#Made available under NASA sponsorship

In the interest of ear] ide di
Lo Y and wide dis- . - .
:em:nat:on of Earth Resources Suryey 77 6’«- 155 #
forroi:fm ihforigation and without [iability 2 80-1019 %
Y USC made theregf» - JSC—- 13894 NASA GRS
Lot 7
AS~BUILT DESIGN
FOR
ENHANCEMENT OF THE AUTOMATIC
STATUS AND TRACKING SYSTEM SOFTWARE
Job Order 71-£95
(E80-10197) AS-BUILT DESIGN FOR ENHANCEMENT NB80-28794
OF THE AUTOMATIC STATUS AND TRACKING SYSTEH
SOFTWARE {Lockheed Electronics Co.) 146 p
CsCL 02C Unclas

HC AO7/MF AO1

Prepared By
Lockheed Electronics Company, Inc.
System and Services Division
Houston, Texas
Contract NAS 9-15200
For
EARTH OBSERVATIONS DIVISION

SCIENCE AND APPLICATIONS DIRECTORATE

Houston, Texas

February 1978

63743 00197 @

National Aeronautics and Space Administration

LYNDON B. JOHNSON SPACE CENTER

LEC-11882

JsCc-13894

AS-BUILT DESIGN
FOR
ENHANCEMENT OF THE AUTOMATIC
STATUS AND TRACKING SYSTEM SOFTWARE

Job Order 71-695

Prepared By
D. K. McCarley
L. D. Dornell

APPROVED BY

£ P
V. M. Dauphin, Deta Manager
System and Facilities Branch

Prepared By

Lockheed Electronics Company, Inc.
For

Earth Observations Division
Science and Applications Directorate
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

February 1978 LEC-11882

Section

1.

CONTENTS

INTRODUCTION - - L] - - - - - » -

1.1 PURPOSE AND SCOPE

1.2 BACKGROUND.
APPLICABLE DOCUMENTS . . .« . .+ «
SOFPTWARE MODIFICATIONS
3.1 CONTROL FILES.« . .
3.1.1 ASATS.BIS, BATCH RUN.

3.1.2 TY1ORDER.COM, PACKET ORDER LIST .

- . -

3.1.3 RIMS CMD, RIMS TASK BUILDER COMMANDSE . . .

3.1.4 RIMS.ODL, RIMS OVERLAY STRUCTURE.

3.2 NEW AND MODIFIED RIMS PROGRAMS . .

3.2.1 PROGRAM DESCRIPTIONS.
3.2.2 PROGRAM CROSS-REFERENCE. . . .

3.2.3 NEW BUFFER FORMATS, COMMON BLOCKS,

ii

-
*
(]

AND TABLES

Page
1-1

3-115

3-130

http:TY1ORDER.COM

1. TINTRODUCTION

1.1 PURPOSE AND SCOPE

This document makes current the existing design documentation on
the LACIE Automatic Status and Tracking System (ASATS) as imple-
mented on the PDP 11/45 computer. To accomplish this objective,
it contains descriptions of all the modifications necessary to
implement TIRF 77-0035, Enhancement of the ASATS Sotware. The
complete ASATS was documented by previous publications (as listed
in Section 2), and this document should be used in conjunction
with those publications, superseding them where they conflict

with statements made herein.

1.2 BACKGROUND

ASATS was implemented using the Regional Information Management
System (RIMS), a generalized data base management system.

TIRF 77-0035 required several enhancements to be made to RIMS.
They were as follows:

a. Additional Data Base Protection - In order to prevent inad-
vertant destruétion of portions of the data base, additional
uger interaction to verify the user's desire to execute the
command is requested for the Delete Set (DS), Delete Record
(DR), Delete Key Name (DK), and No Key (NK) commands.

b. DNull Set Detection and Control - In order to prevent produc-
tion of headers for reports containing no data, the Jump

Test (JT) and Label (LA) commands are implemented.

c. Arithmetic Operators - The ability to allow arithmetic opera-
tions on fields of data is implemented for the Select Non-Key
{SN), Joint Select Non-Key (JN), Display Formatted (DF), Joint
Display Formatted (JF¥), Report (RP), Joint Report (JP), and
Change Field (CF) commands.

i

Inter Data Base Comparisons - The ability to specify arithme-
tic relationships between fields at different levels of the
data base is implemented in the Joint Select Non-Key (JN),
Joint Display Formatted (JF), and Joint Report (JP) commands.
The ability to sort with fields at different levels of the
data base is implemented in the Joint Sort (JS) command.

Subgrouping by Field with Maximum, Minimum, Sum, and Count
Functions - The ability to specify fields for which records
are to be grouped by value and print field values, maximum
or minimum field values, sums of field values, oxr counts of
records for the resulting groups is implemented in the Report

(RP) and Joint Report (JP) commands.

The remainder of this document identifies the changes to RIMS

software required to implement the enhancements.

2. APPLICABLE DOCUMENTS

The following documents are applicable:

=1

b.

RIMS Design Document, February 1976 {LEC-9564)
RIMS Maintenance Document, October 1976 (LEC-9566)

ASATS Functional Design Document, November 1976 (LEC-9861,
JS8C-11835)

Implementation Specification for Large Area Crop Inventory
Experiment (LACIE) Phase III Automatic Status and Tracking
System, March 1977 (LEC-8675, JSC-11401, Rev. A)

Operator's Guide for ASATS, March 1977 (LEC-10401, J8C-12729)
RIMS Users Guide, April 1977 (LEC-9301, Rev. A)

Detailled Design Specification for the Automatic Status and
Tracking System Modifications for LACIE Procedure 1, May 1977
(LEC-10529, JSC-12885)

TIRF 77-0035, May 1977
ASATS Users Guide, June 1977 (LEC~10148, J8C-12535, Rev. A)

As-Built Design for LACIE Phase III Automatic Status and
Tracking System, June 1977 (LEC-~10419, JSC-12743, Rev. A)

Project Development Plan for the Enhancement of the Software
of the LACIE Automatic Status and Tracking System, August 1977
(LEC-10977, Rev. A)

Functional Design Specification for Enhancement of the Auto-
matic Status and Tracking System Software, September 1977
(LEC-11199, JSC-~13110)

Detail Design Specification for Enhancement of the Automatic
Status and Tracking System Software, November 1%77 (LEC-11512,
JSC-13789)

3. SOFTWARE MODIFICATIONS

3.1 CONTROL FILES

Various non-data files were changed to take advantage of the new
features of RIMS or to make necessary adjustments. These files

are listed in the following sections as they currently exist.

3.1.1 ASATS.BIS, BATCH RUN

LB IOBANAMESABATRY Y LALPAUNT R A UA-TMITESQQ A MER-
QMESSAGE ASATS BATCH STRFAM vERsxom t7 fFEB. 1978y,

smsssase RE SUPE vnu HAVFS
~SMEBBLGE- - -— - - — ——READ -FN-CARDDEEK,
SMESSAGF { WITHY RIP o[210,4]UP)

ﬂ: 73&1]!}12’ ~all

LA™ RaE vy t..-"l--.;

E FVFRETTE 313'6?08 (DAYSJ

©®2
=z
™
p LN
L]
-4
(34
m
Cu G
om

%MESSAGE IF CAPDs NOT n K,a ARORT THTS RUN AND RES?ART

—SH§35#GE“*?iHﬂﬁNQ%HEPm&#¥WkSt%S*ﬁF%ER—RE*B%NG—F#RBS
SMER PIP [210,4)0UM, TESEI210,01ENDFILE

—SMER.RIP LRYS 124044 ay TES A T —- :
$MESSAGE/MIT NQW, TYRF TN CAN{CRY TO CONTINUE, OR ABO(CR) TO ABORT,

B oA !

LA A

BMESSAGFE START pREPRDCESSDR

B -G EAN-UR RILES — i = .- -—
MER PIP

——5—2—1—04—“4—94-1}’ V*-g T E’S"‘I ? %'G = a#‘E‘“‘BF’H_E - I -
t210 ﬂ]t TFSH/DF

BMER PIP
—F24-0+8) STERY TTKE[206,5) 8TFP THX - i -
1240,0)1STEP3, TTKR2 (706,58 STEPT, TSK
{210, U STERS TTIK= L2006, 88 TERPR T EK
1210-4)1A8A7S, TTKa[?06;§3A85T§ T§K
TR, TEK
{210,48)RIMS, TTK-r206 SIRTMS, T5K
5 | SYep o REAQS_ERF11meﬂg_ﬁnp_m941;3_3u1_1Hg_;gggguym;;______________
$! PPF143 AND PPFIdO{PHASF 3 AND TY! FOR LATER PROCESSING)
—5 1 —OTHER EILES 7o LTMNE-PRINTER
$ 1 SORT NPERATION WILL ALWAYS HaVE INPUT AND ALWAYS PUT oUY
_ﬁ_1__snMalalmaﬂis_;x_auus_su%easq=H'L!
EMECR REM RSXBAT
—BRUN BYERYL TTK — —— e

'-\..k.-i‘%- FAGE s
OF POOR QUALITY

http:USTP1.TT

SMESSAGE START SNRT

8 ! CAN NDW SAVE BPACE BY REMOVING INPUT TQO THAT 8ORT,
S1LADF

SMCR SRT [P10,4)PPFRu4. TFszr?iO UYPPFIUY TES/STZE880; DLSPEC,S0R
—SMCR PIP [210,4)PBEAA" TECYY NE

§ | SET UP NOW FNR STEPI.

e PHAgES
$ | PPF35(3 AND 4) OF NONex, 2, 3 CARDS

$ I &L FOUR MUST EXTST IF Nn MESSAGES ARE TO BE GIVEN,
—SMER PIR
[210,4)PPFI3X TES= 1210, 4VENDFILFE
1210, 4yRPFIRA _TEQarasn H1ENDETl £
(210, 81PPFI8Y, TES:?P?O H1ENDFILE

TLE

T

SMCR REM RSXBAT
—SRUNSTERZ TTI . . —— e — e
AMCR PIp [210,UI1PPF243. TFSs % 2DF
_$M£B_EJE“JEJB+AJPEE?uﬁ TES 1w £DE — -
EMESSAGE STEP 3 OF PREPRNCESSOR FINIQHED
& | REFARE DOTNE TH
SMCR PIPR [?io,u]PPFupP;Tes=!Plo,u1ENDFTLE
—SMER SRT [210,0)PRPFU2P TESS[240,4 RPF33T TESASTZELBOAKEYS I ENL. dteNy 80
8 I Nnw rLEAN UpP INPIT FILES TO THAT SORT, AND
£ 1 Up _DUMMY_QUTRUTS. FOR STEP..5.,
SMECR p1P
[290441PPF3IX3 _TES; % /NDE
(210, 41PPFS3IP TES=(210,4)ENDFTLE
—2 10 - LI RRESSR TE SO {2+ 05 HENDFIEE———
(210, 4)PPFETP, TES-!??O.H‘ENDFILF
—ﬁﬂﬁﬁuﬂﬂl—ﬁH@TH}FPFQPP~$E&3*+BF—m—_— -
SMER PIP (210, HIPPPéﬂl TES=(210,4ENNFILE
GMFD DYQ
LP3={210,48)PPFE7P TFS
1210, 4)YPPFSTP ,TES w /0E- - - -
{210, 4)PPFRSP TES I+ /NE
—F1240,4IPHASER TESH (210,41 PPFEYP TES/RE - —— - - -——
(210, 4IPHASER,TES= 210, 81PPFAST, TES/AP

faio.quPFSBP TES=L210, B!ENDFILE
- 2404 VPRESIP TER % /NE -—- s
(210, 41PPFESIE , TESI+ /PE
RO U PPEIBITES B~ e - — -
(210,41 PPFURP TES=1210,4)ENDFILF

$ | NOW CLEAN UIp IupnT TN THAT SORT AND GIVE Dummy gUTPUY FOR STEP By
—SMER—PIP - —- —-
faio.uspprssﬂ.TEs:*/nE
— 240 A1 PREB IR TESE I 24 G4 HENDFHLE -
{210, 4)PPFSEP TES=1210,41ENDFILE

SMCR REM RSXBAT
SRUN § TERS,TTK — _

SMER BIP (210,U1PPFuP,TES)*IDE
—SMESSAGE BTER B KINIRHED-FOR F¥ty - = e

ORIGINAL PAGE IS
=2 OF POOR QUALITY

re

§ | SORT #,2,3 NONeSFTS RACK INTU CARDeTYPE ORDER,

8MCR PIP (210,4)PPFg8Y; ~TES=!210, ujtmnFTLE

—2ueR SRY IEJﬂrQIEPFssﬂ—J 49101ﬂ+ﬂpFES#T4€6484%E4ae¢xe¥a+eu¥—aa___
£ 1 DELETE INPUT TO THAT SURY CONCATENATE UPDATE FILES,

—SMER RIR e e
(210, 4YPPFRSP,TES I /DE

(210, 61PPFS7P, TES % /DE

— 1210, 4)PHASEL TES {210, 4 RpRERIP TESLRE-
fE!O:MPHASEd.TES=ta'lo.a!PPFbStl,TES/AP

—l21 0, 4)pHAREL TES (240, 4)PREXBL TR AR
{210, 4)PPFSIP, TESS[210,4YENDFILE

— (210, Ut PPFSIP YESs, /NE
[210,41PPFASU, TES */DE

— 1210, 4)PRFISU YESIx/NE _. e - —
$ 1§ ALL FILES ARF NnW CLEANEN UP AND unoﬂes nreE IN 2 FILES)

—8.1 SEPARATED BY pHA§F: .pHARER TES AND-pHASEL, TES,

EMER PIP

— 1240, 41PPEIBT TF8xr2¢g A1ENRRTLE
(210,41PPFAST TESy«/DE
_1210,43R0F353 TESZ (710,41 PHAGEL TES/RE . . _

[210,81FNRO12, DATSI210,41ENDEILE
210, AIENROL2 DAL % /DF e - - et i = - - -

[210,41F0RO1P ,MATR (210, 41ENDFILE

(240, 41FNR00T7 DAT=r240 AVENDETLE
fa??OnU]Fm?OOT.DATn/nE
—BMESSAGE TY! UPDATES #TLL -Now BEGIW, . —— .

$MESSAGE THIS IS YNUR LAST CHANCE To STOP TYI UPDATES (CON QR ABOD)Y,

—SMER PIRP LPIS[210,0 k TEQI*AT - —
SMESSAGE/wAIT (IF vOU 6D PAST THIS POINT, YOU CANNOT REBTART),
= $ Al ‘I'_

SMCR PIP [210,4)RM4 _LOMSE210,41RM44, COM
_ SMER-REM.REXBAT . —

FRUN ASATS,TTK

—8MCR. PIR. [21.0, 41 Qo TESSkwthAL
SMESSAGE TY!l UPDATFS CNMPLETED
SMCR OiP
[210,4)RM2 POSEL210, u1 FNPFILE

oy

T
F 2
[

210, U RM POSIRADE e - - -
[210, 43 RMU,COMZ 21D, 4] FNNFILF
— 240,61 RMU COMS £ 4DE - -- e —

[210:41RV2 ,POS2[210,U4)FOR0O12.DAT

21 A+ :‘.un:'_'LLr

{21041 %, ZTPI*/DF

-SMESSAGRF PRERARE QlITRPUT REPORTS FoR TYSL, - - -
$MCR PIP POSTR,ZTPsENDFNE
— SMER REM REXRATL——~. ---

8RUN POSTR,TTK

SMER SRT (210,4)PUNEH,7TIP2(210,4) cARDS.TES/STZFR0/KEYSICNE B0

http:r2i0,0l1AnD.TE
http:PPFSSPTES;*.DF

— BMER—PEP—- - - e
t210,41L9, TEseta!o.u1* *3a/LT

{210, L PUNCHp 2 IPE 2 Ay b DATELCOMAAP—
[210,4)P0S8B4,TF3R[210,4)POSTR,Z]P

(210,0)PIING, TESZL210 41 pUNCH. 21p

20 4 PHNER 2P/ DF
LPisl210,414,7ZTP1x

[210,6) PUNCH, ZTP=[210,4) PUNL’ TES/RE
mJL-L4uuuuLJ#é—s4usa—a+;b#—n5neR%s———————————————————————

$MCR PIP {P10,41UNTTS,S5ATS20=1210,4)RATCH,SAT
_suea_p;n—+#+9Ta}8#¥~F9M~42+6—ﬁ%ﬁ“ﬁfILE

FMCR PIP (210, u]BA? tOMIw/DE

$MER REM RSXBAT
SRUN RIME TTK
SMCR PIP [210,4)LQ.TFST[210,4)1 %, %)%/L]
—§MCR PIP (210,4)DUM,8HYeT240, S)ENDRILE o —
$MCR PIP [210,41% 8SHT)e/DE
—SMERPIP. L2104, 41 BAYT COMPw/DE--
$MCP REM RSXBAT

$RUN RIMS,TTK '
—BMER _PIR (240,811 0, TESaudkply

$MCR PIP (210,4)DUM,_ SHT=1210,41ENDFTLE
—SMER_BIP (210,48} %, SHT} «LRE

EMCR PIP 1210,4)RAY. . COME%/DE

12 20k
2t

SMEOR REM RSYXRAT
_SRUN _BIMS TTK .
$MER PIP {210,41LQ TFSex #1201
—Jﬂuua_a;nuiaxa+ﬁ4nuaTsu%=434sTu4ﬁmai+%éu
GMCR PIP 210,44 %, 8SHT+/DE
hM] Y /nr.‘
gMCR pIP {210, ﬂJﬂAT COME 1210, 41RER,COMIU/RE
_ SMECR-REM_RSXBAT
SRUN RIMS,TTK
Q'MM%W‘HF&=".F2*"LI
SMCR PIP I210,410UM _SHT=!210,4)ENDFIIF
ESPWLY:
SMER PIp [210,41BAT _COMiwsDE
—SMCR PIRP [210,43RAT _POMe 348, 4IRER CAMIR/RE

$MER REM RSXBAT
—SRUN RIME TTK. —. o e e+ e

SMER PIP [PLOQ, ﬂ]|@ TFS:* *I*ILI

NDETLE

$MCR PIP (210, U}*.SHT!*IDE
—GMER RIR (210, U)RAT _E0MpasBE . -

§MCR PIP (210, LIRAY,.COMz[210,4)RER, COM:6/RE
—-SMCR _REM gstAt .. . o

SRUN RIMS, TTK
BMER PIP [210,4)L0, TF8oa . wlaslT
§MER PIP [210,41DUM_SHI=1210,4)ENDFILE
—$MER_BLP r='e,a**.en:=¢,”= -
SMCR PIP [P10,41RAT COMI*/DE .
—%MGR—R%P—%3+@T&¥3L¥%#9Mﬂ%2+67ﬂ3RFP.CGH:?!RE
BMER REM RSXHAT ’
_SRUN RIMS TTK L
$MCR PIP [210,410L 0, TFSsn.wts /]
—GMER RIR IO 4VDUM CMTRIIIY ATENDRILE
SMCR PIP [210,4)%,8HT}4/DE
—SMPR BID.I210, UYIRAT _£OMys/RE
§MCR PIP (210,4IUNITS,SAT}20/DE
~BMCR PIP 1210 A1 TYur, nE

SMESSAGE wddd bk kg krk b Rk AR Ak w kA AR R R h ARk R Rk Ak k b h R

- BMESSAGE * END OF ASATS TY! RATCH UPNATES AND REPORTS - — - -m 8 —
BMESSAGE + REMEMBER TNt *
—SMESSAGE * - . MAKE CARDS-AUSE--CRDOUT--ON—THE— &
SMESSAGE * FILE 1210,4)PUNCW,ZIP) %

1Yo s

SMESSAGE « PRINTER AND DO PIP 81210,4)LA) 4
—BMESSAGE 4+ A NP -G AVE {3405 01O ONTO—TAPE— b

SMESSAGE + {NMTEt YOU ARE STILL IN 15,51) *
—BMESSABE 44— - E

SMESSAGE = MOU MTOy/0VR "

ggessagg + n?b_@_[_a_j_e_'_l_g_j_enwrn -

BMESSAGE « FASTFN THF DIRECTYORY Th THE TAPE) *
— SMESSAGE-*THIS 18 THE- BN F—THE—ASATE T B4TCH-RUNS e

EMESSAGE k¥ fdhkk ke Wk k Rk Rk ok kR RN AR RN AR A Ak AR R AR
—SMCRPIP LRIE 1240, 41w TESI*ALT

FMESBAGE NOW |OAR S.PART PAPFR INTD THE PRINTER AND
C ERDRTS,

SMECR PIP LPEIR{210,41%,TESIw/) Y
—SMER BIR [310,8%4 TESFwAPE o oo
$E0J

0
c;%gm%i B
OO;"{: Q {:;if s
Ty
3=5

3.1.2 TY1ORDER.COM, PACKET ORDER LIS?T

BE

Z1

RF12,7

SKPC

SKPC

Eot2

843

BKCURSY W

Coues

DE1

JTS,LB

?F!E;io

HD2, 1

Is7

RFO,12,DATE COM

RF13,12

KDY,

HD1, TRANSITION VYiar ¢ Y8 PG
Hot,

HO!,

HD2, ORD SEG LPT aCo REG 70ME §TR
X REL FCAMS/ZLPRI COMMENT
HD?2, NQ - DATF

ATE

RF12,10

JF8,90

Se&,ds, TOTAL ACRAUISTTTYONS
Lals

Bg

RF{2,7

Bker p-

GC!

