
dlMade available under NASA sponsorship
inthe interest of early and wide dis
semination of Earth Resources Survey

Program inforjation and without liabit /

c c 80 -SA CRfor any use made therg&4 Iao-e./JSC- 13894 NASA CR"'

AS-BUILT DESIGN

FOR
ENHANCEMENT OF THE AUTOMATIC

STATUS AND TRACKING SYSTEM SOFTWARE

Job Order 71-695

(E80-10197) AS--BILT DESIGN FOR ENHANCEMENT NO-28794

O THE AUTOMATIC STATUS AND TRACKING SYSTEM

SOFTWARE (Lockheed Electronics Co-) 146 p

HC A07/MF A01 CSCL 02C Unclas

G3JL3 -00197

Prepared By

Lockheed Electronics Company, Inc.

System and Services Division

Houston, Texas

Contract NAS 9-15200

For

EARTH OBSERVATIONS DIVISION

SCIENCE AND APPLICATIONS DIRECTORATE

NationalAeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER

Houston, Texas

February 1978

LEC-11882

Jsc-13894

AS-BUILT DESIGN

FOR

ENHANCEMENT OF THE AUTOMATIC

STATUS AND TRACKING SYSTEM SOFTWARE

Job Order 71-695

Prepared By

D. K. McCarley

L. D. Dornell

APPROVED BY

LEC NS

P. . r , anager V. M. Dauphin, D ta Manager

Data Systems Department System and Facilities Branch

Prepared By

Lockheed Electronics Company, Inc.

For

Earth Observations Division

Science and Applications Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TEXAS

LEC-11882
February 1978

i

CONTENTS

Section 	 Page

1. INTRODUCTION 1-1

1.1 PURPOSE AND SCOPE 1-1

1.2 BACKGROUND. 1-1

2. APPLICABLE DOCUMENTS 2-1

3. SOFTWARE MODIFICATIONS 3-1

3.1 CONTROL FILES. 3-1

3.1.1 	ASATS.BIS, BATCH RUN. 3-1

=

3.1.2 TY1ORDER.COM, PACKET ORDER LIST 3

3.1.3 RIMS CMD, RIMS TASK BUILDER COMMANDS . 3-12

3.1.4 RIMS.ODL, RIMS OVERLAY STRUCTURE. . . . 3-13

3.2 NEW AND MODIFIED RIMS PROGRAMS 3-15

3.2.1 PROGRAM DESCRIPTIONS. 3-15

3.2.2 PROGRAM CROSS-REFERENCE. 3-115

3.2.3 NEW BUFFER FORMATS, COMMON BLOCKS, AND TABLES 3-130

ii

http:TY1ORDER.COM

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

This document makes current the existing design documentation on

the LACIE Automatic Status and Tracking System (ASATS) as imple

mented on the PDP 11/45 computer. To accomplish this objective,

it contains descriptions of all the modifications necessary to

implement TIRF 77-0035, Enhancement of the ASATS Sotware. The

complete ASATS was documented by previous publications (as listed

in Section 2), and this document should be used in conjunction

with those publications, superseding them where they conflict

with statements made herein.

1.2 BACKGROUND

ASATS was implemented using the Regional Information Management

System (RIMS), a generalized data base management system.

TIRF 77-0035 required several enhancements to be made to RIMS.

They were as follows:

a. Additional Data Base Protection - In order to prevent inad

vertant destruction of portions of the data base, additional

user interaction to verify the user's desire to execute the

command is requested for the Delete Set (DS), Delete Record

(DR), Delete Key Name (DK), and No Key (NK) commands.

b. Null Set Detection and Control - In order to prevent produc

tion of headers for reports containing no data, the Jump

Test (JT) and Label (LA) commands are implemented.

C. 	Arithmetic Operators - The ability to allow arithmetic opera

tions on fields of data is implemented for the Select Non-Key

(SN), Joint Select Non-Key (JN), Display Formatted (DF), Joint

Display Formatted (JF), Report (RP), Joint Report (JP), and

Change Field (CF) commands.

-11

d. 	Inter Data Base Comparisons - The ability to specify arithme

tic relationships between fields at different levels of the

data base is implemented in the Joint Select Non-Key (JN),

Joint Display Formatted (JF), and Joint Report (JP) commands.

The ability to sort with fields at different levels of the

data base is implemented in the Joint Sort (JS) command.

e. 	Subgrouping by Field with Maximum, Minimum, Sum, and Count

Functions - The ability to specify fields for which records

are to be grouped by value and print field values, maximum

or minimum field values, sums of field values, or counts of

records for the resulting groups is implemented in the Report

(RP) 	and Joint Report (JP) commands.

The remainder of this document identifies the changes to RIMS

software required to implement the enhancements.

2. APPLICABLE DOCUMENTS

The following documents are applicable:

a. RIMS Design Document, February 1976 (LEC-9564)

b. RIMS Maintenance Document, October 1976 (LEC-9566)

c. 4SATS Functional Design Document, November 1976

JSC-1835)

(LEC-9861,

d. Implementation Specification for Large Area Crop Inventory

Experiment (LACIE) Phase III Automatic Status and Tracking

System, March 1977 (LEC-8675, JSC-11401, Rev. A)

e. Operator's Guide for ASATS, March 1977 (LEC-10401, JSC-12729)

f. RIMS Users Guide, April 1977 (LEC-9301, Rev. A)

g. Detailed Design Specificatioh for the Automatic Status and

Tracking System Modifications for LACIE Procedure 1, May 1977

(LEC-10529, JSC-12885)

h. 	TIRF 77-0035, May 1977

i. 	ASATS Users Guide, June 1977 (LEC-10148, JSC-12535, Rev. A)

3. 	As-Built Design -for LACIE Phase III Automatic Status and

Tracking System, June 1977 (LEC-10419, JSC-12743, Rev. A)

k. 	Project Development Plan for the Enhancement of the Software

of the LACIE Automatic Status and Tracking System, August 1977

(LEC-10977, Rev. A)

1. 	Functional Design Specification for Enhancement of the Auto

matic 	Status and Tracking System Software, September 1977

(LEC-11199, JSC-13110)

m. 	Detail Design Specification for Enhancement of the Automatic

Status and Tracking System Software, November 1977 (LEC-11512,

JSC-13789)

3

3. SOFTWARE MODIFICATIONS

3.1 CONTROL FILES

Various non-data files were changed to take advantage of the new

features of RIMS or to make necessary adjustments. These files

are listed in the following sections as they currently exist.

3.1.1 ASATS.BIS, BATCH RUN

.-9jQ8i4k A-SAZLIErr':"A L .!r Tggg/MCr

SMESSAGE ASAT$ BATCH STRFAM VERSION 17 (FEB. 1978).

%M99SACE WTXFD TO GOPT PHNV~rO) CARDS PYCT ORDER 1BY rPE.2
SMESSAGE RE SURE YOU HAVE:

-4-.M-SS&GE--- ------- PE--N--CAPD DECK.
SMESSAGE C WTTHi PIP Plo,LIJUP

r-4$.A&E4-N.-CASE Or TRoUPL,, CALL;

SMESSAGE JOE FVFRPFTTE 313-6208 (DAYS)
_gM!SAng goD r13;5 01-0339 CNIGHTS)JowN GmaN DAyS) OR

tHESSACE IF CARDS NOT fl~k., ABORT THIS PUN AND RESTART

$MCR PIP C210,41IDUM.TEszr21o~ib1ENOr)ILE

5MESSAGE/wATT NOW, TYPE TN CnN(CR) TO CONTINUE, OR ABOCCR] TO ABoRT,
SMCP2 DIDLP 2 O. "~o16 *?T3/
SMESSAGE START PREPROCESSOR

- --4-4-A-NW-- UP -FI-L F-S -.......--...
 -..-..-

SMCP PIP

t210,' *.TESI*/OF

AI TRANJSGEP PPflGCAMHS TO r21fl:A TOn MAKE- $OIIl COMMN WaYA ESpiMED

$MCP PIP

1aIll2.s-0sr-.TTK--t;O6, 53 STFP I5 -
Tq________
21O, 1STEP3.TTK3([2O6, 1STEP1.TSK

--4a4 , 1 ST - rTITW t- O&rTKP .T-- -.
t210,]4 ASATSTTKm[06, IASATS.T$5K

(210. LI]RIMS. 77K: r~o6. 1RYmS. TS'(
S;.i.-4IR.-RE DS-P-F -lo --- NC J,'.R-T-- ,,. THE POLLWI":

S I PPFL3 AND PPFILJLIPHASF 3 AND TYS FOR LATER PROCESSING)

S I SORT OPERATION WIL-L ALWAYS HAVE INPUT AND ALWAYS PUT OUT

S I QfMETL4NG yr IT 0 11NS]'CFS5FII-LV.

SMCR REM RSXBAT

--S kUSTP1.TT

q . 34 AGE lb
OF POOR QUALIY

http:USTP1.TT

SMESSAGE $TART SnRT

tmcR gry C2~ mj Ili 0o~!y~PSIp 13 1 g
1.p1I.~/~~~ 1

SICAN NOW SAVE 8AC~ev RFHOVING INPUT TO THAT SORT.

q4McR PIP r~ .1PF ''T9 D

SMCR SRi' !PIO,41PPF2/J&1TFS~rflo,LJIPPFIOLI.TES/SIZE:SO;DLSPEC.SOR

S I SET LIP NOW pOR $TEP3.

A I STF A WPIT1 O rl~lVTtF5 OP EACH LACTE PWASEg

s I PPF3SC3 AND ifl OF NON-*. p, 3 CARDS

q P3B3 AND '14 OF *. 2w I CARDS

51ALL FOUJR MUST EXTST IF NO MESSAGES ARE TO BE GIVEN.

0 MCR Pip

C210 0] PPF333, TESt 20,41ENDF!LE

M2+- hi EKODr IL F
rCi1, 1J]PPF 353.TESt rpio, InENCFI LE

SMCR REM PSXBAT

!IMCR PIP C2IO,4JPPP43.TFS,*?DF

BMESSAGF STEP 3 OF PPEPRMCESRO0 FINISHED

9 1 BEFORE DOUGL~r THE SORT. - PT II0 A MUMMY 01CUTPI T F?!E FQR TT.

SM-CR PIP b')IO,al PPFaJpP.yEsC (PjO,i1i NDP'TLE

S I Now rLEAN UP INPIIT FTLES To THA&T SORT, AND

SMCR PIP
!2 o0a, PPF333.TESI*/,DE

(Rio.)PPFS3P. TE 5: 0,4ENDFILE

!210. 4]PP F5PTIES: ?1 i 4ENDI LF

I-40rlPPF4P tSi, P-4E-* *(iL - -- - ----- ____________

SM-CR PIP (P~UPF13TSt)0aFNFL
-sntR Pip
LP::(?1O, 411PPFc7P8 TF5
f210. 1S-PPr7P.TEnS,*/oE- ------ __

C21O,QIPPPS,5P.TES,*,nE
--t4,PHSE 1 rESur O.41PPFqsP.T&SE ___ _____

r2I0,u1PHASE3.TES~rpiouipPFA53.TES/IAP
4210 l1P JASE!.TEt3mt21O.4~ PPF!;S3.T yp;AP
(210,01 PPF53PTf 5: 21 0.111ENOFILE

(21048 PPF653.TES,*,rME

f2jO,4Ij]PPF0J2P, TE S Fr2j0:41 ENNILE

*RMCP SPT tPloit"1 ADFPTF3AC1,Ir3MT~5Z:cKY~C44~1
.
S I NOW CLEAN liP INPluT Tn THAT' SORT AND GIVE DIJMMY OUTPUT FOR STEP 5i

rzioOaPPF 330 * TES*/D)E

(210. 41 PPF5SP. TE.St (210. LENDrILE

SMCP QEM RSXSAT

s$P44s-SfP -.--T-C--- -__ ___ ____

St-CR PIP (210,aPPFUPPTES,* DF

ORIGINAL PAGE IS
OF POOR QUALITY

S I SORT *,2,3 NNN.SFTS RACK INTO CAQDTYPE ORDER,

I IRS5 CDErtATE A MIUI SOPrTE PIL=
Mb4 F

SMCR PIP C21OnJIPPF6 L<.TES:CIO,1,ENOFTLE

S I DELETE INPUT TO THAT SORT, CONCATFNATE UPDATE FILES,

;-I=-
A - - . --. .. -- -..

2l,0,4J1 PPFSSPTES;*.DF

I ppetpl .g4PPEr57P.TE
!210,JI PPFS7P.TES$*/OE

rplOi]PRASE4, TES= t21O, MI PPF6$SM, TES/AP

(210, U PPFS3P. TES: E2 lO. M1NDFILF

[210,eilPPFA54,TES*/DE

-oJ - 0 , /,T --lm l $ l___

S I ALL FILES ARF NOW CLEANED UP AND UPDATES ARE IN 2 FILES,
-_j_ 1EPARtTED BY PHASFt. pH.AE$3.T.S,. A4fD-HASE4. T"---

SMCP PIP

jr?10, PPFS3.TES,*/DE

(210HJ]F JRQ12,nAT: 20,41ENtrILE

21O, 4 1 FOO r'AT: (PIO, 41 ENDFILE

f?4nA. /I] nRnn7DlAT- rppi ,-k11'DWrI E
f?1p0,' FnR0OO7AT;,*/E

SMESSAGE THIS IS YOUP LAST CHANCE TO STOP TYI UPDATES (CON OR ASO),

-S.MCR R24P -.P-9-I {12 10., 4-1*-, T-E -I
SMESSAGE/'AIT (IF YOU GO PAST THIS POINT, YOU CANNOT RESTART),

SMCR PIP t?10,L]Rfr4.rOw:fo1PRj,4OM

%RUN ASATST7K
S -M-ptI-f-2I-0--4 i-Qr' : *--4L-- -_______-________

SMESSAGE TYI UPDATFS COMPLETFD.

SMCR DP

f210,a]A M2.POSU[P21 o.UFNDF7LF

T21 0.Lfl PN411COM: r o.. 'am I~---C2-10 ,-p 0 8 ;,*4

[210,1 D'2PRf/2. f1 2'.rATPl ,a,]F OPO

!210,41*,ZTP3*/DF
--3-#$SAGF PmEPAPE OITPUT REPORTS FOR TY-. --

SMCR PIP POSTSZTP-FMOTI F

s i - WS -k"-T-..

SRUN POSTP.TTR

$MOPC PIP r2i0,0l1AnD.TE H210,41rUr.HZIP/,RE

SMCP SRT r210,a2]P1J~H.,IP. i,)AR).EYSZ$0XFSCIS

http:r2i0,0l1AnD.TE
http:PPFSSPTES;*.DF

C21.0, IN4 TES= 210 -.4 *.L*JLT'Z
4Eat-o-.-41 I-eWa -p----W-1-DAEeCM/AP

r21 0, 41IPUNCH. ZTFS t21o, 4) PQ$7p' 77PRF

SMO1 .-lPI IAp BA/D.rO=!e.4ENFL

S21C 4PIN~ TS 141 puCrI;z Ip
(?io.

...- -,-a±P4'-e-azi

[210. PPCH ZPIP:i l0] L
L[2j o, PUl(. YES

SMCR PIP tP1O,LUUN!HTS.AIR:21.0MTN.A

A eAT'.r0M- T*i3>1 EOIL
-mt.R--P--P-4-1-O--Li-

SMCR REM PSXSAT

SPUN 0!MS 7RK

SMCR PIP ;io0,c LQM.8TF~m C1 01 *,g*,iE

4MCR PI-P C2tO,ZU RN-gTqC~pf/nE -N$!------
$MCRP CO4110y*~

OHCRPREM PSX8AT

SMC0 PIP r)IA#n1mA7 TFOv*'21pII0PCIL,2

$MCR PIP (210,LdOU* 9$8HT QL1ENPyE

SMCR PIP t2I0.4iRjAT.COM,*/ne,

tMCpP--]nM- Q)

%MP REM SYT

SMCR PIP tP[0,4lOUL(VTm fu4*llIFDFj

S4Mr P 2f),U)* SHTI*,OE

'M CP PIP r2141 5~A7.epuI*/DE

SMCR PIP

SPIN P!MS.TI(

-SM PP P0,41b-QP-F$-u*-*-* /L I

%MCR PIP !210no4iDM.SHTwl-r;BIO.illENDFIIE

£MCR PIP t2I0,J1$AST.CM*j)E
-sWtgfl4 C241044 %4-4
FLA414 0-MP-R5
5MCR REM PSYSAT T.~mri.4]EPC)M6R

SMCR -Pip -RP

17

$RUN QIMS.TTK

3MCR PIP tP1OM]L&pTFSC*'.*p*/L!

$MCR PIP C2IOp4jDUM.sHT=tlIOoa1ENDFILE

tMCP PIP (10, 41*.SHyj,#*,M
SMCR PIP P1O/j41BA7.eOM,*/DE

SHCMrP P!P EA!O,U]ATr t2 p0.a! nFr.cpM;!7Rx
$MCR REM RSXBAT

V
SPRIN RIMSWTT

SMCR PIP r;IOoLo.TE8:,*,L:

%MCR PIP (21O /l*,S T;*/DE

SMCR PIP t?1O,4311N1T,SATIPO)DE

SMESSAGE *

-SMESSAGE * F-ND OF ASATS
TYt PATCH UPAT-ES AND -REPORTS-
$MESSAGE * REMEMBER Tn:

A$GE * MAKE A9-,-fUSE-- H.
CRDOU-T--N

%MESSAGE *
 FILE rJfl,42PUNCWZIP)

SMFSAGEr .N mAKE LABELS CLOAC LABS INTOSMESSAGE
* PRINTER AND tO PIP .f2rO,4ILA *

$- ----- O---v--1ziol 0t4OTO TAPE
SMESSAGE
 (NnTEI YOU ARE STILL IN 5#5)
 *
mSESAGE _ _ f---N- HTMT~ 1TY DATyF/UI 1C a1pi pjp0
SMESSAGE * MOU MTOI/OVR
ME SAogE PI P OF

rnMESSAGE * FASTFN THE DIRECTORY TM THE TAPE) *
~~ *T+-*N"4 OF THEn A8Ts- TY! BATCH RUN,

SMESSAGE ******************************

$MESSAGE NOW LOAD ..
0ART PAPFR INTO THE PRINTER AND

RMESS&,GEJIUAIT 'V 0 E ;of CON (CP)
TO PRINT REPORTS,

SMCR PIP LP3:!?1if,41*.TER,*/,I
-C -flA -[-; OrA4-. -rY it~ '

SEOJ

P,00 4AQc

3.1.2 TY1ORDER.COM, PACKET ORDER LIST

BE
211RF12,7
SF(PC
SKPC
CO*2
§C3
SKCURSI H

OE I
JT5,LB
Rn2,10

Ho?,t
IST
RFO, ?tDATECOM
R713,12

DAILY PACKET ODDER L

HDNi TRANSITTOM YEAR I ITS PCi

ND?, ORD SEG LPT
YX REC rAMS/LPDI
ND?,
ATE
PF12,10
JF5,90

ACO RE
COMMENT

DfODATF

70NE SYR A

w

W

V

CNT LAST

CHNG

DEL

D

sCe5'6, TOTAL
LALB
sE
RP1207
SKPC 2
Gel
SKCU)RSi W
CaR*3
oEi
JT3,LP
RF2, 10
mulI

lay
AFOI2,ATE.tOM
RF13,I2

ACQUTSTTTONS

DAILY PACKET ORDER L

No1 TRANSISTION YEAR I UIS PC?-

HDi,
HDa, ORO SEG LPI ACM REft
TX DEC CAMSJLPOL COMMENT -

NDO, NO DATE
ATE
RF12stO

ZONE STR B

W

W

V

NT LAST

CHNG

DEL

D

473,Qo
SCI,d6.
LALS

TOTAL ACMUTSYTTONS

BE .

RF12*?

SKPC 3

sCl

SKCURSi H

00*3

Del

JT3oLB

HDP, DAILY PACKET ORDER L
RFOp1a,DATE.COM
~RI3. 1?

MDI,

HDI, TRANSISTION YEAR
I US PC3

Not,

HOP# ORD SEG LP! ACP PEr, ZfNE STR B w CNT LAST DEL

TV REC CAMS/LPDL COMMENT

NDo NO OATF
 w V CHNG DATE

RF12*1O

JF3,9O

SCIA6, TOTAL ACOUTSTTTONS

LALB

BE
RF12o*

SKPC 61

GCl

SKCURSI H

DEt

JT3,LR

RFI,
HDP.! 1O
HT
 DAILY PACKET ORDER L

RFop12mOATE,COM

HDIV

HNir TRANSISTION YEAR
I AUSTRALTA Peel

HDI,

MD1,

HD, ORD SEG LPI ACO REn ZONE STR B W CNT LAST DEL

TX REC CAMS/Lo() COMMENT

HD4o NO
 DATE
 w V CMNG
ATE

U4jI, 10

SC3,O46 TOTAL ACQUj$TTTON$

LLB

http:RFOp1a,DATE.COM

BE
RPIPD7

SKPC 2s
Gel
SKCURSI
C02*3

w

DEI
JT3, L
P12,10'T

!ATLY PACKET ORDER L

RFOt2,PATE.COM
RF13,12
HD~
ND!P TRANSISTON YEAR I US pC25

HD,
HO?. ORD BEG LPI ACO RE
TX REC CAMS/LPDL COMMENTHD?# NO DATF
ATE
RF1p, IO

ZONE SYP B

W

W

V

CNT LAST

CHNG

DEL

0

JFS,90
SCSP 6,.
LALS
BE

TOTAL ACCLITSTTTONS

SKPC
2ci

41

IKCUPSI
:02*$

w

)E!
FI ,L10

4T
1AILY PACKET ORDER L

?IPQl1,DATF.COM
W~13, 12
IDo1,
IO1, TRANSISTION YFAP I USSR
IDt,
f01,
IN?, ORD SEG LPT ACD PFa ZONE
'x REC rAMS/LPDL COMMENT
'0e NO DATE
TE
F12.0
F3# 90
C3,6# TOTAL ACOUTSTTYONS
ALB

PCt

STR 8

w

W

V

CNT LAST

CHNG

DEL

D

lQOp IIPo
S
SKPC

Gel
SKeURSI H

C02*3

DEI

JT3,LR

*FI2, 10

W~p I

IST DAILY PACKET ORDER L

RFOot l.ATE.cOn

RF13.12

HDI,
HDIV

TRANSTSTTON VFAR I TNOTA PCs

MDII
HD2
YX
HD?,ATE

ORO SFG LPI ACO RE
REC CAMS/LPDL COMMENTNo DATF

ZOMIE STR B

w

w

V

CNT LAST

CNCHNG

DEL

D
RFia. 10

JF,o0
SC3,M4, TOTAL ACOIjTSYTTONS

LALB

SKPC 45

SC!

SKCUSj H

C02,3

DEl

JT3,L8

P12, 10

HST
 DAILY PACKET ORDER L

'RF0,J2,DATE.COm

RF13, 2

HDS

HD01 TRANSTSTTON YEAR
I USSR PCas

ND!.

ND?, ORO S&G LPI ACI3 PEn ZO $TR
 8 W CNT LAST DEL

TyX REC CAMS/LPQL CnMNENT

HD2p
 NO DATF
 W V CN
ATE D

RF12,io

JF3090

SC3;416. TOTAL &COUTSTTTONS

LALA

http:RF0,J2,DATE.COm

BE

RF12,?

SKPC 7

OcI

SkeuRsi, H

C02* 3
DEJ

JTlLP

PF12,0
MOT

fATLY PACKET ORDER L

RPFOII,DATF.COH

RpI3*12

MDI,

HOI, TRANSTSTION YEAR
i CANADA PC?

