step 1 of
the Preprocessor,

Cards found by step 1 of the Preprocessor to have
invalid LACIE Phase.

Cards found by step 1 of the Preprocessor to have
some non-blank character in columns which step 1
checks for blanks. The images fed to RIMS will be
forced to blank in those columns.

A file produced by step 1 of the Preprocessor, con-
taining counts of cards and other statistics from
the first reading of the update cards.

Input for step 3 of the Preprocessor (Phase 2)
Input for step 3 of the Preprocessor (Phase 3)

The output from step 3. It contains all the *, 2,
and 3 cards with LACIE Phase = 2.

The output from step 3. It contains all *, 2, and
3 cards with LACIE Phase = 3,

All Non-*, 2, or 3 cards put out by step 3 of the
Preprocessor for LPI = 2.

All Non-*, 2, nor 3 cards put out by step 3 of the
Preprocessor for LPI = 3,

e

58"

Y W T e

Filée name

PPE34.TES

PPF38.TES

PPF42P.TES
PPF53P.TES

PPE55P.TES

PPF57P.TES
PPF653,TES

TABLE 5-2.— Concluded,

Content

A listing of all input cards sorted by type (or as
received by step 3 of the Preprocessor.)

A listing of invalid duplicates found by step 3 of
the ASATS Preprocessor.

The input file for step 5.

Output from step 5. It is the file of complete
sets of *, 2, 3 for a single segment.

Output from step 5 of the Preprocessor. It is the
file of all *, 2, and 3 cards which do not fall into
complete sets for a segment.

The listing file of step 5 of the Preprocessor.

Non-set *, 2, 3 found by steps 5 and sorted back
into card type order: * cards, then 2 cards, then
3 cards.

6. ASATS EXECUTABLE TASK DESCRIPTIONS

This chapter describes ASATS program sets at the task level,
There are three types of tasks in the ASATS system: data base
manipulation tasks, batch run edit, audit and report formatting
tasks (pre- and post-processor), and utility tasks used to build

or pack the data base., The tasks are listed by type in table 6-1.

6.1 TASK BUILDER COMMAND AND OVERLAY DESCRIPTION FILES

The ASATS tasks are each built with an indirect command file for
the RSX-11D Task Builder, Each command file has the same name

as the task, and file type ".CMD.". 'Two of the ASATS tasks,
ASATS.TSK and RIMS.TSK are built in overlay form, and the respect-
ive command files refer to Overlay Description files ASATS.ODL
and RIMS.ODL. Listings of .CMD and .0ODL files are included in
Attachment A to this document.

6.2 ASATS TASK EXECUTION INSTRUCTIONS

Most of the ASATS tasks are wcll documented in terms of user
application in the ASATS and RIMS user guides. Two additional
tasks were created expressly for ASATS and have no direct rela-
tion to RIMS. These tasks were used to manipulate files prior

to the initial load of the data base transferred to us on tape
from COMSHARE. The tasks have been retained because there is a
continuing need for utilities to read foreign tapes and break
down large sequential files into smaller pieces. These two tasks
are described on the following pages.

5

T R T e S T

TABLE 6-1.— ASATS TASK FUNCTIONS

Task type

Task name

Function

Data Base
Management

ASATS.TSK

RIMS,TSK

Updates the data basc in the batch run.
(a subset of RIMS)

Interactive data base update, and
report generation in hoth interactive
and batch modes.

Edit and

STEP1.TSK

-t

Makes first pass over the update cards

separate and separates them by LACIE Phase
updates; STEP3.TSK Separates *, 2, and 3 card types from
produce all other types; inserts dates from
report the Q card.
listings
STEPS.TSK Finds complete sets of *, 2, 3 cards
for a segment and separates the sets
from individual #*, 2, 3 update cards.
POSTP,TSK Separates output from the update task
into separate listings and punch files,
Utilities CONTAP.TSK | Reformat a sequential data base file

CR. TSK

CREATE.TSK

JJ.TSK

NEWFILE.TSK
PF1.TSK
PF2.TSK

in preparation for loading by RIMS,

Create direct -access files for use as
a data base.

Initial creation of a data base.

Copies selected records from one
sequential f{ile to another.

Builds new files for an empty data base
Pack data base files .R1 and .RZ,

Pack data base files .R3 and .R{.

S

Task Name: CONTAP

Purpose:

Lebalh B G S I S sttt bttt e

TASK DESCRIPTION

To read and reformat a sequential file to prepare it

for loading into a data base. The reformatting is

generalized,

table driven, and programmable.

Setup Required Before Run:

Files Required:

CONTAP.IUN (which specifies other file
names)

Control table file (as unit 3 in CONTAP.IUN)
Input and output files written by the
control file.

Other: Can mount a tape as an input file, if desired.

Run Instructions:

Interactive Mode:

The user must make available a reformat

control table in one file to be read by

CONTAP and put the name of that file

into CONTAP.IUN along with the names of
~any input or output files to be procéssed

by the reformat table. The reformat

table is a sequence built from the follow-

ing operations:

a. Read a‘file to the input buffer and

skip next table row unless end-of-
file.

b. Move field from input buffer to out-
put buffer.

c. Convert characters from EBCDIC to
ASCIT.

d. Check field for non-numeric and skip
next row of table if numeric.

e

e. Write out the output buffer.
f. Jump to row N of the table.

g. Stop.

There are several other possible opera-
tions that were specifically built for
conversion of data from COMSHARE formats
to the new PDP-11 ASATS formats. A
detailed description of the parameters
required in each table row is found in
the program listing.

e

TASK DESCRIPTION

Task Name: JJ

Purpose: To break a sequential file into smaller files.

Setup Required Before Run:
e Files Required: JJ.IUN, which must specify an input file

name for unit 2 and an output file name

for unit 1.

Run Instructions:

e Interactive Mode: MCR>RUN JJ ALT

ENTER START AND END RECORD NUMBERS
AND RECORD LENGTH IN 315 FORMAT
1 _.12__ 80

- e

@

JJ--8TOP

(The above run would copy the first 12
records from the input file to the out-
put file with a record length of 80
characters).

Output Iiles: The output file is selected by the JJ.IUN unit

assignment file.

S

7. NEW AND MODIFIED PROGRAMS

This chapter contains the as-built design details of individual
programs (main programs, functions, and subroutines). Included
are all new programs built especially for ASATS, plus programs
from the RIMS system which had to be modified for the ASATS
application.

For documentation of those RIMS programs which have remained
unchanged, refer to the RIMS Maintenance Document (LEC-9566,
October 1976).

Complete listings of the ASATS program source files are given in
Attachment B to this document.

T O T

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

ABORT (preprocessor step 1)

If two different Q cards exist, then this
routine will abort the job.

e Calling sequence: CALL ABORT
e Common blocks used: UNITS
e Subroutines or functions used: EXIT

e Files used: Logical Units 4, 5, 10

Unit numbers from array TUN - logical unit
numbers for the listing file and output
data files.