BREURSY H

Co2x3

DE

JTI,LR

RF12,10

Hpe, 1

igy

RFO,12,DATE COM

RF13,12

Mp1,

HB1, TRANSTSTION YEAR 1 us pCe-
HD’: !
HDY,

HD2, ORD SEG LPI ACH ' RER 20ME STR
TX REC CAMS/LPDL COMMENT .
HD2, MO DATE

ATE

RF12:10

JF3,90

8C%.ds, TOTAL ACHOUTSTITIONS
LaLa

NAILY PACKEY ORDER |

CNT LASY DEL
CHNG D

DAILY PACKET ORDER L

ENT LAsT DEL
CHNG D

BE .
REi12,7

SKPC 3

8C1

SKCURSY W

Coexd

bet

JT3,LB

RF12,10) e
Hpe,1 DALY PACKETY ORDER L
I8Y

PFO,!E.DATE.COM

RFE13,12

HDY,

D1, TRANSISTION YEaR 1 us PC3

1,

WY,

HD2, ORD SEG LPI aco REG Z0ONE STR B w [ENT LAST DEL
¥X REC CAMS/LPDL COMMENT

HDZ, NO DATF W oy CHNG)
ATE

RFt2,10

JF3,90

8C3,4ds, TOTAL ACOUYISTTTONS

LALB

BE

RF12,7

SkPeC 61

GCt

SKEURS) M

Co2xl

DE L

JT3, LR

RF12,10

Hpe, ! DAILY PACKET ORDER |
187

RPO,12,DATE COM

REL3,12

kD1,

MDY, TRANSISTION YEAR AUSTRALTA PCoY

HD1,

HDI,

HD2, ORD SEG LPI ACo RES ZONE S5TR B W ENT LAST DEL
Tx REC CAMS/| Pp) COMMENT

WD2, ND DATE Wy CHNG D
AYE

RE12,10

JFE,90

8C3,4s, TOTAL ACBUTSTTTONS

LALR

/0

http:RFOp1a,DATE.COM

BE
RE12,7
Supe
Ge!
SKCUYRSY ™

Coanl

DE1L

JT3,L8

RF12,10

HD?, !

T8y

RFO,12,DATE, COM
RF13,12

HD1Y,

HD1, TRANSISYION YEAR 1
HD1,

WD,

HD2, ORD SEG LPI
Tx REC CAMS/LPDL
HD2, NQ

ATE
RE12,10
JF3,%0
8%, 48,
LALR

BE

RF12,7
SKPE 4
3C1
SKEURSY W
~02%3

JE

JT3,Ls
12,10
D, 1

187
Wo,12,DATF, COM
Fi13,12

D1,
iDL,
D1,
01,
D2,
X

28

Us PCR2%

ACR RER
COMMENT
DAYF

ZONE 8TR

TOTAL ACQULITSTTTONS

TRANBISTION YFAR 1

IS8R PC4

ORD SFG |L.P}
REC CAMS/LPDL
D2, ND

TE
F12,10
Fi,%0
3,46,
ALB

ACH PEG
COMMENT
DATE

ZONE 8TR

TOTAL ACOUTSYTYONS

H

B

W

B

W

W

)

W

v

DATLY PACKET ORDER L

ENT LASTY DEL

CHNG 0

DAILY PACKET ORDER

CNT LASY DEL

CHNG D

BE

RF12,7

Sepe 5

Get

SKEURSY =

Co2x3

DE?

JY%, LR

RFEj2,10

Wp2, !

isy

RFO, 1259‘TE.CDM

RFE13,12

KDY,

MDY, TRANSISTION VFaR 1 TNDTA PCs
HDY,

KDi,

Hi2, ORD SEG LPT aco RER Z20ME S§TR
7Y REC CAMS/LPDL COMMENT
MD2, NQ DATF

ATE

RF12.10

JF3,%90

8CyY,ds, TOTAL ACRLYSYTTONS
LALB

BE

RFi12,7

SKPC us

1ol |

SKEURSY M

COee3

DE

JT3,LR

RF12.,10

HD2, !

187

'RFO.iE.DATE,COM

RF13,12

HpY,

WD1, TRANSISTTION YEAR ¢ &SR pCUS
WD1,

HD1,

HDE, ORD SEG LPI ACnH RER ZDNE STR
X REC CAMS/LPDL (CNMMENT
b2, ND DATFE

ATE

RF12,10

JF3,90

8C3, 4%, TOTAL ACRUTISTTYONS
LALR

|27

DATLY PACKET ORDER L

CNYT LAsgY DEL

CHNG e

DAILY PACKET ORDER L

CNT LAST DEL
CHNG D

http:RF0,J2,DATE.COm

8E

RFi{2,7

8KPC 7

GE1

8KCURSY H

CO2%3

CEY

JTI, LR

RFi2.10

Mpz2,!

ist
RFG,12.,DATE, COM
RE1%,12

MD1,
HD1,
HD Y,

TRANSISYION YEAR | CANMADA

ORD SEG LPY aCn RER

TX REC CAMS/LFDL CAMMENT
NO DATE

ATE

REt12,10
JF3,90
8¢, 4s,
LALB

BE

RF12,7
SkPe &
GCi
SHEURSY W
Eo2x3

DE1

JY3,LR
RFi2.10
Hpa, 1

Ist
RFO,12,DATE COM

RF13,172

HD1,

MD1, TRANSISTION YEAR
HD1,

HD1,

Hpe, ORD SEG LP1}
1 REC CAMS/| PDL
KD2, NO

ATE
RE12,10
JF3,90
353006{
LALR

Z0ME

TOYAL ACQUTSITTONS

USSR

ACR RFEgG
COMMENT
DATF

ZONE

TOTAL ACOUYSTITTIONS

.

DATLY PACKET ORDER |

LAST DEL

CHNG o

DATILY PACKE?T ORDER L

PC3

8TR R W CNY LAST

CHNG)

DEL

http:DATE.COM

8E

REt12.7

SKPC 62

GCY

SKCURSY H

Co2xy

DEY

JT3,LB

RFIZ2,10

HD2,1 DATILY PACKET ORDER L
isT

RFO,12,DATE,COM

RF13,12

DY,

HBY1, TRANSISTION YEAR 1 ARGENTINA PLeD

WD,

D1,

HBp2, ORD SEG LPI ACH REg 70ONE STR B W IONT LAST DEL
Tx REC CAMS/LPDL COMMENT

HD2, NO DATF W ¥ CHNG 0
AYTE

RF12:10

JFE,90

8§C3,ds, TOTAL ACQUTSTTTIONS

LALB

BE

RE12,7

8KPC 6%

GC1i

SKCuRSst H

Co2wld

DE1

JT3,LR

RFE12,10

?D?,l DAILY PACKET ORDER L
87

RFO,12,0ATE, COM

RF13,12

HDY,

HDY{, TRANSISTINN YEAR | BRAZTIL PLCEY

D1,

DY,)

HD2, ORD SEG LPT ACnH RER ZONE STR B # CNT LAST DEL
TX REC CAMS/LPDL COMMENY

D2, NQ DATF Wy CHNG v
ATE

RF12,10

JF3,90

8¢%,4s, TAQYAL ACRUTSYTTONS

LALB

4

3.1.3 RIMS.CMD, RIMS TASK BUILDER COMMANDS

DBO:I?Oé.S]RIMS,LP:/SﬂaRTMS.nDL/MP
MAXRUFE284
ACTFIiL =218y
UNTTS8=13
45G=2SYQrt1t112813
ASC28Y0e1322334
ABG=SY0151628:9
ASGeTIt7
A8CGe=LPI10
PROLBAD

/7

/5

3.1.4 RIMS.ODL, RIMS OVERLAY STRUCTURE

JROOT Muws(SEGiwS1,8EG2e82)
Mt LFCTR MFleMF2eMF3
MF1t LFCTR SEL=CHAR«COMESTReDTEINTINDEXaINPARMSUBSYRPaVERIFY
MF2t LFCTR GETePUT«ROLL=SETINI=SETINZ=SETOUTeXXINJaXXIN2aXXOUT
MF33 FCTR STATUS-NHTTS=ENBSET=| OCATF= L OCREC=LODFMTeLODRECGETREL
811 LFCTR UNITSel ARY
821 LFCTR CIMATNe=CIOSEPeS2F!
82F11 ,FCYR (82F2,82F3) .
82F2r FCYR 8FEG3~8%,8E08+5A,85F613813,8EG17=817
82F3; FCTR SER1BaS1R,S56619=519,8E020820
833 FCTR JPRPLRePRNTIM=(SFBUeS54,5667=87)
Sﬁ! sFCTR 3“‘1‘(3EG5»S§.SEGG°$6)
B4Fty ,FCTR AETNTT=S02E=CIRP=ADDFN=ADDLT=CFIND
f8p LFCTR AEPR=STAEFR
863 ,FLTR FIFMTeFTCOMP
870 FCTR TFORMWeEXCMDSeEXCMDeTFORMZ
88y FCTR BSBF1«(SFR9»39,8ER10~510,8EG11e811,88612=812)
B8F1t ,FCYR CISUR|=CFCR=IFNFLR=END=PRNTIDwAPAOM
864 FCTP S%F1=86F>
S9F11 FCTR AEINIT«S802EellrFNFeCF INDeRLCLPR=RPCLPRmADDFN=ADDLT
89F21 FCTR ADDNMADDPDTwAEPReSTAEPP
8108 FCTR APSINTeFTFMT«FICMPRRLDTAF
8111 FCTR S1{F1=§1{F2
§t1Ftt ,FCTR TFORMU=FXEMDSAEXCMD
811F21 FCTR APSTUP=TFARMZoREPRADTSFMT
8121 LFECTR S12F1egi12F2
§12F1r FCTR APSCNT=AUPOSTaADDKEY=APSEL «DELKEY=KOMKEY=LAND
812F21 FLTR | NDTe| OR=PARTLPNSTRANGE=SSORT
813t FCTR S13Fi=r5EG14.814,866G15-815,85E616-816)
8i3%F13 FCTR CISUR2=«JINSNERaPRNTYD
8141 FCTR S1uF1eS(4F?
S14F1: FCTR AEINIT=SQZE«CFIND=RI ClPR=ADDFNwADDL TwADPNMuADDAT O

$14F21 FCTR AEPReSTAEPR=FTFMT=FTCMP Q&ﬁ%

BiS1 _FCTR TFORMWEXCMDSwEX(MD X2

§161 FCTR S16F{=g16F2 %
§1eF13 FCTR SELECTel NR=RANGFwCOMBINe| ANDw . NOTeHEADER P
B16F21 FCTR STCNT«DELETFE gg%%
8171 LFCTR S17F1e817F2 1;%“
817F1t ,FCTR CISIBI=REGIN=ATTACH=CLEANP=UNLOLK=PSWRD ?iﬁb

817F2: FUTR SPLIISwADDReSMTNUS=DELR

8181 FCTR S18F1«518F2eS1RFY

818F 1y _FCTR CISURU=SURTPeCLOSFL=KAMKEYoLAST

518F21 FCTR PARToSORTS=SSNRT«TJUMP«MDRI=ADNR=CMPUTE

818F31 .FCTR | MVTARaREPReMAVSES

191 FCTR S19F1«8(9F2=519F7 _

819F1¢ LFCTR CTSURSwEXPANDaFINB=DTSPLA«XREF=SEUNTVeSELREC
S19F2: FCTR ACCNOSPCSET=FORMMaADDRFORMeDISPDDaREAFwPARSER
819F1; FCTR GETPARePARSECeGFTCLLD=ADDREL

it

http:NATA2CEN.ULC.SR
http:JPRP!R-PPNTIn-rSroLL.StoSFG7.s7

820t ,FCYR S20F1wg8O0F2820F3e820Fde(B8EG21=821,8EG22822)

820F1s ,FCTR CISURG=APSCNToAPSINTCAPBTUP| MVTAB

§20F2t ,FCTR RFPR.TFARUNBPRNAUPGST

820F Ty ,FCTR ANDKEVeAPSE «NELKEYeKCMKE Yu| ANDa NOTeOR

§20FUs FCTR PARTLPCST=RANGESSONT

8211 FCTR CAUFILe8UFII FeXPNSTeaDDR

8221 ,FCTR CRESTSNE| ReRFSTRYDFLRFC-RFPKEYeREPREL
LPSECT APCOM,D,O0VR,R5L

JNAVE SEGHY
pNAME SEG2
JNAFME SFGY
JNAME SEGU
JNAYE SEGS
WNAFE SEGS

JNAYE SEGY
o NAME SEGH

JNAUE SEGO

JNAYE SEGIO
JNAME SFG1Y
LNAME SEG1Q2
NAYE SEG1Y
fNAWE SEG1U
NAME SFG1S
NAME SBGIG
NMKE SFG17Y
+NAVE SFGIA
JNAVE SFG1Q
NA¥E SEG20
 NAVE SFEG2)
NANF 8FGP2
.END

117

http:APCOM.DOv.IV

3.2 NEW AND MODIFIED RIMS PROGRAMS

3.2.1 PROGRAM DESCRIPTIONS

On the pages following are the RIMS programs (subroutines and
functions) that were created or modified to provide the requested

enhancements.

15

" Name: ADDDT

Purpose: To initialize the Working Buffer Format for
a date encountered in the input command.

Linkage: @ Calling sequence: CALL ADDDT (FC, NC, ROW)
o Common blocks used: SY3COM
o Subroutines or functions used: DTEINT

@ Files used: ©None

Input Description: FC = integer variable; character number in
array CMD of /SY3COM/ where the date starts
(# sign).

NC = integer variable; number of characters in
the date literal, including the # sign.

Output Description: ROW = integer variable; the row number of the

Working Buffer Format into which the date

reference is placed.

Process Description: The pointer to the last used row of WBF, the

Working Buffer Format, is incremented by one.
$L is stored into the second word of the row
of WBF. The value of 4 is stored into the
sixth word of the row of WBF. The value of -1
is stored into the seventh word of the row of
WBF. The subroutine DTEINT is used to convert
the date from a character string in the command
line to a binary integer in the first word of
the row of WBF. The row number is stored in
ROW, and a return to the calling routine is
made.

9

Name:

Purgose:

Linkage:

Input Description:

OQutput Description:

Process Description:

ADDFEN

To initialize the Working Buffer Format for
a field name encountered in the input command
line.

¢ Calling sequence: CALL ADDFN (FC, NC, ROW)
e Common blocks used: SY3COM
® Subroutines or functions used: COMSTR, SUBSTR

@ Files used: None

FC = integer variable; character number in array
CMD of /SY3COM/ where the field name starts.

NC = integer variable; number of characters

in the field name.

ROW = integer variable; the row number of the
Working Buffer Format, WBF, into which the
field name reference is placed.

Column two of WBF is searched for the field
name. If it is found, the row number is stored
into ROW, and a Teturn is made to the calling
routine. If it is not found, the pointer to
the last used row of WBF is incremented by

one, the field name is placed in column two

of that row, that row number is stored in ROW,
and a return is made to the calling routine.

N2,

Name:

PurEose:

Linkage:

Input Description:

Qutput Description:

Process Description:

ADDLT

To store a reference to an alphanumeric
literal into the Working Buffer Format

e Calling sequence: CALL ADDLT (FC, NC, ROW)
e Common blocks used: S8SY3ICOM
® Subroutines or functions used: None

e Files used: None

FC = integer variable; character number in

array CMD of /SY3COM/ where literal starts

(first quote mark).

NC = integer variable; number of characters
in the literal, including the beginning and
ending quote marks.

ROW = integer variable; the row number of the
Working Buffer Format into which the reference
to the literal is stored.

The pointer to the last used row of WBF, the
Working Buffer Format, is incremented by omne.
$T is stored into the second word of the row
of WBF. The value of FC+1 is stored into
the fifth word of the row of WBF., The value
of NC-2 is stored into the sixth word of the
row of WBE. Zero is stored into the seventh
word of the row of WBF. The row number is
stored into ROW, and a return to the calling
routine is made,

N

Name: ADDNM

Purpose: To initialize the Working Buffer Format for a
number literal encountered in the input command.

Linkage: ® Calling sequence: CALL ADDNM (FC, NC, ROW)
¢ Common blocks used: SY3COM
¢ Subroutines or functions used: INPARM

¢ Files used: Nomne

Input Description: FC = integer variable; character number in
array CMD of /SY3COM/ where the number statrts.
NC = integer variable; number of characters in

the number.

Output Description: ROW = integer variable; the row number of the
Working Buffer Format, WBF, into which the
number reference is placed.

Process Description: The pointer, NWBF, to the last used row of

WBF is incremented by one. Then $L, 4, and -1
are stored in WBF (2, NWBF), WBF (6, NWBE),
and WBF (7, NWBF), respectively,., INPARM is
used to convert the number from a character
string in CMD to a binary integer in WBF

(1, NWBF). The row number, NWBF, is stored in
kow, and a return is made to the calling routine.

A2~

Name:

Purgose:

Linkage:

Input Description:

OQutput Description:

Process Description:

AEINIT

To initialize standard areas of core for
commands which allow arithmetic expressions
in their syntax.

@ Calling sequence: CALL AEINIT(IND, SETNO,
FMTNO, ERR)

e Common blocks used: SYSCOM, SY3COM, CLTBL

¢ Subroutines or functions used: SQZE,

INPARM

@ Files used: Command file (logical unit
13}, Message file {logical unit 7)

IND = integer variable; indicator to cause
special processing for certain commands.
Set 0 for SN, JN, and CF commands. Set 1
for DF and JF commands. Set 2 for RP and

JP commands.

SETNO = infeger variable; contains the set

number converted from the input command

line.

FMTNO = integer variable; contains the
format number converted from the input
command line, if there is one.

ERR = integer variable; returned zero if

no errors found, non-zero if any error is

found.

1. Zeroes are stored in all words of /SY3COM/.

2. Blanks are stored in all words of the
Working Buffer, WBUF.

3. Word 6 of row 1 of the BY Processing Table,
BPT, is initialized to '+§-§' to cause the
first record read in an RP or JP command
to create a top level BY change.

B2
N

10,
11.

1z,

The first word of array COMMAS in

/CLTBL/ is initialized to 1. Variable
FC, used to point to the next available
character in array CMD of /SY3COM/ (where
the input command will be packed), is
initialized to 1. The logical unit
number for the command file, U13, is
retrieved from U(13) in /SYSCOM/.

The logical unit number for the message
file, y7, is retrieved from U(7).

A call is made to SQZE {STR, 1, 80, CMD,
FC, NCS, COMMAS) to transfer and compact
the input command string (in STR of
/SYSCOM/) into array CMD. NCS is returned
as the number of characters stored by

SQZE into CMD, and pointers to syntactically

meaningful commas are returned in COMMAS.
FC is incremented by NCS.

If FC <401, go to step 9.

Set ERR = 1 and return to the calling
routine.

If COMMAS(1) < 0, meaning the last input
card has been processed for an RP or JP
command, then negate COMMAS (1) and go
to step 13.

If IND = 2, go to step 12.

If the last character stored in CMD is
a comma, then go to step 13, otherwise
increment COMMAS(l) by 1, store FC

into COMMAS(COMMAS(1)), and go to step
13.

Read, from unit U13, 80 characters into
the beginning of array STR. If the
actual unit number for the message
file = 7, then go to step 5, otherwise
echo the input string by writing, to
unit U7, 80 characters from the
beginning of STR, and go to step 5.

==
2y

13.

14,

15,
16,

17.
18.

Calculate NC, the number of characters
in the input set number, = COMMAS(2)-3.
Then convert SETNO = INPARM

(CMD, 3, NCJ.

If SETNOL 0 or SETNO > TABNO, then go
to step 8.

IfIND # 1, go to step 18.

‘Calculate NC, the number of characters

in the input format number, = COMMAS (3)

- COMMAS(2)-1. Then convert FMINO =
INPARM(CMD, COMMAS(2)+1, NC).

If FMTNOx< 0, go to step 8.

Return to the calling program.

—

A5

Name: AEPR

Purpose: To parse an arithmetic expression made
up of arithmetic operators and
operands (Field names, dates, or'integer
constants), entering operands (or pointers
to them) into the working buffer format
and building a sequence of internal
commands éo evaluate the expression and
store the value into a specified result

variable.
Linkage: e Calling sequence: CALL AEPR (FC, NC,
PTR, ERR)

@ Common blocks used: SY3ICOM

¢ Subroutines or functions used: ADDFN,
COMSTR, DTEINT, INDEX, INPARM, STAEPR,
VERIFY .

@ Files used: WNone

-

Input Description: FC = integer variable; character number

in command line at which to begin
processing.

NC = integer variable; number of
characters to process.

PTR = integer variable; location into
which the results are to be stored.

Output Description: ERR = integer variable; processing or
syntax error indicator. Normal command

table containing internal commands to
evaluate the expression and store the
results.

. . 1 .
Pfocess Description: Error flag set to zero and all internal

variables set to appropriate value,
The expression is scanned for _paixed

=53
Cals

brackets and valid alphanumeric

characters. If brackets not paired or

any invalid character found ERR set

to 2 and return executed. Otherwise,

the number of paired brackets saved for

later use, character pointers and

counters set as needed and the

expression is scanned and PASS 1 executed

as follows:

1. (a) If the next character encountered
is not an open bracket do step 2.
Otherwise an open bracket is stored
in the next location of VTAB and a
-99 is stored in the next location of
OPC. (b). 1If this is the last
character the error exit is taken
otherwise update pointers and counters
and Fedo step 1{a).

2. If the next character encountered is
a closed bracket ERR is set to 2 and
return executed. Otherwise do step 3.

3. The next 13 characters are seathed
for either the end of the scan or
an arithmetic operator. If the end
of the scan is found the pointer is.
set to the end of the scan +1
location otherwise the location of the
next operator or bracket will be
found. Then the current character will
be checked to see if it is a pound
sign., If it is not a pound sign step
4 is executed. Otherwise the next
four characters past the pound sign
are checked to see if they are numeric
digits. If they are not digits, ERR
is set to 2 and return executed.
Otherwise DTEINT is called to convert
the date to an integer, the appropriate

Q=27
27

data is stored in the normal command

buffer and step 6 executed.

4. The current character iz checked
to see if it is a literal value.

If it is not a literal value step 5
is executed. Otherwise the literal
is converted to an integer, the
appropriate data is stored in the
normal command buffer and step 6
executed.

5. 1If none of the above were executed
then the next operand is a field
name. In this case ADDFN is called
to store the data in the normal
command buffer and step 6 executed.