HDI ,

TO, ORD SEG
 LPI ACf RFr ZONE STR 8 W
CNT LAST DEL
T REC CAMS/LPDL CnMMENT
HD?,
 NO DATE
 w V CHNG

ATE CN

RFI2,10

8C3, J6,
 TOTAL ACQUTSTTONS

LALS

BE

RFI2.7

SKPC B

SKCURSI H

C02*3

DEt

3T3,LM

RF1200

HD2,1
18T

DAILY PACKET ORDER L

RFO,12, DATE.COM

RP13012

WDI,

HDI, TRANSISTION YEAR
I USSR PCS
MDI,

WD2, ORD SEG
 LP! ACM
 PEG ZONE STR 9 CNT
W LAST DEL
TX REC CAMS/LPDL COMMENT
HD2, NO
 DATF
 W V CHNG

JF3,90

5C31U6,
 TOTAL ACoUTSTTTONs

LALP

0

http:DATE.COM

BE

0P12.
SKPC 62

GCI
SKCURSI H

C02*3

PEI
JT3,LB

RFI 2,10

HDr2t DAILY PACKET ORDER L

IST

RFO,12,DATE,COM

RPF13, 12
Moto
HDI, TRANSYSTION YEAP I ARGENTINA PC6P
WDI.

8D2o ORD BEG LP! ACO REA 7ONE STR R W CNT LAST DEL
TX REC CAMS/LPDL COMMENT
HD2s NO DATF W V CHNG 0
ATE
*FI2olO
JF t90

SCS,46, TOTAL ACOUTSTTTONS
LALA
BE
RFt~o7

SKPC 63
GCI
BKCURSI H
C02* 3
Del
373.LS
RFI2, 10
H101 DAILY PACKET ORDER L
IS?
PFG.o12.#DATE.*COm
RP13, 12
MDIt
MCI, TfANSISTION YEAR I BRAZIL PC63
HDI,
MDI,
MHD. OD SEG LPI ACn PEA ZONE STR S W tNT LAST tDE
Tx PEG C~$LD COMMENT
HD?. NO DATW w V CHNG D
ATFE
APtp 10
J3o90
8C3.o6, TOTAL ACrOTTSTTTONS
LALA

R~t/1IO

3.1.3 RIMS.CMD, RIMS TASK BUILDER COMMANDS

D80gP06,51RIMBLPI/,HcRTMS.MDL/MP

ACTFlLat$

UNTTSI3

ASG.SYO11:12:5P3

ASGaSYOg1:1:314

ASG=SYO:'i68t:q

ASGeTI 7

ASCGLPi10

POOL060

//

3.1.4 Rfl4S.ODL, RIMS OVERLAY STRUCTURE

;ROOT M.*(SEGI.SI.SEG2.S,,

MI FrCTR MFI.MFI.MP3
NM1 I FVCTR SEL-CNAR.COMSTR.DTFINT-tNOEX.!NPAPM.SUBSTP.VERIFY
M#21 .FCTR GETCPUT.ROLL.SETINI.SFTTN2.SETOUJT.XYIN1SXXIN2UXXOUT
MF31 *FCTR STATUS.NHTTS.E~NhSET-LOCATF.LOCREC.LODPMT.LODREC.GETPEC
Sit ,FCTR UNITS-LASIT
82: FCTR CImATN-CIOSEP-S2rI
SDFI: *FCTR rSF2,SZ4FII
SPFP: *FCTR SEG3.Sl, SEG8sS~.SEG13.SI3.SEG17..S17
32F3, .FCTR S~I8S ,EIcS~Sf~.2
S3 FCTP JPRP!R-PPNTIn-rSroLL.StoSFG7.s7)
Sag FrR S1Fwsr-5SM-6
saFIS *FCTR AETWTTI.52E.ECIPP.ADDFNa.ADDLT..CFIND
$go *FCTR AEPR.STAFPP
56: FCT FTFMT-rTrmc
871 *FCTR TFORHW.EXCMDS-iXcMDCTFOPMZ
Sa1 OFCTP 81t~qsEIOSIEI[51.E1SP
s8riz *FCTR CISuRi-CrC~.?FrMFeP-ENn).PQNTID.AProM
80k *FCTP Sqls~

sq~ri gFCTR &ETIJT.StMZE.CrFtp-CF IND-RLCLPR-PPCLPR-ADDFNAD)LT

99F2, *CT'R AfDNM.A~flDT.AEFPR.SThEP0

8101 *FCTR APSINT.FTFMT.FTeMP.ALbTRP
Slit FrTR SlIFIslIra
S19t: *FCTR TrORMW.FXCMnS.ErcfrD
SllFip FCR~ APSTuPeTFnRMz REPR.DTSFM?
812a *FCTR SI2Fiws12F2
Sl2~l1 u JCTR APSCNT.&AUPOST..ADOKEY..APSrL..DELKEY.KOMKEYaLAND
812F21 *.FCTP LWO1.I tRhPART.POST-RANIGE.SSORT
S131 CFCTRSI31rE1.SuSIEISG-16
S13F1: *.FCTP CYSUBP.JNsNCr..PRNID
841 .PCTP S1aFI-Si4pp
siuFi: J.CTR AEINIT-SOZE.CFIND-RLCtPR.ADDFN-ADDLT.ADPNMADDOfl a
8142: *FCTP AEPR.STAEPR.PTFMT.FTCMP
8151 CFCTR TFoRHW.EXCMOS.EYCMD
S162 FVCTR SIAFI-s16F2

8i6FIs *FCTR SELECT7-I fR.RAsGF.COMBIN.LANO-LNOT-HEADER4
3l&FP *FCTP STCNJT-DFLETE
S8y7i FT CTFlSIE7EF NATA2CEN.ULC.SR
817F: .FTR 517F1.317P2TA~oI-AP-NLC~PS
817F2: FCT SPLIJS.ADDQSMTNUSDDELR
S1B1 *FCT;? IF-i823'r

818F:)FCTR C1S11811.SORTPcCLO)SFL.KOMKEY.LAST
3IaFp; FCT PART.SopTS..SnpT.TJuMP.CMDRI.AOO3RCMPuTE
S1BF3: *PC R LYVTAF~.REPR.MnVSEG
SIQI *FCTP S 9PF..Si9F2.$Iqr3
SIQFIt ;FCTP C7SUIRFXPANS!W.OirTSPLAXPE SENTVSEL4EC
SIQP2: .PCTR ACCM$OSPCSET.rORMM.ADDR..r0RM.OISPDD..p!AFsPARSER
319F3: '.FCTR GFTPAR.PAR3EC.GFTCLD.ADDREC

http:NATA2CEN.ULC.SR
http:JPRP!R-PPNTIn-rSroLL.StoSFG7.s7

So: .FCTD SoF S OF2-SOr3S OF4.SEcGp.S21,sEG o-s2a)

S2OFII *FCTR C!SUR6.APSCNT.APSTKT.APSTUP.LMVTAB

SPgF~t .rCD PP.TF(Q4-n8OPAUPO5T

S2OFj *.FCTR £nDvAPSEL.nfLKEY.KCKFY.LAND.LNOT.LOR

82OFul *FCTP PART.PCST-AGE.SSCWT

82i1 *FCTQ CAu;I..AUFIIE-.xPfST.hDDp

SP?1 FCTO CRESTS-OFIA-DFSTgcrYFLPFCFPKEVYcEPRtc

.PSFCT

.NAUE

?NAME
*NAME

.NAME
*NAUE

.NIAE

,NAuE

,NAME

!NAUE

*NAWE

.NAF

,NAwE

.NAWE

,NA F
P6wAM

.NAME

,.NAM

.N*UOE

,NAMF

.NAvE

*NAmF

APCOM.DOv.IV
 L

S!GI

SFG2

SFG3

SFG0
SFG5

Sf06

SFG7

SEGO

SFG

SFGI

SFG1

SFG12

SFG14

SFG?5

SFG16

SFG17

SFG1a

SF010

SFG0

SFGPI

SFG?

.END

http:APCOM.DOv.IV

3.2 NEW AND MODIFIED RIMS PROGRAMS

3.2.1 PROGRAM DESCRIPTIONS

On the pages following are the RIMS programs (subroutines and

functions) that were created or modified to provide the requested

enhancements.

-3-zff

Name: 	 ADDDT

Purpose: 	 To initialize the Working Buffer Format for

a date encountered in the input command.

Linkage: 	 * Calling sequence: CALL ADDDT (FC, NC, ROW)

" Common blocks used: SY3COM

" Subroutines or functions used: DTEINT

" Files used: None

Input Description: 	 FC = integer variable; character number in

array CMD of /SY3COM/ where the date starts

(# sign).

NC = integer variable; number of characters in

the date literal, including the # sign.

Output Description: 	 ROW = integer variable; the row number of the

Working Buffer Format into which the date

reference is placed.

Process Description: 	The pointer to the last used row of WBF, the

Working Buffer Format, is incremented by one.

$L is stored into the second word of the row

of WBF. The value of 4 is stored into the

sixth word of the row of WBF. The value of -1

is stored into the seventh word of the row of

WBF. The subroutine DTEINT is used to convert

the date from a character string in the command

line to a binary integer in the first word of

the row of WBF. The row number is stored in

ROW, and a return to the calling routine is

made.

Name: ADDFN

Purpose: To initialize the Working Buffer Format for

a field name encountered in the input command

line.

Linkage: v Calling sequence: CALL ADDFN (FC, NC, ROW)

9 Common blocks used: SY3COM

v Subroutines or functions used: COMSTR, SUBSTR

a Files used: None

Input Description: FC = integer variable; character number in array

CMD of /SY3COM/ where the field name starts.

NC = integer variable; number of characters

in the field name.

Output Description: ROW = integer variable; the row number of the

Working Buffer Format, WBF, into which the

field name reference is placed.

Process Description: Column two of WBF is searched for the field

name. If it is found, the row number is stored

into ROW, and a return is made to the calling

routine. If it is not found, the pointer to

the last used row of WBF is incremented by

one, the field name is placed in column two

of that row, that row number is stored in ROW,

and a return is made to the calling routine.

-anlC)

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

ADDLT

To store a reference to an alphanumeric

literal into the Working Buffer Format

* Calling sequence: CALL ADDLT (FC, NC, ROW)

* Common blocks used: SY3COM

* Subroutines or functions used: None

o Files used: None

FC = integer variable; character number in

array CMD of /SY3COM/ where literal starts

(first quote mark).

NC = integer variable; number of characters

in the literal, including the beginning and

ending quote marks.

ROW = integer variable; the row number of the

Working Buffer Format into which the feference

to the literal is stored.

The pointer to the last used row of WBF, the

Working Buffer Format, is incremented by one.

$T is stored into the second word of the row

of WBF. The value of FC+1 is stored into

the fifth word of the row of WBF. The value

of NC-2 is stored into the sixth word of the

row of WBF. Zero is stored into the seventh

word of the row of WBF. The row number is

stored into ROW, and a return to the calling

routine is made.

Name: 	 ADDNM

Purpose: 	 To initialize the Working Buffer Format for a

number literal encountered in the input command.

Linkage: 	 a Calling sequence: CALL ADDNM (FC, NC, ROW)

* Common blocks used: SYSCOM

* Subroutines or functions used: INPARM

* Files used: None

Input Description: 	 PC = integer variable; character number in

array CMD of /SY3COM/ where the number starts.

NC = integer variable; number of characters in

the number.

Output Description: 	 ROW = integer variable; the row number of the

Working Buffer Format, WBF, into which the

number reference is placed.

Process Description: 	The pointer, NWBF, to the last used row of

WBF is incremented by one. Then $L, 4, and -1

are stored in WBF (2, NWBF), WBF (6, NWBF),

and WBF (7, NWBF), respectively. INPARM is

used to convert the number from a character

string in CMD to a binary integer in WBF

(1, NWBF). The row number, NWBF, is stored in

ROW, and a return is made to the calling routine.

Name: 	 AEINIT

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

To initialize standard areas of core for

commands which allow arithmetic expressions

in their syntax.

a 	Calling sequence: CALL AEINIT(IND, SETNO,

FMTNO, ERR)

* 	Common blocks used: SYSCOM, SYZCOM, CLTBL

* 	Subroutines or functions used: SQZE,

INPARM

0 	Files used: Command file (logical unit

13), Message file (logical unit 7)

IND = integer variable; indicator to cause

special processing for certain commands.

Set 0 for SN, JN, and CF commands. Set 1

for DF and JF commands. Set 2 for RP and

JP commands.

SETNO = integer variable; contains the set

number converted from the input command

line.

FMTNO = integer variable; contains the

format number converted from the input

command line, if there is one.

ERR = integer variable; returned zero if

no errors found, non-zero if any error is

found.

1. 	Zeroes are stored in all words of /SY3COM/.

2. Blank are stored in all words of the

Working Buffer, WBUF.

3. Word 6 of row 1 of the BY Processing Table,

BPT, is initialized to '+$-V to cause the

first record re'ad in an RP or JP command

to create a top level BY change.

4. 	The first word of array COMMAS in

/CLTBL/ is initialized to 1. Variable

PC, used to point to the next available

character in array CMD of /SY3COM/ (where

the input command will be packed), is

initialized to 1. The logical unit

number for the command file, U13, is

retrieved from U(13) in /SYSCOM/.

The logical unit number for the message

file, U7, is retrieved from U(7).

5. 	A call is made to SQZE (STR, 1, 80, CMD,

PC, NCS, COMMAS) to transfer and compact

the input command string (in STR of

/SYSCOM/) into array CMD. NCS is returned

as the number of characters stored by

SQZE into CMD, and pointers to syntactically

meaningful commas are returned in COMMAS.

6. 	PC is incremented by NCS.

7. 	If FC<401, go to step 9.

8. 	Set ERR = 1 and return to the calling

routine.

9. 	If COMMAS(l) < 0, meaning the last input

card has been processed for an RP or JP

command, then negate COMMAS(1) and go

to step 13.

10. If IND = 2, go to step 12.

11. If the last character stored in CMD is

a comma, then go to step 13, otherwise

increment COMMAS(l) by 1, store FC

into COMMAS(COMMAS(l)), and go to step

13.

12. Read, from unit U13, 80 characters into

the beginning of array STR. If the

actual unit number for the message

file = 7, then go to step 5, otherwise

echo the input string by writing, to

unit U7, 80 characters from the

beginning of STR, and go to step 5.

13. 	 Calculate NC, the number of characters

in the input set number, = COMMAS(2)-3.

Then convert SETNO = INPAR14

(CMD, 3, NC).

14. 	 If SETNO 0 or SETNO TABNO, then go

to step 8.

15. 	 If IND 0 1, go to step 18.
16. 	 ,Calculate NC, the number of characters

in the input format number, = COMMAS (3)

- COMMAS(2)-l. Then convert FMTNO =

INPARM(CMD, COMMAS(2)+l, NC).

17. 	 If FMTNO:_ O, go to step 8.

18. 	 Return to the calling program.

Name: 	 AEPR

Purpose:

Linkage:

Input Description:

Output Description:

Pioc6ss Description:

To parse an arithmetic expression made

up of arithmetic operators and

operands (Field names, dates, or integer

constants), entering operands (or pointers

to them) into the working buffer format

and building a sequence of internal

commands to evaluate the expression and

store the value into a specified result

variable.

o 	Calling sequence: CALL AEPR (FC, NC,

PTR, ERR)

* 	Common blocks used: SY3COM

o 	Subroutines or functions used: ADDFN,

COMSTR, DTEINT, INDEX, INPARM, STAEPR,

VERIFY

e 	Files used: None

FC = integer variable; character number

in command line at which to begin

processing.

NC = integer variable; number of

characters to process.

PTR = integer variable; location into

which the results are to be stored.

ERR = integer variable; processing or

syntax error indicator. Normal command

table containing internal commands to

evaluate the expression and store the

results.

Error flag set to zero and all internal

variables set to appropriate value.

The expression is scanned for-pai-re'd

brackets and valid alphanumeric

characters. If brackets not paired or

any invalid character found ERR set

to 2 and return executed. Otherwise,

the number of paired brackets saved for

later use, character Dointers and

counters set as needed and the

expression is scanned and PASS 1 executed

as follows:

1. (a) If the next character encountered

is not an open bracket do step 2.

Otherwise an open bracket is stored

in the next location of VTAB and a

-99 is stored in the next location of

OPC, (b). If this is the last

character the error exit is taken

otherwise update pointers and counters

and fedo step l(a).

2. If the next character encountered is

a closed bracket ERR is set to 2 and

return executed. Otherwise do step 3.

3. The next 13 characters are searched

for either the end of the scan or

an arithmetic operator. If the end

of the scan is found the pointer is,

set to the end of the scan +1

location otherwise the location of the

next operator or bracket will be

found. Then the current character will

be checked to see if it is a pound

sign. If it is not a pound sign step

4 is executed. Otherwise the next

four characters past the pound sign

are checked to see if they are numeric

digits. If they are not digits, ERR

is set to 2 and return executed.

Otherwise DTEINT is called to convert

the date to an integer, the appropriate

A7

data is stored in the normal command

buffer and step 6 executed.

4. 	The current character is checked

to see if it is a literal value.

If it is not a literal value step 5

is executed. OtherTise the literal

is converted to an integer, the

appropriate data is stored in the

normal command buffer and step 6

executed.

S. 	If none of the above were executed

then the next operand is a field

name. In this case ADDFN is called

to store the data in the normal

command buffer and step 6 executed.

6(a) If the last operand or operator has

been processed a-999 is placed in

the current location of OPC and the

pass 2 is executed as shown starting

at step 8. Otherwise the next

operator is checked to see if it is

either an open or close bracket. If

it is an open bracket the error exit

is taken. If it is a closed bracket

step 7 is taken. (b) Otherwise the

operator is stored in the next

location of OPC and step l(b) executed.

7. 	The character after the closed

bracket is checked. If it is an

open bracket the error exit is taken.

Otherwise a-88 is stored in the next

location of VTAB & OPC and the

pointer and counters updated. If

the 	character after the closed

bracket was itself a closed bracket

step 6 is taken. If the operator

after the closed bracket was not a

3VM

closed bracket and at the same

time 	located at the end point of

the 	expression to be processed,

the 	error exit is taken otherwise

step 	6b is taken.

8. 	The count of data in VTAB & OPC is

saved for later use. If the'number

of paired brackets is zero, PASS 3

is executed as shown starting at

step 10. Otherwise step 9 is

executed.

9. 	The OPC table is searched and the

innermost paired brackets, as

indicated by a -99 and a -88

respectively, is found along with

their index location. Then STAEPR

is called to store the data into

the normal command table. Then

the remainder of the VTAB & OPC

tables is written over the area where

the paired brackets were stored, the

count of data in VTAB & OPC is

decreased by the amount of data

processed by STAEPR, the number of

paired brackets is decreased by 1

and step 8 taken.

10. 	 If more than one line of data is left

in VTAB & OPC STAEPR is called to

store the data into the normal

command table. Otherwise the normal

command table is updated with the

calling argument PTR and column 5

of all used areas of the normal

command table is updated to point

to tie next expression area to be

processed.

Name: 	 AUFILE

Purpose: To control the processing for the Add File

(AF) and Update File (UF) commands.

Linkage: 	 * Calling sequence: CALL AUFILE(IJ,IFUN)

o Common blocks used: SYSCOM, SY2COM

* Subroutines or functions used: ADDR,

APSCNT, APSINT, APSTUP, AUPOST, GETREC,

INPARM, LMVTAB, REPR, SUBSTR, TFORM

* Files used: Unit 7, Logical unit U(ll)

Input Description: 	 IJ = integer variable; indicates which of

the first five fields of the input format

contains the record ID. If IJ=O, the record

ID is expected to be in characters two through

five and seven through ten of the input

record.

IFUN = integer variable; value is one for

the AF command and two for the UF command.

Output Description: 	 None

Process Description: 1. 	Variable TIMI and U7 are initialized to

zero and U(ll), respectively.

2. 	APSINT is called to initalize files U(9)

and U(10) for holding new keys and

deleted keys.

3. 	If IFUN=l, row 2 of array BUF is filled

with blanks.

4. 	Read a record into row 1 of array BUF

from'unit U7. If an end-of-file is read,

go to step 20.

so

5. 	 If IJ 0, read the record ID, J, from

BUF (via subroutine INPARM) from the

location specified in row IJ of page

1 of format array FMT. Go to step 8.

6. 	Read the upper half of the record ID

(via INPARM) from characters 2-5 of

row 1 of BUF.

7. 	If the internal format number (found

in FMTID(2)) is not 19, ,read the lower

half of the record ID (via INPARM)

from characters 7-10 of row 1 of BUF.

8. If the record ID, J, = 0, go to step

20.

9. 	If the function indicator, IFUN,=I, go

to step 11.

10. 	 Get the record with ID=J from the data

base (via GETREC) into row 2 of BUF.

If the status returned from GETREC

was zero (implying that the record was

present and its internal format was

already loaded in page 2 of array FMT),

then go to step 12. If the status

was two (implying that the record was

present, but its format had to be

loaded), then go to the next step,

otherwise go to step 3.

11. 	 Set TIM1=l and call LMVTAB to load the

move table in array MOVTAB.

12. 	 If TIM1=0, then go to step 11. If

IFUN=I, then go to step 14.

am&:

'3'

13. 	 Each field number in row 2 of the

move table is passed to subroutine

APSTUP which, if the field is a key

field, builds an entry on logical

unit U(10) to show a key field value

that needs to be deleted.

14. 	 Call subroutine TFORM to transfer

data from fields of the record in row

1 of BUF into fields of the record in

row 2 of BUF, as directed by the move

table.

15. 	 If IFUN=l, set the first word of row

2 of BUF equal to the length of

the record in that row.

16. 	 Each field number in row 2 of the move

table is passed to APSTUP which, if

the field is a key field, builds an

entry on logical unit U(9) to show a

key field value that needs to be

added.

17. 	 If IFUN=2, subroutine REPR is called

to replace the existing record with

the new one just created from the old

one and the new fields.

18. 	 If IFUN=1, subroutine ADDR is called

to add the record just read to the

data base.

19. 	 Go back to step 3.

20. 	 Write 'SP' on unit 7, use APSCNT and

AUPOST to delete old keys and post

new keys, and then return to the

calling routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

BLDTBF

To convert a data base format into a form

suitable for standardized processing.

e Calling sequence: CALL BLDTBF(P)

* Common blocks used: SY2COMySY3COM

* Subroutines or functions used: COMSTR

* Files used: None

P = integer variable; page number of array FMT

ih /SY2COM/ where the data base format is

currently stored.

None

1. Initialize K to zero.

2. Initialize I to two, the first row of the

data base format which contains a field

name.

3. If NWBF, the pointer to the last used row

of WBF, the Working Buffer Format in

/SY3COM/, is = 0, go to step 8.

4. Initialize J to one, the first row of WBF.

5. If WBF (2, J) = $R, $T, or $L, go to step 7.

6. Use COMSTR to compare the field name in

column 2 of WBF to the field name in

column Z of RMT at row I. If a match is

found, go to step 9.

7. Increment J by one. If J < NWBF, go back

to step S.

8. 	Increment NWBF by one. Transfer

columns 2, 4, and 5 of row I of

FMT to coLrunns 2, 4, and 5 of row

J of 	WBF.

9. 	Increment NTBF, the pointer to the

last used row of TBF, the Target

Buffer Format in ISY3COMI, by one.

Store a one in TBF (1,NTBF) and

store J in TBF (2,NTBF). Transfer

columns 3, 4, and 5 of row I of

FMT to columns 3, 4, and 5 of row

NTBF of TBF.

10. 	 If the target field type, TBF

(7,NTBF),=4, set k=l.

11. 	 Initialize I to one. Search

column 2, row I, of WBF for $R,

$T, or $L. If any one is found,

go to step 15.