Update card files 4 and 5 are erased.

A check of the count of Q card images is
made. If Q-type count is not exactly one,
the job will abort sending ABORT messages
to the operator's console and the line
printer file. Units 4 and 5 get rewound
and have a filec mark written into them.
This prevents making any updates to the
data base.

}-"'f

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

ABORT (preprocessor step 3)

To prevent making a data base update when
the update card file is pathological,

e Calling sequence: CALL ABORT
e Common blocks used: UNITS
e Subroutines or functions used: EXIT

e Files used: Unit 7

Listing file unit number in IUN(7)

A banner message on the print file and a
message to the operator that the update

run is to be aborted,

A FORTRAN write statement and a PAUSE
message.

.7

Name:

Purpose:

Linkage:

Input Description:

ACCNO

To produce a binary accession number
(record 1D) corresponding to a character
string.

. Calling sequence:

number = ACCNO (string, start, length)

where
number is the output value,
string is a character string array,

start is the starting character position,
and

length is the number of characters to be
converted

e Common blocks used: None

® Subroutines or functions used: INDEX,
TNPARM

e Files used: None

Start and length should be typed INTEGER*4,
String should contain a string of characters
that is either: (a) two strings of digits

separated by an "@", or (b) a single string
or digits terminated by either the end

of string or by a non-numeric character
other than "e".

<

Output Description: The output is in double-word (INTEGER*4)
form and is, for a single number, the
binary value of the number. For the
double-number form of input, int 1 @ int 2,
the value of int 1 is put in the second
output word, with value of int 2 in the
first word. :

format output word 2 output word 1
integer zero (or overflow) | value of integer
int 1 @ int 2 value of int 1 value of int 2
Process Description: Look for the "@'", and then convert one or

two integer parts.

o

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

APSEL

Same as SELECT, except that an empty set
will be selected independent of the 72
(retain empty set flag) status.

e Calling sequence: CALL APSEL
é Common blocks used: SYSCOM
e Subroutines or functions used: LOCATE

e Files used: U(3), U(4), U(7)
See SELECT in the RIMS Maintenance Document
See SELECT

See SELECT

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Descriptior:

ASN

Assigns file RM4.COM to a specified unit,
Note: Subroutine exists in order to pro-
vide better control of position of system
subroutines in overlays.

@ Calling sequence: CALL ASN (FN)
e Common blocks used: Nwne
@ Subroutines or functions used: None

e Files urced: Unit specified on input

FN contains the unit assignment on file to
be assigned (RM4.COM).

None

File RM4.COM is assigned to specified unit.

Tl

o Twe

S T T e

e A

Name:

Purpose:

Linkage:

Input Description:

AUDATE

Updates data base from segt of input cards.
Specific update operations are a function
of card type (specified in second character
of each card), data base format, and the
input format. The input format and data
base to be used are also a function of the
card type.

e Calling sequence: CALL AUDATE
e Common blocks used: SYSCOM, SY2COM, PDT

e Subroutines or functions used: GETREC,
LODFMT, AUREC, CHFLD, APSINT, AUPOST,
APSTUP, SUBSTR, KOMSTR, APSCNT, SETOUT,
XX0MT, ENDAT, GETCLD

e Tables used: Processing Description
Table (PDT) which contains card type
versus type of record ID generation
and the category type table. The bio-
window table from segment record.

e TFiles used: Units 1, 2, 3, and 4 are
updated. Units 5, 6, 9, and 10 are
scratch files. ASATS cards are on the
RIMS data file. The RIMS message file
"is used for ASATS postprocessor data,.

e Command: Processing is begun by a UP
command

® Status and tracking input cards: Any of
the 21 types of ASATS update cards
(except Q cards) are processed sequen-
tially until an EOF, '

o~
“7€

Input Description:
(continued)

Output Description:

Process Description: .

e EOF: Processing of an input file is
ended by a blank card (inserted by the
preprocessor) or by actual end-of-file.

Besides updating the ASATS data base the
following information is recorded sequen-
tially on a file,

® Rejected input cards

e Required DAPTS record does not exist
(for *, 2, 3, 4, 5, and 6 cards)

e Required FLOCON record does not exist

e FLOCON record has not reached required
state for particular type of card.

e Accepted input cards which create new
DAPTS records.

e Punch cards
The required processing is a function of

card type. Card types are categorized as

fol ows:

e (Category 1 -~ card type 2

e Category 2 — card types *, 2, 4, 5, 6o and T
e Category 3 — card type 3

e Category 4 — card type B

e Category 5 — other card types

e Category 6 - N card

A generalized function for adding new
records and updating existing records will
exist. This function, which is driven by

T - A

e it 0 Mt S St S

input formats, data base formats, and card
tvpe, will add or modify the specified
record. The general steps of processing
input cards are as follows.

e Read input card
e Generate record ID (See table 7-2)

® Generate external (input) format ID from
table

e Retrieve record
® Retrieve formats

e Either add or update record (or both in
case of '"N" card)

e Output card image reflecting success or
error

Figure 3-7 depicts the flow of this process
and variations dependent upon category of
card type. ‘

Table 7-1 indicates the data used for gen-
erating a record depending on input category.
The input format is a function of the card
type.

The type of operation, an add or modify, to
be performed is a function of the category
for the record type and whether or not a
record already exists. The input format

for the card type identifies the fields it
updates and the field's data types. Table
3-5 describes the processing for field

types o» input. The processing of individual
fields is transparent to this routine (it

ee

i e S e s e

et

Process Description:
(continued)

is performed by AUREC).

If an error condition occurs when processing
an input card, an error type is put in
column 2 when the image is written to the
message file. The input card images for
new DAPTS records are also written to the
message file; column 2 for them is the
logical unit number for the DAPTS record
file.

Additional processing required by category 3
is the selection of FLOCON records of the
same segment and the updating of their
biowindow fields.

i e i B ALt s s

B R T

F R

S e W

TABLE 7-1.— PROCESSING DESCRIPTION AND FORMATS FOR ASATS UPDATES

Category

Card type

Z (*,2,3) 1
» 2
2 2
3 3
4 2
5 2
6 2
B 4
G 5
H 5
I 5
J 5
K 5
M 5
X 5
U)
7 5
8 5
9

N 6
T 6

Method for Input format

Gen.

ST T TR

RID ¢ number

i

NN NN NN NN NN N NN e e e pd ped el

21 (52 for ADD)
21
22
23
24
25
26
27
28
29
30
31
32
33
34
36
37
36
38
40
41

TABLE 7-2.-- CARD TYPE VERSUS RECORD ID GENERATION TABLE.

Card Type

o]
-
[8]
-

[>T o T 42 S SR T T

Others

3

Method of

Generating Record ID

Seyment
Seguent
Segnint
Seyment
Segment
Segment
Segment
Segment
Segment
Segment

number
number
number
number
number
number
number
number
number and Acq. date
number and Acq, date

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

AUREC

To either add or update a record to the
data base.

e Calling sequence: CALL AUREC (J, IFUN, STAT)

e Common blocks used: SYSCOM, SYZ2COM,
UPDCOM

e Subroutines or functions used: LMVTAB,
APSTUP, TFORM, ADDR, REPR

@ Files used: Units 9 and 10 for auto
posting.