6(a) If the last operand or operator has
been processed a-999 is placed in
the current location of OPC and the
pass 2 is executed as shown starting
at step 8. Otherwise the next
operator is checked to see if it is
either an open or close bracket. If
it is an open bracket the error exit
is taken. If it is a closed bracket
step 7 is taken. (b} Otherwise the
operator is stored in the next
location of OPC and step 1(b) executed.

7. The character after the closed
bracket is checked. If it is an
open bracket the error exit is taken.
Otherwise a-88 is stored in the next
location of VTAB & OPC and the
pointer and counters updated. If
the character after the closed
bracket was itself a closed bracket
step 6 is taken. If the operator
after the closed bracket waé not a

=
28

10.

27

closed bracket and at the same

time located at the end point of
the expression to be processed,

the error exit is taken otherwise
step 6b is taken.

The count of data in VTAB § OPC is
saved for later use. If the'number
of paired brackets is zero, PASS 3
is executed as shown starting at
step 10. Otherwise step 9 is
executed.

The OPC table is searched and the
innermost paired brackets, as
indicated by a -99 and a -88
respectively, is found along with
their index location. Then STAEPR
is called to store the data into
the normal command table. Then

the remainder of the VIAB & OPC
tables is written over the area where
the paired brackets were stored, the
count of data in VTAB & OPC is
decreased by the amount of data
processed by STAEPR, the number of
paired brackets is decreased by 1
and step 8 taken. .
If more than one line of data is left
in VTAB § OPC STAEPR is called to
store the data into the normal
command table. Otherwise the normal
command table is updated with the
calling argument PTR and column 5
of all used areas of the normal
command table is updated to point

to the next expression area to be
processed.

Name:

PurEose:

Linkage:

Input Description:

OQutput Description:

Process Description:

AUFILE

To control the processing for the Add File
(AF) and Update File (UF) commands.

@ Calling seguence: CALL AUFILE(IJ,IFUN)
© Common blocks used: SYSCOM, SY2CCM

® Subroutines or functions used: ADDR,
APSCNT, APSINT, APSTUP, AUPQOST, GETREC,
INPARM, ILMVTAB, REPR, SUBSTR, 'TFORM

® Files used: Unit 7, Logical unit U(11)

IJ = integer variable; indicates which of

the first five fields of the input format
contains the record ID. If IJ=0, the record
ID is expected to be in characters two through
five and seven through ten of the input
record.

IFUN = integer variable; value is one for
the AF command and two for the UF command.

None

l. Variable TIM]l and U7 are initialized to

zero and U(ll}, respectively.

2, APSINT is called to initalize files U({(9)
and U(1l0) for holding new keys and
deleted keys.

3. If IFUN=1l, row 2 of array BUF is filled
with blanks.

4. Read a record inteo row 1 of array BUF
from unit U7. If an end-of-file is read,
go to step 20.
=7
30

10.

11.

12.

If IJ#0, read the record ID, J, from
BUF (via subroutine INPARM) from the
location specified in row IJ of page
1 of format array FMT. Go to step 8.

Read the upper half of the record ID
{via INPARM) from characters 2-5 of
row 1 of BUF.

If the internal format number (found
in FMTID(2)} is not 192, .read the lower
half of the record ID (via INPARM)
from characters 7-10 of row 1 of BUF.

If the record ID, J, = 0, go to step
20.

If the function indicator, IFUN,=1, go
to step 11.

Get the record with ID=J from the data
base (via GETREC) into row 2 of BUF.
If the status returned from GETREC

was zero (implying that the record was
present and its internal format was
already loaded in page 2 of array FMT),
then go to step 12. If the status

was two (implying that the record was
present, but its format had to be
loaded), then go to the next step,
otherwise go to step 3.

Set TIMl=1 and call LMVTABR to load the
move table in array MOVTAB.

If TIM1=0, then go *to step 1l1l. If
IFUN=1, then go to step 14.

31

13.

14.

15.

16.

17.

18.

19.
20,

Each field number in row 2 of the
move table is passed to subroutine
APSTUP which, if the field is a key
field, builds an entry on logical
unit U(10) to show a key field value
that needs to be deleted.

Call subroutine TFORM to transfex
data from fields of the record in row
1l of BUF into fields of the record in
row 2 of BUF, as directed by the move
table.

If IFUN=1, set the first word of row
2 of BUF egual to the length of
the record in that row.

Each field number in row 2 of the move
table is passed to APSTUP which, if
the field is a key field, builds an
entry on logical unit U(9) to show a
key field wvalue that needs to be
added.

If IFUN=2, subroutine REPR is called
to replace the existing record with
the new one just created from the olad
one and the new fields.

If IFUN=1, subroutine ADDR is called
to add the record just read to the
data base.

Go bhack to step 3.

Write 'SP' on unit 7, use APSCNT and
AUPOST to delete o¢ld keys and post
new keys, and then return to the

calling routine.

=
2 5

Name: BLDTBF

Purpose: To convert a data base format into a form
suitable for standardized processing.

Linkage: e Calling sequence: CALL BLDTBF(P)
e Common blocks used: SY2COM, SY3ICOM
@ Subroutines or functions used: COMSTR

¢ Files used: None

Input Description: P = integer variable; page number of array EMT
in /SY2COM/ where the data base format is
currently stored.

Output Description: None

Process Description: 1. Initialize K to zero,
2. Initialize I to two, the first row of the

data base format which contains a field
name.

3. If NWBF, the pointer to the last used row
of WBF, the Working Buffer Format in
/SY3COM/, is = 0, go to step 8.

4., Initialize J to one, the first row of WBE.
If WBF (2, J) = $R, §T, or $L, go to step 7.

6. Use COMSTR to compare the field name in
column 2 of WBF to the field name in
column 2 of FMT at row I. 1If a match is
found, go to step 9.

7. Increment J by one. If J < NWBF, go back
to step 5.

=37
23

10.

11.

12.

13.

14.

15.

Increment NWBF by one. Transfer
columns 2, 4, and 5 of row I of
FMT to columns 2, 4, and 5 of row
Jd of WBF.

Increment NTBF, the pointer to the
last used row of TBF, the Target
Buffer Format in |SY3C{M|, by one.
Store a one in TBF {1,NTBF) and
store J in TBF (2,NTBF}). Transfer
columns 3, 4, and 5 of row I of
FMT to columns 3, 4, and 5 of row
NTBF of TBF.

If the target field type, TBF
(7,NTBF} ,=4, set k=1.

Initialize T to one. Search
column 2, row I, of WBF for SR,
$T, or $L. If any one is found,
go to step 15.

Search column 2 of WBF for the
field names "UNLOAD" and "LSD".
If "UNLOAD" is found, go to step
13. If "LsD" is found, go to
step 14. If neither is found,
go to step 15.

Set TBF(4,1) = -I. If TBF(4,2)
#0, return to the calling routine,
otherwise go to step 15.

Set TBF(4,2) = -I. If TBF(4,1)
#0, return to the calling routine.

If TBF(4,1) = 0, meaning "UNLOAD"
was not found, increment NWBF by
one, store "UNLOAD" as a field

3=5T
39

i16..

name in column 2 of WBF at row NWBF,
set TBF(4,1) = ~NWBF, and then, if
TBF(4,2) # 0, return to the calling
routine.

Increment NWBF by one, store "LSD"

as a field name in column 2 of WBF at
row NWBF, set TBF(4,2) = -NWBF, and
return to the calling routine.

—

35

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CFCR

To direct the overall processing sequence
for the CF command.

& Calling sequence: CALL CFCR

¢ Common blocks used: SYSCOM, SY2COM,
SY3COM, CLTBL

o Subroutines or functions used: AEBINIT,
CICFDF, APSINT, SETIN1 XXIN1, FTFMT,
FTCMP, GETREC, TFORMW, EXCMDS, APSTUP,
TFORMZ, REPR, APSCNT, AUPOST

¢ Files used: Message file (logical unit
7), Deleted keys file (logical unit 10),
New keys file (logical unit 9)

None

None

1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/ and use
AEINIT to imnitialize /SY3COM/,
returning input set number in SETNO
and a non-zero in ERR if any errors
were found.

If ERR = 0, go to step 4.

3. Write on U7, "Command terminated due to

3

syntax error." and return to the calling
routine,
If COMMAS(1)< 2, meaning there are mo

replacement clauses, then go to step 3.

. Use CICFDF(0, ERR) to complete the

command interpretation, returning ERR
non-zero if any errors were found.

If ERR # 0, go to step 3.

Use APSINT to initialize for storing

deleted keys on file U(10) and new

10.
11.

12,

13,

37

keys on file U(9). Use SETIN1 to
initialize for returning record ID's

via XXIN1. Use XXIN1 (RID) to return the
first record ID in RID.

If RID = 0, return to the calling
routine,

. Use FTFMT (RID, 1, ERR) to complete the

buffer formats with information about
fields whose names occurred in the input
command, returning ERR non-zero if an
error occurred.

If ERR # 0, go to step 3.

Use FTCMP to complete starting location
information in the Working Buffer Format,
WBF in /SY3COM/.

Loop through the Target Buffer Format,
TBF in /SY3COM/, comparing its column 2
contents with the values found in column
2 of the Multilevel- Move Table, MLMT in
/SY3COM/. When a match is found at

row I of TBF and row K of MLMT, extract
L = column 1 of row K of MLMT, so that
L points to the matching row

of the Source Buffer Format, SBF in
/SY3COM/. Then transfer the key field
indicator from SBF({1,L) to TBF(3,1)},

the data base format row number fpom
SBF(2,L) to TBF(4,I), the starting
character position in the data base
record from SBF(5,L) to TBF(5,I), the
length of the field from SBF(6,L) +o TRF
(6,I), and the type of the field from
SBF(7,L) to TBF(7,I).

Use GETREC(1, RID, STAT) to retrieve
record RID into row 1 of BUF, the
record buffer in /SY2COM/, returning
STAT non-zero if there was any problem
with the retrieval.

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

24.

25,

26,

If STAT # 0, bypass this record by
going to step Z3.

Use TFORMW(1,1) to transfer needed
fields from row 1 of BUF to WBUF,
difected by row 1 of the Move Table
Control Table, MTCT in /SY3COM/.

Set EF = 0 and use EXCMDS to execute
the commands in the Normal Command
Table, CTBL in /SY3COM/, returning
CFLAG as false if there was a failure
of a relational clause, and returning
EF non-zero if a command could not

be executed for some reason.

If CFLAG is false, bypass this record
by gdéing to step 23.

If EF £ 0, bypass this record by
going to step 23.

Loop through TBF looking for key fields.
When one is found (TBE(3,I) # 0), then
use APSTUP to store the key to be
deleted on file U(10).

Use TFORMZ({1,1) to transfer changed fields
from WBUF to row 1 of BUF.

Loop through TBF, and for each key
field found, use APSTUP to store the
new key on file U(9).

Use REPR to replace the old record in
the data base with the revised one in
row 1 of BUF,

Use XXIN1(RID) to get the mnext record
ID into RID.

1f RID # 0, meaning there was a next
record, then go back to step 13.

Use APSCNT to retrieve the number of
keys to be changed in the data base.
Use AUPOST to delete the keys stored
on file U(10).

p= sl

%3

27, Use AUPOST to add the keys stored on
file U(9).
28. Return to the calling routine.

3¢

Name:

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

CFIND

To locate any singie character of one string
within another string.

¢ Calling sequence:; CALL CFIND (STRA,
STA, NCA, STRB, STB, NCB, LOCA, LOCB}

e Common blocks used: None

e Subroutines or functions used: INDEX

¢ Files used: None

STRA = integer array name; start of string
to be searched

STA = integer variable; character number of
STRA at which to begin search

NCA = integer variable; number of characters
in STRA to be searched

STRB = integer array name; start of string
containing characters for which to search
STB = integer variable; character number of
STRB where search characters start

NCB = integer variable; number of search
characters in STRB to be used.

LOCA = integer variable; character number in
STRA where the first find was made. Zero if
no characters in STRB were found in STRA.
LOCB = integer variable; character number in
STRB of the character found. Zero if none
found.

Successive characters of STRA, starting at

STA and continuing for NCA characters, are

individually compared to the characters in

STRB (via the INDEX function) until a match
is found or STRA is exhausted.

<O

Name:

Modification Purpose:

Linkage Modification:

Input Description Modification:

Output Description Modification:

Process Description Modification:

CHAR
To allow conversion of negative numbers.

e (Calling sequence: No change
¢ Common blocks used: No change

® Subroutines or functions used: The
Fortran function ITABS is now used.

e Tiles used: No change

V = integer variable; may now contain
values less than zero.

STR = integer array name; leftmost
position will contain the minus
character if the input value in V
was negative.

Convert the absolute value of V to a
character string by the original process.
Then, if V is negative, store the minus
character as the leftmost character of
the output field.

#/

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

CICFDF

To direct the command interpretation phase
of the CF, DF, and JF commands.

e Calling sequence: CALL CICFDF(IND, ERR)
e Common blocks used: SY3COM, CLTBL

e Subroutines or functions used: CFIND,
RPCLPR, RLCLPR

¢ Files used: None

IND = integer variable; indicator for which
command is being processed. Set zero for
CF command. Set non-zero for DF or JF
commands .

ERR = integer variable; error indicator.
Returned zero if no errors found. Returned
non-zero if any error is found.

1. The error indicator, ERR,is initialized
to 0. The replacement expression
found indicator, REF, is initialized to 0.
The commas pointer, CP, is initialized
to 2.

2. 1If IND # 0, CP is changed to equal 3.

3. The first character pointer, FC, is
calculated = COMMAS(CP)+1. The number
of characters, NC, between commas is
calculated = COMMAS(CP+1)-FC.

4. Use CFIND to check the character at FC
for a single quote mark, a number sign,
or a numeric character. If any of these
are found, go to step 9.

5. Use CFIND to check all NC characters for an
arithmetic operator, parenthesis, equal
sigh or period. If one of these is fournd,

go to step 7.
@#i

10.
11,

12.

13.

14,

15.

. Set ERR = 1 and return to the calling

routine.
If an equal sign was found, go to step
14.

. Since no equal sign was found, the

clause must be a relational clause.
Since all relational clauses are to

be before replacement clauses, check REF
to see if a replacement clause has been
found. If REF # 0, go to step 6.

. Use RLCLPR(FC, NC, ERR) to process the

relational clause and return ERR

non-zero if errors were found,

If ERR # 0, go to step 6.

Increment CP by 1. 1I£f CP # COMMAS (1)},

go to step 3. ‘

If IND # 0, return to the calling routine.
The CF command must have a replacement
clause, so if REF = 0, go to step 6,
otherwise return to the calling routine.
Set REF = 1 and use RPCLPR (FC, NC, I, IND,
ERR} to process the replacement clause.

I was returned previously £rom CFIND as
the location of the equal sign, and ERR
will be returned non-zero from RPCLPR

if any errors are found.

If ERR # 0, then go to step 6, otherwise
go to step 11.

42

Name:

PurEOSe:

Linkage:

Input Description:

Output Description:

Processing Description:

CIMAIN

i
To direct control to the proper command
routine.

e Calling Sequence: CALL CIMAIN (STRING)
¢ Common blocks used: SYSCOM, SECCOM

e Subroutines or functiong used:
CISUBl, CISUB2, CISUB3, CISUB4,
CISUB5, CISUB6, CLOSEP, JPRPCR,
MODE, STATUS, SUBSTR, VERIFY

e Files used: Hone

STRING = alphanumeric character string

containing the command line syntax.
None

1. Set SECURE(17)=1

2. Search command line for blank
character position, if found
continue with next step, else

return te calling routine.

3. Store command line in STR, and
process next step.

4, Compare command in CMD with each
element of the command table
[SWITCH(K)], i1f CMD = SWITCH (X),
go to the next step, else write

" INVALID COMMAND'message, then go
to step 20.

-
¥

10.
11.
12,
13.
14.
%5.

16.
17.

Verify first command issued is

a BE command. If SECURE(K) #1,
go to step 20, else continue with
the next step.

If k<6, go to step 12; if k>9,
go to step 7, else call CISUBl(k),
then go to step 19.

If k>16, go to the next step, else
CALL CISUB2 (k), then go to step
19.

If k>19, go to the next step, else
CALL CISUB3(k}, then go to step 192.

If k>24, go to the next step, else
CALL CISUB4(k), then go to step 19.

If k>37, go to the next step, else
CALL CISUB5 (k) , then go to step 19.

Call CISUB6 (K,FLAG), then go to
step 18.

If k#1, go to the next step, else
go to step 19.

If k#2, go to the next step, else
CALL STATUS(0), then go to step 19.

If k#3, go to next step, else CALL
MODE, then go to step 19.

If k#4, go to the next step else
set CIND=0, then go to step 17.

Set CIND=l.

Use JPRPCR{CIND) -to process the
RP, or JP commands, indicated from
step 15 or 16, then go to step 19.

St

43

—

18. If FLAG <1, go to next step, else
CALL SUBSTR, which stores STR into
STRING. Return to step 1.

19. Call CLOSEP, process next step.

20. Return to calling routine.

Sl

76

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

CIRP

To direct the activities of parsing the
command line, building tables, and

building puffer formats for the RP and J?
commands.

¢ Calling sequence: CALL CIRP{CIND,
RECID, ERR)

¢ Common blocks used: SY3COM, CLTBL

¢ Subroutines or functions used: COMSTR,
CFIND, ADDEN, AEPR, ADDLT, INDEX,
INPARM, FTFMT, FTCMP

@ Files used: None

CIND = integer variable; command indicator.
Set 0 for RP command or non-zero for JP
command.

RECID = integer variable; contains the
record ID (accession number } of the
first record of the input set.

ERR = integer variable; error indicator.
Returned zero if no errors are found

and non-zero if any error is found.

1. Counters and pointers are initialized.

2. If there are some clauses in the command,

go to step 4.
3., Set ERR = 1 and return to the calling
routine.

4, If there are no characters in the clause,

go to step 3.
5. If this clause is the first one and it
is not a BY clause, then go to step 3.
6. If this clause is not a BY clause and

not the first clause, then go to step 16.

3=z
97

10.

11.

12.

13.

14,

Tf this BY clause is occurring after
an BEGE BY clause has occurred, then go
to step 3.

If this is the sixth BY clause, then
go to step 3.

If there is no grouping field name for
this BY clause, then go to step 3.

If this is an E&E BY clause, then if
there are no report expressions, then
go to step 3, otherwise store zeroes
in the first 3 columns of the BY
Processing Table, BPT in /SY3COM/,

for this BY clause and go to step’ 15.
Use CFIND to check the grouping field
name for arithmetic operators or
parentheses. If any are found, go

to step 13.

Set columns 2 § 3 of BPT = 0 for this
BY clause, use ADDFN to store the
grouping field name in the Working
Buffer Format, WBF in /SY3COM/, store
the row number returned by ADDFEN into
column 1 of BPT for this BY clause,
and go to step 15.

Store the negative of the next
available row number of WBF in column 1
of BPT for this BY clause. Store $R
in column 2 of that row of WBF. Store
the next available row number of the
Normal Command Table, CTBL in
/8Y3COM/, into column 2 of BPT for
this BY clause. Store 4 and-1 into
columns 4 & 5 of the $R row of WBF,
Use AEPR to generate the commands which
evaluate the arithmetic expression.
If AEPR found any syntax errors, go
to step 3, Calculate the number

=5

18

15.

16.

17.

18.

19.

20.

21.

22,

of commands generated by AEPR and

store this number into column 3 of

BPT for this BY clause.

Move to the next pair of commas. If
there is none, go to step 29, otherwise
go back to step 4.

If this report expression is not a

text type, go to step 18.

Use ADDLT to create an entry in WBF for

this text literal and store values in the

Target Buffer Format, TBF in /SY3COM/,
to cause this text to be printed at the
start or conclusion of this BY clause
(depending on whether single or double
quote mark characters were used). Go
to step 15.

Compare the beginning characters of the
report expression with an internal table
of function names. If no match is
found, go to step 21.

If this function reference is found

in an EB&E BY clause, then go to step 3.
Use ADDEN to create the field name
reference in WBF for the field name
specified in the function. Create a
$R Tow in WBF for the results of the
function to be carried and create a
reference in TBF to get the results
printed upon the conclusion of this

BY clause. Based on which function
was specified, store an initialization
value in column 1 of the $R row of WBE.
Then go to step 15,

Use INDEX to check for an equal sign
in the report expression. If there

is one, go to step 24.

This report expression is only a field
name. If it has greater than 12
characters, go to step 3.

$=25
¥9

23.

24,

25.

26.

27.

28.

29.

30.

31.

Use ADDFN to create a reference to the
field name in WBF, and create an entry
in TBF to cause the value of this field
to be printed at the beginning of this
BY clause. Then go to step 15.

Use CFIND to determine if this report
expression begins with an I or a D.

If it begins with neither, then go

to step 3.

Use INPARM to convert the input field
width to a binary integer. If it is
greater than 99, then go to step 3.
Create a results field (§R) in WBF

and a target'field for printing in
TBF. Store:'the target field type in
TBF as a 1 or a2 2 based on whether the
report expression began with an I or a
D, respectively.

Initialize column 4 of BPT for this BY
clause if it has not already been done.
Use AEPR to process the arithmetic
expression to the right of the equal
sign, and accumulate the number of
commands generated into column 5 of
BPT for this BY clause. Then go to
step 15.

If CIND = 0, then set NLVLS, the number
of data base levels, = 1, otherwise
set NLVLS = 2.

Use FTFMT (RECID, NLVLS, ERR) to
search the data base formats,
collecting field information for WBEF
and SBF, the Source Buffer Format in
/8Y3COM/. 1If ERR is returned non-zero,
go to step 3.

Now that the type and length of data base

fields are known, this information 1is
used to complete needed portions of WBF

S=FF
JO°

and TBF where just field names and
functions with field names are the

report expressions.

32. Where function results are called for

33.

34.

35.

in WBF, a command is entered in the
Function Command Table, FCTBL in
/8Y3COoM/ .

Use FTCMP to generate starting character
positions in WBF and initial values in
WBUF.

Use FTCMP to generate starting character
positions with two spaces between fields
in TBF.