12. 	 Search column 2 of WBF for the

field 	names "UNLOAD" and "LSD".

If "UNLOAD" is found, go to step

13. 	 If "LSD" is found, go to

step 14. If neither is found,

go to step 15.

13. 	 Set TBF(4,1) = -I. If TBF(A,2)
0, return to the calling routine,

otherwise go to step 15.

14. 	 Set TBF(4,2) = -I. If TBF(4,1)

30, return to the calling routine.

15. 	 If TBF(4,1) = 0, meaning "UNLOAD"

was not found, increment NWBF by

one, store "UNLOAD" as a field

name in column 2 of WBF at row NWBF,

set TBF(4,1) = -NWBF, and then, if

TBF(4,2) y 0, return to the calling

routine.

16.. Increment NWBF by one, store "LSD"

as a field name in column 2 of WBF at

row NWBF, set TBF(4,2) = -NWBF, and

return to the calling routine.

.36

Name: 	 CFCR

Purpose: 	 To direct the overall processing sequence

for the CF command.

Linkage: 	 e Calling sequence: CALL CFCR

* 	Common blocks used: SYSCOM, SY2COM,

SY3COM, CLTBL

* 	Subroutines or functions used: AEINIT,

CICFDF, APSINT, SETINi XXINl, FTFMT,

FTCMP, GETREC, TFORMW, EXCMDS, APSTUP,

TFORMZ, REPR, APSCNT, AUPOST

* 	Files used: Message file (logical unit

7), Deleted keys file (logical unit 10),

New keys file (logical unit 9)

Input Description: 	 None

Output Description: 	 None

Process Description: 1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/ and use

AEINIT to initialize 	/SY3COM/,

returning input set number in SETNO

and a non-zero in ERR if any errors

were found.

2. If ERR = 0, go to 	step 4.

3. 	Write on U7, "Command terminated due to

syntax error." and return to the calling

routine.

4. If COMMAS(1).S 2, meaning there are no

replacement clauses, then go to step 3.

5. Use CICFDF(0,, ERR) to complete the

command interpretation, returning ERR

non-zero if any errors were found.

6. If ERR t 0, go to 	step 3.

7. 	Use APSINT to initialize for storing

deleted keys on file 	U(10) and new

keys on file U(9). Use SETINI to

initialize for returning record ID's

via 	XXINl. Use XXIN1 (RID) to return the

first record ID in RID.

8. If RID = 0, return to the calling

routine.

9. Use FTFMT (RID, 1, ERR) to complete the

buffer formats with information about

fields whose names occurred in the input

command, returning ERR non-zero if an

error occurred.

10. 	If ERR 9 0, go to step 3.

11. 	Use FTCMP to complete starting location

information in the Working Buffer Format.

WBF in /SY3COM/.

12. 	Loop through the Target Buffer Format,

TBF in /SY3COM/, comparing its column 2

contents with the values found in column

2 of the Multilevel Move Table, MLMT in

/SY3COM/. When a match is found at

row 	I of TBF and row K of MLMT, extract

L = 	column 1 of row K of MLMT, so that

L points to the matching row

of the Source Buffer Format, SBF in

/SY3COM/. Then transfer the key field

indicator from SBF(l,L) to TBF(3,I),

the 	data base format row number from

SBF(2,L) to TBF(4,I), the starting

character position in the data base

record from SBF(S,L) to TBF(5,I), the

length of the field from SBF(6,L) to TBF

(6,1)) and the type of the field from

SBF(7,L) to TBF(7,I).

13. 	Use GETREC(I, RID, STAT) to retrieve

record RID into row 1 of BUF, the

record buffer in /SY2COM/, returning

STAT non-zero if there was any problem

with the retrieval.

37

14. 	If STAT $ 0, bypass this record by
going to step 23.

15. 	Use TFORMW(1,1) to transfer needed

fields from row 1 of BUF to WBUF,

difected by row 1 of the Move Table

Control Table, MTCT in /SY3COM/.

16. 	Set EF = 0 and use EXCMDS to execute

the commands in the Normal Command

Table, CTBL in /SY3COM/, returning

CFLAG as false if there was a failure

of a relational clause, and returning

EF non-zero if a command could not

be executed for some reason.

17. 	If CFLAG is false, bypass this record

by g6ing to step 23.

18. 	If EF A 0, bypass this record by

going to step 23.

19. 	Loop through TBF looking for key fields.

When one is found (TBF(3,I) 0), then

use APSTUP to store the key to be

deleted on file U(20).

20. 	Use TFORMZ(l,l) to transfer changed fields

from WBUF to row 1 of BUF.

21. 	Loop through TBF, and for each key

field found, use APSTUP to store the

new key on file U(9).

22. 	Use REPR to replace the old record in

the data base with the revised one in

row 1 of BUF.

23. 	Use XXINl(RID) to get the next record

ID into RID.

24. 	If RID 0, meaning there was a next

record, then go back to step 13.

25. 	Use APSCNT to retrieve the number of

keyp to be changed in the data base.

26. 	Use AUPOST to delete the keys stored

on file U(10).

%cSB

27. 	 Use AUPOST to add the keys stored on

file U(9).

28. 	 Return to the calling routine.

39'

Name: CFIND

Purpose:

Linkage:

Input Description:

Output Description:

To locate any single character of one string

within another string.

e Calling sequence: CALL CFIND (STRA,

STA, NCA, STRB, STB, NCB, LOCA, LOCB)

* Common blocks used: None

* Subroutines or functions used: INDEX

* Files used: 1one

STRA = integer array name; start of string

to be searched

STA = integer variable; character number of

STRA at which to begin search

NCA = integer variable; number of characters

in STRA to be searched

STRB = integer array name; start of string

containing characters for which to search

STB = integer variable; character number of

STRB where search characters start

NCB = integer variable; number of search

characters in STRB to be used.

LOCA = integer variable; character number in

STRA where the first find was made. Zero if

no characters in STRB were found in STRA.

LOCB = integer variable; character number in

STRB of the character found. Zero if none

found.

Process Description: Succes-sivechiracters FfSTRA, starting-at

STA and continuing for NCA characters, are

individually compared to the characters in

STRB (via the INDEX function) until a match

is found or STRA is exhausted.

Name: CHAR

Modification Purpose: To allow'conversion of negative numbers.

Linkage Modification: . Calling sequence: No change

e Common blocks used: No change

* Subroutines or functions used! The
Fortran function IABS is now used.

e Files used: No change

Input Description Modification: V = integer variable; may now contain

values less than zero.

Output Description Modification: STR = integer array name; leftmost

position will contain the minus

character if the input value in V

was negative.

Process Description Modification: Convert the absolute value of V to a

character string by the original process.

Then, if V is negative, store the minus

character as the leftmost character of

the output field.

a-fr

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CICFDF

To direct the command interpretation phase

of the CF, DF, and JF commands.

* 	Calling sequence: CALL CICFDF(IND, ERR)

* 	Common blocks used: SY3COM, CLTBL

* 	Subroutines or functions used: CFIND,

RPCLPR, RLCLPR

* 	Files used: None

IND = integer variable; indicator for which

command is being processed. Set zero for

CF command. Set non-zero for D or JF

commands.

ERR = integer variable; error indicator.

Returned zero if no errors found. Returned

non-zero if any error is found.

1. The error indicator, ERRis initialized

to 0. The replacement expression

found indicator, REF, is initialized to 0.

The commas pointer, CP, is initialized

to 2.

2. 	If IND $ 0, CP is changed to equal 3.
3. 	The first character pointer, FC, is

calculated = COMMAS(CP)+I. The number

of characters, NC, between commas is

calculated = COMMAS(CP+1)-PC.

4. Use CFIND to check the character at FC

for a single quote mark, a number sign,

or a numeric character. If any of these

are found, go to step 9.

5. Use CFIND to check all NC characters for an

arithmetic operator, parenthesis, equal

sigh or period. If one of these is found,

go to step 7.

6. Set ERR = 1 and return to the calling

routine.

7. If an equal sign was found, go to step

14.

8. Since no equal sign was found, the

clause must be a relational clause.

Since all relational clauses are to

be before replacement clauses, check REP

to see if a replacement clause has been

found. If REF 9 0, go to step 6.

9. Use RLCLPR(PC, NC, ERR) to process the

relational clause and return ERR

non-zero if errors were found,

10. 	If ERR 9 D, go to step 6.

11. 	Increment CP by 1. If CP 9 COMMAS (1),

go to step 3.

12. 	If IND 9 0, return to the calling routine.

13. 	The CF command must have a replacement

clause, so if REF = 0, go to step 6,

otherwise return to the calling routine.

14. 	Set REF = 1 and use RPCLPR (FC, NC,I, IND,

ERR) to process the replacement clause.

I was returned previously from CFIND as

the location of the equal sign, and ERR

will be returned non-zero from RPCLPR

if any errors are found.

15. 	If ERR 9 0, then go to step 6, otherwise

go to step 11.

5[3

Name: 	 CIMAIN

Purpose: 	 To direct control to the proper command

routine.

Linkage: 	 * Calling Sequence: CALL CIMAIN(STRING)

* Common blocks used: SYSCOM, SECCOM

* Subroutines or functions used:

CISUBl, CISUB2, CISUB3, CISUB4,

CISUB5, CISUB6, CLOSEP, JPRPCR,

MODE, STATUS, SUBSTR, VERIFY

* Files used: None

Input Description: 	 STRING = alphanumeric character string

containing the command line syntax.

Output Description: 	 None

Processing Description: 	 1. Set SECURE(17)=1

2. 	Search command line for blank

character position, if found

continue with next step, else

return to calling routine.

3. 	Store command line in STR, and

process next step.

4. 	Compare command in CMD with each

element of the command table

[SWITCH(K)], if CMD = SWITCH(K),

go to the next step, else write

'INVALID 	 COMAND'message, then go

to step 20.

tff

5. 	Verify first command issued is

a BE command. If SECURE(K) 31,

go to step 20, else continue with

the next step.

6. 	If k<6, go to step 12; if k>9,

go to step 7, else call CISUB1(k),

then go to step 19.

7. 	If k>16, go to the next step, else

CALL CISUB2 (k), then go to step

19.

8. 	If k>19, go to the next step, else

CALL CISUB3(k), then go to step 19.

9. 	If k>24, go to the next step, else

CALL CISUB4(k), then go to step 19.

10. 	 If k>37,' go to the next step, else

CALL CISUB5(k), then go to step 19.

11. 	 Call CISUB6(K,FLAG), then go to

step 18.

12. 	 If k~l, go to the next step, else

go to step .9.

13. 	 If k72, go to the next step, else

CALL STATUS(0), then go to step 19.

14. 	 If k33, go to next step, else CALL

MODE, then go to step 19.

15. 	 If k/4, go to the next step else

set CIND=0, then go to step 17.

16. 	 Set CIND=l.

17. 	 Use JPRPCR(CIND)-to'process the

RP, or JP commands, indicated from

step 15 or 16, then go to step 19.

18. If FLAG <1, go to next step, else

CALL SUBSTR, which stores STR into

STRING. Return to step 1.

19. Call CLOSEP, process next step.

20. Return to calling routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CIRP

To difect the activities of parsing the

command line, building tables, and

buildingbuffer formats for the RPand JP

commands.

* 	Calling sequence: CALL CIRP(CIND,

RECID, ERR)

* 	Common blocks used: SY3COM, CLTBL

* 	Subroutines or functions used: COMSTR,

CPIND, ADDFN, AEPR, ADDLT, INDEX,

INPARM, FTFMT, PTCMP

a Files used: None

CIND = integer variable; command indicator.

Set 0 for RP command or non-zero for JP

command.

RECID = integer variable; contains the

record ID (accession number) of the

first record of the input set.

ERR = integer variable; error indicator.

Returned zero if no errors are found

and non-zero if any error is found.

1. 	Counters and pointers are initialized.

2. If there are some clauses in the command,

go to step 4.

3. Set ERR = 1 and return to the calling

routine.

4. If there are no characters in the clause,

go to step 3.

5. If this clause is the first one and it

is not a BY clause, then go to step 3.

6. If this clause is not a BY clause and

not the first clause, then go to step 16.

7. If this BY clause is occurring after

an EBE BY clause has occurred, then go

to step 3.

8. If this is the sixth BY clause, then

go to step 3.

9. If there is no grouping field name for

this BY clause, then go to step 3.

10. 	If this is an E&E BY clause, then if

there are no report expressions, then

go to step 3, otherwise store zeroes

in the first 3 columns of the BY

Processing Table, BPT in /SY3COM/,

for this BY clause and go to step'15.

11. 	Use CFIND to check the grouping field

name for arithmetic operators or

parentheses. If any are found, go

to step 13.

12. 	Set columns 2 & 3 of BPT = 0 for this

BY clause, use ADDFN to store the

grouping field name in the Working

Buffer Format, WBF in /SY3COM/, store

the row number returned by ADDFN into

column I of BPT for this BY clause,

and go to step 15.

13. 	Store the negative of the next

available row number of WBF in column 1

of BPT for this BY clause. Store $R

in column 2 of that row of WBF. Store

the next available row number of the

Normal Command Table, CTBL in

/SY3COM/, into column 2 of BPT for

this BY clause. Store 4 and-I into

columns 4 & 5 of the $R row of WBF.

14. 	Use AEPR to generate the commands which

evaluate the arithmetic expression.

If AEPR found any syntax errors, go

to step 3. Calculate the number

3$2

of commands generated by AEPR and

store this number into column 3 of

BPT 	for this BY clause.

15. 	Move to the next pair of commas. If

there is none, go to step 29, otherwise

go back to step 4.

16. 	If this report expression is not a

text type, go to step 18.

17. 	Use ADDLT to create an entry in WBF for

this text literal and store values in the

Target Buffer Format, TBF in /SY3COM/,

to cause this text to be printed at the

start or conclusion of this BY clause

(depending on whether single or double

quote mark characters were used). Go

to step 15.

18. 	Compare the beginning characters of the

report expression with an internal table

of function names. If no match is

found, go to step 21.

19. 	If this function reference is found

in an E&B BY clause, then go to step 3.

20. 	Use ADDFN to create the field name

reference in WBF for the field name

specified in the function. Create a

$R row in WBF for the results of the

function to be carried and create a

reference in TBF to get the results

printed upon the conclusion of this

BY clause. Based on which function

was 	specified, store an initialization

value in column 1 of the $R row of WBF.

Then go to step 15.

21. 	Use INDEX to check for an equal sign

in the report expression. If there

is one, go to step 24.

22. 	This report expression is only a field

name. If it has greater than 12

characters, go to step 3.

23. 	Use ADDFN to create a reference to the

field name in WBF, and create an entry

in TBF to cause the value of this field

to be printed at the beginning of this

BY clause. Then go to step 15.

24. 	Use CFIND to determine if this report

expression begins with an I or a D.

If it begins with neither, then go

to step 3.

25. 	Use INPARM to convert the input field

width to a binary integer. If it is

greater than 99, then go to step 3.

26. 	Create a'results field ($R) in WBF

and a target'field for printing in

TBF. Store'the target field type in

TBF as a 1 or a 2 based on whether the

report expression began with an I or a

D, respectively.

27. 	Initialize column 4 of BPT for this BY

clause if it has not already been done.

28. 	Use AEPR to process the arithmetic

expression to the right of the equal

sign, and accumulate the number of

commands generated into column 5 of

BPT for this BY clause. Then go to

step 15.

29. 	If CIND = 0, then set NLVLS, the number

of data base levels, = 1, otherwise

set NLVLS = 2.

30. 	Use FTFMT (RECID, NLVLS, ERR) to

search the data base formats,

collecting field information for WBF

and SBF, the Source Buffer Format in

/SY3COM/. If ERR is returned non-zero,

go to step 3.

31. 	Now that the type and length of data base

fields are known, this information is

used to complete needed portions of WBF

-j94

4-_0

and TBF where just field names and

functions with field names are the

report expressions.

32. 	Where function results are called for

in WBF, a command is entered in the

Function'CoThmand Table, FCTBL in

/SY3COM/.

33. 	Use FTCMP to generate starting character

positions in,WBF and initial values in

WBUF.

34. 	Use FTCMP to generate starting character

positions with two spaces between fields

in TBF.

35. 	Return to the calling routine.

Name: 	 CISUBI

Purpose_ * 	To direct selection of the appro

priate subroutine(s) for execution

of the associated command.

Linkage: * 	Calling sequence: Call CISUBI (k)

* 	Common blocks used: none

* 	Subroutines or functions used:

CFCR, JFDFCR, END

* 	Files used: none

Input Description: 	 k = integer variable; indicator for

which command is being processed.

Set k=6 for CF command. Set k=7 for

DF command. Set k=8 for JF command.

Set k=9 for EN command.

Output Description: 	 None

Processing Description; 	 1. Set LK = k-5

2. 	If LKl, go to step 3, else use

CFCR to process the CF command,

then go to step 9.

3. 	If LK 2 go to step 5, else process

the next step.

4. 	Set CIND = 0, indicates the DF

command is being processed, go to

step 7.

5. 	If LK$3 go to step 8, else go to

the next step.

6. Set CIND = 1, indicates 	the JF

command is being processed, go to

next step.

7. 	Use JFDFCR to process the DF or

JF command indicated from step 4

or 6. Go to step 9.

8. 	If LK#4 go to step 9 else use END

to process the EN command.

9. 	Return to calling routine.

Name: 	 CISUB2

Purpose: 	 To direct selection of the appropriate

subroutine(s) for execution of the

associated command.

Linkage: 	 * Calling sequence: Call CISUB2(k)

e 	Common blocks used: none

* 	Subroutines or functions used:

JNSNCR, SELECT, COMBIN, HEADER,

STCNT, DELETE

* 	Files used: none

Input Description: 	 k = integer variable; indicator for

which command is being processed.

Set k=10 for SN command. Set k=ll

for JN command. Set k=12 for SK

command. Set k=13 for CO command. Set

k=14 for HD command. Set k=15 for

SC command. Set k=16 for DE 	 command.

Output Description: 	 None

Processing Description: 	 1. Set LK= k-9.

2. 	If LKI3l, go to step 3, else set

CIND=0, go to step 4.

3. 	If LK2, go to step 5, else set

CIND=l, go to next step.

4. 	Use JNSNCR to process the SN or

JN command, then go to step 10.

5. 	If LK#3, go to step 6, else use

SELECT to process the SK command.

Then go to step 10.

4-5'

6. 	If LK4, go to step 7 else use

COMBIN to process the CO command.

Then go to step 10.

7. 	If LKy5, go to step 8, else use

HEADER to process the HD command.

Then go to step 10.

8. 	If LJC36, go to step 9, else use

STCNT to pkocess the SC command.

Then go to step 10.

9. 	If LK#7, go to step 10, else use

DELETE to process the :DE command.

10. Return to calling routine.

Name: 	 CISUB3

Purpose: 	 To direct selection of the appropriate

subroutine(s) for execution of the

associated command.

Linkage: 	 * Calling Sequence: Call CISUB3 (k)

* 	Common blocks used: SECCOM

* 	Subroutines or functions used:

BEGIN, CLEANP, UNLOCK, SPLUS,

SMINUS

* 	Files used: None

Input Description: 	 k= integer variable, indicator for

which command is being processed.

Set 	k=17, for BE command. Set k=18,

for 	S+ command. Set k=19, for S

command.

Output Description: 	 None

Processing Description: 	 1. Set LK= k-16.

2. 	If LXI, go to step 3, else use

BEGINCLEANP; and UNLOCK to

process the command line. Then

go 	to step 5.

3. 	If LK$2, go to step 4, else use

SPLUS to process the S+ command.

Then go to step 5.

4. 	If LK$3, go to step 5 else use

SMINUS to process the S- command.

5. 	Return to calling routine.

Name: 	 CISUB4

Purpose: 	 To direct selection of the appropriate

subroutine(s) for execution of the

associated command.

Linkage: 	 * Calling Sequence: Call CISUB4(k)

* 	Common blocks used: None

* 	Subroutines or Functions: SORTP,

TJUMP, CMDRI, MOVSEG

* 	Files used: None

Input Description: 	 k= integer variable; indicator for

command being processed. Set k=20,

for SO command. Set k=22, for JT

command. Set k=21, for JS command.

Set k=22, for JT command. Set k=23, for

CM command. Set k=24, for MO command.

Output Description: None

Processing Description: 	 1. Set LK= k-19

2. 	If LK I, go to step 3, else set

CIND=l, go to step 4.

3. 	If LK2, go to step 5, else set

CIND=2, go to next step.

4. 	If CIND=l process SORTP.

If CIND=2 process SORTP, go to

step 8,

5. 	If LK#3 go to step 6, else use

TJUMP, then go to step 8.

6. 	If LKy4, go to step 7, else use

CMDRI to process the CM command.

Then go to step 8.

7. 	If LK#5, go to step 8, else use

MOVSEG to process the MO command.

8. 	Return to calling routine.

Name: 	 CISUB5

Purpose: 	 To direct selection of the appropriate

subroutine(s) for execution of the

associated command.

Linakge: 	 * Calling Sequence: Call CISUB5(k)

* 	Common blocks used: None

* 	Subroutines or functions used:

EXPAND, DISPLA, XREF, SEUNIV,

SELREC, SPCSET, FORM, DISPDD,

REAF, PARSEP, PARSEC, ADDREC

Input Description: k= integer variable, indicator for

command being processed.

Set k=25, for EX command.

Set k=26, for PA command.

Set k=27, for DI command.

Set k=28, for XR command.

Set k=29, for SU command.

Set k=30, for SR command.

Set k=31, for SS command.

Set k=32, for DD command.

Set 	k=33, for FO command.

Set k=34, for RF command.

Set k=35, for GP command.

Set k=36, for GC command.

Set k=37, for AR command.

Output Description: 	 None

Processing Description 	 1. Set LK= k-24.

2. 	If LKIl, go to step 3, else set

CIND=O, go to step 4.

7

3. 	If LKt2, go to step 5, else set

CIND=I, go to next step.

4. 	Use EXPAND to process the EX or

PA command, indicated from step

2 or 3. Then go to step 16.

5. 	If LK13, go to step 6, else use

DISPLA, to process the DI command.

Then go to step 16.

6. 	If LKI(4, go to step 7, else use

XREF to process the XR command.

Then go to step 16.

7. 	If LK35, go to step 8, 31se use

SEUNIV to process the SU command.

Then go to step 16.

8. 	If LK$6, go to step 9, else use

SELREC to process the SR command.

Then go to step 16.

9. 	If LK/7, go to step 10, else use

SPCSET to process the SS command.

Then go to step 16.

10. 	 If LK38, go to step 11, else use

FORMM to process the DD command.

Then go to step 16.

11. 	 If LK79, go to step 12, else use

DISPDD to process the FO command.

Then go to step 16.

12. 	 If LK3l0, go to step 13, else use

REAF to process the RF command.

Then go to step 16.

13. 	 If LKl1I, go to step 14 else use

PARSEP to process the GP command.

Then go to step 16.

bb

14. 	 If LK#12, go to step 15 else use

PARSEC to process the GC command.

Then go to step 16.

15. 	 If LKIl3, go to the next step, else

use ADDREC to process the AR

command.

16. 	 Return to calling routine.

Name:

Purpose:

Linkage:

Input Description:

CISUB6

To direct selection of the appropriate

subroutine(s) for execution of the

associated command.

* 	Calling sequence: Call CISUB6(k,

FLAG)

* 	Common blocks used: None

* 	Subroutines or functions used:

CAUFIL, XPOST, ADDKEY, DBPRO,

DELKEY, CRESTS, DELREC, REPKEY,

REPREC.

" 	Files used: None

k= integer variable, indicator for

which command is being processed.

Set k=38, for AF command.

Set k=39, for UF command.