IFUN = 1 indicates ADD, IFUN = 2, indicates
update

SY2COM contains the record to be added or
modified

J = record ID

STAT = status return

Data base is upuuied or modified

Key changes are on Unit 9 and 10
Status reflects results of operation
0

1

- status
- status

The system move table is updated

Fields are transformed from input array to
output array according to move table

Fields are posted if required
Fields are unposted if required

%

&

Process Descripticn:
(Continued)

Records are then added or modified using
ADDR or REPR

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

BLKLN (preprocessor step 3)
Prints a blank line

e Calling sequence: CALL BLKLN
e Common blocks used: UNITS, LINES
e Subroutines or functions used: None

e Files used: UNIT = 7

Unit number IU37
Line counter LINE

Writes one blank character to unit 7, incre-
ments the line counter LINE

Write unit 7 and increment LINE.

R L

e .

s

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

BLNKCK (preprocessor, step 1)

To check update cards for nonblank charac-
ters and force blanks in columns that will
be used for flags,

e Calling sequence: CALL BLNKCK
e Common blocks used: UNITS, IMAGES, BCHK
e Subroutines or functions used: None

o Files used: Logical unit 9

Update card image in IMG array; a list of
card columns in array ICOL

The same card image, with listed columns
forced to blanks.

A list of cards in which forcing was
required on unit 9

Each column in the list ICOL is checked for
a blank.

If any coiumn is nonblank, the unchanged
image is written to a list file, and all
columns are then forced blank.

A non-blank is not a fatal error of the
update. ’

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CARTP (preprocessor step 3)

To separate cards with types *, 2, or 3
from all other update cards.

e (Calling sequence: CALL CARTP

e Common blocks used: FLAGS, UNITS, LINES,
IMAGES

e Subroutines or functions used: PAGE,
HDR, BLKLN, COLABL

e Files used: Units 1, 3, 5, 7

Card images in array IM1

Current phase's unit number for *, 2, 3
cards in IU33P

Unit number for other card types in IU35P

A count of cards of one type in ICTCT.
Card images to the listing file (unit 7)
and to other units as follows:

Unit Type Phase
3 *,2,3 2
4 ¥,2,3 3
5 Other 2
6 Other 3

Appropriate unit numbers for the phase now
being processed are selected by card type
of the image in the IM1 array. Calls to
subroutines provide page and column headers
and page number control,

&Y

—

Name:

Purpose:

Linkage:

Input Description:

Output Description:

CHAR

To convert an integer to a string of ASCII
digits,

e Calling sequence: CALL CHAR (string,
start, 1ength,iva1ue)

where
value is the integer to be converted,

length is the number of digits to be
produced,

start is the leftmost character position
in the output string, and

string is the output string.
e Common blocks '‘used: None
e Subroutines or functions used: None

e Files used; None

Value, length, and start should be typed
INTEGER*4

Value should contain a non-negative integer
in the range 0 < value < 231 -1

The array string should be long enough to
hold start + length - 1 characters

A field of length characters is filled with
the ASCII codes for the decimal representa-
tion of value. Leading zeros are not sup-
pressed. Overflow of the field is not
detected: the low-order digits will be
given with no error indication.

_1e”
g0

i i ik s

Pincessing Description:

Standard divide-by-modulus-and-use-
remainder conversion algorithm,

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CKTYLP (preprocessor step 1)
To check update cards for type and phase

e Calling sequence: CALL CKTYLP

e Common blocks used: IMAGES, VALID,
FLAGS, UNITS

e Subroutines or functions used: QCHCK

e Files used: Logical units 4, 5, 7, 8
Update card image in array IMG

The updated card image list of invalid
card type on unit 7 and invalid phase on
unit 8.

Card images of phase 2 and phase 3 are
written on units 4 and 5, respectively.

Each card is initially checked for Q-type
in column 2.

If G-type, the card is treated as a special
case.

If element 2 of the image has an invalid
type or phase, the image is written to a
list file (units 7 and 8, respectively).
All valid phase 2 and phase 3 images are
written to output files (units 4 and 5,
respectively).

o

2

v
B o oo

Name:

Purpose:

Linkage:

Ynput Description:

Output Description:

Process Description:

CLOSEL
To insert a trailing comma if necessary.

e Calling sequence: CALL CLOSEL (STR, S,
L)

e Common blocks used: None

e Subroutines or functions used: LAST

o Files used:

STR -~ string name
S - start
L - length

STR with a trailing comma.

Find the last non-blank character and
insert a comma as command delimiter.

B S A

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CMDRI

To control the process of the arithmetic
command CM.

e Calling sequence: CALL CMDRI
e Common blocks used: SYSCOM, SY2COM

e Subroutines or furctions used: INDEX,
INPARM, SUBSTR, CMPUTE

@ Files used: None

User's command string through common block
SYSCOM (STR)

Mean, standard deviation, count of records
used in computation and count of total
number of records in a given set. (See
output description of subroutine CMPUTE).

The following processing is performed.
The command string is parsed.

A format array is set up with the two
field names.

Working program (CMPUTE) is called.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CMPUTE

To compute mean and standard deviation of
the differences of two fields from a set
of records.

e Calling sequence: CALL CMPUTE (RID,SET)
e Common blocks used: SYSCOM, SY2COM

e Subroutines or functions used: ADDR,
CLOSEP, GETREC, INPARM, LMVTAB, SETIN1,
VERIFY, XXIN1, SSORT, LODREC

e Files used: None

RID is the record ID for the record where
the results of the computation are to be
stored.

SET is the set number for which all compu-
tations are to be performed.

Mean and standard deviation of differences
of two fields, count of number of records

used in mean computation and the count of

the total number of records are stored in

the specified record.

The following processing is performed.

Get record ID from set

Retrieve record and associated format

Process retrieved record as follows:
Differences of two fields is computed
for records in which neither field
is blank.

=4

Process Description:
(continued)

Count of number of records used in com-
putation of mean and standard deviation
is maintained.

The mean and standard deviation are computed
after all records have been processed.

Encode all computed results to alphanumeric.

Call ADDR to store encoded results in the
specified record.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

COLABL (preprocessor step 3)

Provides a printed header giving field
identification for the update card listing.

e (Calling sequeince: CALL COLABL
e Common blocks used: LINES, UNITS
e Subroutines or functions used: BLKLN

@ Files used: Logical UNIT = 7

LINE (current line number on the page now
being printed)

ICOLAB (a flag that indicates whether col-
umn labels have already been printed on
the current page. The flag is reset when
HDR starts a new page)

Column headers for the fields of update
cards (card type, segment number, etc.)