Return to the calling routine.

e
5

Name:

Purgosei

Linkage:

Input Description:

Output Description:

Processing Description:

CISUBl

@ To direct selection of the appro-
priate subroutine(s) for execution
of the associated command.

e Calling sequence: Call cisuBl(k)
Common blocks used: none
Subroutines or functions used:
CFCR, JFDFCR, END

e Files used: none

kX = integer variable; indicator for
which command is being processed.
Set k=6 for CF command. Set k=7 for
DF command. Set k=8 for JF command.
Set k=% for EN command.

None

l. Set LK = k-5

2. If LK#1, go to step 3, else use
CFCR to process the CF command,
then go to step 9.

3. If LK#2 go to step 5, else process
the next step.

4, B8et CIND = 0, indicates the DF
command is being processed, go to
step 7.

5. If LK#3 go to step 8, else go to
the next step.

6. Set CIND = 1, indicates the JF
command 1s being processed, go to

next step,

=
3

Use JFDFCR to process the DF or
JF command indicated from step 4
or 6. Go to step 9.

If LK#4 go to step 9 else use END
to process the EN command.

Return to calling routine.

g

Name:

Purgose :

Linkage:

Input Description:

Output Description:

Processing Description:

CISUB2

To direct selection of the appropriate
subroutine (s} for execution of the
associated command.

@ Calling sequence: Call CISUB2 (k)
® Common blocks used: none

® Subroutines or functions used:
JNSNCR, SELECT, COMBIN, HEADER,
STCNT, DELETE

e Files used: none

k = integer variable; indicator for
which command is being processed.

Set k=10 for SN command. Set k=11

for JN command. Set k=12 for SK
command. Set k=13 for CO command. Set
k=14 for HD command. Set k=15 for

SC command. Set k=16 foxr DE command.

None

1. Set LK= k-9.
2, If LK#l, go to step 3, else set
CIND=0, ¢go to step 4.

3. If LK#2, go to step 5, else set
CIND=1, go to next step.

4., Use JNSNCR to process the SN or
JN command, then go to step 10.

5. If LK#3, go to step 6, else use
SELECT to process the SK command.
Then go to step 10.

S=51
31

10,

If LK#4, go to step 7 else use
COMBIN to process the CO command.
Then go to step 10.

If LK#5, go to step 8, else use
HEADER to process the HD command.
Then go to step 10.

If LK#6, go to step 9, else use
STCNT to process the SC command.
Then go to step 10.

If LK#7, go to step 10, else use
DELETE to prrocess the :DE command.

Return to calling routine.

52

Name : CISUB3

Purpose: To direct selection of the appropriate
subroutine(s) for execution of the
associated command.

Linkage: ® Calling Sequence: Call CISUB3(K)
® Common blocks used: SECCOM
e Subroutines or functions used:

BEGIN, CLEANP, UNLOCK, SPLUS,
SMINUS

® Files used: None

Input Description: k= integer wvariable, indicator for
which command is being processed.
Set k=17, for BE command. Set k=18,
for S+ command. Set k=19, for 8-

command.
Output Description: None
Processing Description: 1. Set LE= k-16.

2. If LX#£1l, go to step 3, else use
BEGIN, CLEANP; and UNLCCK to
process the command line. Then
go to step 5.

3. If L¥X#2, go to step 4, else use
SPLUS to process the S+ command.
Then go to step 5.

4, If LK#3, go to step 5 else use
SMINUS to process the 5- command.

5. Return to calling routine.

=3
J&

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Processing Description:

CISUB4 |

To direct selection of the appropriate
subroutine {s) for execution of the

associated command.

Calling Sequence: Call CISUB4 (k)

e Common blocks used: None
Subroutines or Functions: SORTP,
TJUMP, CMDRI, MOVSEG

e Files used: None

k= integer wvariable; indicator for
command being processed. Set k=20,

for SO command. 8et k=22, for JT
command. Set k=21, for JS5 command.

Set k=22, for JT command. Set k=23, for
CM command. Set k=24, for MO command.
None

1. Set LK= k-19
2. If LX#1, go to step 32, else set
CIND=1, go to step 4.

3. If LK#2, go to step 5, else set
CIND=2, go to next step.

4. If CIND=1 process SORTP,
If CIND=2 process SORTP, go to
step 8,

5. If LX#3 go to step 6, else use
TJUMP, then go to step 8.

6. If LK#4, go to step 7, else use
CMDRI to process the CM command.
Then go to step 8.

I=Bg
o7

7. If LK#5, go to step 8, else use
MOVSEG to process the MO command.

8. Return to calling routine.

TE

Name: CISUBS

Purpose: To direct selection of the appropriate
» subroutine (s8) for execution of the
associated command.

Linakge: # Calling Sequence: Call CISUB5(k)
e Common blocks used: None
e Subroutines or functions used:
~ EXPAND, DISPLA, XREF, SEUNIV,
. SELREC, SPCSET, FORMM, DISPDD,
REAF, PARSEP, PARSEC, ADDREC

Input Description: k= integer variable, indicator for

command being processed.

Set k=25, for EX command.
Set k=26, for PA command.
Set k=27, for DI command.
Set k=28, for XR command.
Set k=29, for SU command.
Set k=30, for SR command.
Set k=31, for 88 command.
Set k=32, for DD command.
Set k=33, for FO command.
Set k=34, for RF command.
Set k=35, for GP command.
Set k=36, for GC command.
Set k=37, for AR command.

Output Description: None

Processing Description 1. BSet LK= k-24.

2. If LK#1l, go to step 3, else set
CIND=0, go to step 4.

=55
39

10.

11.

1z.

13.

If LK#2, go to step 5, else set
CIND=1, go to next step.

Use EXPAND to process the EX or
PA command, indicated from step
2 or 3. Then go to step 16.

If LK#£3, go to step 6, else use
DISPLA, to process the DI command.
Then go to step 16.

If LK#4, go to step 7, else use
XREF to process the XR command.
Then go to step 16.

If LX#5, go to step 8, 3lse use
SEUNIV to process the SU command.

Then go to step 16.

If 1IE#6, go to step 9, else use
SELREC to process the SR command.
Then go to step 16.

If LK#7, go to step 10, else use
SPCSET to process the 55 command.
Then go to step 16.

If 1K#8, go to step 11, else use
FORMM to process the DD command.
Then go to step 16.

If L¥#9, go to step 12, else use
DISPDD to process the FO command.
Then go to step 16.

If LX#1L0, go to step 13, else use
REAF to process the RF conmand.
Then go to step 16.

If LK#11l, go to step 14 else use
PARSEP to process the GP command.
Then go to step 16.

B

b0

l4.

15.

16.

Cf

If LK#12, go to step 15 else use
PARSEC to process the GC command.
Then go to step 16.

If LK#13, go to the next step, else
use ADDREC to process the AR
command ,

Return to calling routine.

Name: CISUR6H

Purpose: To direct selection of the appropriate
i
subroutine (s) for execution of the
associated command.

Linkage: e Calling sequence: Call CISUBG6 (k,
FLAG)

e Common blocks used: None

e Subroutines or functions used:
CAUFIL, XPOST, ADDKEY, DBPRO,
DELKEY, CRESTS, DELREC, REPKEY,
REPREC.

e Files used: None

Input Description: k= integer wvariable, indicator for

which command is being processed.

Set k=38, for AF command.
Set k=39, for UF command.
Set k=40, for UP command.
Set k=41, for PO command.
Set k=42, for VP command.
Set k=43, for AK command.
Set k=44, for DK command.
Set k=45, for RE command.
Set k=46, for KY command.
Set k=47,'for NK command.
Set k=48, for DS command.
Set k=49, for DR command.
Set k=50, for RX command.
Set k=51, for RR command.

b

Output Description: FLAG integer variable; where

FLAG = 1 means do not allow data base
to be altered.

FLAG = 0 means do allow data base to
be altered.

FLAG = 2 means process input line as
next command.

Processing Description: 1. BSet LKQ k-37, and set FLAG=0, go
to rieXt” step.

2. If LK#l, go to step 3, else set
CIND=1l, go to step 4.

3. If LK#2, go to step 5, else set
CIND=2, go to next step.

4. Use CAUFIL to process the AF or
UF command, indicated from step
2 or 3. Then go to step 17.

5. If LK#3, 4, or 5 go to step 6,
else use XPOST to process the
Up, POK or VP command. Then
go to step 17.

6. If LK#6, go to step 7, else use
ADDKEY to process the AKX command.
Then go to step 17.

7. If LK#7, go to step 8, else use
DBPRO (FLAG) to pick up variable
FLAG. If FLAG#0 go to step 17,
else use DELKEY to process the
DK command. Then go go step 17.

8. If LK#8, go to step 9, else set
CIND = 1 and go to step 13.

360
&%

10.

11.

1z2.

13.

i4.

15.

16.

17I

If LK¥2, go to step 10, else set
CIND=2, go to step 13.

If LK#10, go to step 11, else set
CIND=3, go to step 1l2.

If LK#11l, go to step 14, else set
CIND=4, go to next step.

Use DBPRO(FLAG) to pick up variable,

FLAG. If FPLAG # 0 go to step 17,
else next step.

Use CRESTS (CIND) to process thé RE,
KY, NXK, or DS command. Then go to
step 17.

If LX#12, go to step 15, else use
DBPRO{ FLAG) to determine FLAG
status. If FLAG#0, go to step 17,
else use DELREC to process the DR
command. Then go to step 17.

If LX#13, go to step 16, else use
REPKEY to process the RK command.
Then go to step 17.

If LK#£14, go to step 17, else use
REPREC to process the RR command.

Return to calling routine.

bY

Name:

Purgose:

Linkage:

Input Description:

Output Description:

Processing Description:

9

CRESTS

To parse the command line for the
RE, KY, NK, and DS commands.

Calling sequence: CALL CRESTS (IFN)
Common blocks used: SYSCOM, SY2COM
Subroutines or functions used:
CLOSEP, INDEX, INPARM, LODFMT,
RESTRX

Files used: None

IFN = integer variable, indicator
for command being processed.
If IFN=1l, process RE command.
If IFN=2, process KY command.
If IFN=3, process NK command.
If IFN=4, process DS command.

None

1. B8Search the command line for
comma, if a comma is found a
non~zero value is assigned to
variable k which indicates the
numeric location of the comma
in the command line. If a
comma is not found, variable k
is set to zero.

2, If k=0 go to step 9, else
continue with the next step.

3. M = integer variable represent-~
ing the set number wdthdn the
command line. If m=0 go to step
8, else go to the next step.

€5

If IFN=4, go to step 9, otherwise
verify the existence of a format

number, convert to integer, and
store the converted integer into

5.

b'e

FMTID(2).

Call LODFMT, process next step.

Use RESTRX (M, IFN)} to process the

appropriate command, with (M)
containing the set number and

(IFN) the proper command switch.

Call CLOSEP, continne with next
step.

Return to calling routine.

If IFN#4; this implies the DS
command was attempted, however
a syntax error existsin the
command line, therefore go to
step 8. If IFN=4, k = integer
value of first blank. This -
value is used to determine the
number of characters to convert
from alpha to integer. Return
to step 3.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

DBPRO

To prevent accidental alteration of the

data base for certain commands.

e Calling Seguence: Call DBPRO (FLAG)
Common blocks used: SYSCOM
Subroutines or functions used: COMSTR,
SUBSTR, VERIFY

e Files used: Logical units U(7) and
U(13).

A command line containing the input command
line plus a "Yes," "Y," "No," or "N"

after the command or a command line
containing the input line then another
input line containing a "yes" or "No"

in response to an output guery.

FLAG = integer variable; where FLAG = 1
means do not allow data base to be
altered and FLAG=0 means do allow data
base to be altered.

FLAG=2 means the current command is
ignored, but process array STR as next

command .

1. Initialize FLAG to zero.

2. Use VERIFY to verify the existence
of a non-blank character at or
beyond position 60 of the command

line. vVariable k is set.

3. If k=0 go to step 6. If k#0, use
COMSTR to compare the character at
k of STR with a '¥'.

&

If COMSTR=0, return to the calling
routine.

5. Use COMSTR to compare the character
at k of STR with a 'N'. If COMSTR=
0, go to step 14.
6., Write the command line to the message
file with a ‘YES or NO?' query.
7. Read the response to the query from
the command file.
8. Use VERIFY to check for a non-blank
character in response to the query.
9. If k=0, go to step 14.
10. Use COMSTR to compare the response
to the query with 'YES'. If COMSTR=
0, return.
11. Use COMSTR to compare the regponse
to the query with 'NO'. If COMSTR=
0, go to step 14.
12. Set FLAG=2.
13, Use SUBSTR to move the response
data into STR, and to return to
the calling routine.
14. Set FLAG=1.
15. Return to the calling routine.
SeneS

Name: DISFMT

Purpose: To direct output to appropriate
THIpOSE
file unit.

Linkage: @ Calling sequence: CALL DISFMT
(ID,L,STR)

o Common blocks used: SYSCOM

@ Subroutines or Ffunctions used:
None

e Files used: U(l2), U(8)

Input Description: ID = integer wvariable, indicator
for file unit assignment.
If ID=1 assign U7=U(12)
If ID#1 assign U7=U(8)
L = integer variable, indicates
length of input string STR.

STR = alphanumeric character

string.
Output Description: STR = alphanumeric character string.
Processing Description: 1. If ID=1, set U7=U (12} and

process the next step.

2. If ID#l, set U7=U(8) and process
the next step.

3. LL=L, stores input length into
LL, go to the next step.

4, If LL»30, set LL=30,

eq

2l

If
of
of

If
of
of

U7#7, write the contents
STR with a format length
30 words to unit = U7.

U7=7, write the contents
STR with a format length

15 words, process next

step.

Return to calling routine.

Name :

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

DTEINT

To convert date format to/from a binary

integer.

¢ (Calling sequence:
cari DTEINT (FUNC, INT, STR, ST, NC)

¢ Common blocks used: None

® Subroutines or functions used:
SUBSTR , CHAR, INPARM, MOD

» Files used: None

FUNC = Ihdicator, if FUNC = 0, converts
character string (STR) to an integer (INT).
If BUNC # 0, converts an integer to a
character string (STR).

INT = Integer input.

STR = character string input.

ST starting position of character string.
NC = number of characters of STR to be
converted.

INT = Integer output from converted
character string.

STR = character output from input integer.

In addition to the input variables, this
routine contains an internal Julian

day conversion table DTAB. DTAB is a
one=dimensional array with each element
representing the total number of days from
the base year to year 'N', where N is the
relative position of the array element
represeﬁtiﬁg an offset from the base

year. If FUNC indicates an integer is

to be converted to a character string the
input integer date is tested for an invalid
date. If this date is greater than the

=53

n\

greatest value of DTAB, the input date

is replaced with that particular pTaB
element and the conversion process
continued. Howeven, if the integer date
is less than or equal to zero, blanks

are moved to the output string (STR).
Assuming the integer date is greater than
zero, DTAB is searched until a value

that is greater than or equal to the input
integer is found, The input integer minus
‘the previous table value gives the day
segment of the Julian date. The year
segment is then calculated by adding the
base year to the DTAB index minus a
constant of two. Having converted the
integer date {0 a Julian date format, the
results are then converted to an
alphanumeric character string by use of
the CHAR subroutine. To convert from an

alpha Julian date format the year and
day segments are calculated. The year

portion is subtracted from the base year
to serve as an index to pick up the
appropriate DTAB element. Once this
element is obtained this value is added to
the day segment to produce the output
integer.

Name: EXCMD

Purpose: To pertorm the operations specified in one row
of a command table.

Linkage: o Calling sequence: CALL EXCMD (TBL, ROW, ERR,
CELAG)

¢ Common blocks used: SY3COM

e Subroutines or functions used: SUBSTR,
DTEINT, INPARM, CHAR, COMSTR

e TFiles used: None

Input Description: TBL = integer array name; starting location of

the table containing the command to be executed.
ROW = integer wvariable; contains the row number
of TBL where the command to be executed is
stored.

Qutput Description: ERR = integer variable; contains zero on normal

command execution or non-zeroc when command
cannot be executed.

CFLAG = logical variable; contains .TRUE.
normally, but is set to .FALSE. when the
command is a logical comparison and the
comparison fails.

Process Description: Refer to the Command Table and Command Operations

Table layouts as a supplement to this

description. The value retrieved from

the references in columns 1-4 of the command
table will be referred to as OPND(1)}, OP, OPND(2),
and RE?ULT, fespectively, in this description.

1. ERR and CFLAG are initlalized to zero and
true, OP is retrieved from TBL (2, ROW),
OPND(l)'s pointer, P, is retrieved from
TBL (1, ROW), and N is initialized to one.

1%

[S 7 B S 7L I oV

10.

11,
12Z.

13.
14,
15,

16,

17.
18.

If OP > 0 and < 17, go to step 4.

Set ERR = 1 and return to calling routine.
If OP > 10, go to step 24.

If P =0, go to step 3.

If P< 0, negate P, retrieve OPNU(N) from
REG (P), an array in /SY3COM/, and go to
step 10. ’

Retrieve OPND(N)'s type trom column 5 at
row P of the Working Buffer Format, WBF,

in /SY3COM/. °

If OPND(N}'s type = 0, then if OP < 5, then
go to step 3, otherwise if N = Z, then go
to step 3, otherwise go to step 20,

Convert the value of OPND(N) from the
Working Buffer, WBUF in /SY3COM/, based

on the type, using either subprogram

SUBSTR (type < 0, & binary integer),

INPARM (type = 1, a numeric character
string), or DTEINT (type = 2, a date
character string).

If N =1, then set N =2, retrieve a new

P from TBL (3, ROW), and go to step 3.

If OP > 4, go to step 22.

Perform the arithmetic operation specified
by OP, using OPND(1l) and OPND(2) and storing
the result in RESULT. If OPND(2) of a divide
operation = U, then go to step 3.

Retrieve a new P for RESULT from TBL (4, ROW).

If P=20, go to step 3.

If P< 0, negate P, store RESULT in REG(P),
and go to step 19.

Retrieve RESULT's type from column 5 at row
P of WBF.

Jf type = 0, go to step 3.

Convert the value in RESULT into WBUF

based on the type, and using subprogram
SUBSTR (type < 0), CHAR (type = 1), or
DTEINT (type 2).

=t
5

n

19,
20.

21.

22.

25.

24,
25.

26.
27.

28.
29.

30.

31,

Return to the calling routine.

If OPND(2)'s pointer in TBL (3, ROW)

= 0, or if OPND(2)'s type # 0, then

go to step 3.

Perform an alphanumeric comparison
between OPND(1) and OPND(2) and set [to

be negative, zero, or positive according
to whether OPND(1l) < OPND(2), OPND(l) =

OPND(2), or OPND(l) > OPND(2), respectively.

Go to step 23.

Perform arithmetic camparison by setting
I = OPND(L)-OPND(2).

Leave CFLAG = true or change CFLAG = false

based on the following table and then
return to calling routine:
I< 0 I1=20 [>0

0P = 5 true false false
QP = 6 true true false
OP = 7 false true false
OP = 8 true false true
QP =Y false true true
0P = 10 false talse true

If OP = 16, go to step 40,

Retrieve OPND(2)'s pointer, P2, from
TBL(3, ROW). If P2 = 0, go to step 3.
If OP > 13, go to step 35.

If OPND(2) in WBUF is blanks, go to step
39.

Retrieve OPND(1) from WBUF using SUBSTR.
If Op = 11, set OPND{2) = OPND(1) +1,
and go to step 34.

Retrieve OPND(2) from WBUF, converting
based on 1ts type and using LNPARM or
DTEINT.

Perform a numeric comparison between
OPND(1) and OPND(2). TIf OPNP(1) =
OPND(2), go to step 39.

=8

(Y

32.

33.
34,

35.

36.

37.
38.

39.
40.
41.

42.

43.

44,

45.

I£ OPND(1) > OPND(2), then if OP = 13,
then go to step 39, otherwise go to

step 34,

If 0P = 12, then go to step 39.

Use SUBSTR to store OPND(2) into
OPND(1)'s place in WBUF and go to step
39,)

Perform an alphanumeric comparison between
OPND(1) and OPND(2). 1If OPND(1) = OPND(Z2),
to to step 39,

T+ OPND(1) > OPND(2), then if 0P = 15,
then go to step 3Y, otherwise go to step
38.

If OP = 14, go to step 39.

Use SUBSTR to store OPND(Z)'s character
string in WBUF into OPND(1)'s character
string in WBUF.

Return to calling routine.

I£f P =0, go to step 3.

If P< 0, negate P, retrieve RESULT from
REG(P), and go to step 13.

Retrieve OPND(1}'s type from column 5

at row P of WBF. If type = 0, go to step
44,

Convert OPND{1)} from WBUF into RESULT
based on type using subprogram SUBSTR
(type < 0), INPARM (type = 1), or

DTEINT (type = 2). Go to step 13.
Retrieve RESULT's pointer, P2, from TBL
(4, ROW). If P2 =0, go to step 3.
Transfer OPND(1)'s character string in
WBUF to RESUL1's location in WBUF, using
SUBSTR, and then to go step 39.

To

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

EXCMDS

To execute a sequence of related command
rows in a command table,

¢ Calling sequence: CALL EXCMDS (1BL, SR, NR,
ERRFNC, CFLAG)

o Common blocks used: SY3COM

e Subroutines or functions used: EXCMD,
SUBSTR
® Files used: None

TBL = integer array name; starting location
of the table which contains the commands to
be executed.

SR = integer variable; starting row number
within the command table.

NR = integer variable; number of rows to be
executed.

ERRFNC = integer wvariable; indicator for what
procedure is to be followed if an error occurs:
Zero means do nothing to the results field:
non-zerc means store blanks or zero in the
results field (depending on field type).

ERRFNC = integer variable; set to zero if no
errors were encountered. Set to one if an
error was encountered.

CFLAG = logical variable; contains .TRUE,
except when a relational comparison command
has failed, then it contains .FALSE..