Set k=40, for UP command.

Set k=41, for PO command.

Set k=42, for VP command.

Set k=43, for AK command.

Set k=44, for DK command.

Set k=45, for RE command.

Set k=46, for KY command.

Set k=4'7, for MS command.

Set k=48, for DS command.

Set k=49, for DR command.

Set k=50, for RK command.

Set k=5l, for RR command.

3M9=5,fo.9 	 omad

Output Description:

Processing Description:

FLAG = integer variable; where

FLAG = 1 means do not allow data base

to be altered.

FLAG = 0 means do allow data base to

be altered.

FLAG = 2 means process input line as

next command.

1. 	Set LK= k-37, and set FLAG=0, go

to rieAtstep.

2. 	If LK#l, go to step 3, else set

CIND=I, go to step 4.

3. 	If LK#2, go to step 5, else set

CIND=2, go to next step.

4. 	Use CAUFIL to process the AF or

UF command, indicated from step

2 or 3. Then go to step 17.

5. 	If LKr3, 4, or 5 go to step 6,

else use XPOST to process the

UP, PO, or VP command. Then

go to step 17.

6. 	If LK/6, go to step 7, else use

ADDKEY to process the AK command.

Then go to step 17.

7. 	If LKA7, go to step 8, else use

DBPRO(FLAG) to pick up variable

FLAG. If FLAG$0 go to step 17,

else use DELKEY to process the

DK command. Then go go step 17.

8. 	If LK98, go to step 9, else set

CIND = 1 and go to step 13.

9. 	If LK79, go to step 10, else set

CIND=2, go to step 13.

10. 	 If LKI0, go to step 11, else set

CIND=3, go to step 12.

11. 	 If LK-IIl, go to step 14, else set

CIND=4, go to next step.

12. 	 Use DBPRO(FLAG) to pick up variable,

FLAG. If FLAG 7 0 go to step 17,

else next step.

13. 	 Use CRESTS(CIND) to process the RE,

KY, NK, or DS command. Then go to

step 17.

14. 	 If LK$12, go to step 15, else use

DBPROFLAG) to determine FLAG

status. If FLAG/0, go to step 17,

else use DELREC to process the DR

command. Then go to step 17.

15. 	 If LKl3, go to step 16, else use

REPKEY to process the RK command.

Then go to step 17.

16. 	 If LK I4, go to step 17, else use

REPREC to process the RR command.

17. 	 Return to calling routine.

Name: 	 CRESTS

Purpose: 	 To parse the command line for the

RE, KY, NK, and DS commands.

Linkage: • 	Calling sequence: CALL CRESTS (IFN)

* 	Common blocks used: SYSCOM, SY2COM

* 	Subroutines or functions used:

CLOSEP, INDEX, INPARM, LODFMT,

RESTRX

Files used: None

Input Description: 	 IFN = integer variable, indicator

for command being processed.

If IFN=l, process RE command.

If IFN=2, process KY command.

If IFN=3, process NK command.

If IFN=4, process DS command.

Output Description: 	 None

Processing Description: 1. 	Search the command line for

comma, if a comma is found a

non-zero value is assigned to

variable k which indicates the

numeric location of the comma

in the command line. If a

comma is not found, variable k

is set to zero.

2. 	If k=O go to step 9, else

continue with the next step.

3. 	M = integer variable represent

ing the set number wt&n the

command line. If m=O go to step

8, else go to the next step.

4. 	If IFN=4, go to step 9, otherwise

verify the existence of a format

number, convert to integer, and

store the converted integer into

FMTID(2).

5. 	Call LODFMT, process next step.

6. 	Use RESTRX(M, IFN) to process the

appropriate command, with (M)

containing the set number and

(IFN) the proper command switch.

7. 	Call CLOSEP, continue with next

step.

8. 	Return to calling routine.

9. 	If IFN$4; this implies the DS

command was attempted, however

a syntax error exists in the

command line, therefore go to

step 8. If ThN=4, k = integer

value of first blank. This

value is used to determine the

number of characters to convert

from alpha to integer. Return

to step 3.

Name: 	 DBPRO

Purpose: 	 To prevent accidental alteration of the

data base for certain commands.

Linkage: 	 * Calling Sequence: Call DBPRO (FLAG)

* 	Common blocks used: SYSCOM

* 	Subroutines or functions used: COMSTR,

SUBSTR, VERIFY

* 	 Files used: Logical units U(7) and

U(13).

Input Description: A command line containing the input command

line plus a "Yes," "Y,"' "No," or "N"

after the command or a command line

containing the input line then another

input line containing a "yes" or "No"

in response to an output query.

Output Description: 	 FLAG = integer variable; where FLAG = 1

means do not allow data base to be

altered and FLAG=0 means do allow data

base to be altered.

FLAG=2 means the current command is

ignored, but process array STR as next

command.

Process Description: 	 1. Initialize FLAG to zero.

2. 	Use VERIFY to verify the existence

of a non-blank character at or

beyond position 60 of the command

line. Variable k is set.

3. If k=0 go to step 6. 	If k30, use

COMSTR to compare the character at

k of STR with a 'Y'.

4. 	If COMSTR=O, return to the calling

routine.

5. 	Use COMSTR to compare the character

at k of STR with a 'N'. If COMSTR=

0, go to step 14.

6. 	Write the command line to the message

file with a 'YES or NO?' query.

7. 	Read the response to the query from

the command file.

8. 	Use VERIFY to check for a non-blank

character in response to the query.

9. 	If k=0, go to step 14.

10. 	 Use COMSTR to compare the response

to the query with tYES'. If COMSTR=

0, return.

11. 	 Use COMSTR to compare the response

to the query with 'NO'. If COMSTR=

0, go to step 14.

12. 	 Set FLAG=2.

13. 	 Use SUBSTR to move the response

data into STR, and to return to

the calling routine.

14. 	 Set FLAG=l.

15. 	 Return to the calling routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Processing Description:

DISFMT

To direct output to appropriate

file unit.

* 	Calling sequence: CALL DISFMT

(ID,L,STR)

* 	Common blocks used: SYSCOM

* 	 Subroutines or functions used:

None

* 	 Files used: U(12), U(8)

ID = integer variable, indicator

for file unit assignment.

If IDl assign U7=U(12)

If ID91 assign U7=U(8)

L = integer variable, indicates

length of input string STR.

STR = alphanumeric character

string.

STR 	= alphanumeric character string.

1. 	If ID=l, set U7=U (12) and

process the next step.

2. 	If ID3l, set U7=U(8) and process

the next step.

3. 	LL=L, stores input length into

LL, go to the next step.

4. 	If LL>30, set LL=30,

5. 	If U7p7, write the contents

of STR with a format length

of 30 words to unit = U7.

6. 	If U7=7, write the contents

of STR with a format length

of 15 words, process next

step.

7. 	Return to calling routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

DTEINT

To convert date format to/from a binary

integer.

* 	Calling sequence:

CALL DTBINT (FUNC, INT, STP, ST, NC)

* 	Common blocks used: None

* 	Subroutines or functions used:

SUBSTR, CHAR, INPARM, MOD

* 	Piles used: None

FUNC = Ihdicator, if FUNC = 0, converts

character string (STR) to an integer (INT).

If FUNC # 0, converts an integer to a

character string (STR).

INT = Integer input.

STR = character string input.

ST = starting position of character string.

NC = number of characters of STR to be

converted.

INT = Integer output from converted

character string.

STR = character output from input integer.

In addition to the input variables, this

routine contains an internal Julian

day conversion table DTAB. DTAB is a

one-dimensional array with each element

representing the total number of days from

the base year to year IN', where N is the

relative position of the array element

representing an offset from the base

year. If FUNC indicates an integer is

to be converted to a character string the

input integer date is tested for an invalid

date. If this date is greater than the

1-AQ

greatestvalue of DTAB the input date

is replaced with that particular DTAB

element and the conversion process

continued. However if the integer date

is less than or equal to zero, blanks

are moved to the output string (STR).

Assuming the integer date is greater than

zero, DTAB is searched until a value

that is greater than or equal to the input

integer is found. The input integer minus

the previous table value gives the day

segment of the Julian date. The year

segment is then calculated by adding the

base year to the DTAB index minus a

constant of two. Having converted the

integer date ;o a Julian date format the

results are then converted to an

alphanumeric character string by use of

the CHAR subroutine. To convert from an

-alpha Julian date format the year aw-i

day segments are calculated. The year

portion is subtracted from the base year

to serve as an index to pick up the

appropriate DTAB element. Once this

element is obtained this value is added to

the day segment to produce the output

integer.

ah

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

EXCMD

To 	pertorm the operations specified in one row

of 	a command table.

* 	Calling sequence: CALL EXCMD LTBL, ROW, ERR,

CFLAG)

* 	Common blocks used: SY3COM

* 	Subroutines or functions used: SUBSTR,

DTBINT, INPARM, CHAR, COMSTR

a 	Files used: None

TBL = integer array name; starting location of

the table containing the command to be executed.

ROW = integer variable; contains the row number

of 	TBL where the command to be executed is

stored.

ERR = integer variable; contains zero on normal

command execution or non-zero when command

cannot be executed.

CFLAG = logical variable; contains .TRUE.

normally, but is set to .FALSE. when the

command is a logical comparison and the

comparison fails.

Refer to the Command Table and Command Operations

Table layouts as a supplement to this

description. The value retrieved from

the 	references in columns 1-4 of the command

table will be referred to as OPND(l), OP, OPND(2J,

and RESULT, respectively, in this description.
I

1. 	ERR and CFLAG are initialized to zero and

true OP is retrieved from TBL (2, ROW),

OPND(l)'s pointer, P, is retrieved from

TBL (1, ROW), and N is initialized to one.

2. 	If OP > 0 and < 17, go to step 4.

3. 	Set ERR = 1 and return to calling routine.

4. 	If OP > 10, go to step 24.

5. 	If P = 0, go to step 3.

6. 	If P < 0, negate P, retrieve OPND(N) from

REG (P), an array in /SY3COM/, and go to

step 10.

7. 	Retrieve OPND(N) 1s type trom column 5 at

row P of the Working Buffer Format, WBF,

in /SY3COM/.

8. 	If OPND(N)'s type = 0, then if OP < 5, then

go to step 3, otherwise if N = 2, then go

to step 3, otherwise go to step 20.

9. 	Convert the value of OPND(N) from the

Working Buffer, WBUF in /SY3COM/, based

on the type, using either subprogram

SUBSTR (type < 0, a-b~ary integerT

INPARM (type = 1, a numeric character

string), or DTBINT (type = 2, a date

character string).

10. 	 If N = 1, then set N =2, retrieve a new

P from TBL (3, ROW), and go to step 5.

11. 	 If OP > 4, go to step 22.

12. 	 Perform the arithmetic operation specified

by OP, using OPND(1) and OPND(2) and storing

the result in RESULT. If OPNDC2) of a divide

operation = 0, then go to step 3.

13. 	 Retrieve a new P for RESULT from TBL (4, ROW).

14. 	 If P = 0, go to step 3.

15. 	 If P < 0, negate P, store RESULT in REG(P),

and go to step 19.

16. 	 Retrieve RESULT's type from column S at row

P of WBF.

17. 	 If type = 0, go to step 3.

18. 	 Convert the value in RESULT into WBUF

based on the type, and using subprogram

SUBSTR (type < 0), CHAR (type = 1), or

DTEINT (type = 2).

714

19. 	 Return to the calling routine.

20. 	 If OPND(2)'s pointer in TBJ (3, ROW)

= 0, or if OPND(2)'s type 1 0, then
go to step 3.

21. 	 Perform an alphanumeric comparison

between OPND(l) and OPND(2) and set I to

be negative, zero, or positive according

to whether OPND(l) < OPND(2), OPND(1) =

OPND(2), or OPND(l) > OPND(2), respectively.

Go to step 23.

22. 	 Perform arithmetic comparison by setting

I = OPND(±)-OPND(2).

23. 	 Leave CFLAG = true or change CFLAG = false

based on the following table and then

return to calling routine:

I < 0 I = 0 £ > 0

OP = 5 true false false

OP = 6 true true false

OP = 7 false true false

OP = 8 true false true

OP = 9 false true true

OP = 10 false false true

24. 	 if OP = 16, go to step 40.

25. 	 Retrieve OPND(2)'s pointer, PZ, from

TBL(3, ROW). If P2 = 0, go to step 3.

26. 	 If OP > 13, go to step 35.

27. 	 If OPND(2) in WBUF is blanks, go to step

39.

28. 	 Retrieve OPND(1) from WBUF using SUBSTR.

29. 	 If O = i, set OPND(2) = OPND(l) +1,

and go to step 34.

30. 	 Retrieve OPND(2) from WJ3UF, converting

based on its type and using INPARM or

DTEINT.

31. 	 Perform a numeric comparison between

OPND(l) and OPND(2). If OPND(l) =

OPND(2), go to step 39.

32. 	 If OPND(1) > OPND(2), then if OP = 13,

then go to step 39, otherwise go to

step 34.

33. 	 If OP = 12, then go to step 39.

34. 	 Use SUBSTR to store OPND(2) into

OPND(1)'s place in WBUF and go to step

39.

35. 	 Perform an alphanumeric comparison between

OPND(1) and OPND(2). If OPND(1) = OPND(2),
to to step 39.

36. 	 Ii OPND(1) > OPND(2), then if OP = ib,

then go to step 39, otherwise go to step

38.

37. 	 If OP = 14, go to step 39.

38. 	 Use SUBSTR to store OPND(2Jts character

string in WBUF into OPND(1)'s character

string in WBUF.

39. 	 Return to calling routine.

40. 	 If P = 0, go to step 3.

41. 	 If P < 0, negate P, retrieve RESULT from

REG(P), and go to step 13.

42. 	 Retrieve OPND(l)'s type from column S

at row P of WBP. If type = 0, go to step

44.

43. 	 Convert OPND[I) from WBUF into RESULT

based on type using subprogram SUBSTR

(type < 0), INPARM (type = 1), or

DTEINT (type = 2). Go to step 13.

44. 	 Retrieve RESULT's pointer, P2, from TBL

(4, ROW). if P2 = 0, go to step S.

45. 	 Transfer OPND(l)'s character string in

WBUF to RESULI's location in WBJF, using

SUBSTR, and then to go step 39.

Name: 	 EXCMDS

Purpose: 	 To execute a sequence of related command

rows in a command table.

Linkage: * 	 Calling sequence: CALL EXCMDS (TBL, SR, NR,

BRRFNC, CFLAG)

* Common blocks used: SY3COM

* Subroutines or functions 	used: EXCMD,

SUISTR

a Files used: None

Input Description: 	 TBL = integer array name; starting location

of the table which contains the commands to

be executed.

SR = integer variable; starting row number

within the command table.

NR = integer variable; number of rows to be

executed-

ERRFNC = integer variable; indicator for what

procedure is to be followed if an error occurs:

Zero means do nothing to the results field!

non-zero means store blanks or zero in the

results field (depending on field type).

Output Description: 	 ERRFNC = integer variable; set to zero if no

errors were encountered. Set to one if an

error was encountered.

CFLAG = logical variable; contains .TRbE.

except when a relational comparison command

has failed, then it contains .FALSE..

Process Description: 1. 	The last row to be processed is calculated

into LR, ERRFNC is saved in EF and set = 0,

and I is initialized to SR.

2. 	A call is made to subroutine EXCMD to

execute the command at row I.

rlr\F4

3. 	If CFLAG from EXCMD is returned with a

value of false, return immediately to

the calling routine.

4. 	If the error indicator from EXCMD is

returned non-zero, go to step 7.

5. 	Increment I by 1.

6. 	If I > LR, return to the calling routine.

7. 	Set ERRFNC =1 and retrieve P from

column 5 of the current row of the

command table. P is the row number to

which a jump should be made.

8. 	If EF = 0, go to step 13.

9. 	Retrieve the result pointer, P1, from

column 4 of row P-i of the command table.

10. 	 If Pl = 0, go to step 13.

11. 	 Retrieve the result type from column 5

of row Pl of the Working Buffer Format.

12. 	 Based on type, store binary zeroes

(type < 06), alpha zeroes (type > 0), or

blanks (type = 0) into the result location

in the Working Buffer.

13. 	 Set I =P and go to step 6.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

FORM

To store a new format definition into

the data base.

* 	Calling sequence: CALL F0RM(DBRID,LEN)

* 	Common blocks used: SYSCM, SY2C0M

* 	Subroutines or functions used: ADDR,

CL0SEP, C0MSTR

* 	Files used: Logical unit U(11)

DBRID = integer variable; data base record

ID. This is the format number.

LEN = integer variable; length (in integer

*4 words) of the record which the new

format describes.

None

1. 	The maximum number of fields is

initialized to 27, the actual number

of fields is initialized to 0, the

internal buffer pointer is initialized

for the first field description, and

the logical unit for reading the input

data is initialized to U(11).

2. 	A loop is executed (up to the maximum

number of fields allowed) which reads

the ID number, name, start character,

length, type, and key code for each

field, storing the information into

the internal buffer, BUF, and incre

menting the buffer pointer and actual

field counter for each read. If

the beginning three characters of any

field name are "END," the loop is

terminated.

3. 	The acutal number of.words used in

the internal buffer is calculated and

stored in BUF(1). BUF(2) is set to

0. 	BUF(4) is set to the input variable

LEN, and BUF(8) is set to the actual

number of fields read from the input

data.

4. 	ADDR is called to store a record of

length BUF(1), beginning at BUF(2),

into data base record DBRID. CLSEP

is called to flush internal 1/0 page

buffers.

5. 	FMTID(l) and FMTID(2) in /SY2COM/ are

set to 0 to cause any subsequent

command that uses a format to go to

the data base to retrieve the current

definition of that format.

6. 	Control is returned to the calling

routine.

X4O

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

FTCMP

To calculate starting character positions

for fields in generated formats.

e Calling sequence: CALL FTCMP (A, NS)

* Common blocks used: SY3COM

* Subroutines or functions used: SUBSTR

o Files used: None

A = integer array name; starting location of

the array which contains the format to be

completed.

NS = integer variable; the number of spaces

to be inserted between fields.

A = integer array name; starting location of

the array which contains the completed format.

1. The start character counter, SC, is

initialized to one, as is the row counter,

ROW.

2. The length of the field at ROW is transferred

from A(6, ROW) to L.

3. If L = 0, then processing is finished, so

return to the calling routine.

4. If A(2, ROW) contains $T then bypass start

character calculations for this row (since

text remains in the command line instead of

being transferred to the Working Buffer,

WBUF in /SY3COM/) and go to step 7.

5. If A(2, ROW) contains $L or $R, then use

SUBSTR to initialize WBUF from A(l, ROW).

6. Store SC into A(5, ROW) and calculate the

next SC = SC+L+NS.

7. Increment ROW by one and go to step 2.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

FTFMT

To retrieve information from formats associated

with records in the same family tree.

* Calling sequence: CALL FTFMT (RECID, NLVLS,

ERR)

o Common blocks used: SYSCOM, SY2COM, SY3COM

e Subroutines or functions used: LOCREC, GET,

INPARM, LODFMT, COMSTR, PRNTID

* Files used: Message file

RECID = integer variable; record ID of a record

at the lowest level of the data base where

format information collection is to begin.

NLVLS = integer variable; the number of levels

of the data base to be used in tracing the

family tree for format information.

ERR = integer variable; returned non-zero if

any errors were encountered.

1. The input record ID, RECID, is moved to

variable ID. U7 is initialized to whatever

unit has been designated as the message

file, and the data base top level indicator,

TLF, is set to zero.

2. The pointer, NMTCT, to the last used row

of the Move Table Control Table, MTCT in

/SY3COM/, is incremented by one.

3. The next available row number of the

Multilevel Move Table, MLMT in /SY3COM/,

is stored in column one of row NMTCT of

MTCT.

4. Subroutine LOCREC is used to locate the

pointer to the record with accession

number = ID. If the pointer is found, go

to step 7.

5. Write "Record not in data base" on unit U7.

6. Set ERR = 1 and return to calling routine.

7. Use GET to retrieve the pointer to the

record, and use GET again to retrieve

the format number of the record from the

second word of the record (characters 5-8).

Convert the format number character string

to a binary integer via INPARM, and store

the format number in FMTID(1) of /SY2COM/

and in column 3 of row NMTCT of MTCT.

8. Use LODFMT to retrieve the format whose

number is in FMTID(l) and store the format

in page 1 of FMT in /SY2COM/. If the format

was not found in the data base, go to step 6.

9. Calculate the last used row, N, of page 1

of FMT as FMT(6, 1, 1) +1.

10. 	For each field name in column 2 of the

Working Buffer Format, WBF in /SY3COM/,

which is not $R, $T,' or $L, compare that

name against the names up to row N in

column 2 of page 1 of FMT, and if a match

is found, do steps 11-21, otherwise just

move to the next name in WBF until they

are all processed, and then go to step 22.

11. 	If the row number, I, of WBF where the

match was found, = -TBF(4,1), then negate

TBF(4,1) and go to step 13. TBF is the

Target Buffer Format in /SY3COM/, and

TBF(4,1) contains the negative of the row

number of the field whose name is "UNLOAD".

This value was placed in TBF (4,1) by

subroutine BLDTBF when a target field

type of 4 was encountered, meaning a

special output conversion was desired

which depended on the contents of the

"UNLOAD" field.

12..If I =-TBF(4,2), then negate TBF(4,2).

This is the row number of the "LSD"

field which is similar to the "UNLOAD"

field in step 11.

13. 	The length of the field is transferred

from column 4 of FNT to WBF(6,IJ.

14. 	The type of the field is transferred

from column S of FMT to WBF(7,I).

1S. 	The pointer, NSBF, to the last used row

of the Source Buffer Format, SBF of

/SY3COM/, is incremented by one.

16. 	The key field indicator is transferred

from column 6 of FMT to SBF(l, NSBF).

17. 	The starting character number is

transferred from column 3 of FMT to SBF

(5, NSBF).

18. 	The length of the field is transferred

from column 4 of FMT to SBF(6, NSBF).

19. 	The type of field is transferred from

column 5 of FMT to SBF(7, NSBF).

20. 	The row number within FMT of the field

is stored in SBF(2, NSBF) for later use

in the Change Field command.

21. 	The pointer, NMLMT, to the last used row

of MLMT is incremented by one. The

value of NSBF is stored in MLT (1, NMLMT),

and the value of I is stored in MLMT

(2, NMLMT).

22. 	After processing all fields of WBF that

were found in the format for records at

this data base level, calculate the

number of rows of MLMT which were generated

(=NMLMT -MTCT(l, NMTCT) +I) and store it

in ITCT(2, NMTCT).

23. 	Check column 4 of all fields of WBF. If

any lengths are still = 0, then more

formats need to be examined if possible,

so go to step 24, otherwise set TBF(4,1)

and TBF(4,2) to zero if they are still

negative and return to the calling

routine.

24. 	If NMTCT # NLVLS, go to step 26.

NSi

25. 	Write "Unidentified field(s)" on unit

U7, and go to step 6.

26. 	If TLF 0, then go to step 25, otherwise

use PRNTID to get the next level record

ID and go to step 2.

Name: 	 JFDFCR

Purpose: 	 To direct the overall processing sequence

for the JF and DF commands.

Linkage: 	 * Calling sequence: CALL JFDFCR(CIND)

* 	Common blocks used: SYSCOM, SY2COM,

SY3COM, CLTBL

* 	Subroutines or functions used: AEINIT,

LODFMT, CICFDF, BLDTBF, SETINI, XXINI,

FTFMT, FTCMP, GETREC, TFORMW, PRNTID,

EXCMDS, TFORMZ, DISFMT.

* Files used: Message 	file (logical unit 7)

Input Description: 	 CIND = integer variable; command indicator.