If the flag is reset (ICOLAB = 0) the
headers are printed and the flag is set
(ICOLAB = 1)

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

COMSTR
To compare two strings (SEE KOMSTR).

e Calling sequence: I = COMSTR (A, S1,
L1, B, S2, L2)

e Common blocks used: None
e Subroutine c¢r functions used: None

@ Files used: None

A - first string
S1 - start in first
L1 - length in first
A - second string
§2 - start in second
L2 - length in second
-1 - A<B

0 - A=B
+1 - A>B

If L1 # L2 the shorter string is considered
to be blank filled.

e TR

Name:

Purpose:

Linkage:

Iaput Description:

Output Description:

Process Description:

COUNT (preprocessor step 3)
Puts out a count of the current card type.

e C(Calling sequence: CALL COUNT (IC)
e Common blocks used: LINES, UNITS
¢ Subroutines or functions used: None

e Files used: Logical UNIT = 7
The integer card count in parameter IC

On the listing file 7, a 6-digit integer
starting in print column 88

A FORTRAN write statement.

i

Zﬂ?ﬁw
&

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CREATE
Initial data base load

e Calling sequence: Main program
e Common blocks used: None

® Subroutines or functions used: GETLEN,
GETSTR, GETKEY

e Files used: None
Depends on application.
A RIMS-format data base
For a large initial load this is the most
efficient method. The three routines used

are application dependent, and must be user
supplied.

77

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

DASHES (preprocessor step 3)

Writes out a line of dashes to separate
counts from totals.

e Calling sequence: CALL DASHES
e Common blocks used: LINES, UNITS
e Subroutines or functions used: None

e Files used: Unit 7
Listing file unit number in IU37
10 hyphens in print columns 84 through 93

A FORTRAN formatted write.

/7

o

Name: DSJFM

Purpose: To control the process of the JF command
(display data from two data base levels)
and to load the display format.

Linkage: e Calling sequence: CALL DSJFM
e Common blocks used: SYSCOM, SY2COM

® Subroutines or functions used: INDEX,
INPARM, LODFMT, RECTRC

® Files Used: None

Input Description: User's command string through common block
SYSCOM (STR)

Output Description: A set of records containing data from two
data base levels is displayed.

Process Description: The following processing is performed:
The command string is parsed.

The display format record is loaded by
given format ID,.

Working program (RESTRC) is called.

/7%}

Name:
Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

ENDSET
To enter a set into the status table.

e Calling sequence: CALL ENDSET (HIT,
UNIT)

e Common blocks used: SYSCOM
ALT. ENTRY POINT: MODE

e Subroutines or functions used: NHITS, XXOUI

e Files used:

HIT = # items in set
UNIT = logical unit containing set

Updated status table.

Test for non-empty set and use XXOUT to
write set to file 5.

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

EQUALS (preprocessor step 3)

Writes out a line of equal signs to separate
count from grand totals,

e Calling sequence: CALL EQUALS
o Common blucks used: LINES, UNITS
e Subroutines or functions used: None

o Files used: Logical UNIT = 7

Print file unit number in IU37

Current line number in LINE
10 "=" signs in print columns 84 through 93

A FORTRAN formatted write statement,

Name:

Purpose:

Linkage:

| Input Description:

Output Description:

Process Description:

GETCLD

To form a set of children records for a
given set.

e Calling sequence: CALL GETCLD (SET)
e Common blocks used: SYSCOM

® Subroutines of functions used: SETIN1,
SETOUT, XXINl1, XXOUT, ENDSET, LOCREC,
GET '

o Files used: Input set on Unit (5) or
Unit (3) and output set is on Unit (5).

Set contains the parent set number.

The children set description js placed in
the next available set of the status table.
Resulting set is on Unit 5.

1. Initialize input/output files, counters

2. Get next record ID from input, end

3. Error check

4. Position data base unit 2 to parent

5 Follow logical sequential read in unit
2, writing children record ID's in
target set until left half of word does
not match parent record ID.

7. Close output file, update status table,
TABNO, etc.

P

Nanme :

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

GETLEN

To return, via KEYLEN, the length of the
keys in words,

e Calling sequence: CALL GETLEN 'XEYLEN)
e Common blocks used: Unknown
e Subroutines or functions used: Unknown

e Tiles used: Unknown
(As desired by the user of CREATE)
KEYILEN

(To be supplied by the uscer)

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

GETPAR

To form a set of parent records for a
given set.

Calling sequence: CALL GETPAR(SET)
Common blocks used: SYSCOM

Subroutines or functions used: SETIN1,
SETOUT, XXIN1, XXOUT, ENDSET

Files used: Tnput on 3 or 5, output on

5.

SET contains children set number.

The parent set description in the next
available set in the status table — the
set is on unit 5.

6.

Initialize I/0 files, counters

Get next record ID from input, end
Error check

Form parent record ID by setting right
half of ID to zero, write result on
output unit, ignore duplicates

Go to 2

Closec output file, update status table,
TABNO, etc.

i
-"J
-

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

GETQ (preprocessor step 3)

To use Q card files (only) in setting
transastion dates.

e C(Calling sequence: CALL GETQ (IPX)

e Common blocks used: UNITS, FLAGS, IMAGES,
LINES

e Subroutines or functions used: ABORT,
HDR, BLKLN, COLABL, DASHES, COUNT, PAGE

e Files used: Units 1,2,3,4,5,6,7,8

The input parameter IPX is the LACIE Phase
(2 or 3 in integer form)

Array IUN contains logical unit numbers for
input and output files.

Subroutine IMIGET is called to get card
images through array IML.

Page headers and the Q card image are
written to the report file. The default
transaction date from the Q card is saved

Y

in array IMQ.

This routine follows two separate paths

for the two LACIE phases., Different input
files and output files are set up for the
two phases. The first Q card from the

Phase II file is saved to provide the trans-
action date for those cards in which it has
not been punched. Duplicate Q cards are
detected: an exact duplicate is allowed,
but 2 different Q cards will cause step 3

to abort.

=51
e

. .0‘&

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

GETSTR
To provide a record to CREATE

e Calling sequence: CALL GETSTR(ACC,REC)
e Common blocks used: Unknown
e Subroutines or functions used: Unknown

e Files used: Unknown

ACC,REC

Upon return, ACC should contain the record
number in ascending sequence, and REC
should contain the record. The first

word of REC should contain the record
length, not counting itself. ACC = 0
signals end of file.

i

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

HDINIT (postprocessor)
Puts hcaders on output files

e Calling sequence: CALL HDINIT
e Common blocks used: UNITS
e Subroutines or functions used:

e Files used: Units 1, 2, 3, 4, 5, 6, 7, 8
Logical unit numbers in array IUN

Appropriate header lines are written out
to the output files

FORTRAN formatted write statements

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

HDR (preprocessor step 3)

Print the header label information at the
top of a page.

e Calling sequence: CALL HDR
e Common blocks used: LINES, UNITS, IMAGES
e Subroutines or functions used: BLKLN

e Files used: Logical UNIT = 7
Header date in IMQ array (Q card image)

LINE counter set to 12
Column label flag reset (ICOLAB = 0)

Header printed on listing file (Unit 7)

Write the header and two blank lines, then
set the line counter and column label flag.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

HEADER

To print a line of text report. Provides
for comments and headers.

e Calling sequence: CALL HEADER
e Common blocks used: SYSCOM, SYZ2COM

e Subroutines of functions used: INDEX,
INPARM, SUBSTR

e Files used: Report file (12), message
file (7) and command file (13).