1. The last row to be processed is calculated
into LR, ERRFNC is saved in EF and set = 0,
and I is initialized to SR.

2. A call is made to subroutine EXCMD to
execute the command at row I.

E il

g

10.
11.

12,

13.

If CFLAG from EXCMD is returned with a
value of false, return immediately to
the calling routine.

If the error indicator from EXCMD is
returned non-zero, go to step 7.
Increment I by 1.

If I > LR, return to the calling routine.
Set ERRFNC =1 and retrieve P from
column 5 of the current row of the
command table, P is the row number to
which a jump should be made.

If EF = 0, go to step 13.

Retrieve the result pointer, P1l, from
column 4 of row P-1 of the command table.
If P1 = 0, go to step 13.

Retrieve the result type from column 5
of row Pl of the Working Buffer Format.
Based on type, store binary zeroes
(type < 0), alpha zeroes (type > 0), or

blanks (type = 0) into the result location

in the Working Buffer.
Set I = P and go to step 6.

gk

Name :

PurEOSe:

Linkage:

Input Description:

Output Description:

Process Description:

FPRM

To store a new format definition into
the data base.

e Calling sequence: CALL F@RM(DBRID,LEN)
Common bklocks used: SYSC@M, SY2CEM

¢ Subroutines or functions used: ADDR,
CL@SEP, C@MSTR

@ Files used: ILogical unit U{11l)

DBRID = integer wvariable; data base record
ID. This is the format number.

LEN = integer variable; length (in integer
*4 words) of the record which the new
format describes.

None

1. The maximum number of fields is
initialized to 27, the actual number
of fields is initialized to 0, the
internal buffer pointer is initialized
for the first field description, and
the logical unit for reading the input
data is initialized to U(l1ll).

2, A loop is executed (up to the maximum
number of fields allowed) which reads
the ID number, name, start character,
length, type, and key code for each
field, storing the information into
the internal buffer, BUF, and incre-
menting the buffer pointer and actual
field counter for each read. If
the beginning three characters of any
field name are "END," the loop is
terminated.

€=ﬁ%%r]q

The acutal number of .words used in

the internal buffer is calculated and
stored in BUF({l). BUF(2) is set to

0. BUF(4) is set to the input variable
LEN, and BUF(8) is set to the actual
number of fields read from the input
data.

ADDR is called to store a record of

length BUF(l), beginning at BUF (2},

into data base record DBRID. CL@SEP
is called to flush internal I/@ page
buffers.

FMTID (1) and FMTID(2) in /SY2C@M/ are
set to 0 to cause any subseguent
command that uses a format to go to
the data base to retrieve the current
definition of that.format.

Control is returned to the calling
routine.

Name:

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

FTCMP

To calculate starting character positions
for fields in generated formats.

e Calling sequence: CALL FTCMP (A, NS)
e Common blocks used: SY3COM
® Subroutines or functions used: SUBSTR

© Files used: None

A = integer array name; starting location of
the array which contains the format to be
completed.

NS = integer variable; the number of spaces
to be inserted between fields.

A = integer array name; starting location of

the array which contains the completed format.

1. The start character counter, SC, is
initialized to one, as is the row counter,
ROW.

2. The length of the field at ROW is transferred
from A(6, ROW)} to L.

3, If L = 0, then processing is finished, so
return to the calling routine. ’

4. If A(2, ROW) contains §T then bypass start
character calculations for this row (since
text remains in the command line instead of
being transferred to the Working Buffer,
WBUF in /SY3COM/) and go to step 7.

5. If A(2, ROW) contains $L or $R, then use
SUBSTR 'to initialize WBUF from A(1l, ROW).

6. Store SC into A(5, ROW) and calculate the
next SC = SC+L+NS.

7. Increment ROW by one and go to step 2.

éﬂéﬁg?\

Name:

Purpose;

Linkage:

Input Description:

OQutput Description:

Process Description:

FTFMT

To retrieve information from formats associated
with records in the same family tree.

¢ Calling sequence: CALL FTFMT (RECID, NLVLS,
ERR)

e Common blocks used: SYSCOM, SY2COM, SY3COM

e Subroutines or functions used: LOCREC, GET,
INPARM, LODFMT, COMSTR, PRNTID

@ Files used: Message file

RECID = integer variable; record ID of a record
at the lowest level of the data base where
format information collection is to begin.
NLVLS = integer variable; the number of levels
of the data base to be used in tracing the
family tree for format information.

ERR = integer variable; returned non-zero if

any errors were encountered.

1. The input record ID, RECID, is moved to
variable ID. U7 is initialized to whatever
unit has been designated as the message
file, and the data base top level indicator,
TLF, is set to zero.

2. The pointer, NMTCT, to the last used row
of the Move Table Control Table, MTCT in
/SY3COM/, is incremented by one.

3. The next available row number of the
Multilevel Move Table, MLMT in /SY3COM/,
is stored in column one of row NMTCT of
MTCT.

4. Subroutine LOCREC is used to locate the
pointer to the record with accession
number = ID., If the pointer is found, go

to step 7.
SN

5.

Write "Record not in data base® on unit U7.

Set ERR = 1 and return to calling routine.

7. Use GET to retrieve the pointer to the

106.

11.

12,

record, and use GET again to retrieve

the format number of the record from the
second word of the record (characters 5-8).
Convert the format number character string
to a binary integer via INPARM, and store
the format number in FMTID(1) of /SYZCOM/
and in column 3 of row NMTCT of MTCT.

. Use LODEMT to retrieve the format whose

number is in FMTID(1) and store the format
in page 1 of FMT in /SY2COM/. If the format
was not found in the data base, go to step 6.

. Calculate the last used row, N, of page 1

of FMT as EMT(6, 1, 1) +1.

For each field name in column 2 of the
Working Buffer Format, WBF in /SY3COM/,
which is not $§R, §T, or §L, compare that
name against the names up to row N in
column 2 of page 1 of FMT, and if a match
is found, do steps 11-21, otherwise just
move to the next name in WBF until they
are all processed, and then go to step 22.
If the row number, I, of WBF where the
match was found, = -TBF(4,1), then negate
TBF(4,1) and go to step 13. TBF is the
Target Buffer Format in /SY3COM/, and
TBF(4,1) contains the negative of the row
number of the field whose name is "UNLOAD",
This value was placed in TBF (4,1) by
subroutine BLDTBF when a target field
type of 4 was encountered, meaning a
special output conversion was desired
which depended on the contents of the
"UNLOAD" field.

If I =~TBF(4,2), then negate TBF(4,2).

This.is the row number of the "LSD"

NS

359
£%

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23,

24,

field which is similar to the "UNLOAD"
field in step 11.

The length of the field is transferred
from column 4 of FMT to WBF(6,I].

The type of the field is transferred
from column 5 of FMT to WBF(7,I).

The pointer, NSBF, to the last used row
of the Source Buffer Format*t, SBF of
/8Y3C0OM/, is incremented by one.

The key field indicator is transferred
from column 6 of FMT to SBF(1, NSBF).
The starting character number is
transferred from column 3 of FMT to SBF
(5, NSBE).

The length of the field is transferred
from column 4 of FMT to SBF(6, NSBF).
The type of field is transferred from
column 5 of EMT to SBF(7, NSBF).

The row number within FMT of the field
is stored in SBF(2, NSBF) for later use
in the Change Field command.

The pointer, NMLMT, to the last used row
of MLMT is incremented by omne. The
value of NSBY is stored in MLMT (1, NMLMT),
and the value of I is stored in MLMT

(2, NMLMT).

After processing all fields of WBF that
were found in the format for records at
this data base level, calculate the
number of rows of MILMT which were generated
(=NMLMT -MTCT(1, NMTCT) +1) and store it
in MTCT(2, NMTCT).

Check column 4 of all fields of WBF. If
any lengths are still = 0, then more
formats need to be examined if possible,
so go to step 24, otherwise set TBF(4,1)
and TBF(4,2) to zero if they are still
negative and return to the calling
routine,

If NMTCT # NLVLS, go to step 26.

s=ps
54

25. Write "Unidentified field(s)" on unit
U7, and go to step 6.
26. If TLF # 0, then go to step 25, otherwise

use PRNTID to get the next level record
ID and go to step 2.

3%

Name:

Purgose:

Linkage:

Input Description:

Output Description:

Process Description:

JFDECR

To direct the overall processing sequence
for the JF and DF commands.

Calling sequence: CALL JFDECR(CIND)
Common blocks used: SYSCOM, SYZCOM,
SY3COM, CLTBL

Subroutines or functions used: AEBINIT,
LODEMT, CICFDF, BLDTBF, SETIN1, XXIN1,
FTFMT, FTCMP, GETREC, TFORMW, PRNTID,
EXCMDS, TFORMZ, DISFMT,

Files used: Message file (logical unit 7)

CIND = integer variable; command indicator.

Set zero for DF and non-zero for JF.

None

1.

2.

Initialize file pointer U7 to the value
stored in U(7) of /SYSCOM/.

Use AEINIT to initialize /SY3COM/,
returning the input set number in

SETNO, the input format number in FMTNO,
and error indication of non-zero in ERR.
If ERR = 0, go to step 5.

4. Write on U7, "Command terminated due to

syntaXx erroxn!', and return to the calling
routine.

Store FMTNO in EMTID(2) and use LODEMT
(2,HIT) to load the format into page 2
of array FMT in /SYZ2COM/, returning

HIT as zero if the format could not be
found in the data base.

If HIT = 0, then write on U7, "Format
not found. ", and return to the calling
routine.

r———r s

g3 %ﬂ{

10,

11.

12,

13.

14,
15.

16.

17.

If COMMAS(1) = 3, meaning there were

no clauses in the input command, then

go to step 10,

Use CICFDF to process the clauses in

the input command, returning ERR non-
zero if any errors were found.

If ERR # 0, go to step 4.

Use BLDTBF(2) to convert the data base
format in page Z of FMT to a standard
format in the Target Buffer Format,

TBE in /sy3com/.

Use SETIN1 to initialize the input set
for record ID's to be returned by XXINI.
Use XXIN1(RID) to return the first record
ID in RID.

If RID.= 0, meaning there were no records
in the input set, return to the calling
routine. ‘

Set NL, the number of levels ia the data
base to be used, to 1 or 2, depending on
whether CIND = 0 or # 0, respectively.
Then use FTEMT (RID, NL, ERR) to complete
the buffer formats with information about
fields whose names occurred in the input
command, returning ERR non-zero if an
error occurred.

If ERR # 0, then go to step 4.

Use FTCMP to complete starting location
information in the Working Buffer

Format, WBF in /SY3COM/.

Fill row 2 of the target buffer array,
BUF, with blanks.

Initialize I, the pointer to the desired
row of MTCT, the Move Table Control Table
in /SY3COM/, to 1.

Transfer the format number for records

at this data base level from MTCT(3,I)

to FMTID(1l). This prevents an unnecessary
retrieval of the format record by GETREC.

éFﬂhggr\

18.

19.

20.

21.

22.

23.

24,
25.

26.

27.

28.

29.

Use GETREC{1, RID, STAT) to retrieve
record RID into row 1 of BUF, the

record buffer in /SY2CO0M/, returning
STAT non-zero if there was any problem
with the retrieval.

If STAT # 0, ignore this P?ecord by

going to step 27.

Use TFORMW(1,I) tc transfer data from
row 1 of BUF to WBUF, the Working Buffer
in /SY3COM/, as directed by row I of
MTCT.

If I > NMTCT, the last used row of MTCT,
then go to step 23.

Increment I by 1, use PRNTID to get record
RID's parent record, PID, set RID to PID,
and go back to step 17.

Set EF = 1,"QFLAG=.TRUE., and ﬁse EXCMDS
to execute the commands in CTBL, the
Normal Command Table »/SY3COM/, returning
CFLAG as fal¥e¢ if any of the relational

clauses failed to be true.
If CFLAG is false, go to step 27.

Use TFORMZ(2,1) to transfer data from

WBUF to row 2 of BUF.

Use DISFMT to display the record in row

2 of BUF according to the format in
FMTID(2).

Use XXIN1 (RID) to retrieve the next record
ID in RID.

If RID # 0, meaning there was a next
record, go back to step 16.

Return to the calling routine.

%

Name:

PurEose:

Linkage:

Input Description:

Output Description:

Process Description:

JNSNCR

To direct the overall processing sequence .
for the JN and.SN commands.

Calling sequence: CALL JNSNCR(CIND)

Common blocks used: SYSCOM, SY2COM,
SY3COM, CLTBL

Subroutines or functions used: AEINIT,
RLCLPR, SETIN1, SETOUT, XXIN1l, ETEMT,
FTCMP, GETREC, TFORMW, PRNTID, EXCMDS,
XX0UT, ENDSET

Files used: Message file (logical unit
7}, pointer lists file {logical unit 5)

CIND = integer variable; command indicator.
Set zero for SN and non-zero for JN.

None

1.

Initialize file pointer U7 to the value
stored in U(7) of /SYSCOM/. Initialize
the comma array pointer, CP, to 2.
Initialize the number of records
selected, HITS, to 0.

2. Use AEINIT to initialize /SY3COM/,
returning the input set number in SETNO,
and returning ERR non-zero if any errors
were found.

3, If ERR = 0, go to step 5.

4, Write on U7, "Command terminated due to
syntéx error,", and return to the
calling routine.

5. If COMMAS(1) < 3, meaning that there
were no relational clauses input, go to
step 4.

=8

‘8;’\

6. Calculate FC, the first character of
the relational clause, = COMMAS(CP)+1.
Calculate NC, the number of characters
in the relational clause, = COMMAS
(CP+1)}-FC. Then use RLCLPR(FC,NC,ERR)
to process the relational clause,
building buffer formats and commands
to be executed, and returning ERR non-
zero if any errors were found.

. If ERR # 0, go to step 4.

8., Increment CP by 1. If CP < COMMAS(1),
go back to step 6.

9. Use SETIN1 to initialize the input set
for record ID's to be returned by XXINL.
Use SETQUT,to initialize file U(5) to
receive selected record ID's.

10. Use XXIN1 (RID) to return the first
record ID in RID.

11, If RID = 0, meaning there were no
records in the input set, go to step 27.

12. Set NL, the number of levels of the data
base to be used, to 1 or 2, depending
on whether CIND = 0 or # 0, respectively.
Then use FTFMT(RID, NL, ERR) to complete
the buffer formats with information
about fields whose names occurred in
the input command, returning ERR non-
zero if an error occurred.

13, If ERR # 0, go to step 4.

14, Use FICMP to complete starting location
information in the Working Buffer
Format, WBF in /SY3COM/.

15, Initialize I, pointer to the desired
row of MTCT, the Move Table Control
Table in /SY3COM/, to 1. Set R = RID.

16. Transfer the format number for records
at this data base level from MTCT (3,I)

_ to FMTID(1). This pregents an
unnecessary retrieval of the format

record by GETREC,

17.

18.

15.

20,

21.

22,

23.

24,

25.

26.

27.

28.

Use GETREC(L, R, STAT) to retrieve
record R into row 1 of BUF, the record
buffer in /SY2COM/, returning STAT
non-zero if there was any problem with
the retrieval.

If STAT # 0, ignore this record by
going to step 25.

Use TEFORMW(1,I) to transfer data from
row 1 of BUF to WBUF, the Working
Buffer in /SY3COM/, as directed by
row I of, MICT.

If I > NMICT, the last used row of
MTCT, then go to step 22.

Use PRNTID to get record R's parent
record, PR. Then set R = PR, incre-
ment I by 1, and go back to step 16,
Set EF = 1-and use EXCMDS to execute
the commands inlCTBL, the Normal
Command Table in /SY3COM/, returning
CFLAG as talse if any of the
relational clauses failed to be true.
If CFLAG is false, go to step 25.
Increment HITS by 1, and use XXOUT
(RID) to store the selected record

ID on- file U(5).

Use XXIN1(RID) to return the next
record ID in RID.

If RID # 0, meaning there is a next
record, go back to step 15.

Use ENDSET (HITS, U(5)) to create and
display an entry in the status table
of sets.

Return to the calling routine.

ll

Name:

PurEose:

Linkage:

Input Description:

Output Description:

Process Description:

JPRPCR

To

direct the overall processing sequence

for the JP and RP commands,

Calling sequence: CALL JPRPCR(CIND)

Common blocks used: SYSCOM, SY2COM,
SY3COM

Subroutines or functions used: AEINIT,
SETIN1, XXINl, CIRP, GETREC, TFORMW,
PRNTID, EXCMDS, COMSTR, SUBSTR, TFORMZ

Files used: Message file (logigal
unit 7), Report file (logical unit 12)}.

CIND = integer variable; command indicator.
Set zero for RP command and non-zero for

JP command.

None

Initialize file pointers U7 and Ul2

to the values stored in U(7) and U(12)
of /SYSCOM/. Initialize first and

last record indicator, FLREC, to zero.
Use AEINIT to initialize values in
common, return the input set number

in SETNO, and return an error indicator,
ERR, non-zero if any errors were found.
If ERR = 0, go to step 6.

Write on U7, "Command terminated due to
syntax error.",

5. Return to the calling routine.

6. Use SETIN1 to initialize set number
SETNO for returning record ID's via
XXINL.

7. Use XXIN1l to return the first record
1D, RECID,‘from the input set.

- 3580

PN

10.
11.

1z.

13.

14.

15.

16.

17.

If RECID = 0, then write on U7, 'Null
Input Set." and go to step 5.

Use CIRP(CIND, RECID, ERR) to inter-
pret the command, build tables and
buffer formats, and return ERR non-
zero if any errors were found.

If BRR # 0, go to step 4.

Initialize the Move Table Control
Table pointer, MTCTP, to one.
Transfer the format number for this

level of the data base from MTICT(3, MTCTP)

to FMTID(1). This prevents actual
retrieval of the format record by
GETREC, since it is not needed.

Use GETREC(1, RECID, STAT) to get record

RECID into row 1 of BUF in /SY2COM/,
returning STAT non-zero if a problem
occurred.

If STAT # 0, ignore this RECID by
going to step 28.

Use TFORMW(1, MICTP) to transfer data
from row 1 of BUF to WBUF, the Working
Buffer in /SY3COM/, based on the
directions provided by row MTCTP
of MTCT.

If MTCTP> last used row of MTCT, NMTCT,

then go to step 18.

Use PRNTID to get the record ID, PID,
of the parent of RECID. Store PID
into RECID, increment MTCTP by one,
and go back to step 12.

18. Initialize the BY Processing Table
pointer, BPTP, to one.

19. Get the Grouping Field Name pointer,
GFN, from column 1 of row BPTP of the
BY Processing Table, BPT of /SY3COM/.

20. If GFN = 0, go to step 33.

21, If GFN> 0, go to step 24.

==y

9

22.

23,

24.

25.

26.

27.

28.

29.

30.

31.

32.

33,

34,

35.
36.

=5z

Negate GFN, set ERR = 0, and use
EXCMDS to execute the commands in
CTBL, the Normal Command Table of
/SY3COM/, as specified by columns

2 and 3 of row BPTP of BPT, returning
ERR non-zero 1f the commands céuld
not be executed for some reason.

If ERR # 0, assume no change in

this GFN, and go to step 25.

Use COMSTR to compare “the new GFN

in WBUF to the current GFN in column
6 of BPT. If they are different,

go to step 49.

If BPTP2 last used row of BPT, NBPT,
then go to step 27.

Increment BPTP by 1 and go back to
step 19.

Set ERR = 0 and use EXCMDS to execute
all the commands stored in the
Function Command Table, FCTBL in
/SY3COM/.

Use XXIN1 to get the next record ID
into RECID.

If RECID # 0, meaning there is
another record to be processed, then
go back to step 11.

Set FLREC = 2 to mean that the last
record is being processed.

Set BPTP 1 and get GFN from column
1 of row 1 of BPT.

1f GFN< 0, negate GFN,

If FLREC = 0, meaning we are processing
the first record, then set ELREC =1
and go to step 39.

Initialize the local BPT pointer,
LBPTP, to the current value of BPTP.
If BPT(1, LBPTP) = 0, go to step 38.
Transfer all function results and
concluding text from this BY level

by setting PELAG = 2 * LBPTP and

an

37.

38.

39,

40.
41.

42,

43,
a4,

45,
46,
47.

48,

49,

calling TFORMZ (2, PFLAG) to transfer
from WBUF to row 2 of BUF,

If LBPTP< last used row of BPT,

NBPT, then increment LBPTP by 1

and go back to step 35.

Write to,Ul2 the first 120 characters
of row 2 of BUF. If ELREC = 2,
meaning we were processing the last
record, then return to the calling
routine.

Blank out the first 120 characters

of row 2 of BUF.

Initialize LBPTP = BPTP.

Set ERR = 1 and use EXCMDS to execute
the commands of CTBL specified by
columns 4 and 5 of row LBPTP of

BPT.

Transfer from WBUF to row 2 of BUF
field values, calculations, and

* beginning text by setting PFLAG =

2 *LBPTP-1 and calling TFORMZ (2, PFLAG).
If LBPTP> NBPT, then go to step 27.
Increment LBPTP by 1 and get GFN
from BPT(1, LBPTP).

If GFN = 0, go to step 41.

If GFN> 0, go to step 48.

Negate GFN, set ERR = 0, and use
EXCMDS to execute the commands of
CTBL specified by columns 2 and 3
of row LBPTP of BPT. If ERR is
returned non-zero, go to step 41.
Use SUBSTR to store the new value
of GFN from WBUF to column 6 of row
LBPTP of BPT, and then go to step
41,

Use SUBSTR to store the new value
of GFN from WBUF to column 6 of

row BPTP of BPT, and then go to

step 33.

== C\E

Name:

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

PRNTID

To return the record ID of the next higher
level record in the same family tree of an
inverted tree logically structured data base.

e (alling sequence: CALL PRNTID (CID, PID,
TLYLAG)

¢ Common blocks used: None
¢ Subroutines or functions used: None

@ TFiles used: None

CID

{

integer variable; child record ID.

PID
TLFLAG = integer variable; set zero or non-

It

integer variable; parent record ID.

zero depending on whether output parent ID
is not or is at the top level of the data
base, respectively.