Set zero for DF and non-zero for JF.

Output Description: 	 None

Process Description: 1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/.

2. Use AEINIT to initialize /SY3COM/,

returning the input set number in

SETNO, the input format number in FMTNO,

and error indication of non-zero in ERR.

3. 	If ERR = 0, go to step 5.

4. Write on U7, "Command terminated due to

syntak error.", and return to the calling

routine.

5. Store FMTNO in FMTID(2) and use LODFMT

(2,HIT) to load the format into page 2

of array FMT in /SY2COM/, returning

HIT as zero if the format could not be

found in the data base.

6. If HIT = 0, then write on U7, "Format

not found. " and return to the calling

routine.

7. If COMMAS(l) = 3, meaning there were

no clauses in the input command, then

go to step 10.

8. Use CICFDF to process the clauses in

the input command, returning ERR non

zero if any errors were found.

9. If ERR 0, go to step 4.

10. 	Use BLDTBF(2) to convert the data base

format in page 2 of FMT to a standard

format in the Target Buffer Format,

TBF in /SY3qOOM/.

11. 	Use SETINI to initialize the input set

for record ID's to be returned by XXINl.

Use XXINl(RID) to return the first record

ID in RID.

12. 	If RID.= 0, meaning there were no records

in the input set, return to the calling

routines

13. 	Set NL, the number of levels in the data

base to be used, to 1 or 2, depending on

whether CIND = 0 or # 0, respectively.
Then use FTFMT(RID, NL, ERR) to complete

the buffer formats with information about

fields whose names occurred in the input

command, returning ERR non-zero if an

error occuired.

14. 	If ERR 0, then go to step 4.

15. 	Use FTCMP to complete starting location

information in the Working Buffer

Format, WBF in /SY3COM/.

Fill row 2 of the target buffer array,

BUF, with blanks.

16. 	Initialize I, the pointer to the desired

row of MTCT, the Move Table Control Table

in /SY3COM/, to 1.

17. 	Transfer the format number for records

,at this data base level from MTCT(3,I)

to FMTID(l). This prevents an unnecessary

retrieval of the format record by GETREC.

18. 	Use GETREC(l, RID, STAT) to retrieve

record RID into row 1 of BUF, the

record buffer in /SY2COM/, returning

STAT non-zero if there was any problem

with the retrieval.

19. 	If STAT & 0, ignore this tecord by

going to step 27.

20. 	Use TFORMW(l,I) to transfer data from

row 1 of BUP to WBUF, the Working Buffer

in /SY3COM/, as directed by row I of

MTCT.

21. 	If I > NMTCT, the last used row of MTCT,

then go to step 23.

22. 	Increment I by 1)use PRNTID to get record

RID's parent record, PID, set RID to PID,

and go back to step 17.

25. 	Set EF = lrtELAG=.TRUE., and use EXCMDS

to execute the commands in CTBL, the

Normal Command Table,/SY3COM/, returning

CFLAG as fal%'&'if any of the relational

clauses failed to be true.

24. 	If CFLAG is false, go to step 27.

25. 	Use TFORMZ(2,1) to transfer data from

WBUF to row 2 of BUF.

26. 	Use DISFMT to display the record in row

2 of BUF according to the format in

FMTID(2).

27. 	Use XXIN1 (RID) to retrieve the next record

ID in RID.

28. 	If RID # 0, meaning there was a next
record, go back to step 16.

29. 	Return to the calling routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

JNSNCR

To direct the overall processing sequence.

for the JN and.SN commands.

a 	Calling sequence: CALL JbSNCR(CIND)

* 	Common blocks used: SYSCOM, SY2COM,

SYZCOM, CLTBL

" 	Subroutines or functions used: AEINIT,

RLCLPR, SETINI, SETOUT, XXINl, FTFMT,

FTCMP, GETREC, TFORMW, PRNTID, EXCMDS,

XXOUT, ENDSBT

* 	Files used: Message file (logical unit

7), pointer lists file (logical unit 5)

CIND = integer variable; command indicator.

Set zero for SN and non-zero for JN.

None

1. 	Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/. Initialize

the comma array pointer, CP, to 2.

Initialize the number of records

selected, HITS, to 0.

2. Use AEINIT to initialize /SY3COM/,

returning the input set number in SETNO,

and returning ERR non-zero if any errors

were found.

3. 	If ERR = 0, go to step 5.

4. 	Write on U7, "Command terminated due to

syntax error.-,, and return to the

calling routine.

S. If COMMAS(I) < 3, meaning that there

were no relational clauses input, go to

step 4.

6. Calculate FC, the first character of

the relational clause, COMMAS(CP)+l.

Calculate NC, the number of characters

in the relational clause, = COMMAS

(CP+I)-FC. Then use RLCLPR(FC,NC,ERR)

to process the relational clause,

building buffer formats and commands

to be executed, and returning ERR non

zero if any errors were found.

7. If ERR / 0, go to step 4.

8. Increment CP by 1. If CP < COMMAS(l),

go back to step 6.

9. Use SETINI to initialize the input set

for record ID's to be returned by XXIN1.

Use SETQUT to initialize file U(S) to

receive selected record ID's.

10. 	Use XXINl (RID) to return the first

record ID in RID.

11. 	If RID = 0, meaning therp were no

records in the input set, go to step 27.

12. 	Set NL, the number of levels of the data

base to be used, to 1 or 2, depending

on whether CIND = 0 or 0, respectively.

Then use FTFMT(RID, NL, ERR) to complete

the buffer formats with information

about fields whose names occurred in

the input command, returning ERR non

zero if an error occurred.

13. 	If ERR / 0, go to step 4.

14. 	Use FTCMP to complete starting location

information in the Working Buffer

Format, WBF in /SY3COM/.

15. 	Initialize I, pointer to the desired

row of MTCT, the Move Table Control

Table in /SY3COM/, to 1. Set R = RID.

16. 	Transfer the format number for records

at this data base level from MTCT (3,1)

to FMTID(l). This preVents an

unnecessary retrieval of the format

record by GETREC.

" 	9q

17. 	Use GETREC(1, R, STAT) to retrieve

record R into row 1 of BUF, the record

buffer in /SY2COM/, returning STAT

non-zero if there was any problem with

the retrieval.

18. 	If STAT 0, ignore this record by

going to step 25.

19. 	Use TFORMW(l,I) to transfer data from

row 1 of BUF to WBUF, the Working

Buffer in /SY3COM/, as directed by

row 	I ofMTCT.

20. 	If I > NMTCT, the last used row of

MTCT, then go to step 22.

21. 	Use PRNTID to get record R's parent

record, PR. Then set R = PR, incre

ment I by 1, and go back to step 16.

22. 	Set EF = 1-and use EXCNDS to execute

the cgmm4nds in CTBL, the Normal

Command Table in /SY3COM/, returning

CFLAG as false if any of the

relational clauses failed to be true.

23. 	If CFLAG is false, go to step 25.

24. 	Increment HITS by 1, and use XXOUT

(RID) to store the selected record

ID on-file U(5).

25. 	Use XXINl(RID) to return the next

record ID in RID.

26. 	If RID 0 0, meaning there is a next

record, go back to step 15.

27. 	Use ENDSET (HITS, U(5)) to create and

display an entry in the status table

of sets.

28. 	Return to the calling routine.

_M*

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

JPRPCR

To direct the overall processing sequence

for the JP and RP commands.

* 	Calling sequence: CALL JPRPCR(CIND)

* 	Common blocks used: SYSCOM, SY2COM,

SY3COM

* 	Subroutines or functions used: AEINIT,

SETINI, XXINl, CIRP, GETREC, TFORMW,

PRNTID, EXCMDS, COMSTR, SUBSTR, TPORMZ

* 	Files used: Message file (logical

unit 7), Report file (logical unit 12).

CIND = integer variable; command indicator.

Set zero for RP command and non-zero for

JP command.

None

1. Initialize file pointers U7 and U12

to the values stored in U(7) and U(12)

of /SYSCOM/. Initialize first and

last record indicator, FLREC, to zero.

2. 	Use ABINIT to initialize values in

common, return the input set number

in SETNO, and return an error indicator,

ERR, non-zero if any errors were found.

3. 	If ERR = 0, go to step 6.

4. Write on U7, "Command terminated due to

syntax error.",

5. 	Return to the calling routine.

6. Use SETINI to initialize set number

SETNO for returning record ID's via

XXINl.

7. Use XXINI to return the first record

ID, RBCID, from the input set.

8. If RECID= 0, then write on U7, "Null

Input Set." and go to step S.

9. Use CIRP(CIND, RECID, ERR) to inter

pret the command, build tables and

buffer formats, and return ERR non

zero if any errors were found.

10. 	If ERR 0, go to step 4.

11. 	Initialize the Move Table Control

Table pointer, MTCTP, to one.

12. 	Transfer the format number for this

level of the data base from MTCT(3, MTCTP)

to FMTID(l). This prevents actual

retrieval of the format record by

GETREC, since it is not needed.

13. 	Use GETREC(1, RECID, STAT) to get record

RECID into row 1 of BUF in /SY2COM/,

returning STAT non-zero if a problem

occurred.

14. 	If STAT 0 0, ignore this RECID by

going to step 28.

15. 	Use TFORMW(1, MTCTP) to transfer data

from row 1 of BUF to WBUF, the Working

Buffer in /SY3COM/, based on the

directions provided by row MTCTP

of MTCT.

16. 	If MTCTP> last used row of MTCT, NMTCT,

then go to step 18.

17. 	Use PRNTID to get the record ID, PID,

of the parent of RECID. Store PID

into RECID, increment MTCTP by one,

and go back to step 12.

18. 	Initialize the BY Processing Table

pointer, BPTP, to one.

19. 	Get the Grouping Field Name pointer,

GFN, from column 1 of row BPTP of the

BY Processing Table, BPT of /SY3COM/.

20. 	If GFN = 0, go to step 33.

21. 	If GFN> 0, go to step 24.

R_ 9'b

22. 	Negate GFN, set ERR = 0, and use

EXCMDS to execute the commands in

CTBL, the Normal Command Table of

/SY3COM/, as specified by columns

2 and 3 of row BPTP of BPT, returning

ERR non-zero if the commands culd

not be executed for some reason.

23. 	If ERR 9 0, assume no change in
this GFN, and go to step 25.

24. 	Use COMSTR to compare-the new GFN

in WBUF to the current GFN in column

6 of BPT. If they are different,

go to step 49.

25. 	If BPTP2 last used row of BPT, NBPT,

then go to step 27.

26. 	Increment BPTP by 1 and go back to

step 19.

27. 	Set ERR = 0 and use BXCMDS to execute

all the commands stored in the

Function Command Table, FCTBL in

/SY3COM/.

28. 	Use XXINl to get the next record ID

into RECID.

29. 	If RECID 9 0, meaning there is
another record to be processed, then

go back to step 11.

30. 	Set FLREC = 2 to mean that the last

record is being processed.

31. 	Set BPTP = 1 and get GFN from column

1 of row 1 of BPT.

32. 	If GFN< 0, negate GFN.

33. 	If FLREC = 0, meaning we are processing

the first record, then set FLREC = 1

and go to step 39.

34. 	Initialize the local BPT pointer,

LBPTP, to the current value of BPTP.

35. 	If BPT(I, LBPTP) = 0, go to step 38.

36. 	Transfer all function results and

concluding text from this BY level

by setting PFLAG = 2 * LBPTP and

4Z9:

calling TFORMZ(2, PFLAG) to transfer

from WBUE to row 2 of BUF.

37. 	If LBPTP< last used row of BPT,

NBPT, then increment LBPTP by 1

and go back to step 35.

38. 	Write toUl2 the first 120 characters

of row 2 of BUF. If PLREC = 2,

meaning we were processing the last

record, then return to the calling

routine.

39. 	Blank out the first 120 characters

of row 2 of BUF.

40. 	Initialize LBPTP = BPTP.

41. 	Set ERR = 1 and use EXCMDS to execute

the commands of CTBL specified by

columns 4 and 5 of row LBPTP of

BPT.

42. 	Transfer from WBUF to row 2 of BUF

field values, calculations, and

beginning text by setting PFLAG =

2 *LBPTP-I and calling TFORMZ(2, PFLAG).

43. 	If LBPTP NBPT, then go to step 27.

44. 	Increment LBPTP by 1 and get GPN

from BPT(1, LBPTP).

45. 	If GFN = 0, go to step 41.

46. 	If GFN> 0, go to step 48.

47. 	Negate GEN, set ERR = 0, and use

EXCMDS to execute the commands of

CTBL specified by columns 2 and 3

of row LBPTP of BPT. If ERR is

returned non-zero, go to step 41.

48. 	Use SUBSTR to store the new value

of GFN from WBUF to column 6 of row

LBPTP of BPT, and then go to step

41.

49. 	Use SUBSTR to store the new value

of GFN from WBUF to column 6 of

row BPTP of BPT, and then go to

. - step 33.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

PRNTID

To return the record ID of the next higher

level record in the same family tree of an

inverted tree logically structured data base.

* 	Calling sequence: CALL PRNTID (CID, PID,

TLFLAG)

v 	Common blocks used: None

* 	Subroutines or functions used: None

a 	Files used: None

CID = integer variable; child record ID.

PID = integer variable; parent record ID.

TLFLAG = integer variable; set zero or non

zero depending on whether output parent ID

is not or is at the top level of the data

base, respectively.

Coded specifically for ASATS, the child

record ID consists of the segment number

concatenated with the acquisition date.

To get the parent record ID, the acquisition

date portion (lower 16 bits) is set to zero.

TLFLAG is set to 1 since ASATS parent records

are at the top level of the data base.

--

Name: 	 RLCLPR,

Purpose: 	 To parse a relational clause of the form

AE.OP.AE (where AE is an arithmetic expression,

and OP is a comparison operator) and build a

table of commands to evaluate the clause.

Linkage: 	 * Calling sequence: jCALL RLCLPR (FC, NC, ERR)

e Common blocks used: SY3COM

* 	Subroutines or functions used: COMSTR, INDEX,

ADDLT, CFIND, AEPR, ADDNM, ADDDT, ADDFN

* 	Files used: None

Input Description: 	 FC = integer variable; first character number of

the string to be processed in array CMD of

/SY3COM/.

NC = integer variable; number of characters in

the string to be processed.

Output Description: 	 ERR = integer variable; returned zero if no errors

are found, non-zero if an error is found.

Process Description: 	1. Initialize ERR = 0, F = FC, N = NC, and K = 0.

2. If the character at F is not a single quote

mark, go to step 11.

3. Use INDEX to find 	the next quote mark at J.

4. 	If J # 0, go to step 6.
5. 	Set ERR = 1 and return to the calling routine.

6. If J < F+l, go to 	step 5.

7. Use ADDLT (F, J-F+1), V(1)) to add the literal

to the Working Buffer Format, WBF in /SY3COM/,

getting the row number of WBF returned in V(1).

8. Set K = 1 to indicate that the left hand side

of the relational clause has been processed.

9. 	Recalculate the number of characters remaining,

N, = N -(J-F+1).

Kq

http:AE.OP.AE

10. 	Reset the first character pointer, F,

= J+l.

11. 	Use INDEX to find the first period in N

characters beginning at F and store

the location in I.

12. 	If I = 0, go to step 5.

13. 	Use COMSTR to compare the four characters

that start at I with an internal table of

legal operators. If a match is found, then

J is set to the row number of the internal

table, otherwise go to step 5.

14. 	The actual operator number, OP, to eventually

be stored in the command table is calculated

by adding 4 to J.

15. 	J is initialized to 1.

16. 	If K = 0, go to step 19.

17. 	If I A F, go to step 5.
18. 	J is reset to 2, F is incremented by 4 to

set it past the operator, N is decremented

by 4 to account for the operator characters,

and a jump to step 20 is made.

19. 	N is set to the number of characters to the

left of the operator by setting it equal to

I-F.

20. 	If N< 0, go to step 5.

21. 	If the character at F is not a single quote

mark, go to step 28.

22. 	If N < 2, go to step 5.

23. 	If the character at F+N-I is not a single

quote mark, go to step S.

24. 	Use ADDLT (F, N, V(J)) to add the literal to

WBF and receive the row number in V(J).

25. 	If J = 2, go to step 27.

26. 	Set J = 2, F = 1+4, and N = NC-N-4 to adjust
to the right hand side of the operator, and

go back to step 20.

27. 	Increment NCTBL, the pointer to the last

used row of the Normal Command Table, CTBL in

/SY3COM/, by 1. Store V(l) in CTBL

(1, NCTBL), OP in CTBL(2, NCTBL), V(2) in

CTBL (3, NCTBL), NCTBL+l in CTBL (5, NCTBL),

and 	return to the calling routine.

28. 	Use CFIND to locate any arithmetic operator,

storing its location in K.

29. 	If K = 0, go to step 33.

30. 	Increment NWBF, the pointer to the last used

row of WBP, by 1. Store NWBF in V(J), 0 in

WBF(INWBF), $R in WBF(2,NWBF), 4 in

WBF (6, NWBF), and -1 in WBF (7, NWBF).

31. 	Use AEPR (F, NjV(J), ERR) to process the

arithmetic expression, building commands in

CTBL which store a result at V(J) of WBF,

and returning ERR non-zero if any errors were

found.

32. 	If ERR 0, go to step 5, otherwise go to

step 25.

33. 	Use CFIND to determine if the character at

F is the number sign (K will be returned = 1

and L will be returned = 8) or a numeric

character (K will be returned = 1 and L will

be >8).

34. 	If K = 0 (implying a field name), go to step

38.

35. 	If L # 8 (implying a numeric literal), use

ADDNM (F, N, V(J)) to add the number to

WBF, receiving the row number back in V(J),

and go to step 25.

36. 	If N t 5, go to step 5.
37. 	Use ADDDT (F, N; V(J)) to add the date to WBF,

receiving the row number in V(J), and go

to step 25.

38. 	If N>12, go to step 5.

39. 	Use ADDFN (F, N, V(J)) to add the field name

to WBF if necessary, receiving the row number

back in V(J), and go to step 25.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

RPCLPR

To 	parse a replacement clause of the form FN = AE

(where FN is a field name and AE is an arithmetic

expression) and build a table of commands to

perform the replacement.

* 	Calling sequence: CALL RPCLPR (FCS, TNC,

LOCEQL, IND, ERR)

* 	Common blocks used: SY3COM

* 	Subroutines or functions used: INDEX, ADDFN,

COMSTR, ADDLT, CFIND, ADDDT, AEPR, ADDNM

* 	Files used: None

FCS = integer variable; first character number

of the string to be processed in array CMD of

/SY3COM/.

TNC = integer variable; total number of characters

in the string to be processed.

LOCEQL = integer variable; the character number

which is the location of the equal sign in the

input string. If zero, the equal sign will be

searched for internally.

IND = integer variable; command indicator to

allow special processing for different commands.

A value of zero means the Change Field command

is being processed. A non-zero value means the

Display Formatted or Joint Display Formatted

command is being processed.

ERR = integer variable; set to zero if no errors

are found and set to non-zero if an error is

found.

1. If LOCEQL < 0, then INDEX is used to find the

equal sign and its character position is

stored in I, otherwise I is set = LOCEQL.

2. 	If the equal sign is located, go to step 4.

19zml. 0b
6

3. Set ERR = 1 and return to the calling routine.

4. Initialize the first character pointer, FC,

to FCS.

S. Calculate the number of characters, NC, in

the field name = I-PC.

6. If NC < 0, go to step 3.

7. If NC > 12, go to step 3.

8. Use ADDFN (PC, NC, K) to add the field name

to the Working Buffer Format, WBF in

/SY3COM/, if it is not already there, and

receive back the row number of WBF in K.

9. If IND = 0, then increment NTBF, the pointer

to the last used row of TBP, the Target Buffer

Format in /SY3CON/, by one, store a one in

TBF (1, NTBF) and store K in TBF (2, NTBP).

10. 	Move the first character pointer, PC, to the

first character past the equal sign by setting

PC = I+l. Cafculate NC, the number of

characters to the right of the equal sign,

by NC = TNC-I.

11. 	If NC < 0, go to step 3.

12. 	If the character at FC is not a single quote

mark, go to step 17.

13. 	If NC < 3, go to step 3.

14. 	Use ADDLT (PC, NC, L) to add the text literal

to WBF and receive the row number back in L.

15. 	Increment NCTBL, the pointer to the last used

row in CTBL, the Normal Command Table in

/SY3COM/, by one. Store L in CTBL (1, NCTBL),

16 in CTBL (2, NCTBL), K in CTBL (4, NCTBL),

and NCTBL+I in CTBL (5, NCTBL).

16. 	Return to the calling routine.

17. 	Use CFIND to determine if the character

string to the right of the equal sign is

an arithmetic expression by locating any

+, -, , /, C, or), and pointing to it with

I.

aagFIlbi

18. 	If I # 0, then call AEPR (FC, NC, K, ERR)
to process the arithmetic expression,

creating commands in CTBL to evaluate the

expression and store the result in K,

returning ERR as non-zero if any errors

were found, otherwise go to step 21.

19. 	If ERR 9 0, go to step 3.
20. 	Return to the calling routine.

21. 	Check the character at FC for the number sign

or a numeric character via CFIND.

22. 	If neither was found, the right side of the

equal is assumed to be a field name. If

NC > 12, then go to step 3, otherwise call

ADDFN (FC, NC, L) and go to step 15.

23. 	If character FC is a number sign,-then a date

literal is expected. If NC / 5, then go to

step 3, otherwise call ADDDT (FC, NC, L) to

add 	the date literal to WBF and go to step

15.

24. 	If character FC is a numeric character, then

a numeric literal is expected, and ADDNM

(PC, NC, L) is called to add it to WBF. Then

go to step 15.

Name: 	 SEL

Purpose: 	 To initiate execution of the Rims system;

calls UNITS to initialize the array U(14)

of /SYSCOM/; calls CIMAIN which initiates

interpretation of the command 	line.

Linkage: 	 * Calling sequence: Not applicable

* 	Common blocks used: SYSCOM, EXPCOM,

SECCOM

* 	 Subroutines or functions used: CIMAIN,

END, UNITS

* 	 Files used: Message file (logical unit

7), command file (logical unit 13)

Input Description: 	 None

Output Description: 	 None

Process Description: 1. 	Use UNITS to initialize the array U(14)

of /SYSCOM/.

2. 	IW=O, initialize command counter, (not

used).

3. 	Initialize file pointers UW and UR

to the values stored in U(7) and U(13)

of /SYSCOM/.

4. 	Write 'ENTER COMMAND' on the device

designated as the message file.

5. 	Set IAP=l of /SYSCOM/, allows printing

of the number of sets in the Status

Table; If 'IAP=O, indicates no printing

of status table.

6. 	Read command line; if UW 7,

write the command line on

the designated device. If

end-of-file is read, go to

step 10.

7. 	Call CIMAIN, to begin inter

pretation of the command line.

8. 	IW=IW+l, increment command

counter (not used)

9. 	Go back to step 3.

10. Call END, terminate execution.

Name:

Modification Purpose:

Linkage Modification:

Input Description Modification:

Output Description Modification:

Process Description Modification:

SORTS

To allow the user to order a

set of FLOCON records based

upon the contents of fields in

either the FLOCON or DAPTS

records for that set.

a Calling Sequence: CALL SORTS

(SET, NF, LIST, SF)

" Common Blocks used: No change

* Subroutines or functions used:

No change

* Files used: No change

SF: integer value, where SF =1

means sort on FLOCON data, SF =2

means sort on either FLOCON or

DAPTS data.

No change

For SF = 2 only, the DAPTS record

for each appropriate FLOCON

record is retrieved. Next the

formats for DAPTS or FLOCON records

are loaded as needed, a table of

sorting names is loaded in proper

hierarchical order and a buffer

pointer table is also built to

point to the proper buffer for

data retrieval. Lastly, the data

retrieval section is altered to

get data from the appropriate

buffer by use of the buffer

pointer table as an index.