User's command string through common block
SYSCOM (STR).

One line of the header contents or com-
ments is printed.

The following processing is performed:
The command string is parsed.

Print header or comment up to 66 char-
acters long as input if N = 1.

Read record line of header or comment up
to 62 characters long from command file

and print it's contents immediately after

where first line ended if N = 2,

N should be either 1 or 2 syntax error is

printed otherwise.

gt

V4

vt

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

IMIGET (preprocessor step 3)

To check card images for duplicates and
write them out.

e Calling sequence: flag = IMIGET (unit)
P

e Common blocks used: FLAGS, IMAGES, UNITS

e Subroutines or functions used: None

e Files used: UNIT IUNX, 1U38

Input update card file unit number in param-
eter unit and either (a) a card image already
read into array IM2 or (b) flag IM2MT=1 when
IM2 is empty because an end-of-file was read
from the unit file. Unit number of errvor
file for duplicates, IU38.

0 where a new card

The flag value image is in IM1
from this function 1 when no image is
available

I

i

If available, one more image has been read
into IM2 and checked for duplication of IM1. :
Duplicates are written to error file IU38. |
The next card image to be used is in IMI1,

Move card image 2 into card image 1 (if there

is a card image in card image 2). Read

another image (if any) into card image 2, |
checks the two images (card image 1 and |
card image 2) for duplicates. Duplicates

are written to the error file and reading

continues until a different card is

o

J/P—

aval

Process Description:
(concluded)

encountered or the end of the input file
is reached, At end-of-file, the flag IM2MT

is set = 1 to indicute that array IM2 is
empty.

V24

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

INIT (preprocessor step 1)

Initializes step 1 output files.

Calling sequence: CALL INIT
Common blocks used: UNITS
Subroutines or functions used: None

Files used: Logical units 7, 8, and 9

Array of logical unit numbers, IUN.

Header lines for the listing files for
invalid cards.

1'
2.

Set unit numbers to values from TUN

Write header records to those files

B i

Name:
Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

IRECK (preprocessor step 5)
To read input card images.

e Calling sequence: flag = IRECK(index)
e Common blocks used: CARDS, UNITS
e Subroutines or functions used: None

e Files used: 'Unit IUN(1), the input file

Input parameter index specifies which of
the four card buffers in array IM should
receive the card image from the input file.

The flag value of this function is =0 if an
image was vead, =1 after an end-of-file,
The card image is left in the specified
siot of array IM.

Read the input file and set the flag.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

IUNLD

To test for unload (UNLD) cards and reformat
them into an "N' card.

e Calling sequence: CALL IUNLD (imace)
e Common blocks used: None
e Subroutines or functions used: None

e Files used: None

The input array image is an 80-character
ASCII code card image.

The array image is reformatted in place
to the usual ASATS format.

If the image does not match the string
'UNLD', return, If it does match, leave
the 'N' in column 2, move the segment
number from columns 10-13 to columns 4-7,
move the acquisition date from 17-20 to
89-12 and insert a "3" in column 8., The
tape number from columns 45-50 will be
moved to columns 19-24, The transaction
date field columns 14-17 will be left
blank for insertion of the default date
from the Q card, and the remaining unused
columns will also be set blank,

o

i
.

e i Pt i ;
N N
o
ST -

il

Name:

Purpose:

Linkage:

Process Description:

Update Processor Main Program

To control execution of bulk update from
ASATS cards.

e Execution: RUN ASATS
e Common blocks used: SYSCOM, PDT

e Subroutines or functions used: BE, REAF,
CLOSEP, END, AUDATE, ASN, RED

e Files used: U(14) is used for reading
commands,

Reload and interprets commands, Causes
appropriate subroutines to be executed to
process given commands. Acceptable commands
are: BE, RF, RE, UP, EN,

/7

¥

Name :

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

KSGEQ (preprocessor step 5)

To compare the segment number of the card
just read to the first card in the buffer

un

e Calling sequence: flag = KSGEQ(index)

e Common blucks used: CARDS
e Subroutines or functions used: None

e Files used: None

The input index specifies which card slot
in array IM is to be compared to the card
in the first slot. The two card images are
both in array IM.

The value of the output flag is =1 if the
segment numbers are equal and =0 if they
are different.

Loop through the 4 segment number digits

and se* the flag to zero if they are
different. '

T

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

LAST

To find the last non-blank character in a
string.

e Calling sequence: I = LAST (STRING,
START, LENGTH)

e Common blocks used: None
e Subroutines or functions used: None

e Files used: None

STRING = string name
START = starting position
LENGTH = length of substring

Location of last non-blank.

Establishes index pointer to last non-blank
character in the string.

Name ;

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

MAIN (postprocessaor)

Gives a listing of new sogment recoerds,
invalid new acquisitions, cards to be
punched, a file for images of cards punched,
updates for records, and packet tabels

for a RIMS update input file,

o Calling scquence: Not applicable
o Common hlocks used: UNITS, ARRAYS

e Subroutines or tunctions used: UNINIT,
HDINLT

Files used: Units by o, 8, 10

Input Cile from RIMS update pracess, tach
input record contains o carriage control in
the first character and an ASCID digit desip
nating the output (ite in the sccond

charactoer.

The records from the input file are copied
to the output {ile(s) designated by the
socond character of cach record. (The

second character itself is not written out),

A header record is written to identity cach
ol the output fites. Atfter copving all the
input records to the appropriatce output

les, the choice of program STOP statements
will give a message on the operator's consaole
to let him know whether the punch and labhet

(iles arce cmpty for today's run,

e

7T
ry

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

Main program, preprocessor step 1

To control listing of update cards and
the checking for invalid cards,

e Calling sequence: Not applicable

e Common bhlocks used: IMAGES, BCIK,
HOLCON, UNITS, VALID, VLAGS

o Subroutines or functions used: ABORT,
BLNKCK, CKTYLP, ENXIT, INUVE, UNINIT
1

e Files used: lLogical units 1, 3, and 10

ASATS update card images from logical unit
Unsorted listing of input on unit 3, counts
of valid and invalid cards on unit 10, c¢rror
abort wessage on unit 10

This program reads the update cards and
lists them. Tt calls subroutines to check
them for validity and write the valid

cards to files for later processing.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

Main program (preprocessor step 3)

Gives a report of the update card images.
The report includes counts of cach card
and total counts for cach phase.

e Calling sequence: Not applicable

e Common blocks used: UNITS, LINES,
IMAGES, FLAGS, LEGTY

e Subroutines or {unctions used: UNINIT,
GETQ, PHASYE, DR, COLABL, EQUALS, COUNTS,
PAGE, EXIT, NONQ, ABORT, IMIGET, PAGEH

e Files used: Logical UNTTIS = 1,0,3,4,5,0,7,8

ASATS update card images

Audit files for update cards and the update

card files themselves.