Coded specifically for ASATS, the child
record ID consists of the segment number
concatenated with the acquisition date.

To get the parent record ID, the acquisition
date portion (lower 16 bits) is set to zero.
TLFLAG is set to 1 since ASATS parent records
are at the top level of the data base.

U

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

RLCLPR:

To parse a relational clause of the form
AE.OP.AE (where AE is an arithmetic expression,
and OP is a comparison operator) and build a
table of commands to evaluate the clause.

e Calling sequence: j CALL RLCLPR (FC, NC, ERR)
e Common blocks used: SY3COM

e Subroutines or functions used: COMSTR, INDEX,
ADDLT, CFIND, AEPR, ADDNM, ADDDT, ADDEN

¢ Files used: None

FC = integer variable; first character number of
the string to be processed in array CMD of
/SY3COM/ .

NC = integer variable; number of characters in
the string to be processed.

ERR = integer variable; returned zero if no errors
are found, non-zero if an error is found.

1. Initialize ERR = 0, F = FC, N = NC, and K = 0,

2. If the character at F is not a single quote
mark, go to step 11,

3. Use INDEX to find the next quote mark at J.

4, I1£ J # 0, go to step 6.

5. Set ERR = 1 and return to the calling routine.

6. If J< F+1, go to step S.

7. Use ADDLT (F, J-F+1), V(1)) to add the literzl

to the Working Buffer Format, WBF in /SY3COM/,
getting the row number of WBF returned in V{1).

8. Set K = 1 to indicate that the left hand side
of the relational clause has been processed.

9. Recalculate the number of characters remaining,
N, = N -(J-F+1).

=g

http:AE.OP.AE

10.

11.

12.
13,

14.

15.
16.
17.
18.

19.

20.

21.

272.
23.

24.

25.

26.

27.

Reset the first character pointer, F,

= J+1.

Use INDEX to find the first period in N
characters beginﬁing at F and store

the location in I.

If I = 0, go to step 5.

Use COMSTR to compare the four characters
that start at I with an internal table of
legal operators. If a match is found, then
J is set to the row number of the internal
table, otherwise go to step 5.

The actual operator number, OP, to eventually
be stored in the command table is calculated
by adding 4 to J. '

J is initialized to 1.

If K = 0, go to step 19.

I£f T # F, go to step 5.

J is reset to 2, F is incremented by 4 to
set it past the operator, N is decremented
by 4 to account for the operator characters,
and a jump to step 20 is made.

N is set to the number of characters to the
left of the operator by setting it equal to
I-E.

If N< 0, go to step 5.

If the character a2t F is not a single quote
mark, go to step 28.

If N< 2, go to step 5.

If the character at F+N-1 is not a single
quote mark, go to step 5.

Use ADDLT (¥, N, V(J)) to add the literal to
WBF and receive the row number in V(J).
IfJ= 2, go to step 27.

Set J = 2, F = I+4, and N = NC-N-4 to adjust
to the right hand side of the operator, and
go back to step 20.

Increment NCTBL, the pointer to the last
used row of the Normal Command Table, CTBL in

éﬁ@%h‘q

28.

29,
30.

31,

32.

33.

34.

35.

36.
37.

38.
39,

/8Y3COM/, by 1. Store V(1) in CTBL

(1, NCTBL), OP in CTBL(2, NCTBL), V(2) in
CTBL (3, NCTBL), NCTBL+1 in CTBL (5, NCTBL),
and return to the calling routine.

Use CFIND to locate any arithmetic operator,
storing its location in K.

If K =0, go to step 33.

Increment NWBF, the pointer to the last used
row of WBF, by 1. Store NWBF in V(J), 0 in

WBF(1,NWBF) , SR in WBF(2,NWBF), 4 in

WBF (6, NWBF), and -1 in WBF (7, NWBF).

Use AEPR (F, N, V(J), ERR) to process the
arithmetic expression, building commands in
CTBL which store a result at V(J) of WBF,

and returning ERR non-zero if any errors were
found.

If ERR # 0, go to step 5, otherwise go to
step 25.

Use CFIND to determine if the character at

F is the number sign (K will be returned = 1
and L will be returned = 8) ©or a numeric
character (K will be returned = 1 and L will
be >8).

If K= 0 (implying a field name), go to step
38.

If L # 8 (implying a numeric literal), use
ADDNM (F, N, V({(J)) to add the number to

WBF, receiving the row number back in V(J),
and go to step 25.

If N# 5, go to step 5.

Use ADDDT (F, N, V(J)) to add the date to WBF,
receiving the row number in V(J), and go

to step 25.

If N>12, go to step 5.

Use ADDFN (F, N, V(J)) to add the field name
to WBF if necessary, receiving the row number
back in V(J), and go to step 25.

<9

Name : RPCLPR

Purpose: To parse a replacement clause of the form FN = AE
(where FN is a field name and AE is an arithmetic
expression) and build 2 table of commands to
perform the replacement.

Linkage: ¢ Calling sequence: CALL RPCLPR (FCS, TNC,
LOCEQL, IND, ERR)

¢ Common blocks used: SY3ICOM

e Subroutines or functions used: INDEX, ADDFN,
COMSTR, ADDLT, CFIND, ADDDT, AEPR, ADDNM

Files used: None

Input Description: FCS = integer variable; first character number

of the string to be processed in array CMD of
/SY3COM/ .

TNC = integer variable; total number of characters
in the string to be processed.

LOCEQL = integer variable; the character number
which is the location of the equal sign in the
input string. If zero, the equal sign will be
searched for internally.

IND = integer variable; command indicator to
allow special processing for different commands.
A value of zero means the Change Field command
is being processed. A non-zero value means the
Display Formatted or Joint Display Formatted
command is being processed.

Output Description: ERR = integer variable; set to zero if no errors

are found and set to non-zero if an error is
found.

Process Description: 1. If LOCEQL < 0, then INDEX is used to find the
equal sign and its character position is
stored in I, otherwise I is set = LOCEQL.

2. If the equal sign is located, go to step 4,

T

[60

3. Set ERR = 1 and return to the calling routine.
4. Initialize the first character pointer, FC,

10.

11.
12.

13.
14,

15,

16.
17.

to FCS.

. Calculate the number of characters, NC, in

the field name = I-FC.
If NC< 0, go to step 3.
If NC > 12, go to step 3.

. Use ADDFN (FC, NC, X) to add the field name

to the Working Buffer Format, WBF in

/SY3COM/, if it is not already there, and
receive back the row number of WBF in K.

If IND = 0, then increment NTBF, the pointer
to the last used row of TBF, the Target Buffer
Format in /SY3COM/, by one, store a one in
TBF (1, NTBF) and store X in TBF (2, NTBF).
Move the first character pointer, EC, to the
first character past the equal sign by setting
FC = I+1. Calculate NC, the number of
characters to the right of the equal sign,

by NC = TNC-I.

If NC< 0, go to step 3.

If the character at FC is not a single quote
mark, go to step 17.

If NC< 3, go to step 3.

Use ADDLT (FC, NC, L) to add the text literal
to WBF and receive the row number back in L.
Increment NCTBL, the pointer to the last used
row in CTBL, the Normal Command Table in
/S8Y3COM/, by one: Store L in CTBL (1, NCTBL},
16 in CTBL (2, NCTBL), K in CTBL (4, NCTBL),
and NCTBL+1 in CTBL (5, NCTBL).

Return to the calling routine.

Use CFIND to determine if the character
string to the right of the equal sign is

an arithmetic expression by locating any

+, -, ¥ [/, (, or), and pointing to it with

I.

|01

18.

19,
20.
21.

22.

23.

24,

If I # 0, then call AEPR (FC, NC, X, ERR)

to process the arithmetic expression,
creating commands in CTBL to evaluate the
expression and store the result in K,
returning ERR as non-zero if any errors

were found, otherwise go to step 21.

1f ERR # 0, go to step 3.

Return to the calling routine.

Check the character at FC for the number sign
or a numeric character via CFIND.

If neither was found, the right side of the
equal is assumed to be a field name. If

NC > 12, then go to step 3, otherwise call
ADDFN (FC, NC, L) and go to step 15,

If character FC is a number sign, then a date
literal is expected. If NC # 5, then go to
step 3, otherwise call ADDDT (FC, NC, L) to
add the date literal to WBF and go to step
15.

If character FC is a numeric character, then
a numeric literal is expected, and ADDNM

(FC, NC, L) is called to add it to WBF. Then
go to step 15.

Name:

Purgose:

Linkage:

Input Description:

Qutput Description:

Process Description:

SEL

To initiate execution of the Rims system;
calls UNITS to initialize the array U(14)
of /SYSCOM/; calls CIMAIN which initiates
interpretation of the command line.

e Calling sequence: Not applicable

& Common blocks used: SYSCOM, EXPCOM,
SECCOM s

e Subroutines or functions used: CIMAIN,
END, UNITS

e Files used: Message file (logical unit
7)), command file (logical unit 13)

None

Neone

1. Use UNITS to initiazlize the array U(14)
of /SYSCOM/.

2. IW=0, initialize command counter, (not
used).

3. Initialize file pointers UW and UR
to the values stored in U(7) and U(13)
of /SYSCOM/.

4. Write 'ENTER COMMAND' on the device
designated as the message file.

5. Set IAP=1 of /SYSCOM/, allows printing
of the number of sets in the Status
Table ; If "IAP=0, indicates no printing
of status table.

=G0

[o%

Read command line; if UW #7,
write the command line on
the designated device. If
end~of-file is read, go to
step 10.

Call CIMAIN, to begin inter-
pretation of the command line.

IW=IW+l, increment command
counter {(not used)

Go back to step 3.

Call END, terminate execution.

104

Name: SORTS

Modification Purpose: To allow the user to order a
set of FLOCON records based
upon the contents of fields in
either the FLOCON or DAPTS
records for that set.

Linkage Modification: e Calling Sequence: CALL SORTS
(SET, NF, LIST, SF)

¢ Common Blocks used: No change
® Subroutines or functions used:
No change

e Files used: ©No change

Input Description Modification: SF: integer value, where SF =1
means sort on FLOCON data, SF =2
means sort on either FLOCON or

DAPTS data.
Output Description Modification: No change
Process Description Modification: For SF = 2 only, the DAPTS record

for each appropriate FLOCON
record is retrieved. Next the
formats for DAPTS or FLOCON records
are loaded as needed, a table of
sorting names is loaded in proper
hierarchical order and a buffer
pointer table is also built to
point to the proper buffer for
data retrieval. Lastly, the data
retrieval section is altered to
get data from the appropriate
buffer by use of the buffer
pointer table as an index.

odification Purpose:

inkage Modification:

1iput Description Modification:

1tput Description Modification:

rocess Description Modification:

SORTP

To pass an argument to SORTS to
indicate the type of sort to
perforn.

e Calling sequence: CALL SORTP(SF)

e Common blocks used: WNo change

¢ Subroutines or functions used: No
change

e Fileg used: No change

SF = integer variable, indicates
which type of sort SORTS is to per-

form, 1 = normal sort, 2 = jeint sort.

None

The argument SF received from JLASYS
is passed to SORTS to allow SORTS to
perform the appropriate type of
sort,

RSN

10k

Name: SPCSET

Modification Purpose: To stop the input process when an

end-of-file is read as well as a
zero record ID,

Linkage Modification: e (Calling sequence: No change

¢ Common blocks used: No change

¢ Subroutines or functions used:
No change

¢ Files used: No change

Input Description Modification: No change
Qutput Description Modification: No change
Process Description Mcdification: Insert an end-of-file branch to

statement number 3 into the state-
ment that reads from the data file.

Name:

Purgose:

Linkage:

Input Description:

Qutput Description:

SQIZE

To delete ektranepus blanks from a
character string and build an array of
pointers to the commas in the character
string.

¢ (Calling sequence: CALL SQZE (INARY,
INST, INLEN, OUTARY, OUTST, OUTLEN,
COMMAS)

¢ Common blocks used: None
e Subroutines or functions used: None

Files used: None

INARY = integer array name; starting location
of the array containing the input string
INST = integer variable; character number
of INARY at which to begin processing

INLEN = integer variable; number of
characters in INARY to be processed

QUTST = integer variable; character number
of OUTARY at which to begin storing output
COMMAS = integer array name; contains the
Comma Location Table. The first word
contains the number of the last used word
in the array and should be input containing
the value one upon the first call within
any one command.

OUTARY = integer array name; starting
location of the array to contailn the output

!

OUTLEN = integer variable; number of
characters stored in OUTARY

COMMAS = integer array name; contains the
Comma Location Table. The first word
conta-ns the number of the last used word

in the array. The other words contain the
character number of OUTARY where commasoccur
(exclusive of those commas occurring between

‘5108'

pairs of quote marks). The first word
will be output as a negative value when
an exclamation mark has been encountered
and stored as a terminating comma for
the command.

Process Description: 1. Counters and pointers are initialized.
2, If the last character of INARY has
been passed, go to step 10.

3. If processing is between quote marks
(QSET = 2 or 3), check this character
for the terminating quote mark, reset
QSET to 1 if it is, and go to step 8.

4, 1If the character is a blank, 9° to
step 9.

5. If the character is a quote mark, set
QSET (= 2 for single quote, = 3 for
double quote) and go to step 8.

6. If the character is a comma, store the
OUTARY pointer in the next available
location in COMMAS, increment the pointer
to the last used word of COMMAS, and go
to step 8.

7. If the character is an exclamation mark,
store the OUTARY pointer in the next
available location in COMMAS, increment
and negate the pointer to the last used
word of COMMAS, store a comma in
QUTARY, increment the OUTARY pointer,
and go to step 10.

8. Transfer the character to OUTARY and
increment the OUTARY pointer.

9, Increment the INARY pointer and go to
step 2.

10. Store the pointer to the last used word
of COMMAS into word one of COMMAS,
calculéte QUTLEN as the OUTARY pointer
minus OUTST, and return to the calling
program,.

am—
1H9

Name; STAEPR

Purpose: To store arithmetic processing data into the
normal command table in mathematic

hierarchical order.

Linkage: e Calling sequence: Call STAEPR (VTARB, OPC,
FIRST, LAST, TREG)

¢ Common blocks used: SY3COM
® Subroutines or functions used: None

o Files used: None

Input Description: VTAB = integer array; contains pointers to

variables or literals in the working buffer
format table, intermediate storage registers
or special integers representing close or open
brackets.

OPC = integer array; contains either
mathematical operator indicators or

special integers representing close or open
brackets.

FIRST = integer variable,;

pointer to first variable in VTAB

and OPC to be used for processing.

LAST = integer variable; pointer to last
variable in VTAB & OPC to be used in
processing.

TREG = integer variable; index pointer

into intermediate storage register buffer.
used for intermediate data storage.

Qutput Description: Normal command table filled with appropriate.
arithmetic processing data. TREG updated

as intermediate storage registers are
needed.

1D

Process Description:

A loop is set up to search the entries in
the OPC table. Steps 1 thru 3 performed
for all entries.

1.

The intermediate storage register pointer
{TREG)is updated , The OPC entry for the
next two adjacent locations is checked
for mathematical hierarchy. If they

are of equal hierarchy or if the first

is of a lesser hierarchy, step 2 is
performed, otherwise step 3 is performed.
The mext normal command table entry is
leaded with values from the current and
next entry of VTAB, the current value of
OPC and the intermediate storage register
pointer (TREG). Then the next entry of
VTAB is loaded with the intermediate
storage register pointer (TREG) and return
to step 1.

. The next normal command table entry is

loaded with values from the next and next

+1 entry of VTAB, the next

+1 value of OPC and the intermediate
storage register pointer ('REG). The
next +1 entry of VTAB & OPC is loaded
with the current value of VTAB § opcC
respectively. The next +2 entry of VTAB
is loaded with the intermediate storage

register pointer (TREG) and return to step
1.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

TFORMW

To transfer data from a source buffer to
the Working Buffer.

¢ Calling sequence: CALL TFORMW(ROW, MTCTRW)
® Common blocks used: SYZCOM, SY3COM
® Subroutines or functions used: SUBSTR

e TFiles used: None

ROW = integer variable; the row number of the
source buffer, BUF in /SY2COM/, where the
input data is stored.

MTCTRW = integer variable; the row number

of the Move Table Controli Table, MICT in
/SY3COM/, to be used for control.

None

The Starting row of the Multilevel Move Table,
MLMT in /SY3COM/, is retrieved from MTCT

(1, MTCTRW). The number of rows of the

MLMT to use is retrieved from MTCT (2, MTCTRW)
and used to calculate the final row number.
Then for each of these rows, (1) a pointer

for the Source Buffer Format, SBF in /SY3COM/,
is retrieved from the first word of the row
of MIMT, (2) a pointer for the Working Buffer
Format, WBF in /SY3COM/, is retrieved from
the second word of the row of MLMT, and {3)
SUBSTR is used to transfer the data from

BUF to WBUF, the Working Buffer in /SY3COM/.
After the specified number of rows have

been processed, a return is made to the calling
routine.

e

Name:

Purgose:

Linkage:

Input Description:

Output Description:

Process Description:

TFORMZ

To transfer data from the Working Buffer to
a target buffer, converting the data
representation when needed.

e Calling sequence: CALL TFORMZ(ROW, PF)
e Common blocks used: SYZCOM, SY3COM

e Subroutines or functions used: SUBSTR,
DTEINT, CHAR, COMSTR

¢ Files used: None

ROW = integer variable; the row number of the
target buffer, BUF in /SY2COM/, where the
data is to be stored.

PF = integer variable; indicator for which
fields of the target buffer are to be

filled from the Working Buffer, WBUF in
/SY3COM/. A field is filled if word one of
its Target Buffer Format, TBF in /SY3ICONM/,

is equal to PF.

None

For each row of TBF, the following process is

done, and then a return is made to the

calling routine:

1. If column 1 of TBF is not equal to PF,
ignore this row and go to step 25.

2., Retrieve F, the pointer to the WBF row
number, from column 2 of TBF.

3. If-the output field type, column 5 of TBF,
is > 3, go to step 9.

4, If column 2 of row F of WBF indicates text
type (by $T), then use SUBSTR to transfer
"the text from the command line array, CMD

in /SY3COM/, to BUF and then go to step 25.

. "

5. If column 2 of row F of WBF does not
indicate a results field {by $R)}, then
go to step 7.

6. If column 5 of row F of WBF does not
indicate text type (contains non-zero),
then go to step 8.

7. Use SUBSTR to transfer the data from
WBUF to BUF and if WBUF was a results
field, then use SUBSTR to reinitialize
WBUF from the first word of row F of WBF
and go to step 25, otherwise just go to
step 25.

8. Use SUBSTR to transfer the data in WBUF
to an integer variable named RESULT and
based on the target type (column 5 of
TBF), use CHAR (type = 1) or DTEINT
(type = 2) to convert RESULT to a
character string in BUF. Then reinitialize
WBUF from the first word of row F of WBF
and go to step 25.

9. Extract the first character of the field
in WBUF and store this character in
CRDTYP.

10. If the target field type # 5, go to step 12.
11. Search the array FLMTYP until a match with
CRDTYP is found at element L. If no
match is found, set L = 8, Store the 12
characters of row L of table FLMTAB into
the field in the target buffer and go
to step 25.
12. If the target field type # 4, go to
step 23.
13, Search the array CMPTYP until 2z match
with CRDTYP is found at element L. If
no match is found, set L = 11.
14, If L< 5 or = 11, go to step 22.
15. If L > 7, go to step 19.
16. Extract the pointer to the "UNLOAD"
field from TBF(4,1) and store it in K.

-

s |\

17.
18.

19.

20,

21,

22.

23.
24.

25,

I£ K = 0, go to step 22.

If the "UNLOAD" field is non-blank,

then increment L by 3 and go to step 22,
otherwise go to step 22.

Extract the pointer to the "LSD" field
from TBF(4,2) and store it in K.

If K= 0, then se¢t L = 11 and go to

step 22.

Use SUBSTR to transfer the contents of the
"LSD" field from WBUF to the target field
and go to step 2Z5.

Use SUBSTR to store the 12 characters

of row L of table CMPTAB into the field
in the target buffer and go to step 25.
If the target field type # 9, go to step 7.
Search the array GCMTYP until a match
with CRDTYP is found at element L. If

no match is found, set L = 1., Use

SUBSTR to store the 12 characters of row
L of table GCMTAB into the field in the
target buffer.

Move to the next row of TBF and start
over at step 1.

Name:

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Destription:

TJUMP

To eliminate headers and other data
associated with a null set.

e Calling sequence: CALL TJUMP
~
Common blocks used: SYSCOM, SYZCOM

& Subroutines or functions used: INDEX,
SUBSTR , INPARM

o Files used: None

A command line containing the set to be
checked.

None

The set in question is checked tb see if
it contains data. If it does contain data
no action is required and the routine exits.
If there is no data in the set, the label
from the command line is saved for later
use, Next the input file is read until a
label card containing "LA" followed by

the label saved from the JT command line is
found. The routine then exits.

g

Name : UNITS

Purpose: To initialize the integer variable array
U of /SYscoM/

Linkage: ® Calling sequence: Call units
Common blocks used: SYSCOM

Subroutines or functions used:
ASSIGN, CLOSE, LAST

® TFiled used: U(7), U(8), U(ll),
U(12), U(l3), UNITS.SAT

Input Description: None
Output Description: None
Process Description: 1. Call ASSIGN associates logical unit

1 with disk file UNITS.SAT.

2. Read integer values from UNITS.SAT
and store data into their respec-
tive storage locations U(7), U(8),
U((11l), U(12) and U(13).

3. Read the file number, and file
name. At END go to step 5.

4. Use LAST to determine the number
of characters contained in the file

name, then return to step 3.
5. Use CLOSE to close logical unit 1.