IDS'

ame: SORTP

Ddification Purpose: To pass an argument to SORTS to
indicate the type of sort to

perform.

inkage Modification: * Calling sequence: CALL SORTP(SF)

& Common blocks used: No change

* Subroutines or functions used: No

change

* Files used: No change

iput Description Modification: SF = integer variable, indicates

which type of sort SORTS is to per

form. 1 = normal sort, 2 = joint sort.

itput Description Modification: None

rocess Description Modification: The argument SF received from JLASYS

is passed to SORTS to allow SORTS to

perform the appropriate type of

sort.

Name:

Modification Purpose:

Linkage Modification:

Input Description Modification:

Output Description Modification:

Process Description Modification:

SPCSET

To stop the input process when an

end-of-file is read as well as a

zero record ID.

.	 Calling sequence: No change

* 	Common blocks used: No change

e 	Subroutines or functions used:

No change

* 	Files used: No change

No change

No 	change

Insert an end-of-file branch to

statement number 3 into the state
ment that reads from the data file.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

SQZB

To delete ektranepus blanks from a

character string and build an array of

pointers to thp commas in the character

string.

* 	Calling sequence: CALL SQZB (INARY,

INST, INLBN, OUTARY, OUTST, OUTLEN,

COMMAS)

* 	Common blocks used: None

* 	Subroutines or functions used: None

* 	Eiles used: None

INARY = integer array name; starting location

of the array containing the input string

INST = integer variable; character number

of INARY at which to begin processing

INLEN = integer variable; number of

characters in INARY to be processed

OUTST = integer variable; character number

of OUTARY at which to begin storing output

COMMAS = integer array name; contains the

Comma Location Table. The first word

contains the number of the last used word

in the array and should be input containing

the value one upon the first call within

any one command.

OUTARY = integer array name; starting

location of the array to contain the output

OUTLEN = integer variable; number of

characters stored in OUTARY

COMMAS = integer array name; contains the

Comma Location Table. The first word

conta-ns the number of the last used word

in 	the array. The other words contain the

character number of OUTARY where commas Qoccur

(exclusive of those commas occurring between

pairs of quote marks). The first word

will be output as a negative value when

an exclamation mark has been encountered

and stored as a terminating comma for

the command.

Process Description: 1. Counters and pointers are initialized.

2. 	If the last character of INARY has

been passed, go to step 10.

3. 	If processing is between quote marks

(QSET = 2 or 3), check this character

for the terminating quote mark, reset

QSET to 1 if it is, and go to step 8.

4. 	If the character is a blank, g6-to

step 9.

5. 	If the character is a quote mark, set

QSET (= 2 for single quote, = 3 for

double quote) and go to step 8.

6. 	If the character is a comma, store the

OUTARY pointer in the next available

location in COMMAS, increment the pointer

to the last used word of COMMAS, and go

to step 8.

7. 	If the character is an exclamation mark,

store the OUTARY pointer in the next

available location in COMMAS, increment

and negate the pointer to the last used

word of COMMAS, store a comma in

OUTARY, increment the OUTARY pointer,

and go to step 10.

8. 	Transfer the character to-OUTARY and

increment the OUTARY pointer.

9. 	Increment the INARY pointer and go to

step 2.

10. 	 Store the pointer to the last used word

of COMMAS into word one of COMMAS,

calculate OUTLEN as the OUTARY pointer

minus OUTST, and return to the calling

program.

16~q

Name:

Purpose:

Linkage:

Input Description:

Output Description:

STAEPR

To store arithmetic processing data into the

normal command table in mathematic

hierarchical order.

* 	Calling sequenbe: Call STABPR (VTAB, Opc,

FIRST, LAST, TREG)

* 	Common blocks used: SY3COM

* 	Subroutines or functions used: None

* 	Files used: None

VTAB = integer array; contains pointers to

variables or literals in the working buffer

format table, intermediate storage registers

or special integers representing close or open

brackets.

OPC = integer array; contains either

mathematical operator indicators or

special integers representing close or open

brackets.

FIRST = integer variable;

pointer to first variable in VTAB

and OPC to be used for processing.

LAST = integer variable; pointer to last

variable in VTAB & OPC to be used in

processing.

TREG = integer variable; index pointer

into intermediate storage register buffer.

used for intermediate data storage.

Normal command table filled with appropriate.

arithmetic processing data. TREG updated

as intermediate storage registers are

needed.

Process Description:
 A loop is set up to search the entries in

the OPC table. Steps 1 thru 3 performed

for all entries.

1. The intermediate storage register pointer

(TREG)is updated . The OPC entry for the

next two adjacent locations is checked

for mathematical hierarchy. If they

are of equal hierarchy or if the first
is 	of a lesser hierarchyp step 2 is

performed) otherwise step 3 is performed.

2. The next normal command table entry is

leaded with values from the current and

next entry of VTAB, the current value of

OPC and the intermediate storage register

pointer (TREG). Then the next entry of

VTAB is loaded with the intermediate

storage register pointer (TREG) and return

to step 1.

3. The next normal command table entry is

loaded with values from the next and next

+1 entry of VTAB, the next

+1 value of OPC and the intermediate

storage register pointer (TREG). The

next +1 entry of VTAB & OPC is loaded

with the current value of VTAB & OPC

respectively. The next +2 entry of VTAB

is loaded with the intermediate storage

register pointer (TREG) and return to step

i.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

TFORMW

To transfer data from a source buffer to

the Working Buffer.

* Calling sequence: CALL TFORMW(ROW, MTCTRW)

* Common blocks used: SY2COM, SY3COM

a Subroutines or functions used: SUBSTR

* Files used: None

ROW = integer variable; the row number of the

source buffer, BUF in /SYZCOM/, where the

input data is stored.

MTCTRW = integer variable; the row number

of the Move Table Control Table, MTCT in

/SY3COM/, to be used for control.

None

The starting row of the Multilevel Move Table,

MLMT in /SY3COM/, is retrieved from MTCT

(1, MTCTRW). The number of rows of the

MLMT to use is retrieved from MTCT (2, MTCTRW)

and used to calculate the final row number.

Then for each of these rows, (1) a pointer

for the Source Buffer Format, SBF in /SY3COM/,

is retrieved from the first word of the row

of MLMT, (2) a pointer for the Working Buffer

Format, WBF in /SY3COM/, is retrieved from

the second word of the row of MLMT, and (3)

SUBSTR is used to transfer the data from

BUF to WBUF, the Working Buffer in /SY3COM/.

After the specified number of rows have

been processed, a return is made to the calling

routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

TFORMZ

To transfer data from the Working Buffer to

a target buffer, converting the data

representation when needed.

* Calling sequence: CALL TFORMZ(ROW PF)

* Common blocks used: SY2COM, SY3COM

* Subroutines or functions used: SUBSTR,

DTEINT, CHAR, COMSTR

* Files used: None

ROW = integer variable; the row number of the

target buffer, BUP in /SY2COM/, where the

data is to be stored.

PF = integer variable; indicator for which

fields of the target buffer are to be

filled from the Working Buffer, WBUF in

/SY3COM/. A field is filled if word one of

its Target Buffer Format, TEF in /SY3COM/,

is equal to PB.

None

For each row of TBF, the following process is

done, and then a return is made to the

calling routine:

1. If column 1 of TBF is not equal to PF,

ignore this row and go to step 25.

2. Retrieve F, the pointer to the WBF row

number, from column 2 of TBF.

3. If-the output field type, column 5 of TBF,

is > 3, go to step 9.

4. If column 2 of row F of WBF indicates text

type (by $T), then use SUBSTR to transfer

the text from the command line array, CMD

in /SY3COM/, to BUF and then go to step 25.

~ \vb

5. If column 2 of row F of WBF does not

indicate a results field (by $R), then

go to step 7.

6. If column 5 of row F of WBF does not

indicate text type (contains non-zero),

then go to step 8.

7. Use SUBSTR to transfer the data from

WBUF to BUF and if WBUF was a results

field, then use SUBSTR to reinitialize

WBUF from the first word of row F of WBF

and go to step 25, otherwise just go to

step 25.

8. Use SUBSTR to transfer the data in WBUF

to an integer variable named RESULT and

based on the target type (column 5 of

TBF), use CHAR (type = 1) or DTEINT

(type = 2) to convert RESULT to a

character string in BUF. Then reinitialize

WBUF from the first word of row F of WBF

and go to step 25.

9. Extract the first character of the field

in WBUF and store this character in

CRDTYP.

10. 	If the target field type 5, go to step 12.

11. 	Search the array FLMTYP until a match with

CRDTYP is found at element L. If no

match is found, set L = 8. Store the 12

characters of row L of table FLMTAB into

the 	field in the target buffer and go

to step 25.

12. 	If the target field type / 4, go to

step 23.

13. 	Search the array CMPTYP until a match

with CRDTYP is found at element L. If

no match is found, set L = 11.

=
14. If L < 5 or 11, go to step 22.

15. 	If L > 7, go to step 19.

16. 	Extract the pointer to the "UNLOAD"

field from TBF(4,1) and store it in K.

17. 	If K = 0, go to step 22.

18. 	If the "UNLOAD" field is non-blank,

then increment L by 3 and go to step 22,

otherwise go to step 22.

19. 	Bxtract the pointer to the "LSD" field

from TBF(4,2) and store it in K.

20. 	If K = 0, then stt L 11 and go to

step 22.

21. 	Use SUBSTR to transfer the contents of the

"LSD" field from WBUF to the target field

and go to step 25.

22. 	Use SUBSTR to store the 12 characters

of row L of table CMPTAB into the field

in the target buffer and go to step 25.

23. 	If the target field type / 9, go to step 7.

24. 	Search the array GCMTYP until a match

with CRDTYP is found at element L. If

no match is found, set L = 1. Use

SUBSTR to store the 12 characters of row

L of table GCMAB into the field in the

target buffer.

25. 	Move to the next row of TBF and start

over at step 1.

S--7~

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Destription:

TJUMP

To eliminate headers and other data

associated with a null set.

* Calling sequence: CALL TJUMP

N

* Common blocks used: SYSCOM, SYZCOM

& Subroutines or functions used: INDEX,

SUBSTR, INPARM

* Piles used: None

A command line containing the set to be

checked.

None

The set in question is checked tb see if

it contains data. If it does contain data

no action is required and the routine exits.

If there is no data in the set, the label

from the command line is saved for later

use. Next the input file is read until a

label card containing "LA" followed by

the label saved from the JT command line is

found. The routine then exits.

Name: 	 UNITS

Purpose: 	 To initialize the integer variable array

U of /SYSCOM/

Linkage: 	 * Calling sequence: Call units

* 	 Common blocks used: SYSCOM

" 	 Subroutines or functAions-used:

ASSIGN, CLOSE, LAST

* 	 Files used: U(7), U(8), U(11),

U(12), U(13), UNITS.SAT

Input Description: 	 None

Output Description: 	 None

Process Description: 1. 	Call ASSIGN associates logical unit

1 with disk file UNITS.SAT.

2. 	Read integer values from UNITS.SAT

and store data into their respec

tive storage locations U(7), U(8),

U(11), U(12) and U(13).

3. 	Read the file number, and file

name.' At-END-go-to ste&_5.7

4. 	Use LAST to determine the number

of characters contained in the file

name, then return to step 3.

5. 	Use CLOSE to close logical unit 1.

6. 	Return to calling routine.

3.2.2 PROGRAM CROSS-REFERENCE

On the following pages is a cross-reference listing which, for each

program used in RIMS, shows all the programs that it calls (both

directly from itself and indirectly through programs it calls)

and all the programs that call it.

1i2,

____ _____________

CfOS~RFFENE 'Pli'C-io- A~jTi - 184~ -ON lit.JAN.78

ACC-NO -DTPECTLY CALL--.-.____________________________
''tEy Y'PAPM

C04'STP I nE Y ThPAP VF IIFY
ACLCNOJ5_OP-0lgCIIY AIAI D BlY,

AtOPEFC SELPEC SPCSFT
ADO? O1'ECLY-CALLSI --- ~ ~ ~ - ----- Q R-2, ---- - --

O'El I
-

1Il1ryA
--

- ADCOT' 4l!DIQ!CTI Y CALLSj-----------------
-' CI-AQ CO%.STQ nTc!I.T TNOEY TAJPARM SUBSTA VERIFY

2-t tSf)RTCLYr AI I Fn AY,

RLCL 0 R 40CL 0P U
-ADDFM !E'LALS.

Cn'STR S'JRSTR
&kDDF'. DIRECTLY AND U4OIPECTLY. CALLS,

-' COWSTQ SU'STQ

AEpI flpp *jCLOP PPCIPR

'iA6t"Y DIRECTLY ---
CALL!:..

AfiSEL trl* LOCATE PuT SU8STR VERIFY

AO~VEV

)
6 D!PECTLY AND h!ETCLLL-____

) PSEL CONSYP #'4%SPT CET ?Nfl~rX !NOARM1 LOCATE LOP NH!TS
 put RANGE ROLL flTINI BE?:N2

SETOIJY8 A7UE_.LjRITP VFQWY XINI MKiN? WYOUT

ADDREY IS DIPECTLY CALLED) QYI

AD7OL? lDTqE-CTLY CATLS;

- A0ONE.
A-r T' DIPECL ALLTWIET VCLLS

Q)A~k) DIRECTLY AND TM IRECTLY CALLS,

CC-STQ INDEY TNPAPM FOF

AD TAIDIRECTLY CALLED Aly

LOOP OTPFCTLY CAt LgI

L) AOFR OT~rCTLY AND ?NOIPFCTI V CALLS?

&~FT . eOREC PUT QOLI AUIRSTR

ADO?? IS nIPFCTLY CALL ED RYg

AODREC DTRECTLY CtLLRZ

UA~dREC ITRECTLY ANT) t'flIMECTI V CALLSt
Auo AO LrPCtR nSTGET INDEX INPARM LOCREC NHZTS PUT ROLL ERCSTU

STATUS SURSTR VERIFY WXCJt'?LE STU

_AEIjTy D)IPECTLY rCALqlS

AEINIT rTQVCTLV A~r) TNIQECTI Y CALLS,

CCpSTQ iEXE -TNOQARUqOE VERIFY

jAUT IS -DI.RCTLY C-ALLED V

C CRP JFDPCR j'.tNCl .IPPPCR
 -_______________________________________

DER-IRYdTLY CALA~#____

'COMSTP nny 7f~ &A' TEQ VRF

___"Q~ytAE_ _OC__ Ck' Lk.

ADOWN CHAR tOWSTQ
_EJ - 1_I P~rTCILISALLEBA

CrP ZLCLPR RPCLPR
ApSC'tT QOrPCLY.AALLS....

fTEINT TNIE X NPARM

STAEPR SUBSTR VERIFY

APSrN _2tyT:L YhANt, T'TqE!V pA: A,
VO ONE."AP&Mt IS OIQFrTLy CALLEa FYL_
6UFlLf rFCp PESTOx-APSEL lqECtLE_CALLS:

-FT !wDEX TNPAR4 IOCATE NH!TS RANGE SUBSTR VERIFY
.P OTLDIRECTLY avh T11FlEtIV CALIS, !CriMSTQ EMDSFT tET ?4flEY TNOAPH LOCATE LOP NHITS PUT RANGE

l. . STATUS s$'STR VEQIMY UXINL. YXI2 -,XXOUT-....APSEL !S DZ#ECTLY CALIED RYg
A....cEy AJUPOST

SAPSINI OTWFCTLY CALLS:

ROLL SETINI SETINZ SETOUT

APSIT DIRECTLV AND TNr'IECTIY C'LLSI

APSIPT IS DZPECTLY CALLED BY1
_ __ AUf ILE CFCR -- PESTPX

S,P$TUP DIRECTLY CALLS:
___LLA S'ASPAPSTuP DIRECTLY AND TNNrIRFrTI Y CALLS,

O ~ PUT - POLL - SURSTR..-.
APSTU TS OIECTLY CALLED rY

.... FILE-- CCR__ RESTQX- -. - ATTAFC DIRECTLY CALLS1

_____________ _______ __________________

-$)--
ATTACH DIRECTLY AND TNDIOECTIY

- I'OSTQ . -...

ATTACJ IS DIECTLY CAL, 6! Ry,

CALLSi
_ __ _ _--__ _ _ _ _ __ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _

AUPiLE DIRECTLY CAILAIArMp APSCNT APSYNT APSTUP AUPOST
AUFILE DIRECTLY AND TDIPRECTIV CAILSu
- ADOQFY ADOP___ PSChj_ AP$FL_ SLt

PkpRo' vO_ Ey lAND IVTiAB LMT
_.. P G FP- ._SOL L-___S EllNL.EI'L4 ~ AUFL IS OECTtY CALLED RYg

GETREC

AYAIUt
LOCATE

Eu.O.&

!NPAR - LMWTAB

UYOST__$ AR
LOCREC LnDFMT

T__3&TIkT

REPR SUBSTR

COWSXPELK
LOOREC LOP

TFORM

tiN$T..GET
NHITS PART
V___X XJ__X

GETAECIDE
POST PUT

XJILuT _-_R-TEB-

o AUPOST TPECTLV CALLq:
.- AeEKlY APSEk COLSTR mELKFy CET --
AUPOST DIRECTLY 411r) TN I CTIV CALLS.

__AD)O4FY - A
0
SEL_ _CQU$R.DEKEy___ESDErG

PART POST PUt RANGE DOLL

POST -_._.....SSOT._.SU85q

STINI SETIN2 SETOUT

.........

5NEXQ44o FrYLAi
SSONT- STATUS SUBSTR

oiQ

VERIFY
jfJ_~

XXiNt XXIN2

0-

U

U

AUPOST I DIRECTLY CALIED RYI
AQFfl E CFCR OSf

BEGIN DIRECTLY CALLS,
.... AtT,ACH PSpST&TUS__UO

BEGIN DIRECTLY ANm T" IRECTIV CALL,2
ATTACH CNSYR T TNPP4R STATI S

BEGIN IS DIRFCTLY CALLED AV
- CS03.- - - - - - -- -
QLCTB9 DIPECTLV CALLS:.......

SUqSTg

-_

VERIFY

___ _

- _ - -

- ______________

_

___ ____________

- _.

C BLDtBr nIRECTLY 4Nn TNDIQECTIY CALLSi

qLOTSP IS DIRECTLY CALLED BY:fj..J...jFOECQ-
CAUFM OT 0

FCTLV CALLS$.__AYFILE- ?NEY IPAPM - I ODFrT
V CAUFIL DIRECTLY AND IN!IQFCTIY CALLS:

A'tkFY hNfR APQCN? APPI APSI'?T APRj; AUPILE AIPO"T :-A; COMSTR OELKY rNOSET GE- 48TREC

-..

-- -- ------- --- ---- ---

- -

__ __ _______________

_______ _______

INDEX INPAQU t04Kry 1 ANQ I MVTAB INn? LOCATE - LnCREC LOOF14T LOOREC LOR NHITS PART POST
____AI...AANG E AFR AOll.....ETI lL-SELrU&SETDQLSS.O2B -TATUS- SUBS TR.1TFD.R9 VyEaX.tU LXN-4-X LkZ

%xOUT

.±,-CAUtJL IS- IBECTLY rALLEO flt._____---

.scLnItTr__YR Tv CA' I S
AFINIT AOSCIT APSINT APSTU-P AU'OST CICFDF EYCMDS FTC?4P FTFM? GETREC RWP SETZNI TFURMw ?rORMz

- YX1'l ---
tCFtR DIRECTLY AND TNI'~OECTIVY ALLS,

_____~ *FL~*t KE-.JDLT.-ADfN .AIELLAEPL..JYSPCI.A-P.SLLAPSI..JAP83U2..AUPOTZCLND. .SHAL _____________

C!CrrOF CO'MSTP DEL KFY MtEINT FNDSET EXCHO EXCNDS FTCMP FTFMT GET GLTREC ZNOkX XNPARN KOMI(EY
LOD Fr RA~.Lj2 ~fT__jn Irp__Q IM [OR N TT p p71 -T PUIT 'o

PLCLPR POLL 'PCL'Q SrYrNj S9ET!N2 SaYOU? SOZE $SORT STAEPR STATUS SIJESYR TFOP'W TFURNZ VERIFY

- Y3'Jj XXINP . YXDUT- --

CFCQ IS DIFECTLY CALLED BY;

-

- -cisuel -
' rrrDtDIRECTLY CALLS:

--- - - --

CFINO OPqFCTLV ANOnlflrECTi CALLS,

-COMS?4 A.IDE.------ - -

CF!Nt It DIRECTLY CALLED flYr

.. C!CV(eP .CIRP -PLCLR -OPCLPA _______
 - -- ____________________

-;OTPECYLY CALLSi

Ne n~vt

CHAR DIRECTLY AND! !ND!QECTi V CALLS,

C1HAP IS DIRECTLY CAL! EI BY,

CP IN~D PLrLPP Rp~ f D
-- CCP~r DINECTLY AND ~nbTPECTI V CALLS,

A~t.AT_ An NA9 tJ. pM a Pp ______CHAR
9)SUBSyR VERIFY _ LC..LCU--pLPRJtFR
CJ;-CFP 107 CTLYCLLEOP L _______ _______--____ ___________________________

CTP1ATN OTO1ECYLY CALLS:j
LIS':BI CIgu CTSU43 rlSUBa C!qUB5 CISUB6 CLOSEP JPRPCR MODE STATUS SLJBSTR VERIP'r

tX IrAl*, DIRECTLY 40?NDIEILY CALS? -
AceNO AO!)OT ADbrN afl)VEY AtLY ADNM- LOOR AAOREC AEpII AEPR APSCNT APSeL APSINT APSIUP___ATTAt ALIF IL io E'N 2QALAUFtLSCf ntL h cIQL.. P .. r~x~~~sB ______________

) clsuna CIsuRs CISUR6 rLEANP CLOSEL rLOSE0 CHOR! C,4PU E COI-'dIN CC'4STR CRESTS DBPRO DELETE IJELKEV
yq 0fl) ENP-aT p~l

FTC"' FTF$T tET r.ETCLD rEPAR GETREC hEADER I4DEX *INPAPH JFOPCR JNSNCR JPPPCR I4ONKEY LAND
(LP rl REC P)I% -T A 0OISPLA DTINIkE ND EXC L-- E)CDSExr FIND, Q4

PART POST ORNTWO OSWRD OUT RANGE REAP $ERKEY REPA REPREC RESTAX RLCLPR ROLL. FPCLPR
SEfEQEM E!'jYOT SEIJNTV SMLNAUS SRTO SCRTSL _- , S5 -AEELILLE R!_

(i STATUS STC& SURS'Q TrR' TFOPU TFoRuZ TJLIMP UNLOCK-vERIlFy XPOST XREF XflINt XX±'2 XXoUT

CIHAT" IS DI!ECI V CALl ED AlY,

SEL

ADDFN ADDL' AEPPR CFP.D tDMSTR FTCMP FTFM1' INDEX INOARM

-CIR -- 01R E CTLY.AW
AND IN9CyLj LALlt $1____ ___ ____ ____ _______________

o ADDFN AQOLT AEOR CFINO CHAR COHSTR OTFINT FC14P FTFM? GET INDEX INPAIM LOCREC LOOFHI
NQNTTD) PCLL STAEOR SURSR VERIFY

CIRP ISO6IRECTLY CALLED BY,
SJPROCP -_____ ____ ____-___

CISLIBI OIpECTLV CUA Lqi

--. CFCO E ,D__JFrFCQ __________________ _________________

.J CISIJBI DIRECTLY AND INDIREFCT! Y CAiLLS:

ADOPT A('DFW ADD)KFWY LADP WN AETNl ITPR APSC1NT APSEL APSINT APSTUP AUPOST 6LTdF CPCR
cFrr I1WDFrD'T AELEY OIFT OENT END E'DS&T XCND EXCMDS FTCNI FTFVT GET

GFTPFC IVPEV X41PARMNJPOFCQ
 WOMNEY LAND INOT LOCATE L2CdEC LCOFMT LODWEC LOR _ HIT8 ___ ART _ _________PPST PPkTTD PUT SANGE' PEPR RLCP ROLL R0CLPf SETINI SETINZ SETOUT - SS0T SAP-SOZE

____TA~S L'PTR TFOP'.WTFOPZ VEIFY YXINI YX1N2 ___fOUT

- CISULBIS rR&CTLY flyp _
 19 CALLED

C IINATI

http:VyEaX.tU

_____ _______________________

- -

___________ _____________

__

CISI)O,)TRFCTLY CALLS:

-- CO! TX--ELETE-- FEADLt..2PSCR--Q.EECLAICNT

AISPn1ECTLY AND TNrlIRECrI Y CALLS,

- ADM N *O4L.
FT AOC~t. Af~TYCJSPCO FTF-T CNU _Et.Fh~sR.CDMST&-. QELETE..OTEIKtT. -.ND6ET.ICD_________tET GFTREC HEADER INDOEX IVPARN JNSNCR LNOTLAND LOCACE LOCREC LODFHT

STE7 RAUSslT qUASTR TrORMo VERIFY XXINI XXINR XXOUT At1 FOISz

f .CALLEOM ___
 ..CISt'P2 RECTLY -- --------------

F&k CLFANP SP'INFiS RPLIJS IINLOCK

ACDR ATTACH RECMN1 CLFAhP CO'mSTR DELR

GET INDEX INPAPH LOCRE LODREC PSWRD PT kL-- SLINI.S -SP(us STATUS-. SUDSTR LINLOCK. V~IY - - -- -- PU __________-
CliUE3 IS DIRECTLY CALLED AR

CiSuo DIRECTLY CALt:_______

CISU~n nIQFCTLV AND tN IRECTl V C6LLS:

_ 'OD' C'4q CL0SrL..CLtSEP -CMnPI-
 CrPUTL -- CtNS~T.. GELT..GETREC--IDEX..Z NPARNJ(-OMKY-LAbT LMVTA& ______- -LOCQEC LODP'T I O"REC "DUSFG PART, PUT REPR ROLL SETINI SETOUT SORT? SORTS 8S8T SUBSTR

jCfiiSU~u IS DIRECTLY CAL! ED A~t
c IYAJl

'$11
*

ArOcEc t)ISPofr c)iSPLA - WXAND FORNM PARSEC .PARSEP..REAF SELREC SEUNIV - SPCSE XREF - --- -- -CTSUPs DIRPECTLY AKD ?l!0ECTI V CALLS,

'CC',ft.hAfR -- ADOEC- CLOSEP -COmSTR-.lSPDO. DISPLA- ENDSET
 -EXPAND FIND .- FORM SORML..0LGFT- -- GETCLO .. _________

GFOS ' y'IAO IOCq C LOnrsT LUDREC 4HITS PARSEC PARSE? PUT REAK ROLL
S VE

SELREC SETINI19> CISUP5 ISDIRECTLY CALLED Eyi
'1-~ CItAI

-......
C131146 DIRECTLY CALLM

- AD D F] WC RES T S OLE a _ _ _ _ _ EY CAU - nB P p 0 .- aE L EY L RE C SE . E AY-t- E P-RE c Y I_ _ _ _ _ _ _ _ _ _ _C!U6TPCTLVC) s0 AND TNnIRECTI Y CALL:,C~l HP COER:tT ~? Ra
flEW~OEP El*FC ENOSFT GET GETREC INDEX INPARM KOIE-AD LVA NT LCl ORE

LQ _t4TODPEC- LouC~T -PT -P4NE-2 E.4P-- PE-q~jxRSE71a2 SfTOUT 53CR? STATUS SUSSTR TPORN VERIFY XP§87 YlI.4t XXIN2 flOUT

-.CI$UPt IS QIRECTLC-CALLEO EYL. _____-____

- --- __________________

So O'E. S
!)-CLEANJP DIQFCiLY AND INDIRECTY- CALLAtL ___ --.- - -Nn' okE. ____

O
1) CISUSSc:)

C' !SELDIQEr2LLLCAL

COmSIP LAST SUSSTR

W.CLOSFL D1FTL-K TIflIECILLYCAtit. ____

C015'Q LAST qunSR

rCLOS ELq QOIRECTLY-CA LLEDJY..

-B Y I
-___-0 SORP

N~OONE.

-CLOSER IS-IPECTL...CALLEQ RLyt4 ADDpft CINAIN f~bUTF rRESTS rOR,' QEPKEY PEPREC RESTRX 9O5T

9CHU l M0 KC2LY _CA;Is,

C-PlJTE INDEX INPAtiN SURSYR

J -CMDR! OI;ECTLv ANft TNDIOECTLY CALLS,------------------

-
ADDQ CLOSEP cmPFiTE OnmSTR e.Fy GETREC INDEX
 -- -____I'JRARM L"VAB LOCREC LC:04T LOOPEC PUT NEPR
P--OLL-. SETINI S~flSTP. VERIFY -VI4

75 ----_wCmDOIS IRFrTLY CALLED PVj
- -

,CTS.uflu

____ __

CMPUTE DIRECTLY CAlLqt
'~B.SIS! EffREC-IM.PI'AP YLMAR IDREr MLEL5 LIk'l..SUB3P -VEIFYRt ~ X xmh

t
CMPUTE DTRECTLY AND TNOIQECTI V CALLS,

M.DR - LSEP .rOSTO GET -... GETPECAL DEX_ANEARLM_ L8VTAS LOCREC LODFqT._LDRECPLLT - ..REP -.- POLL-
SETT'l SUBSTP VEPTIY VMINI

-CO . I'ETLY CLI!.. .

ENDSFT INnEX TNPPH IAND LNOT LOP LXCR 0FTI I 3ET142 SETOUT SUBSTR VER,FY

CONSTP ErSET
S TUT STAt'sAU

COMF31 IS DIRECTLY

IET INPFM
YP YcRj

CALLED Rfl

?NPARH
T91

LAND
XyAJ,

LNCT
YXCIIT

LnR LXOR NHITS PUT POLL SETINI SETINZ

COMS'R CIRECTLV CALLSI
N.O D.E.

-COVSTR D1PECTLY AND TNOINFCT V CALLS!

COWSTR IS UIRECTLY CALLED HY:
---- AI~~ .- rIh I .AEa--.-AUPOl-BE I_N--LDTBF__CIB- CLOSEL.- DOPRO__EXCCD--XPAND.---FjNL. EORJ E-TFIT

INDEX JPPRpR KOWKEY LAST LPVTAS LOCATE RANGE RLCLPR RPCLPR TFORM TFORMZ UNLOCK
.. RESTS DTrFC'LY tALLS .-

T CLOSER ITOEY TNPAPM IOFMT PESTRX
__ESTS DIQFCTLY A&ID TrTRr.TI y rAiLA

ADDKFY APSCT APSEL APSINT APSTUP AUPOST CHAR CLOSER COM8SR QELKEY DLLR ENDSET GET 6ETREC

T'kDEY -1'P4R$ ItONKEY LAND. -- LMVT.AB LNLT- .WI.OCATE--L,3CREC LMDINT-- LODREC..LOR !JNIT5& PtART.-POST-.____PUT RAGE PEPP OESTPX ROLL SETINI SETIN2 SETOUT SSORT STATUS SUBSTR TFORM VERIFY XXINI
I-) CET IS DIRECTLY CALLED RYi

CISURb

flBPPODrECTLY CALLS:

OPPRO DIRECTLY AND TIMIRECTIy CALLS1
COMST INDEX- .ER.TI-Y ... -P
0)SPB It DIRECTLY CALLED BYi

DELET
E DIRECTLY CALLS:

DELETE OTFCTLY AND TNAIPECTI Y CiLLS
C0' STQ T'E~jv 0RNVL?_ ___________________________Y____3 DELETE IS DIRECTLY CALLED AYi

OEL'Y DIRFCTLY CALLS:
LOCATE PU? __r~qIFr_________________ __________________ 5__UT&$TP _____

DELKEY DIRECTLY AND TNOIPECTIy CALLS!
COMSTP GET TN4'Y _ f CYF PUT ROLL SUBSTA VERIFY

DOELKEY IS DIRECTLY CALLED PYu
tUPOST. CISUR b

DELR DIRECTLY CALLS:

DELR DTRFCTLV AND TNnIDECTIY CALLSI

GET_ _ LOCRFr & UT __L. _0__

DELPC IS DIPECTLY CaLILED BY:-
DFLREC RFSTRX VITNI5I

OCLRFC DRECTLV CALLqt

U -DELP -INPAUM-

DELPEC rTRFCTLY ANl INIPECTIY CALLS:

0 DELPEC IS DIRECTLY CALLED BY,
CISURb

-6Slr-TDIRECTLY CALLql
V0 ONE.

lISrmT DIRFCTLY &ND TNDIRECTIy CALLS?
NO ONE.

1$-I OfRECTLY i -,- --- "
JarreU

http:TrTRr.TI

O!SPDO DIRECTLY CALLt,

O6ISPbt DTorCTuY AND INDIPECTI Y CALLS,
z- CDM5TP _PGT_ - ICEY I--NPAELOI CEA-L.DE'tADLL....L..SERIFX
DI50OD IS DIRYCYLY CALLED BY:

CjIPISunI
DISPLA OIRECTLY CALLS,

ItILEIL ?*PPA -LOnREC,, qETLL-. WXINt ___ -

OISPLA 'DIRECTLY AND ?NDIRECT, Y CALLS,
TN-1LilfEx -fAPmRLOrRCLQ0REC DLLMS.UiNL ymRIyflXXIM'

tDISPLA IS DIRECTLY CALLED BY,

______-

DTEILT IPCILY CALLS:
n -- CkAo 1$PAPR -L'BSTR --

OTEITk 'JTPECtLY AN!) ThOIqECT! V CALLSf
CVIAR--.. C0'YSTR .ANnEY .TtIOARHSUSST.RVEI

19TI7 IS DI'ECTLY CALLED flY:
*0GM.' AFPRP r4fR

END DIRECTLY CALLS:

t.

-

- -

-

-

-_________

- - ________ - -

END DIRECTLY AN!) INDIRECT: V CALLS!
-tONE.

)ED IS DIRECTLY CALl ED BYt
_ _ _ -_

ENCSET DTRFCTLY CALLS,
--IPAOPN hITS-. SUFIS'R. XXOUT _ _ _ _ _ _ _ _ _ - --- - - _

ENI2SET DIRECTLY AMD P.'JIPECTLY CALLSI
- CWrSYR. !NDE...- TINFAR4 URLTS....SUT--RQLL-SSAtLJL. SUBS TR -VERIFY-jtxauT.__________________

)ENOSE1 IS DIRECTLY CALLED BY:
t~h~.~rrflrrpR NS!I!R WIDE RANCE SRFECT SFRI Ft SPCSF'

_ _---- - ______ _______

FXC4PIRECTLALLLL,

jFxCrvDsI DIRCTLY C'LITlPECtflY; S

EXPAV!)I DIRECTLY CALLE Y,

EXPA'!) DIRECTLY CAD PIPC:YCLS

C)EXPADS IECTLY ALLTWTEC3Ygl L

FIND I DIECTLYtAL: AV

U- CtySTQ FIN - ---GE -. R___
WIP~ko DIRECTLY AND IKOQECTI Y CALLSI

___CPQISTI-IN GU..SCLL.--__________ -ALJBS-__
,AIND Is DIRECTLY CALLED flY:

- - -

FOND D)IRECTLY ChILS1

FORD DIPECTLY AND TNDIRPCTI V CAL LS,

ti IND IS DIRECTLY CALLED BY:

FOR-M DIRECTLY CALLq:

FORM" DIRECTLY AND INrIRECTLYV
- AP - CLO S E R - O "S t.P f E

"iFORM IS DIR'ECTLY CALLED By,
r t i-r4

CALLS,
-OL=C E R P U GT P A . O B t ! t . . D L I S E Z . ._ _ _ _

FTCYP DIRECTLY CALLS$

FTC Y' DIRECTLY AMD TNDIECTV CALLSI
-_ S BSTq -- - - __________________

- FTC"P I DIRECTLY CALLED SYi
o _CC C9P JFOrP

FTF" T DIRECTLY CALLq:
,TMSNC4

- -Ct

FTiM
i$!R -GET-
DIRECTLV AND

I-NAkM.ORCONt2NIO
IIRECTLY CALLS,

_ _ _ .--- -________________ ___

f _____C Qt'STyP -_f7 7NMI~EC.Y-JwPARUSX.R-E t
FTPT IS DIRECTLY CALLED qY,

LEMM -P'TIVA L.L EIFY

AFCt9 C!'P TF
GET DIRECTLY CALLS;

1 tNSNCP

GET
R'OLL - -- -.-

DTIFyTLY AND
- ---

INDIPECTY CALLS,
- --- -- -- - - -___-

-ROLL
1E3IDIRECTLY CALLED RY1

SDDKEV A tR aPSI AIPOST FXPAND FIND FTFT GETCLO LOCATE LOCREC LODFMT LODR. PART POST
RikGF rEPKFY PEPR qELECT SEUNIV SORTS SSORT XYINI XXII2

1..ETCLO DIDECTLY CALLZ
ENOSET GET' IOCREC SETINI

-

SETOUT XXINI XXOUT
- - - - - - -_____

_.GZTCLO DIRECTLY AND TN4DqECTLY-... -CALLt
CO-STQ EAMSET CET TOEX INPARM LOCREC NHITS PUT ROLL SETINI SETOUT STATU SOBJTR VERIFY
XI f YyOUT

GETCLO 1S DIRECTLY CALLED By
) P ARSFC -- - ---r--- _______ _____

GETPAR DIRECTLY CALLqr
- E'OSET - SE'I't SLTO'IT--XXII--XXOUU! -. .-.-- ----------- ---

I GETPAR DIRECTLY AM TIOIRECTIy CALLS!
C3"STP E $SET rET TNDEX TNPAPM NHITS PUT ROLL SETINI SETOUT STATUS SUBSTR VEHIFY XXTI1

XXOhJT

LT1) GETOAP I$- DIRECTLYECALI -J ~-
PtRSFP

-.GETPEC OTOECTLY CALLl
) IPAP' LODF'T LODREC

. , -

* CEIREC NT.ECTLY AND Tflt!CTY CALLSf
CIONMS GET

LG__7EJTRtASIPE T
AUF ILE CFCR

TNDEX TNPARM
CAL EPCL-Yi
rMPUTE JFOFCR

tOCREC

JNSNCR

LODFMT

JPRPCR

LODREC

NOVSEG

ROLL

RESTPX

VERIFy

SORTS
-HE6D R OT7 ECTLY CALLS[-..

r) IDEY INPAR?
HEADFR nTRCTLY A.D

SUPSTP
nIFRCTIV CALLSl

COfSTO INDEX TNOARH SUPSTR VERIFY
fi2!EOEP 1S DTFE~t!C*LLYP..__________________ _________

CTSUR

COPS"

INDEX DPTECTIY AND INnIPCTIV tktIL
COUSTR

ACCN(' ADDREC aEPR APSEFL CAUFIL CFtND CIRP CMORI COUSIN CRESTS DISPOD DISPLA FORMN HEADER

cj YPOST
INPARm DTRFCTLY CALLSI

INDEX VERIFY
(jN-lP-pRu DIRECTLY AkMN?~TYAL,____

CCSTR INDEX VERIFY
_NPA IS DIRECTLY CGAI EDRYl

...-.

. - -

U- -ACCNO
DEL rC

LODNm

DISPOD
AVDRFC
'ISPLA

AETI T
nTETNT

AE R PSEL
F 'ESET EXC$D

A-UFL
FQpMH

CAU L
FTFH?

zC@FP'-b R:
GET.EC HEADER

CmPUTE
MOVSEG

COMBIN
PARSEC

CRLSTS
PAkSEP

DELETE
kEAF

SEP"EC SELECT SOTIP STATUS eTCNT T-FOR TJUmP XPDbT x-EF
, JFDFCQ PTIFCTLV CALLS:

AEIMIT RLDIRF r~rEMFDIS0 PMy EXCNDS-'TCM'P'
JFOFCq DIRECTLY A D TW)OJECTt I CALLST

, 'Dwo AMEN ADDILt ADh- &ETVIT AEPR
P~tvft FTCMP ,yr-, ~rT r~lPec IND'Ey

FfrFbM-'GE~C
-

6LDTBF CFINO
"-'ARu LnCP;C

LZ:. T-
-

C" -
.3I-%WT

PRNTIO

CICFDF
LODREC

SETIht

COSTR
PRL"'

Ti1- TFW 1ti-

OIS-'T" OItIT
RLCLPR RC..

XXi NI

-XCMD
"PCLpp

SETINI 802! qTAEPR SJUBSTR
J3PF2CP 1-D!RECITLUCALLED AYt._

TFOR9W
__

TEOR'4Z VERIFY. XXINt

JKNCR OIPEnTLY CALLS? -

- . FVNTT FlNOSET FrhS tTrMP CTPMT
-

&ETREC

PRPJTIO
-

RLCLPR SETINI
-

SETOUT
.

TFORM,
-- - 11

XXINL
- ______

floUT
-

&tcr AQDPV
--~1.

SSTn'JT SOZE
4JMN'EC_'th DIRCItrV

ADOL' AT)DNM
ETqEL. IHDEX

STAEPP ITAtUS
ALLEDE2YL_..

AEINIT Ab-R 01WN CHAR COM$TR OTEINT
1o.PkR1BLOtREC .. LODFMILODREC - N$IISSRNTIO
SUflSIR !FORMW VERIFY XXiNt XXOUT

___ ______________________________

tNOSET
RT

EXCrO
LLRO

EXC"O8 P1CM?
.- SXN .. -

AEINIT CIRP
1JPRC4.01ECTLY AIMj

CO-STR CVeCVO5S GETREC
IknIPECTLY CALLSL .

PHNTID

SUTSHI S IB8TR

IFORMW lFORTt1 fINt

C

AnoOFM A)i'LT AETNTT AE'P CPINO CHAR CIR? C'1HSTR DTEINJT E)CCmO
GETREC - IKOEX- - rNPAFP LDCEC-.LODFNTS'LUDREc - RNJID-..ALL __hETINk SQZE

O VERTFY WXINt
Jfl~t DIRCTL~TY raiiLfl AY,

1)flJI;Y PqECTLtCALLSI _____ ________

ICONKEY- 0EC!LY AN'DA.mDLOECTLV- CALLS, -. ____

Icops"
_KaukrY 15?RFtTIVy At rn AV.,

PART
1-LAND fl!PECTLY.CALLS,- ------- - --

XXT'JI XYIN? Y?(OUT
-LIAND - T~!YA.DNIEtjy CALLSE -.-. _ _ _ -

GET PUT ROLL. yxIt', hXTNZ2 XloUT
I ANt TS rrPFCTr V rAtI PAY

CrHTFI POST
()-LAST- DIREC'LY.CALLS, ______ __________________________

.S~-AST --- 0!!Y±s.Iittta

EXCMDS
.- 8TAEPR

FTCM' FTF).T GET
-SUBS t-.STFORfIa-.TFOkfl&

___-

_

0 CCFSTR

ALIFTLCMPU EPS TPY

0-LNsT -j4DTF ;:Y ALeLS- --- - -V s

t_) GET PULOCRECI XT2 XXU

LDFPJSJnPECILV. Am't)
u eMTR GECR;

tIJRIEC!
ROIL

Y.CALLI _______________________

'

CAUFTL CRESTS 01SPAD FTFMT OETREC JFOFCR
. LOOAEC.QPfC!LY CALL-L

GT LOCREC
*_LODIE"C PTbEXTLY &AN TfIPFFL ALL.- ___________

-TT LOCREC DOLL

CUPUTE DISPLA rETPPC tlNLOCK
_LOR OIYECTLY-CALLSZ

xxIs WYXINP XXOUT

4-

OFT OUT POLL YXThI YXTI2 XXOUT
_jLP____Tf IQFCTY aal c V.,

CVP8T@' LYCR PORT RANGE
LLxQP DIIECTLY-SAIL~s: - - ------------ --- ----

LIP
WJ.D rIPECTLY-AND. TNOIPECTLY CALLS ------

GET LOP oUt ROLL XXTNi XXTN2 XXOUT
LL2--- S_ PECTLy f.4L[Fh 4Y,

CC'4TN
- D1

0
EC'LYCALLS

E'OSET
-. O_ -DIRECTLY AfD !NnLPECLY. CALLSt-__

COPST4 EN'DSFT TfEr TNPAR4 NHITS PUT ROLL STATUS SUB3TR VERIFY XOUT
....2!Q TSAIFCTIYV AlIF-1 Py;

Cl AT'A1._YOVSEG DIRECTLY CALLS:
jCWA CETRFC TNrEV TPPARM PEPR

- OVSEG M)PECT AkDD._TNDIRECTLY ZALLSI
C4AQ COMSTR GET GETREC TNnEV !NPARM LOCREC LODFNT LODREC PUT REPR ROLL SUUSTR

v .!_PELLv CALLED RY.
C !SUBSz

..2!HITS _TT~IC!LttrALLSj ___--------____

STATUS
_NHITS. 070 !CT Lt.APVb !N~bX*ECjI CCALLSt___ ________ _________ _____________COSTQ 7NOEY INPAPR STATUS VERIFY
NHTTS IS DIP CYLY tALl ED MY,

APSEL ENOSET SELECT SEINIV_lPJREC JIR1CTLYLSAL S.. __________________________ _________

GETCLO ThNAPM
__P4RSEC OIPC-TLY ANntTNfI9ECTL_Y_CkLLSt

COISTR EOSET OFT PETCLO TNOEX INPA-P LOCREC NHTS PUT ROLL SEUTiN "ETOUT STAT0S

PARSFC TS DIRECTLY CALLED BYi
i)_ CLS"1? . - - _______________________I __

PARSFO DIECTLY CALL9:
GF1PAO INlPARm

L PARSE -
Lh L A7N TMIPECTtY CALLS,

COYST; ENWSET GET .ETPAR Tf4DFY !PARM NHITS PIOT ROLL SETINI SETOUT STATUS SUHSYR
WI'l XXOUT

VERIFY

SUBSTR

VERTFY

_

CISUR5

u GET KOMKFY PUT SUSSTA
PART DIPECTLV AND N I ECTI y CALLS,

COPSTR GET WOm(fy ?Ily ROLL SURSTR
L.AT- JS _fiRJfI VLcA 1t.F)tl ___SSORT

pOST DIRECTLY CAILAI
j GET LAND I Nfl IOCT LOP PUT SETJ SEYI'2 SE____ SUBSTR_

POST AT7PCTLY ANf TNOTIECTIV CALLSI
COMSTR GET LAND LNnT LOCATE LOR P4T ROLL SETINJ SETIN2 ESTOUT SUBSTR XxI4t
XO

-T
- - -----

POST 1$ IPECTLY CALLEn BYV
___UPOiT WPOtT .. .

PPNTIr CPRECTLY CALLS,
.1rk-r .

XXINE

.

PUNT7" D12ECTLY ANFD?PrIQECTI Y CALLS!