This program contrels the sequence of calls
to produce a combined report of update cards
for Phase 2 and Phase 3, sceparated within
the phases by card type. Page headers and
page numbers and a grand total count of

cards are given,

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

MAIN (preprocessor step 5)

To control the scparation of complete sogp-
ment descriptions (*, 2, and 3 cards for a
segment), which may be either new segments
or updates for existing segments, from
single update cards,

e Calling sequence: Not applicable

e Common blocks used: CARDS, UNITS

e Subroutines or functions uscd:
WRNUK, MVMR1, IRECK, KSGEQ

UNINIT,
e Uliles used:

Units 1, 3, 5, 7

The input file (unit 1) contains all the
*, 2, 3 cards in today's update deck sorted

into order by segment so that all cards |
for one segment will be found in sequence,
Output files units 3 and 5 contain, respect-
ively, the complete sets, with the "#*" card
changed to a "ZI" type, and the incomplete
sets.

Cards are read (by subroutine IRECK) into
the 4-card buffer IM until either a change
of segment number occurs, or the buffer is
full, or the end-of-file is reached. A
check is then made to see whether 3 cards
for one segment of the three types *, 2,
and 3 have been read. If so, they are
saved as a set. Otherwise, they are saved

as a nonset, and the process repeats.

157 3

T TR

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

MOVSEG

To parse the command for MO and to move
information from the status table into a
record.

e Calling sequence: CALL MOVSEG
e Common blocks used: SYSCOM

e Subroutines or functions used: GETREC,
CHAR, REPR

e Files used: U(7)

STR, the text of the command line
Updated record in basc.

The set count from TAB is converted to

character form and placed in the proper
record.

el

Name-:

Purposec:

Linkage:

Input Description:

Output Description:

Process Description:

MVMR1 (preprocessor step 5)

To move a line in an array to the beginning
of the same array,

» Calling sequence: CALL MVMR1 (index)
e Common blocks used: CARDS
e Subroutines or functions uscd: None

e TFiles used: Nowr

Input parameter index specifies which card
image slot in array IM should have its data
moved up to the first slot.

The card image in the first slot of 1M,

Loop through the image and move onc charac-
ter at a time.

b ctalhebiccct

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

NONQ (preprocessor step 3)

Puts the default value of transaction date
from the Q card into those card images
which need them.

e Calling sequence: flag = NONQ (unit)

e Common blocks used: FLAGS, IMAGES,
LEGTY, UNITS

e Subroutines or functions used: IMIGET

e Files used: Update card input file (unit)

An update card image in array IMl is supplied
by the call to IMIGET. Array IMQ contains
the transaction date from the Q card.

ASATS card image in IM1, with the transac-
tion date inserted in those cards which
need it. The flag value from NONQ is 0
when a new card is in IM1l, 1 otherwisec.

Get a card image (and quit at end of file).
If the card type field matches one of the
list of card types in array IVTYP, the
transaction date ficeld is checked. If that
field is blank, the default date from the

Q card image is inserted into it.

77‘):;.«:

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

PAGE (processor step 3)

Writes out a page number at the bottom of
a page,

Calling sequence: CALL PraGR

Common blocks used: LINES, UNTTS

e Subroutines or functions used: BLKLN

e Files used: UNIT = 7

Logical unit number of the listing filce in
1u37

.

Current page count I[PAG]

Current linc number LINE

Incremented page number in TPAGE,.

On the listing {ile: enough blank lines to
reach the bottom of thc¢ current page, and
the page number

The page number is negated to get a leading

hyphen, and a trailing hyphen is supplied
by the format.

/27

i i

T PP T Ty

U T TP g T U PP S S A I

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

PARSEC
To parse the command string for GC.

e Calling sequence: CALL PARSEC
e Common blocks used: SYSCOM
e Subroutines or functions used: GETCLD

e Files used:

Command line in STR

Set number in parameter K to GI'ICLD.

Call TNPARM to convert set number to
binary, and call GETCLD,

Name:

Purposc:

Linkage:

Input Description:

Output Description:

Process Description:

PARSEP
To parse the command string for GP,

e Calling sequence: CALL PARSEP
o Common blocks used: SYSCOM
e Subroutines or functions used: GFIPAR

e Files used:
Command Tine in STR arrav
Set number in parameter K to GFIPAR

Use INPARM to convert number, checkh it is
legal set number, and call GETPAR

—ﬂJ!j

Name ;

Purpose:

Linkage:

Input Description:

Uutput Description:

Process Description:

PHASE (preprocessor step 3)

Output all cards of all types found in one
phase.

e Calling sequence: CALL PHASE (IP)
e Common blocks used: UNITS, LINES, FLAGS

e Subroutines or functions used: IIDR,
BLKLN, CARTP, PAGE, COLABL, DASHES,
COUNT

e Tiles used:; Logical UNIT = 7

Input parameter 1P in the LACIE phase
(Integer 2 or 3)

Count of cards for the phase in IPCT.
Audit report on unit 7.

This routine (by calling subroutines) for-
mats a complete audit listing of all cards
for one phase. Tt starts with a page
header for the phase, steps through all
card types in the file for that phase, and
produces a total card count for that phase,

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

PSWRD

To read the password, scramble it and
overstrike it on the scope.

e Calling sequence: CALL PSWRD (1)
e Common hlocks used: SYSCOM
e Subroutines or functions used: Nonc

e Files used: (7), U(13)
Password

Scrambled password (in T)

NOTE: The scrambled password will be used
as a record i.d. for a record containing
the bit mask.

Lt
“)2/

"

T T T T T

ST T T

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

QCHCK (preprocessor step 1)

Check for duplicate or illegal Q card

e Calling sequence: CALL QCHCK

e Common blocks used: FLAGS, IMAGES, UNITS

® Subroutines or functions used: None

e Files used: Units 4, 5, 7
Update card image in IMG array

A list of Q card images to an output file
(units 4 and 5, respectively).

A

A list of duplicate or different Q card
images to unit 7 (if more than one Q card
has inadvertently entered).

If counter 1QCT=0, the first Q card is
written to units 4 and 5, respectively.
Then a check for duplicate or different

Q cards is made.

If a duplicate is found, the counter 1QCT
is left=1.

If a different Q card is found, counter
IQCT is incremented by 1 and an error flag
is set.

Vit

P R VT T U PP

Name:

Purpose:

Linkage:

Process Description:

oS R e e SRR R S TR

RED

To read processing description for update
card types and build processing description
table.

e (Calling sequence: CALL RED

e Common blocks used: /PDT/CTAB, FENO,
RIDT, PIT ‘

e Fliles used: Card images avre read from
unit 12,

Card images are read until a blank card

type is encountered. Table 7-3 illustrates
format of cards. The results of the card
images are stored in CTAB (card type table),
FND (format number), RIDT (record ID type),
and PTT (processing type table).