6. Return to calling routine.

WA

3.2.2 PROGRAM CROSS—-REFERENCE

On the following pages is a cross~reference listing which, for each
program used in RIMS, shows all the programs that it calls (both
directly from itself and indirectly through programs it calls)

and all the programs that call it.

ng

+ - CROSS-REFERENCE PRODICKD AT 16158;41 ON SiwJANaTR :
¥ -

4

T_ACTNO DIRECTLY CALLN)

INDEY InBARM Q Q
_ALeN0 BTIRECTLY ANn Y SIRECTLY.CALLS: - i 28
- COMSTR INDEY ThIARM yERIFY Fg &
ACENO 18 DIPECTIY cALLED Rvy S
ANDREC SELREC SPCSET O 5
TLADRDT DIPECTLY _CALLS) m— e e e - ———m e e et e — e e —— B R L e —_
DTEINT
SADOBT DIRECTLY AND YNDIRECTIY CALLSY —-— —_— o
- Chan CO»STe ATETWT JHDEX INPARM SUASTA VERIFY 0= %o
AORCT 1S DIGSCTLY FaALtED AYy BN) i
Rl CLPF WOCLBR Zm
_.ADDFN _BIRECTLY..CALLSS- — =
CNUSTR SURSTR ~% R
—ADDFM DIRECTLY AND INDIRECTLY. CALLS4 ——
o CavgTR sUmsTR
ADDEN TS DIRFETLY [fALLED RY:s
. AEPRE [$ 113 PLELPR RPELPR
T _ADCKEY DIRECTLY CALLSZ__. — e
APSEL GFT LOCATE PUT SUASTIR VERIFY
. ADDFEY DIRECTLY AND INDIRECTLY_CALLSY . [—_—
3 4PSE| COMSTR ENRSET QET TNDEY INPARM [QCAYTE LOR NHITS PUT RANGE ROLL, SETINL BSETINZ
SETOUT STATUS <SURSYR WFHIFY wYIwt XXEN2 ¥Xour
ADDKEY T8 DIPECTLY CALLED Ayy
. L POST L CIsuRrs. —
ADBLT DTTECTLY CAlLS¢
NO_ove,
3 ADDLY DIQECTLY AND TNDIREETIY CALLSt
N OME,
ADGLT 18 DIPECTLY CALLED B¥e
2 ___CIR®____PLGLPR _mPrieR
ADDNM DIRECTLY CaLLS}
—_— JhPARY
f) ADDNM DTIRECTLY AND TMDIRECTLY CALLSt
CCVSTR TNDEY TNPARM VERIFY
ApnuN TQ BIRECTLY CALLED Ayy
Je _RLCLPR_ BPCLPR_ __
ADOR DIRECTLY CatL&}
GEX LOCRFL__ pur §1Bs TR
L} ADDR DIRFCILY AND TNDIRFLTLY CALLSY
GEY LOCREL Pyt 20LY, ASTR
ApBR 18 DIAFCTLY CSLLED Avy .
vd____ LAPDRFC__SUFILE _ cMPYTE__FOR¥ SPLUS —
ADDREC DTRECTLY CALpS:
— . ACCWR ADOF___ CLOSFP__IMDEX _ TMPARM SELREC SUBSYA - _
W ADRREL DIRECTLY 4MD INMIRECYI Y CALLSE
ACEND ADDR FLOSFP £OMSTR ENDSET GET INDEX _ INRARM LOZREC NHITS PUT ROEL SELREC SETQUT

STATUS SURSTR VEGIFY yxout
W _ADRREC IS DIRECTLY C4LLED RYy

CISURS
_AEINTY NYIRECTLY CalL8)

COMSTR TNPARM QQ7E
AEINITY PISFCTLY AND TNDIRECTIY CALLST

CCPSTR IMDEX TNPARM €QT7E VERIFY
«J__BETNIT Y5 DIRECTLY CALLED BYy

£FCR JFDFCR™ INSNCR IPRPCR
~AEPR _ DIRFETLY_Calysy

e,

ARDFN COMETR T nTFINY INDFY ThPaGW
AEPR RIRFCTLY AND TNPIQECTEY Ci L%y

STAEP® VERIFY

Q¢!

ADDFN CHAR COMSTR ATEINT TYNDEY INPARM STAEPR SUBSTR VERIFY
~AEER. _ IS DIRTCILY CALLED AY, ——

tirp SLCLPR RPCLPR i
s APSCHY DIPFCTLY. CALLSI__ . e = — ———
- ‘G nrE,
Y __APSCNY DYIRECTI Y AND IMNIGELYLY F£411 8y
NG NNE,
T_APRCNT I8 DIREETLY. CALLED RYe _
BUFEILE rFER RESTYOX
—APSEL__ DIRECTLY CALLSIK. - — _
GFTY IMDEX TNPARY | QCATE NHTTS RANGE SUBSTR VERIFY
APSEL DIRESTLY dwh TANIBECYIY CALLSYy
COMET? ENDSFY nET TNREY IvDARM LOCATE LOR NHITS PUT RANGE ROLL SETINY SETINZ SETOUT

Y. STATUSR SUBSTR VERIEY wXINI.. XXIN2 - ¥KOUT oo oo oo —_—
LPSEL 1S DISECTLY CALLED Aye

e ADDXEY BUPQOSY _ -
Y APSIMY DIRECTLY CAI.LSI
Mp (.m.'

APSINT DYRECTLY AND THPIRECTIY CALLSGH
Je. ND DME, -

ARSI¥T IS DIRECTLY ClLLEh avy
- ~_AUFILE_ _LFCR ... _PESTRX._

™) APSTUR DIRECTLY CALLSt

LY SURSTR
APSTUP DIRECTLY AND YNDIRFCTI Y CALLS®
Y PUT _ FOLL . suRsTR _.. . . — — ——— — - —— -

APSTUP TS DIFECTLY CALLED B8Y}
— L AUFILE CFCR__. _RESTRX e e -

Y ATTACH DIRECTLY CALLSE

SIIERTS
ATTACH DIQECTLY AND TNDIRECTIY CALLS:
Ay _SuesTR__ |
TATTACY 15 BIRECTLY an. gn RY4
— e BEGIN _—
s) AUF!LE DIHECTLV CalLss *
- ARDH APSCNT APSTMT APSTUP AUPNSY GETYREC INPARM . LMVIAB REPR BUBSTH TFORM .
AUFILE DIRECTLY AND TNRIRECTIY CA[LS:
€ __ __ AODKFY ADDR__ _ APSCMY__ ARSFL_ —ABSINY APSTUP _AUPOST_ _CHAR _ CO¥STR. DELKEY ENDSEY GEY _ GETREGC _INDEX
ILEARM KOMKEY | AND P MVTAR LNNT LOcAYE LOCREC L0oDFWMT LODREC LOR NHITS PART POST PUT

S RAMGE_ _RFPR__BOLL___SETINY_ SETIN? SETOUT SSORT __8TATUS _ SUBSTR__TEORM VERIEY. XXIN1_ = XKIN2___ XX0UT

@ BYFILE 15 DIRECTIY COLLED AYy

CAapETL o
SUPDEY PIRECTLY CALLSS '
a3 APDKEY APSE] COMSYR nNELWFY GET ___PORT . ._PUT _ __ SSORT._.SWBSTR . _ _____ __ JUU—

BUPQST DIRECTLY Aun YNRIRELTIY CALLS:

—— - ADDKEY AOSEl__¢OveTR NELXEY _FNDSET GET____ INDEX_ INPARM __XOFKEY_ LAMD__ LNOT LOCATE LOR hH11S
& PART POST DUT PANGE aoLL SETING SEYIN2 BSETOQUT S50RT: STATUS SUBSTR VERIFY XXIN XXIN2
X¥nyy
AUPOS?! I8 DIRECTLY CALLED BYy
W . WWFIE CFER REATRY —_—
BEGIN DIRECY[Y CALLS:
e o ATTACH COMSIR__STATUS__SURSTR. _
&) BESIM DIRECTLY AND THDIRECTI Y CALLY:
ATTACH COMSTR TNNHEY TNPARW STATIHS SUISTR VERIFY
BEGIN 1S5 DIRFCTLY CALLED Ryy
o, CIsuRl. e e e e e e e e e —————
RLETB‘ DIRECTLY CAlLs:
coMsTR L L
& BLDTBF DIRECTLY ANP TNDIRECTI Y CALLS:
CAMSTR
ALDTEF 1S DIPECTLY CALIED BYq
e AFOECR — R —— S
CAUFIL OTRFCTLY CALL%!
. AUFILE_ INDEX | IMPAPM _ | ODFMY . — —
[CAUFIL DYRFCYLY &ND !NhlﬂFCYlV CALLSY
ANPUFY ARDR APRENT APRE) ABSINT APRT IR AUFILE MIFQ&T I-AT COMSTR DELxEY ENDSEY GL™ GETREC

INBEY INPARY wDMKEY | AND {MYTAR LNNT LOCATE "LACREC LODFMT LODREC LOR NHITS PART POST
- PUY______RANGE __ mEpPR Bal.| SETING QETIN2 SEYOQUT _SSORY . BTATUS._ SUBSTR._TFORM VERIFY X¥INI___¥xIN2
XxQuT
s _CAYFIL IS RIEECTLY CALLER RAY, o -
LT Crsu=y
' _CECR DIFLETLY G218y
AEINTT APSENT APSINT APSTUP AUPOSY CICFDF EXCMDS FTCHP FTIFMT GETREC REPR SETINI TFORMW TFORMZ
e XXM o e e e P N
CFCR DIRELYLY AND na:ﬂecnv cALLSY
e ADODT__ ADDEN A0 G KEY__ADRLY__ ADNNM _ AEYNIT AEPR__ APSCNI _ APSEL __APSINT__APSYUP__AUROST.__CEIND. _ CHAR
™ CICFDF COMSTR DELKFV NTEINTY FNDSEY EXEMD EXCMDS FrIGMP FTFHMT GET GETREC INDEX INPARM KQuKEY
LaND {ANY I0CATE 4 OCRFE t QDFMY LORREC [QR NHITS PARY PnsT PRNYIID . PUT RAKGE Repp
RLELPR ROLL RPCLPR SETING QETIN2 SETOUY SQZE §SORT STAEPR STATUS SUBSTR TFORMW TFURMI VERIFY
YL ¥XIM1 O XXINZ L owxeur . . - e e e e
CFCR 1§ DIFECTLY CALLEN By) ,
— - CrsoRy. _ . .. e e el - —_—
S TEEING DTAECTLY CaLLSS ‘
IvhEY
CFIND OTSFCTLY AMD TADIRFETI Y FALLS:
Ve ROMETE CINDEY e e e ———— . -
CFINT It DIRECTLY anLEO RYy
e CICFQPF _CIRP __ PLELRR . oPELPR_. : —— ——
~ TCHER OTPECTLY CalLSs
e _QuE,
CHES PIRECTLY AWM INDIRECT(Y CALLSY
MO ONE, — . =
CHAR I8 DIRECTLV CALtLh EV:
DTEINT | EXCOMD_ Muvsrs__rrepﬂ YENRYZ
) CICFOF DTRECTLY CALLQI
CFING FLFLPR RPELPA - ‘
CICFDFE DIRECTLY &KD TMDNTRECTIY CALLSY N
DV ANDDT__ ADDFN __ADDLT . ADPMM AEPR CEIND ___ &HAR COMSTR OFYEINT INDEX___ INPARM RLCLPR__RPCLPRR.__BTAEPR
SUBSTR VERIFY
_CICFOF_1S_DISECTLY CALLED BY)
byt "FCR JEDFER
CIMAIN DYRECTLY LALLRY -
Ciswal CISUR2 cIsUny FISUBy £IsUAs CISUBe CLOSEP JPRPCR MODE $TATUS SUBSTR VERIFY
L3 _CIMATH DIRECTLY AND YNDIRECTLY CALLST -
Beeun apnpt ADDFN ADNXEY ADNLT ADBNM ADDR ANDREC AEINIY AEPR APSCNY APSEL APSINT APSTUP
e ATTACH AUFILE_ _AUPOST__REATN _SLDTAF CAUFTL CECR _ CFIND CMAR ___ CIGFDF_ CIR® __ CISUbL CISUB2__G1SuB}
b} CIsy3e CISURS CISPRs CLEANP CLODSEL CLDSES (CMDRY CMPYTE COMsSIN COMSTR CRESTS DBPRO DELETE DLELKEY
PELR PEIREC NISEMT AISPHN BISPLL DTEINT END ENDBSET EXC¥D EXCMDS EXPAND FIND FORM FORHM
FrLue FIFKY GEY GEYCLD GETPAR GETREC WEADER JNDEX ' INPARM JFOFCR JNSNCR JPRPCR KOMKEY LAND
[LasST LYVYAR I NOT LQCAYE LOCREC LOBFMY LOOREC (AR L X0R MODE | MOVSEG NHITS ___ PARSEC _FARIEF
PaRr?T PRST PRKRTID PSWRD P g RANGE REAF REPKEY REPR REPREL RESTRX RLLLPR ROLL RPCLPR
. SELFPY SELREC GFTINMT RETINZ erTOUT SEUNIv sMINUS SoRTe SCRTS SPCSET SPLLUS 8SRZE SSwET___SIAEPR
) STATUS STCAT SURSTR TFORM TFopvd TFQRAYI TJUMP UNLOCK VERIFY Xp0ST XREF XXINY Xxive Xxput
CIMATM 1S DIRECYI Y £ALILED RYs
SEL
t)_ﬁgggg_ DIQECTLY _CAtLsy e
ADOFN lDDLT LAEPR cFIND EOMETR FTCMP FTFMT INDEY INPARM
_LC1RP DTRECTLY AND TRDICECTI Y CALLSy - e e i
3 ADDFN EDOLY AEPR eEIND CHAR COMETR OTEINT FTCMP FIFMY GET INDEX INPAIM LOCREC LODENT
PRNYTH PRELL STAEPR QUASTR VERIFY
CIRP 15 DIRECTLY CALLED BY:
‘J___. _JdPRECR e
CISUBY NIAECTLY CAILSY
CFEn END _JFhFER
[TLisusy PIRECTLY ANG INDIRECTI Y CALLSI
ApDDY ACDFW_ ADDKFY ADPLT ADRNM AEINIT AEPR hPSCNT ARSEL AFSINT APSTUP AUPOST BLLTHF CFER
CFIND CHAR FICFAF COPSTR NELKEY DISBEMT T ExCND EXC¥DS5 FrcoMl FIF*T GEY
b _ . GFYGFC INPEY _ IMPARM _ JFDFCH_ WOYKEY LAND LNaT Lr!CME LICHEC LOoDFMT LODREC _LOR __ NHITS __ FARY
FOST PENTID PYT RANGE REER TRLELPR ROLL RACLPR BETING TSETINZ & SETOUT "8GZE §5GAT STAEPR ¢
STATIIG SURSTR TFORMW _TFOPMZ VERIFY _ NXINY _ _¥XIN2 __ X¥OUT

~ TTEISUBL 19 PIARCTLY CALLED AYy
Crmaty

http:VyEaX.tU

61

CISyRp DIRFCTLY CaLt s,

B

———-CQEBTH DELETE HEADER__JINSHCR. _SELECY STCNT

CISUE2 NIRECTLY AND TMDIRECTI Y CALLS:
AETNIT __AERR ___ CFIND__

\
—CHAR . COMBIN_ COMSTA_. DELETE _DTEINT. _ENDSET. EXCHD

L eem ARBOT | ADDFN _ aDP T AQDNM___
- Evpuns FTCYP Freuy gEt GETREC HEADER IMDEX INPARM JNSNCR LAND Lhot LOCA'E LOGREC LODFMT
* LOeDREG__ L on L¥0g wHITS _ PRNTIR PUT RANGE __ RECLPR ROLL SELECT SETINI _SETINZ __SETOUY BRZE
STAER® STATUS STCNT QUASTR TFORMW VERLIFY XXING XxIng XXDUY
-CISUP2 16 DIRECTLY PALLED. AYe . o _ ___ ———— ———
Cluaty
~—-CL5UP3 PIRELTLY Catpsy -
BEGIN CLEANP gPINHS GPLYS {IMLOCK
CISURY DIRECYLY AMB YTWDIRECTILY CALLTY
YT ATTACH REGIN pLFabP COMSTR DELR GET INDEY INPAPH LOLREG LODREC PRSWRGP PUT koLL
T SWINUS __SPLUS STATUS. SURSTR UNLOCK. VERIFY. e e e i o e s e e
CI5UBY & DYREELTLY CALLED RY}
o VAt e — e e e e = =
T CI5USu DTRECTLY faLpeg
CHDRY MOVSFG Q0ntp 7 Jiwm
CISYSY NIRECTLY AND INRIRECTIY CALLSs
D _Ampe Char CLOSFL__pelLesEp eMDRY . CMPUTE . .LOMSTR_ GET. e GETREC __INDEX.eo. INPARM. _KOMKEY __LAST LMVTAR - -
LOCSEC LODFMT OPREC MDVSFG PART - PyT REPR RoLL SETIN{ SEYOUT SORTP SORTS §SQRT BURSTR
 — - TJUMR _ _VERIFY _%XINA ¥XOUL. -
Y CISURY TS DIRECTLY CALIED Ry
fIvaIn
CISUBS QIRECTLY FAL| g
- ARDEEC RISPOD nISPLA . FXPAND FORMM PARSEC _PARSEP..REAF SELREC BEUNIV _SPCSEY XREF v o mevem o oot e o
CISURS DIRECYLY &AR TNPIBECTIY CALLS) R
_____ SCCHO . ADPR _ GBOPEC. CLOSEP _COMSTR..DISPNO.. DISPLA_ ENDSET _EXPARD FIND ___FORM __FORMM.. _GET_ GETCLD
" GETO&R INDEY fwMDABM | QCRFE | OPFHT LUQREC WHITS PARSEC PARSEP PUT REAF ROLL SELREC SETINY
- - SEYAUT SFtINTy gpprsEY STATUS SiUasTR VERIFY XREF XHINt Ix0OuT
CISURS 15 DEIRECTLY CALLED Bvy
Y CIMAIN . - e o

CISU9% DIRECTLY CALLSS

RELKEY__DELREL. REPKEY REPREC XPOST

— . -ADDMEY CAUFJL__CPESTS _ngPR0.__
Ty CISUBe DIRFCTLY AWD TEDIRECTIY CALLS(-
LNDeFY _ APDR APSCNY APSEL _ APSINT APSTUP__AUFILE APOSY_ CAUFI! CHAR CLOSEP COMSIR CRESTS DRPAD
RELY¥EY DELR BELOFC EMDSET GET GETREL INDEX INPARM HAOMKEY L AND LMyTas L NOT LOCATE LORREC
.. LDAFMY__LpoRfe e e BHITS. _ _PARY _ POST___ PUT .. __RANGE _ REPKEY. REPA..... REPHEL RESTRX_ ROLL ... SETING o Ne
SETIMZ SETOUT sSORT STATUS 9UBSTR TFORM VERIFY Xsonst XInt *LXIN2 XXQuT '".'-_q
—LI5URL 15 DIRECTLY CALLED RY: — - — - o—
03 CIvATY Q3
—CLE&M® pICFCTIY Cat| Sy 8 3
N M E, T~
13__CLEANP DPIRFCPL Y AND INDIRECYLY CALLSY mhm o e vt o r—n e e —errn _—
LN I T] fe))
- CLEANP 1§ DIRECTLY_CALLEDR BY} C 5
o CIsuBs g o)
—LLOSEL DIRECYIY Catyas” [l
CORSTR LAGT SURSTR J -
3 _CLOSEL DINECTLY_AND TADIRECTLY £AL1S) b

CoMSTR LasT wWasTR
— CLOSEL IS DIRECTLY CALLED PYa. . _ —_
) SORTP
CLOSFP DIRECYIY CAI(q: i
Np ONE, h
‘J_CLGEEP-DI'?EC'!LL%D TNBIRECTLY CALLSL. v m o e e — . -
0 ONE,
—CLOSEP IS DIRECTLY_CALLED AYY - e e
LDDREC CIHMAIN rFUDYTF PRESYS FORM REPKEY REPREC RESTRX XPOST
CMDRT NTRFCTLY CAL)SH
CHPUTE INDEY INPARM SURSTR
W _CHDRI BISECYLY AND INDIPECTLY CALLST .. . o .. - - e e e e
Abpe CLOSER cMBHTE NMSTR GFY GETREC INDEX IWP4RM LvvTad LOGREC LODFMT LODREC Put REPR
w- . BOLL. SETING SURSTR. VERIFY _exaw(.._ T T MR e e o —
w CMDPT 1S DIREFTLY CALLED Avy

v CYSHRY

G|

CHPUTE DIRFCTLY CAlLSt

QL“&’H__EEJRFC__lﬂﬁkaﬁ__LPVIAE__LDDREL__BEER____SEIIij_jUBSTR VERIEY _XXIh1

e ABRR_
CHPUTE DIRECTLY AND tNDIRECTIV CALLSY
I L CLNSEP _pcoMSTR _ AET _ .. GETREC. . INDEY___INPARM_ LMVTAB LOCREC _LoDFMT. _LODREC _PUT __ __REPR_ __ROLL
e SETING SUBSTR VERTIFY y¥XIN1
P _EHPUTE 15 DIRFCTLY CALLED BYs
CwORY
_COM3I% DIPECTLY CALLS: . ___ __. — R
ENGSET INDEX THPARM 1 AND LNOT Lae L XfIR SETINZ SETOUT BSUBSTR VER,FY
_CoMRIv_DIRECTLY Asn_IuDNTREETIY CAlLSY —
COMSTR ENPSET GBET INPEX INPARM LAND LNGT LXOR NHITS PUYT ROLL SETINL SBETINZ
SETOUT STATUS SURSTR WERTFY ¥xIN{ XXIN2_ ¥XQUY
CoMBIN 15 DIRECTLY CALLED Avy
L o 11T 2R R . ——— _
CONS™R CIRECTLY CALL St .
S Y . Y 1 LY e e o —— - e —
~TTCOYSTR DIBECTLY AND INOIRECTLY CALLS!
Pe puE,
COMSTR 18 DIRECTLY CALLED BYp
o ADQFN___AFTANIT. _AEPR____AUPOST_ _REGIN _ RLDTBE _CIRP ___ CLOSEL _ DOPRO____ExCHO_.._EXPAND __EIND EQRM LTFHT