9*1.?!" IS DIRECTLY CALLEf) SYm
* PFrIT - JF0FXR - JNStC APPCl

* SW IRECtLY CALLS:

k ___________________________________

P3 PD DTPFCTLY AND INAIRQECTI Y CALLSS

PS-PO IS DIRCTLY CALLED AYi
__ AYIN'S. SPLUtS _Jl'LQCn _____________________________

2PUT cIRECTLY CALL St

PUT

Pu

DIRECTLY AND INDIRECT? Y CALLSt
SOLL---
IS DI RECTLY CALIFM BY,

LODKAt.EY-AD!*-- APSTUR-AU.OST-DELICEY fELL. .RAR.-EST .REPKEYCSEP.....SEtN IALVSORTS _.SPLUS 4.So

COMSTR ENI'SET rET INflEy LOCATE
NpA'%E -ZT10CTLY AND-..?NDECTI Y CALL__

Cn'STR E'kDSET GET INDEX INPARM
--- SLBSTP VEP IrV_ YX(IqL.. vx NP....XO.T
RANGE IS DIRECTLY CALLEDl RVg

LOP

LOCATE
-

SETINI

LOP

SETINP

N41TS

SETOUT

PUT

SUBSTR

ROLL.

VERIFY

SETINI

XXINL

SETINZ

XXQUT

SETOUT STATUS
____s_______

REAP !:TECTLY CALLq?
-INDEX XkOA&PP SUQSTRP -- ___ -_____

REAP DTQFCLY AND) TNftIQECTi V CALLS,
__ _.CLmS!P -INMEX- .! qit sL1Ba!A._v~EIV_________ _
aI)EAF IS DIRECTLY CALLED RY,

__ _________________________________

~

WI

~

EP4Y nILEI'LY CALLS:,
-- -CLOSER GET- If4TELOC~ALPUIJUT flS.A/EBvIA_
REPMFY fTPrCTLY -AND_T~'I0ECTi Y CALLSt

CLOSEP .CC"STt 0OL.t..ol-_y~AllxQ~ffrn~L~n.'~
REPXEY IS DIRECTLY CALLED~ SYn

yx

REPQCS4,2fD!CTLY CALL11

REPP DIRECTLY AN?)TNOIPECTI Y CALLS,

0

0

-EPP IS DIRECTLY CALL EDRf
__AtifE CFCR C-uO? ,*ovsEr PEPQEC

REPPEC DIRECTLY CALLqI
- C~OWE IV Fy . - TNPA.RM QE___

#E0PEC DIRECTLY AN?) INOIRECTI Y CALLS,
Cj.OSPP I.CQOYO$_1CET-_,!fLOE __

REPREC lI OliECLY CALlCEflSI

PEsTRY

ep___________________________

- -P

ti

QE$TR? nIRECTLY AN?) TNr)IRECTI V CALLS:
A"!(FV APChjT~lt.$ APOTVP
I\OEX INPARPM kOMKrV I AND L"VTAR
PUT RANGE PE*R POLL SETYNI

AUPOSY
LNOT
SETt,4P

-CHAR ---

LOCATE
SETOUT

LgSEr
LnCREC
$SORT

-CO4STR-OELKEY

LOOWMT LOOREC
STATUS SUISITR

-~--

LORt
TIPORM

NHITS
VERIFY

PAR~T
XXI?.I

ERC_______
POST
XYIN2

Q _RE$TKIS DPECTLY.CALLEO-BY1
CRESTS

-- __ ________________________

ki A)DrT AO?)FN A~nLY Abh)Nm AERR CFIND
R.2tnQfITRECTLY AND) TNA)TPFtTI Y rAl Ls

AODDT ADOFN ADDLY AODNM AEPR CFIND
U-9CLP? .I$SDMCILYCALLED.BYi_..-_____-----*-_______

CICFOjF JF.SNCR
-ROlLLSPDIECTLVSALLS I--

NV ONE.

COMSTR INDEX

CWAR CO$STR DTEINT

-__________-_______________________

INDEX INPARM STAEPR SUbSTR VERIFY

No ONE.
P OLL JSrIDEC.TLECZAaELSb ___-___-

GET PU'T
____RPCLRP DIRECTLY CALLS:...____ -___----___

A(MDIT ADDP* tOOL? AODMM AEPfl
RPLE nYPPCTI~ AAM JflaTPWrTI y rAl 1I8
RFArr.' AODFN tOL? ADDJ AEPR'PCLPQ 1s UIPECTLY CALL!D5JY 1s

CFTAJO

CTNO

-
COMSTH

CHAR

--.

-- ---INDEXY_

COSTA
--.

~ - -----

---.-----

MTINT INDEX
_____-----

INPARM

___--_____________

____-_____________

STAIPR SUbSTR VERIFY

CIYAT&' EkD UITS.5qF .nR C.iLv AND T'jyrrCY, y FAI I q
AICCjf ADD? rsADMEN KEY ADOLT AODNM ADOR ADDREC AENI? AEPR APSCNT APSE APSINTAJ'TACN AUILE. A'JPOST - PE4tIN__SLOT9RP CA'JFIL -CFCR .,CFINb CHAR --CICFD? ...CIAIN.....IRP -..-CI6UBIC!SI'R3 CrSuPq erSUnS CTSIA/, rLPkwP CLOSFL CLOSEP C40RI C'IPUTE COMSIN COtISTR CREsTS DBPRO - .E1'EY :ELC ...riELPEC lSF~lT._ISPOD__DISPLX - DTEINT.. END ENDSET EXcNO .EXCMOS Ex0ANO FlIND'1 PD-M FTCMP FTCMT 49T? CETCLO GETPAR SETREC HEADeR INDEX INPAR1 JFOECR JNS$CR JPFPCR*L AipO i_LLST ... HUvTa , N *Lm..orLAnRLJ 9..~LQ tIO Q I mQ 0 H ISPAR5EP PART POST OPNTID OSWAD PUT RANGE QEAP REPnEY htpR REPREC RESTRX RLCLPRflAo3CLPR - SELECT- SELREC... AqE!NI-SLNSTOTSEUAIV -SMNUS -SDRTP, SORTS - -SPCSET -SPLUS.... Sul2t --STAEPk STATUIS STC'JT queST? TFDP-I TFORHH TFORMZ TSUMW UNITS UNLOCK VERIFY XPOST XHUF

--N _ XXOUL.
- - ---- -

_
-- -- ---.nl SL 1S OJ0ECTI V CALtE) BY,

APSIUP
C1U
DELETE

.DORM
904KEY
PASEC
kOLL
SSRT.--
XXINI

62

--

. .. .

k'

SELECT nI'?FCLV CALLS?
"-- EVOSE! -- ET-. - . 11mEV -NPA'?H..LOCAT.L..NH.LTL..RANGE..S8TVRPV
SELECT CIRECTLY AhNDIPOtRECTI Y rALLS1

--ISTATUS SU:StRVEIYPIpyyy anTh2 flOwV______
SELECT ISIDI4ECTLY CA?? ED RYi

____ ____________

AYAEL R E E N DSFT ICCR E C I E YPUT Y i mnU_

0
.. SELPEC DIRECTLY LND1'A?IPMILVCAJlI

ACCNO CCI'S?' FNASF? ItET INnEX 1NDAR1

LOCRC NNITS 'VU?_

_ROLL-SETOUT STTS UBTRVEIF

_ _ _

SETINI' DYRECYLY CALLS? _

SEfiMl OTPECTLY AND ?NOIRECTLY CALLS,I__

SETI&1 19InIPECTI V CAL? ED BYe
CFCQ CI'PUTE rOJ.ASI..-CL..EP;FrRNNR

SEIIN? DHQECTL CALLSI
JPPPCR__ PflT RNC...ELK-$RT.KE.-____

y~E.9TR

4SEIIN? 01"'EFCLY AND, T~NrIRECTI v
NO OpE.

SElIN2 IS DIRECTLY CALLED R~i
-- COMPIN POST

SETOUT DRCL &I~____

CALLSI

OETUTDIRECTLY AND 0lIECTI YVCALLsI
NO O'C.

SETOUT1IS DIECL CALE Rye:11
- COPSIN rETCLD GEjTA! $qSMCRP0ST MA NQKL.ELREC

SEU4IV DIRECTLY CALLs?
- GET NHrTs PUT - RuBSm _____

.± EUNIY tITREC'LY AND INPICTLY CALLS?___
COMSTR GET ?NoEM TYNP&PM W14I7S PUY POLL

SORI$_

STATUS

S'CSET

SUBSR

VERIFY

SMINI'S DIRECTLY CALLS:-iF___ ________

SmINU5 RECTLY
0

Ahhor.IfllI*EC tl 'CALLS,
IE o,,tQ. 6nCF

SM!LUS 1S DIRECTLY CALLEfl lJi

SORT' eFC'LY CALL1:
* CLOSEL. ?NOEY ?tNPAQM_ SORT$. -SUFSTR- - __- - - --- --- ___________

SORTO DTRECTLY AND !'FP.IRECTI V CALL~t

CISL.SMT r.E TrEr TinFY TNPARM. KO*4Y ASJLUBEC LOOlM LDDREC___AR....11T RnI

SETYNI SETOUT SClQtS ISOP SURSTA VERIFY WXINt KIOUT

-$RT IS .CALL". 8Y1.. ------ --- --
75IPECTLY __ ____________________

CISuhU
-sori!! DIRECTLY CL~ ...- _______ ______________________

OFT CCTRPC OUT SrTrVl SETOUT SSORT SUBBYR XXINI XXOUT

.IS.STPT2-itY ANOnyp V I qit _______________________________________
CAITQCT

tCrlSTQ GET GEIRFC TtJIEX INPARM KOHSEY LOCREC LOOF'47 LOOREC PART PUT ROLL SETINI SETOUT

1 ____S~o't.SURSTR VERIFY___XXKPLL.YXOUT______________________

SDATS It DIRECTLY CALTEC RnY

)SPCSET DTRECTLY CALIA:

SPCSFT ')rDCTiv AhM TWIQFEtLY CALLS,
N_- &tCCo - CroysiR NSpl!ELTPM.4 P P OU..STOUT--&hATJS-SUBSTR -SVE3IEL.XXUUT

SPCSEt IS DIRECTLY CALLED BY:
_ __ -_ _

_ _ -CISJBS __ .__

11 SLUS 'IPECLY CALIA:

SPLL'S MOE1CTL &Ll *N1 nRCC Y C4LLSt

*I AnCO GET .. IQCREC- PS WED~-- PUT -- RL- $U ST_-

SPLUS IS DIRECTLY CALLED, Ayr

IECTLY CLSISGZ BY:IIRCI

AT DSR'IIRECTLY
CAt LSI

GPT -PART slIT

S5ORT 51QRECTLY AND0TNDIRECTI Y CALL3,

__- . C tyS'I R OGET .AQ'KE Y Ao_- rsJUInAOLL L S

SSOPT IS DIRECTLY CALLED Ryj

t3SAE'P TIR!CTLV CALL1,

STAEPF DIRECTLY AND Tk~tIPECMY CALLS:
0 - NQ ONE.- - - --- -- --- - --- .----------- ------- ___

STAEP; 1S DIRECTLY CALLif RYi
_ &P3 __ - _ _ _ _ __ _ _ _ _ _ ___

STATUS DIRECTLY CLLI:

____tI ±A. z

STATUS DIRECTLY AND TNflPFCTlY CALLS:

tO- ColeTs I -INOAR_E _ _sERXYt.._____ _____------____ _______ _______

STATUS IS DIRECTLY C&LLE) Ijy,

_ 5-EGI'J CIMAIN 4HITS ________________-_____

STew, DIRECTLY W1r INDIRECTI V C&LLS:

0.... SO~v5YTQ D)..IPR.sBttLV-____
STCNT IS flIPECTLY tibtEo B?,

w S~TP rizECItY rALjq%

SUPSIR IS OIRECTI V CALLEDI qvi

- -ALOrw &mrIicy AOrP Ar~prC A'SEL -ApSt'P_.*TACW._AjILE ..AvaQ$1. EI AN COeLL MUE-

CO,?RT rB;pO rEkKrY FIYET"? ;4N$P Exc-: EXCMOS EX'A"O F 0~ HEADER 4P9OCR PART p~b? RANGE

b.' praqL Pqlt~y q~rCr Shl,\T, :VTP SIR'S C3:SCT STCNT Tr ;- TEDS. T2? 7Jt"' 0

UkLOC'(

C-hR C"STR T%0AP SIUqSTR
_rpDIRECTLLAND INDIRECTL Y CALLS,._____-__

CMlAq CCMSTQ TN.Er TL'PARM qL'RSTR VERIFY
TML-pJqfD flyI, Y i trn PV,

ALFILE PESTRXC
'TFO&Lmd DTRECTLY..C&LLSL ____

SinSST
O~~4IRFtCTL...AM2...h 'I3ECILY CALLSz -

-

-- ____________- -______

75~tI rOI2CLY rAtP!) RY;
CP CR J'OFCR JSNCR YIPRPCR

flTFCPQ DIRECTLY CALLS:
C"&o COP$?R OTFIN? tcgq5TP

JFGPUZIORECTLYAND ThCIQECTLY CALLS:
fl CWAQ CO'STfl flTFNT INDEX TNORM 5U4STR VERIFY

- --

-UNITS

CpCQ JmO)FCP IPQPCR
1)TJ'JP.. TGFCtLYCALLSI - ---- -- ___

140EY TNPAPP SUqSTp
TJU"'P DIRECTLY ANDi I'.DIPECTLY CALLS:

- C0NSTO ZNrCtV IN
0

A4M SUBSYR VERIFY
.21V2...I DIRECTLY ral IFEA fY,

CISrJP4
- UNITS DIRECTLY CALLS?--------------------

LAST
.. VNTTS O)TRECYLY, AND ESIECILY.C!LLSt.I_o Cnx,5T LAST

IS DIRECTLY CALLEn SYi

--

-

--

--

-- --

- ---- ___-

--

LC

__

CVO4STP LODREC PSWRI) tUSSTR
LP1LC5..DIT~tAAD XVDIECTL. CALLSL _________-________________________

*- COtPS'R GET I OCREC IDOREC #SWfl0 ROLL SUOSTA
UNLPC'x TS ThIR5CTLY CAI SY,

L

C TFStIR-A73_L

... YE!U!A_ LIEo lst IN3TDEX
VERIFY IS DIRECTLY

A0D(EY aFPR

I E~~DD'tELCALL

CALLED AY,
APSEL rIMAIm

&L_

CMPUTE CONBIN DSPRD DEL$EY INPARM RANGE REPKEY SELECT

CLOSER IN4DEX TNPARMPOST5
KPOST DTRECTLjAtDLkLELaC

0 LSR C'SPGET INnEX
SET()"T SVPSTP VERIF Y WKIt

XPOST 15 DIRECTLY CALlED y

LA
TNPARM
YXTNP

LAND
YxofUT

LNOT LOCATE LOR POST PUT POLL SETINI SETIN?

XPEF DIRECTLY CALLS?

*Q XREP OP ECTLV AND TNDIOQECTLYV CALLS:
COIHSTR GrI' 114rEW TNPAR" POLL

XPEP IS DIRECTLY CALLED RYe
__-- TSVI5 .- - - -

XYIdI DIRECTLY CALLS:

SETINI

--

VERIFY XXINtI_______________________

______________--____

GET POLL
XXTI? ISDIRWECTLY

CJtC___ CPPUTE
CALtED) Rfl

f)tAPI A r.ETCLD GETRAR JPOFCR JNSNCR, JPRPCR AD LNOT_ LOR RkANG: RESLTRX_ SQftSL______

_XXIN? fDI*PCTLYCALLSI-----------l

rvtj GETott ~n drI*n

- - -

OFT ROLL

L ANDf LWflT LOQ

XOTDPFCTI V ANn Tgfl?O~t.TIYv nIS,
PT7 POLL

KX PJIIP1EC1LY-COLLE* P~t- ________

E'pStl OUTCID0 CEPAP SSCR LANDO LNOT LQR RAN9E $ELRtC 80R75 SPCSET

3.2.3 NEW BUFFER FORMATS, COMMON BLOCKS, AND TABLES

On the following pages are described new buffer formats and tables,

along with the new common blocks which contain them.

-=894

COMMON BLOCK CLTBL

This common block contains the 50 word array named COMMAS,

which is the Comma Location Table.

COMMA LOCATION TABLE

Table that points to the commas which surround relational,

replacement, and BY clauses, and report expressions in the

packed input string for the command. It is a one-dimensional

array of four-byte integers.

.Word 1 - binary integer whose absolute value is the last used

word of the Comma Location Table. A negative value is

used for the JP &RP commands to indicate that the

command terminating exclamation point was encountered

by subroutine SQZE.

Words 2-n - binary integers whose values are the character

numbers in array CMD of /SY3CGM/ where significant

syntactical commas occur.

COMMON BLOCK SY3COM

;Variable or Array Usage

CTBL(5,50) Normal Command Table

FCTBL(5,10) Function Command Table

WBUF(50) Working Buffer
WBF(7,50) Working Buffer Format

SBF(7,20) Source Buffer Format

TBF(7,30) Target Buffer Format

MLMT(2,20) Multilevel Move Table

MTCT(3,2) Move Table Control Table

BPT(10,5) BY Processing Table
RBG(16) Intermediate storage registers

CMD(100) Packed input command

NCTBL last used row number in CTBL

NFCTBL last used row number in FCTBL

NWBF last used row number in WBF

NSBF last used row number in SBF

NTBF last used row number in TBF
NMLMT last used row number in MLMT

NMTCT last used row number in MTCT

NBPT last used row number in BPT

COMMAND TABLE

General layout for the normal command table and the function

command table. Each row of this five-column table represents

an operation to be performed by the execute command subroutine,

EXCMD.

Column 	1 - 1 word - binary integer pointing to the first operand.

A positive number is the row number of the Working Buffer

Format. A negative number means an intermediate storage

register, and its absolute value tells which register.

Column 2 - 1 word - positive binary integer representing the

operation to be performed. See Command Operations Table.

Column 3 - 1 word - binary integer pointing to the second operand

for binary operations. Same type pointer as column 1.

Column 4 - 1 word - binary integer pointing to the location where

the result ot the operationis to be stored. Same type

pointer as column 1.

Column 	S - 1 word - binary integer whose value is the row number

of this command table to which a jump is made when the

current operation cannot be performed due to absence

of data in an operand.

COMMAND OPERATIONS TABLE'

This table does not exist as an identifiable entity in the

software. It is an explanation of what is meant by a row

of a command table and a definition of what operation is

performed for each operator by the subroutine EXCMD. In

the description below, columns 1-4 of a command table are

referenced by the terms OPND(l), OPERATOR, OPND(2), and

RESULT, respectively, and CFLAG is a logical argument in

the call to EXCMD.

OPERATOR 	 OPERATION PERFORMED

1 ADDITION: OPND(1) + OPND(2)-RESULT

2 SUBTRACTION: OPND(l) - OPND(2)-*RESULT

3 MULTIPLICATION: OPND(1) * OPND(2)eRBSULT

4 DIVISION: OPND(l)/OPND(2)-*RESULT

5 .LT.: IF OPND(l) < OPND(2), THEN .TRUE.+CFLAG,

OTHERWISE .FALSE. CFLAG

6 .LE.: IF OPND(1) < OPND(2), THEN .TRUE.-*+CFLAG,

OTHERWISE FALSE.)CFLAG

7 .EQ.: IF OPND(1) = OPND(2), THEN .TRUE.-*CPLAG,

OTHERWISE .FALSE. CFLAG

8 .NE.: IF OPND(1) 0 OPND(2), THEN .TRUE.+CPLAG,

OTHERWISE CFLAG
bFALSE.

9 .CE.: IF OPND(1); OPND(2), THEN .TRUE.- CFLAG,

OTHERWISE .FALSE. CFLAG

10 .GT.: IF OPND(1)> OPND(2), THEN .TRUE. CFLAG,

OTHERWISE FALSE, -*CFLAG

11 COUNT: IF OPND(2) IS NOT BLANK, THEN OPND(1)

+1+ OPND(l)

12 	 NUM. MIN.: THE NUMERICAL MINIMUM OF OPND(1) AND

OPND(Z)+ OPND(1)

13 	 NUM. MAX.: THE NUMERICAL MAXIMUM OF OPND(l) AND

OPND(2)e OPND(1)

OPERATOR OPERATION PERFORMED

14

is

ALPHA MIN.: THE ALPHA MINIMUM OF OPND(1) AND

OPND(2) -+-OPND(1)

ALPHA MAX.: THE ALPHA MAXIMUM OF OPND(1) AND

OPND(2) - OPND(1)

16 TRANSFER: OPND(I)+ RESULT

BUFFER FORMATS

General layout for Source Buffer Format (SBF), Working Buffer

Format (WBF), and Target Buffer Format (TBF).

Column 1 - 1 word - SBF: temporary key field indicator for CF

command

WBF: the value to be used for initialization after

printing of a results field

TBF: print flag to associate printing of this field

with a change of a BY,field (BY processing table

row number N)

Print flag = 2*N-I means print this field at top

of BY number N

Print flag = 2*N means print this field at bottom

of BY number N

Column 2 - 3 words - SBF: 	 first word is data base format row

number of key field for CF command.

WBF: 	 four types of data: (1) alphanumeric characters

representing field names, (2) $Lbb in first word

for integer literal in command line, (3) $Tbb in

first word for alphanumeric literal in command line,

(4) $Rbb in first word for 	calculatiot results

TBF: 	 First word is row number of WBF of desired output

field. Second word is key field indicator for CF

command. Third word is data base format row

number of key field for CF command.

Column 3 - 1 word - SBF, WBF, TBF: starting character for actual

value in buffer being used. (In WBF, the data is actually

in the command line instead of the working buffer if

column 2 = $Tbb)

Column 4 - 1 word - SBF, WBF, TBF: length of field (in characters)

dqO

Column 5 - 1 word - SBF, WBF, TBF: type of data in the field:

-I means a binary integer contained in 4 characters

0 means an alphanumeric character string

1 means an integer in a numeric character string

2 means a date in YDDD numeric character string format

MULTILEVEL MOVE TABLE

Each row of this two-column table represents a move of data to

be made by TFORMW subroutine.

Column 1 - 1 word - binary integer whose value is the row number

of the Source Buffer Format array where information

about the field in the Source Buffer is located.

Column 	2 - 1 word - binary integer whose value is the row number

of the Working Buffer Format array where information

about the field in the Working Buffer is located.

MOVE TABLE CONTROL TABLE

Each row of this three-column table defines which moves in the

Multilevel Move Table are to be performed for the record in

the Source Buffer from a particular data base level.

Column 1 - I word - binary integer whose value is the starting

row number in the Multilevel Move Table.

Column 	2 - 1 word - binary integer whose value is the number of

rows in the Multilevel Move Table to be processed via

TFORMW subroutine to get all the needed data transferred

from the Source Buffer to the Working Buffer at a

particular data base level.

Column 	3 - 1 word - binary integer whose value is the format

number for records at this data base level.

BY PROCESSING TABLE

Each successive row of this table defines a successively lower

level subgroup of the input data and the processing associated

with a change at that subgroup level.

Column 	1 - 1 word - binary integer; index to Working Buffer

Format (i.e., row number) pointing to the Grouping Field

Name (GFN). If 0, it means the GFN was flB. If <0, then

a calculation must be performed before a test for the BY

change can be made.

Column 	2 - 1 word - binary integer; starting row number of normal

command table when column 1 is <0.

Column 	3 - 1 word - binary integer; number of rows of normal

command table to be processed when column 1 is 0.

Column 	4 - 1 word - binary integer; starting row number of normal

command table for use when the value of this BY field or

calculation changes.

Column 	S - 1 word - binary integer; number of rows of normal

command table to process when the value of this BY field

or calculation changes.

Column 	6 - S words - current value of the GFN for this subgroup

level. An integer or calculation result is stored in

the first word, whereas a text field may be all 20

characters.

j ,
TA