TABLE 7-3.— PROCESS DESCRIPTION
CARD TMAGE FORMAT

Field Columns
Card Type 1
Input Format 2-4
Record ID 5

Generation Type

Processing Category 6

~ /33

PP Ty

T R N

=
[

Name :

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

RESTRC

To display a set of records containing
information from both the records within
a specified set and their parent records,

e Calling sequence: CALL RESTRC (SLT)
e Common blocks used: SYSCOM, SY2COM

® Subroutines or functions used: DISEMT,
INPARM, LMVTAB, LODFMT, LODREC, SETINI,
SUBSTR, TFORM, XXIN1

e Files used: None

SET is the set number for a set of records
with same format ID (i.e. a set of FLOCON
records)

SY2COM contains the display format.

Records within a given set and their parent
records are displayed as specified.

The following processing is performed.

(1)Get record ID from set.

(2)Retricve record and associated format.

(3)Transfer data from retrieved record
(FLOCON) to an output buffer according
to the display format. '

(4)Generate record ID for associated record
with different format (DAPTS).

(5)Retrieve record with generated record
ID and its's associated format.

54

/3¢

e e At b i

N

V.

Process Description: (6)Transfer data from retrieved record

(Continued) (DAPTS) to output buffer according to the

display format,
(7)Display program (DISEMT) is called. (to
write output buffer to report file).

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

SMINUS

To delete a password from the base.

e Calling sequence: CALL SMINUS
e Common blocks used: SYSCOM
e Subroutines of functions used: DECK,PSWRD

® Files used: u(7)

PASSWORD

Record removed from base.

Hash the password, find it, and remove
that record.

-

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

SPLUS
To add a password to the base.

e Calling sequence: CALL SPLUS(SECURF)
¢ Common blocks used: SYSCOM
e Subroutines or functions used: PSWRD,ADDR

® Files used: U(7), U(13)
PASSWORD, BIT MASK
New record in base.

Hash the password and generate a new
password record.

/37

e

o

Name :

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

STCNT

To print a line of text followed by the
number of entries in a given set. Pro-
vides for printing number of entries in a
set with a label.

e Calling sequence: CALL STCNT
e Common blocks used: SYSCOM, SY2COM

e Subroutines of functions used: INDLX,
INPARM, SUBSTR

e Files used: Report file (iZ), message
file (7).

User's command string including set number,
column count and text comment through
common block SYSCOM (STR).

Text comment with number of entries is
printed,.

The following processing is performed:
The command string is parsed.

A format is formed according to the given
column count.

The text comment and number of entries
are printed using the formed format.

The length of text comment is limited to
(column count-4) characters long. Dis-
regard any character exceeding the limit.

B2

/3E

Name:

Purpose:

Linkage:

Input Description:

Output Description:

TRORM (normal version)

To transform data from one format to
another format.

e Calling sequence: CALL TFORM(I)
e Common blocks used: SYSCOM,UPDCOM

e Subroutines or functions used: SUBSTR,
VERIFY, INPARM, CHAR

e Files used:

e UPDCOM/BIOTAB, FLAG type of card being
processed

e I is the source record

® /SY2COM/Buff contains input record

e /SY2COM/Buff contains output record

® /SY2COM/FMTID contains format ID's

e /SY2COM/length contains record lengths

® /SY2COM/MOVTAB contains pointers to
fields of each record

® /SY2COM/NMOV is the number of fields to
be transformed

e /SY2COM/FMT contains formats for both
records

e SY2COM/buff contains the resulting record

e /UPDCOM/FLAG contains reject indicator

s

Process Description:

The resulting record in the target buffer
is constructed by moving data into a
specified field, Data is moved according
to the output type as follows:

e Output type 0 is a straight move of
characters from the source buffer to
the target buffer.

e Output type 9 moves data from the CU-
ANCIL-TOPQ table to the target buffer
based on the source bufter value,

o Output type 5 moves data from the Film
Products table to the source buffer value,

Output type 4 moves data from the Computer
Products table to the target buffer base
on the source buffer value and the status
(whether it is blank or not) of the

"N'" field.

Figure 7-1 depicts the program flow.

Table 7-3 reflects the use of the film
status table. Table 7-4 reflects the com-
puter products status table. Table 7-5

reflects the CC-ANCIL-TOPO table.

SET POINTERS

FOR NEXT
FIELD

Q)
Y

BRANCH *
ON INPUT
© SOTYPE .~

Nsl/ N

. /’/ \
/
Anpur TYPE S

15 4,5, OR 9

o o

0 | MOVE FIELD
~>| LROM BUIF(L)
TO BUL(J)

FIELD = 7,
™8, OR'9

e o o - v— . ot

MOVE LSD
NO_| TO TARGET
FIELD

5 \]/

SET POINTERS
FROM FIELD
VALUE

SET POINTERS
FROM FIELD
VALUE

F ADJUST POINTER
BASED ON VALUE
OF "N" FIELD

MOVE DATA FROM
COMPUTED PRODUCTS
STATUS TAKLE 10

BUFE()
L

\

MOVE DATA FROM
FILM STATUS
TABLE TO

BUFF (J)

-

SET POINTER
FROM FIELD
VALUE

/

MOVE DATA FROM
(CC-ANCIL-TOPO)
TABLE TO BUFF(J)

1}

Figure 7-1.,— TFORM for Normal RIMS,

ﬁ-ﬂmm;g g s e et s SR el Ry

TABLE 7-4.~ FILM PRODUCTS STATUS TABLE (CURS1, output type 5

translation)
VALUE MESSAGE
B PPFC WORK
G LPDL REC'D
H PKT AVAL
1 Al WORK
7 CANC
8 REOR
9 REJT

TABLE 7-5.,— COMPUTER PRODUCTS STATUS TABLE

VALUE

=

W 0o 3> 94X XTRRCG Z

(CURSZ, output type 4 translation)

UNLOAD

CONTENTS

NA
NA
NO
YES
NO
YES
NO
YES
NA
NA
NA
NA
NA

MESSAGE

C § I WORK
I-100 RDY
BATCH STD
BATCH I-100
ANAL STD

ANAL I-100
RERUN STD
RERUN I-100
I-100 ANAL
Complete

"LSD" Contents
"LSD'" Contents
"LSD" Contents

. T T

TABLE 7-6,~ CC-ANCIL-TOPO STATUS

VALUE

NSO U AN O

STATUS
WORD

Await C/A/T
Await (/A
Await A/T
Await A
Await C/T
Await C
Await T
Complete

s

|

Name:

Purpose:

Linkage:

Input Description:

Qutput Descriptioi -

TFORM (update version)

To transform data from one format to
another format,

e Calling sequence: CALL TFORM(I)
e Common blocks used: SYSCOM,UPDCOM

e Subroutines of functions used: SUBSTR,
VERIFY, INPARM, CHAR

o Files used:

e UPDCOM/RIOTAB, FLAG type of card heiny
processed

e I is the source record

e /S5Y2COM/Buff contains input record

e /SY2COM/Buff contains output record

e /SY2COM/FMTID contains format ID's

e /SY2COM/length contains record lengths

e /SY2COM/MOVTARB contains pointers to
ficlds of each record

o /SYZCOM/NMOV is the number of fields to
be transformed '

e /SY2COM/FMT contains formats for both
records

e SY2COM/BUFF contains the resulting record

e /UPDCOM/FLAG contains reject indicator

s

Process Description:

Fields are moved from the input record to
the corresponding output record according
to the input and output format specifica-
tions. Figure 7-2 reflects the detailed
flow,

e

S T T e T TR s e

SET POINTERS

TO NEXT
FIELD
“BRANCH ", TYPE 1}— @
“\ON INPUT > 2ITYPE 2}— ©
“TYPE
, TYPL 31— @)
T TYPL 4j— (B)
; N
TYEE TYPE 5)
0 TYPL 6}— (©
TYPE 7}-— (D)
TYPE 8— ®
) TYPE 9f— ®
Wy =7

|

MOVE FIELD DATA
FROM INPUT RECORD]
‘TO OUTPUT RECORD

_ N
@™ >\VJ
/II(L\IZ‘\
“BFIELDS ™. NO

é ROCFSSED A e oo et e e i et 1t < i e i+

_ALYES

(/ RETURN N

; ORIGiNgy,
,,_.. ———— - PA

Figure 7-2.— TFORM for ASATS Update Processor.

7

P

‘ . - — -
RETRIEVE FIELD] . SET POINTERS
—=2 USING FIELD

(A)—>{VALUE FROM

-

TARGET FIELD , VALUES
(B——>= SOURCE - NOgy

" BLANK .-
(IEES
T

oy
. !CONVERT TARGET _|
(€2 FIELD TO a
| INTEGER .
. . e e

LOOK UP FIELD

(D)y—=>POINTER IN =
SSOCIATED TABLE
]

I ‘ e S KR T

. , COMPUTE

(& —> BW=1 i >t AQ DATE

| ‘ AND BEGIN

Figure 7-2.~ Continued.

- ASSOCIATLD

|

ADD

IS
FIELD
BLANK

NO
(T:

COMPUTE
AQ DATE
AND END

e |

MOVE DATA FROM

= HINPUT RECORD TO ™I

OUTPUT RECURD

;- B

ONVERT TO ALPHA
HAND MOVE TO =T
TARGET FIELD

t

¢
]

SET

YES, REJECT - o)

FLAG

s RN
| 7 DATA™S_ YES
- > BETWEEN @)
! DATES

INo

V

’Rw-Bw+H

R

15 A
__.YL,f BW<4 »NQ;!‘. BW=9

URR}U%AL PAG |
', GE IS

el

[. JOS

'SET POINTERS MOVE DATA FROM

'F-~->USING CARD TYPER->»INPUT RECORD TOf- I

AND FIELD VALUL{ 'BUFFER RECORD !

N

~ CONVERT TO ALPHA!
+-=AND MOVE TO
TARGET FIELD

s

i

o)

}

Figure 7-2.- Concluded.

-y

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

UNINIT

Assigns logical unit numbers to file names
at run time.

e C(Calling sequence: (Call UNINIT
e Common blocks used: UNITS

e Subroutines or functions used: System
subroutine ASSICN

o l'iles used: STEP3.IUN as unit 20

Reads .Z-digit unit numbers from the

first rccord with format 19I2, Rest of
records to end-of-file are of the form
212, 15A2 and each contains a unit number,
the number of characters in the file nanme,
and the file name itself.

Unit numbers arc saved in array IUN. Unit-
numbers -to-file-name associations are given
to the system I/0 control.

Read the unit numbers and the file names

and call the system routine ASSIGN.

NOTE: Slightly different versions of this
routine are used by steps 1, 3, and 5 of

the Preprocessor, by the Postprocessor,

and by tasks JJ and CONTAI'. The differences
are just the name of the file containing

the file names and the common block used

to store unit numbers.

oo

Name:
Purpose:

Linkage:

Input Description:
OQutput Description:

Process Description:

UNLOCK
To unlock the base.

e Calling sequencc: CALL UNLOCK (SECURE)
e Common blocks used: SYSCOM

e Subroutines or functions used: PSWRD,
LODREC

e Vliles used:

Password

Rit mask in SECURE

The bit mask is used to lock (0) or unlock

(1) the command. Sce JLASYS of the RIMS
Maintenance Document for the command list,

e i

e

P U P T TPy CT I T

Nanme:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

AR C e

WRNUK (preprocessor step 5)

To write lines of an array to an output
unit.

e Calling sequence: CALL WRNUK (number,
unit)

e Common blocks used: CARDS, UNITS
e Subroutines or functions used: None

e Files used: Output file unit selected
by calling progran,

number card images in array IM, and the
unit number for the output file.

The card images for a set or for a partial
set are written to the appropriate file.

A FORTRAN formatted write statement is exe-
cuted the specified number of times.

	1980020275.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.tif
	0001F13.tif
	0001F14.tif
	0001G01.tif
	0001G02.tif
	0001G03.tif
	0001G04.tif
	0001G05.tif
	0001G06.tif
	0001G07.tif
	0001G08.tif
	0001G09.tif
	0001G10.tif
	0001G11.tif
	0001G12.tif
	0001G13.tif
	0001G14.tif
	0002A02.tif
	0002A03.tif
	0002A04.tif
	0002A05.tif
	0002A06.tif
	0002A07.tif
	0002A08.tif
	0002A09.tif
	0002A10.tif
	0002A11.tif
	0002A12.tif
	0002A13.tif
	0002A14.tif
	0002B01.tif
	0002B02.tif
	0002B03.tif
	0002B04.tif
	0002B05.tif
	0002B06.tif
	0002B07.tif
	0002B08.tif
	0002B09.tif
	0002B10.tif
	0002B11.tif
	0002B12.tif
	0002B13.tif
	0002B14.tif
	0002C01.tif
	0002C02.tif
	0002C03.tif
	0002C04.tif
	0002C05.tif
	0002C06.tif
	0002C07.tif
	0002C08.tif
	0002C09.tif
	0002C10.tif
	0002C11.tif
	0002C12.tif
	0002C13.tif
	0002C14.tif
	0002D01.tif
	0002D02.tif
	0002D03.tif
	0002D04.tif
	0002D05.tif
	0002D06.tif
	0002D07.tif
	0002D08.tif
	0002D09.tif
	0002D10.tif
	0002D11.tif
	0002D12.tif
	0002D13.tif
	0002D14.tif
	0002E01.tif
	0002E02.tif
	0002E03.tif
	0002E04.tif
	0002E05.tif
	0002E06.tif
	0002E07.tif

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