Tupey JPRPCR KOMKEY LAST

LMVTAB LOCATE RANGE

RECLPR TFORM TFORMZ UNLOCK

_CRESTS DTSFCTLY CaLLRy
‘CLOSEP INDEY INPARM | DDFMT PESTRY

FRESTE DIRFCTLY AYD INCIREGYIY CALLSY
ADOKFY APSLMT APSEL ARPSINT APSTUP AURPQST CHAR CLOSEP COMSTR OELKEY DELR ENDSET GET GETREC
jp P TADEY _IMPARK wOMKEY LANMD. __LMYTAB _LNOT_.__ | OCATE__LJCREC_ LODEMY.. LODREC__LOR ____ NHITS _ PARTL. . _POST. -
§50RY STATUS .SUBSTR TFORM VERIFY XXINY

PUT RANGE REPR RESTRY ROLE SETINY SETIN2

. ¥yima _ ¥xoyv
[4e CRESTS 15 DIFECTLY CALLED AY)
CTI5URSe

NBPRO ©DIRZCTILY CAILS:

..... ComgTR _ SURSTR_ _VIRIEY | _
TDRFRO DIRECTLY AND 1) RIRECTIY CALLS®

COMSTR TNDEY_ SURSTS _VERIEY
) ngPea 1< DIRECTLY CALLED 8Y}

L CI§uUR%
DEIETE DIRECTLY CALLS:

3 15 PARM

DELETE DIRFCTLY AND TNRIRECT! Y cALLS:

COMETR TNDEX _INDARM__VERISY

3 DELETE I8 DIREETLY LALLED AYy

(S ELLY
DELXEY DIRFCTLY CALLSS ! .
v Jde_._ LOCATE _PUT _ SURSTYR__VERIFY -
DELKEY DYSECTLY AND TNRIRECT: ¥ CALLS®
LOMSTR GETY TunEY tOCATE _PUT ROLL SUBSTR VERIFY

5 DELKEY 1§ BIRECTLY CALLED ﬂVI

AUPOSY- CI1SYRp
RELR DIRECTLY CaLLe;

W ____ LOLRFC _PyT_

DELR DYRFETLY AND INNIRECTI ¥ CALLST

... GEY_ _ LOCRFL _puT 20L}
) DEER T8 DIRECTLY CELLED BV
DELREC RESTYRAY SuINIS

DELREC DIRECTLY CALLST

&) ... PELP INPARM
BELREC DIRECTLY AND TADIRECTIY CALLSt
_____ COMSTR DELR__ BEY_ ____INDEX INPARM LOCREC_ PUT VERLIFY .
wJ DELREC 15 BIRELTUY CALLED 8y
Ci5uRs
DISFMT DIRECTLY CALLSS
o up NE, e N N . e e e
DISFMT DIRFCTLY AnD TNDIRECTIY CALLST
e, MO ONE, . . —
_ NIEEPt 18 cTRECYLY caLVEN Ave -

Jepere

http:TrTRr.TI

Rd

- DTS00 J§ DIRFETLY CALLED Bys

DISPDL DIRECTLY CaLL®y
e INDEX___JINPARM | DOFMY

DISPDR BTISFCTLY AND TNDIPECTIY CALLS:

A LOMSTR _GFY___ _INDEY . INPASM__ | DCREC LODEMT_ ROML__._ .\EERIF_Y. -
- CIsuns

DISPLA DIRECTYLY CiLLYI
T mee. IBDEY. INPAPM 1 ONREC. SETIML. XXIMA

BISPLA NIRECTLY AWD TKRDIRECTLY EALLS:

—— COMSTP _GET _ _INDEX TNPARM 1 OCREL LOMREEL ROLL____SEIIM{_ VERIEY

-

L DISPLA 13 DTREETLY CALLED BY:

L15uBSY
DTEINT DIFFCTLY CiLLsSy
.. fkan INPARM _SUBSTR . . —— e e e

DTEIMNY DIRECTLY AND TADIRECTIY CALLSt
c- EmAR__. COVETR __YNREY . TYP&RM _ SUSSTR__VERIEY

) DIEINT IS BIPECTLY CALLED RY:

ANDNT _ AEPR EYCMD__ YENOWY
EnD DIRECTLY CALLS:
L i
END DTIQECTLY AND TNDIRECTIY CALLS! '
e MO ONEL L e

3 END 18 DIRECTLY CALIED BYy
CISURY _SFY1

EVDSET DIRFCTYLY LaALpLct
Yoo . INPAPK AKITS_. SURSTR— xXOUT

ENDSEY DIRECTLY AND TADIREETLY CALLS:

— - COFPSTR. TADEX . YAPARY. MHITS._._PUT . ROLL__ STATUS_ _SUBSTR _VERIFY_._Xxour

*? ENDSET IS DIRECTLY CaLLED BY:

COMRIN GEYELD _AFEYRAR _INSHEP MOps RANGE SELECY SFLRFC SPESET

EXCMP DIRECTLY CALLS:
Vo CHAS _ _COMSTR. DITINT _ (NP2AM_ SURSTR__

EXCMD DYRFCYLY AND TADIRECTLY CALLSY
— ChAR. __COMSTR nTEINT_ INDEX . INPARM . SUBSTR _VERIFY

') ExCeC 15 DIRECTLY CALLED BYy

- Exfnng
EXCYDS DIRECTLY CaLpey
B o JEXLVD . SURSTR —

EXCMDS PIAECTLY AWD TNDIRECTI Y EALLST
Cha® _ COMSTA__DTEINI__EXCMD _ YSDEX INPARM SUBSYR VERIFY

3 ExCens 15 DIREETLY CALLFD AY}
CELR JEOFCR JNSNER _ IPRPER

EXPAND DIRECTLY CAtL®:
L I _ChwsTR FIND ___GFY .. _SUBSTP ______ _.
EXPAMD DTIECTLY AND INDYRECRTIY CALLSH
we. o COMSTR FIND __ BFY . HOLL___ SUASTR

) EXPAND IS5 DIRELTLY CaLLER B8Yy

LISURS
FInp DIRECTLY CAlLS!
... fousTe GEY_ . ___ .. —
FING DIPECTLY ARD TNDISECTIY U‘LLS!
. . CQrSIR_ GET RELL
w) FIND 15 DIRECTLY CALLED RAY:
E¥patp
FORY DIRECTLY CapLey
wd o ADDA_ _ _CLOSEP COMSTR.. . —

FOR DIRECTLY AND YNRIPFETIY CALLSY
— ~2ODR__ CLOSEP_ £OVSYP__GEY.__ . LOCREC PUY BOLL _ SUBSYR

wi FQRM IS DIRECTLY CALLED 8Y:

FogvhM
FORMM DIRECTLY CALLSt
L S VOEH - JNDEY __tNPARM N -
FORMM DIRFCTLY AND TNRTRECTLY CALLSt
— __ BPOR ___CLOSEP rOvSTR SO _CET....._INDEY _ INPARM _LNCREC_ 7,7 ROLL SUGSIR _VERIFY -

v FOFWUH 1§ BIPELTLY CALLED BY,
FTEnag

FYCHP DYRECTLY CALLSN:
_SURSYR

FTC"” DIRECTLY AND TNDIPECTIY CALLS? -
Y LesTe _ I
TR FY!:"P 15 DIRECTLY CALIEO sv:
¢ teep ciap JEDERR INSKER
FTFUT nTIRECTLY CALLSTE
— . LOMBIR GET__ ___THPARK | OCREC.__LODFMY__PRNTID
FIFMT DPIRECTLY AND INDIRECTLY CALLS:
. COMSTR _GET __ _JNREY___INPARM | ORHEE LOREMY PRNTID ROLL NERIFY.
STETFMT 19 ODIRECTLY CALLED Avy
CFECR Ciep IFRFCR INSNER
GET DIRFCTLY CALLSK
e RRLU - ——— - .
GE? DIRFCTLY ANR THRIPELTIY cALLs:
e JROLL R — . — -
™ GET IS DIREtTLV anlED RY1
AnDKEY ADIR sPGFL AUPDSY FXPAND FIND FIFMY _GETCLD LOCATE LOCREC LOBFMY S QDRE, PARY POsY
RAINGF PEPkFY PEPR SELECT SEUNIV SDRTS SSORT ¥MINg Xxyne
Do GETCLD DITECTLY LALIS®g .. - - .
ENDSEY GET ¢ tOLREC RETING SETOUT XXINY XX0UT
-.BEICLD DIRFCYLY AND THRISRECTLY .CALLSY _ . e e e e e i st 5 —m—— Sm———— o e e
S CougT® ENDSET QET TNBEX INPARM LOCREC NHITS PUT ROLL SETINY BETOUT STATUS S5uBSTR VERIFY
X2 YXDUT _
GETCLD IS DIRECTLY CALLED Bv:
Y. _. PARSFC e e —— —-- -
GETPAR DIRECTLY CALL<Y . . ,
E*QSET | SETIMG SETQUY _ xxThi___%¥OUut - ——— _— —_
3 GETP4R DIRFETLY AnD TNDIRECYLY CALLS:
CN¥STR EADSET RET TNDEY YNPARM WHITS PUT ROLL SETINY SETQUY STATUS SUBSTR VERIFY XXTN]
XxQijT
3_ BETPAR IS DIRECTLY [Calt “p AYi —_— —
PERSFO
~GETPEC DYPECTLY CaLb®y . - o =
b ISPaR¥ LODFMXT (LODREC —
= BETREC NDIRECTLY AND TMRIQFETIY CALLSS
COMSTR GET TNREY INPARM { OCREC LOPFHT {QDREC RoLL VERIFY)
J.BGETREC TS DIRECYLY CALIERD_BYy
AUFILE CFtR FHPUTE JIFDFCR JINSNCR JPRPCR MOVSEG RESTPX SORTS
__HEBDE®R DIRECTLY CALLST __ R I — — —_——
r} INDEY TAPARV SURSTR
HEANFR_RIRECTLY AND INNIGECT|I Y CALLSY
COKSTR INDEY TNPARM SURSTR VERIFY
f3_READER 18 GIRECTILY_ CALLED 8X}
tisuaz
L INDEX QIFECTLY CA1} 5}
) COMSTR
INCEX CIRECTYLY AND TNDIPELTIY CALLSY =
comgTR
T3 INOEX | YS_DIRECTLY gaLLED. BY.1 — e — -
afchun” ADDREC sEFR APSFL CAUFIL CFIND CISP C40RY COWMBIN CREGTS DISPOD DISPLA FORMM WEADER
__INPAPM_ MOYSEG RANGF RELE REPKEY REPREC RLELPR__ReCLPR SELECT. SQRIP___SPCSET SICNT TJUrP YERIEY
£ LeGST
4 INPARM DYRFCTEY CaALLS)
InpEX VERIFY
(y__INP2RY DIRECTLY AND INNIVECY| Y CALLSY
COMSTR INDEY VESTIFY
INPARY IS DIRELTLY CALLED_RYy e v s e o o . o e - - e man . ow ik v e o _
o ACLHDT ARBNR ADRRFE AEINTT MEBH APSEL AUFILE CAUFTL tIRP CMDRY CrPUYE COMBIN CRESTS DELETE
DELRSL OI5PNhDE nisPLA NTETMT FMRSET EXCHD FLRMM FTFMY GETHEL HEADER MOVSES PARSEL PARSEP KEAF
TEPREC SELECT SOWTP STATUS 8TCNT TFOR® TJUHP XPOST Z3LF
W JENFCR RIRFCTLY CALLSY. L e e [. . [e e e -
BEINTT RLDYAF CICFAF NISFMT ExcMp§ FYeus FTFMT GETREC ™ LOTFMT PRNTIO SETIND TFOARMW TEO%Z XXIN1
JFOFCR DIRECTLY AMD TMOIRECTLY CALLS? e i . _ e n e
- EnpOT ARDFN ADALY abnaM ETNTT REPR BLOTBF CFIND C+3® CICFDF “CCWSTA “DISFFT DTzIxT EXCHMD
FytMne FTPuP ETFwT REY PETREC INPEY TAELRY EACRED JNFHT LODREL PFARMNYID RLCLPR WO, YPCLPR

Nl

. SETIM! SODIE STAEPR SQUBSTR TFORYW TFDRMZ
.JFDECR 13 _DIRECTLY CALLED BYs

VERIFY. XXIN1

C1svRy
& . JNSNCR DIPECTLY CALLSY - ..

s AFINTYT ENDSEY FxXCMNg fTE“E -“‘TFMT BE;REC

T _JNSNEO DIRFCTLY AND TANIRECTIY CALL A

\

.

ARQNT ADDFN ADDLT ADDNM AEINIT ARPR
N FTEMY __ GEY._, . SETREQC . YRDEX INPARHM__LOCREC
SEYAUY SOZE STAEPR «T4TUS SURBSTR TFORYW

CFIND' CHAR

. LODFHMY._.LOOREL _NHLIS. _BRNTID .BUT_ . _RLECLER _ROLL——SELINY

VERIFY X¥Ing

COMSTR QTEINT ENDSET EXCMD EXC4DS FTCMP

xxourt

—JINSNCR IS DIRECILY CALLED . BY: . —
i CISus? -
—JPRECR DIRFCILY CA1 81

MEIMIT CLIRF cuvsTR eyCrlts GETREC PRUTID

T _JPRECR DIRECTLY MR TMPIRECTLY CALLSE +onm—m vo o e o -
CIRP CAMSTR
GETREC _ IADEX. _ TNPaPM__LOCREC .. LODFMT. _LODREC . PRNTID ROLL __SETINi . SRZE

ARDFN ADDLT AETNTT AEPR CFIND CHAR

SETING SUBITR

TFORMY TFORTZ AXINY

U JUPg

"DTEINT EXCMD EXCHDS F
e STAEPR _ SUBSIRA_..TFURMN__TFORMZ

TCM? FTEMT GET

] YERTFY ¥¥XInt .
JPRPCR 1§ DPIRECTLY ralbED RY}
CI4sIn
TI_ KOMKFY BIRECTLY. CALLSS -
LGHSTR
LKDMKEY. DIRECTLY. AND. INDISECTLY. CALLS®
M coMsTR .
KO¥KEY 15 RIRECTLY CAL1ED RY)
PART

F_.LAND DIPECTLY..CALLSY ..o - -

— - -

X¥TInt XXIND yXour
. LAND LDTRECYLY AND_TMRIPECTLY. CALLSYE .

"y GET PUT ROLL ?XINI ¥XTND2 Xxout
[AND 18 CIRFETLY raAlI{FD RY,

chMeTN BOST
€Y _LAST. DIRECTLY.CALLSY

cnrgTR , O
—LAST,__ DISECILY_£0D TRDIHECTIY_TALLSY >l
3 ForsTE . L & -
- usrc .I: mnfmév LALLED AYy . (‘)D :“?
LOSEL UNTT
3 LEYTAE_CTRECTLY CALLE: N
covgrs o '
__LHMVTE® DIRECTLY AND _TNDIFECTLY. CALLS: e ——— S —- ;
3 LovsTh /«';A X
LMYTAR 1S DINECILY ralIED Ry, OO0
JUFTLE CMPUTE RESTRY ~ 7
A LNDY _ DIRECTLY CALLRT | L o o o e it e de n = e——— ___..5‘9\..___ - _ -

XxIng ¥YXInN? XXoUY
—~LNOY_ | DIFECYLY AND YNDIRECTIY CALLSY

12 GET PUY anLL YYINI YXTND YXOUT
INOT 1S BIRFEILY rali=D BAY)

covAtH BOST

s3__LDCAYE DIRECILY CALLEL -
GET

COMSTR

~LOCATE DIPECTLY, AND TNNIREGTLY CALES:
COMSTR GET ROIL

LOCATE 1S DIRECTILY CALLED 8Y}
ADGKEY AFSEL HELKEY e0RY RARGE REPKEY SELEGRT
W LOCRES DIRECTLY CALLS T mome v oo e e mmmm e+ w oo = e e o — -) —

GET

. LOCRFC DIRFETLY AMD TNDIRECTLY CALLS: - U
GET ROLL

LOCRFE 18 PNIRECILY CALLED BY)

4oL DELR FTFHT GETCLD LARFMT LONREC
G . LODFMT DIRECTLY €aL{Sse

REPR SELREC

GET LOCREL
LLODFMY DIPECTLY Amb tNDIRELTY CALL Sy

(" GEY LOCRFC ROLL

-

CLEL

CAUFIL CRESTS O0ISPDD FTFHT QRETREC JFOFCR

. LODREC DIRFCILY €CaLi§e

6=y LCCREC ‘
__Lohﬂ E PTIRECTLY ANE YNDIRERTLY CALLBRL . J— -
*, LCCREC eOLL
¢ LODP” 18 DIRECTLY caLLED Ryy ' _
CYPUTE DISPLA GETPFC IMLOCK
- _LoR DIRECTLY CALLSY _ . . oo — e
AXINY XXINZ ¥XOUT
—LoR DPTRECTLY AND TMDIRERTY Y..CALLAR
PR Gty PuT POLL YATIN AXTNZ2 XXQUT
Lar 1S_DISFETLY il | €D Ay,
COHBTM LYCR BORT RANGE
TI_LACP O DIMECTLY GALLST o oimn ce oo e e e e — - -
Lor
~LypR _LTRECTLY LAKD TNDIRELTLY CALLS:. .. —— - —
) GEY LgR wut RoLL XETNL XXINZ XXOuTY
LXOR 18 OIRECTLY LALLED Qye hd
CCHBTY
Y_MODE . DIPECTLY CALLSE .o i e _ ——
EvpsET -
_MOGE. DIPECTLY AND INPIPECTLY. CALLSI.. i s e - J— .
T COMSTR EMDSFY THMDEYX TNPARM NHYITS PUT ROLEL STATUS SUBSTR VERIFY XXOUT
MOBE__ IS NIFECTIY CALLFN Ryy -
Civary
. J__MOVSEG DIPECTLY CALLSI . . . _n. . -
CHan GETREC tNMEY THPARM PREPR .
- ¥OVSEG AYFECT{Y ARD _TMDIRECTLY CALLS: __ .
[T CUMSTR GEY GETREC TMPREX INPARM LDCREC LODFMT LODREC PuT REPR ROLL SULSTR VERIFY
HOVSEG TS DIFECTLY CALLED RYy
tIsuBs
Y_NHITS CTIRECTLY_CAtiss
S5TATUS
—NHLTS, DISECTLY. aMD_TNDIREET] Y_CALLSY
COMSTH TNREX INRARM STATUS VERIFY
~MNHITS IS5 DIRECTYLY [atiEb BY, :
AFSEL ENDSET SELECT SEUNIY
3 ..P_gssEc DIRFETLY r2li ey _
GETELD INDARM
—PARSEC DTBECTLY AND_YMRIRECTLY_ CALLSY . [.
L) anszﬁgciNDsET GET RETCLD TNDEX INPARM LOCREC NHITS [4h4 ROLL SETIN]I SETOUT STATUS SuBSTR R
VERTFY XXTN YXNUT \
PARSFC 15 DIRECTLY CALLED BY:
()___ Ctrsues,__ _ . -
PARSED DIHECTLY CALLS:
. _GF1PAR _ TNPARM . ,
ta PARSEE OITECTUY &ND TNRIRECTLY CALLS
CoMSTR ENDSET GETY AETPAR TNDEX INPARM NHITS PijY ROLL SEYINL SETQUY STATUS SUBSTR VERIFY
XrIni XxouUT
t__PARSE® TS5 DIRFCILY CALLED BYr__ S
C1syas
: _PARY __ DTYRECTLY CALISt —
e GET KOMKFY pUT SUBSTR
PARY DIPECTILY AND IMRIRECTL Y CALLA:
. COMSTR GET WOMKEY oY ROLY BURSTR
;3__EAETSBG IS DIRECTLY CALLED AY)
_POST DIRECTLY CAlL%t e e e e e ———e e
T fiEY LAND LNAT tOCATE LOR PUT SETING SEYIN2 SETOUT ~ fuBSTR
POST PIRFCTLY ANM TNDIRECTIY CALLS:
. CONSTR GET LAND LNAT LOCATE LOR 2uT ROLL SETING BETINZ SETOUT BUBSTR xXIN3 IXIN2
Xyout e e e R
POST 1S DIRECTLY CALLED BV}
AURNST ¥PQQT_ e . . e

TERNTID CIRECTLY CALLSS
LR oaus

g

A

¥

—~
i

-

PRNTI DIRECTLY AND TNDIRECTIY CALLS?

Np DNED
PRNTIM IS DIRECTLY CALLED Byy \
FYFuT _ JEDECR _ INSNCR . JIPRPLR
+ PSe®D DIRECTLY CALLSY
NO OME,
PSwRD DTRFCYLY AND {MDIRECTIY CALLS!
—— e NDLONE,L
F3aBD 1S DIRECTLY CALLED AY:

__SvINUS _ SPLUS___ MWL OfK

TRt PIRECTLY CALLST
RepL

Pyt DIRECTLY AND TNDIRECYLY CALLS:
SN {+ | N I

Put IS DISECTLY caliFb BYy

A LODAEY _ ﬂD"JR..,__AESTUP_..AUPD‘*‘L_.QELKE.!_..DELE..__...PAR.T......._..E.naf........_B.EPKEY......_REPR........,SEUNJ..M....SOHYS__....SPLUq SSORY.
YYOUT
RaMGE DIRECTLY CAt) Q1
CoMsTH ENDSET RET TNDEY LOCATE LOR SETING SETIN2 SETOUY SUBSTR VERIFY XNXINL XXGUY
D__RANGE _DTIRFCTLY AND_TNDISECTLY.CALLS:.
COMSTR ENDSET GET INBEX INRARM LOCATE LOR NHITS PUT ROLL SETINI SETINZ SETOUT BTATUS
— -—-SUBET2 YERIFv__¥XIsdl___ ¥xINZ___¥XOUT.
N RANGE 1§ DIRECTLY CALLED Rvy
EPSFL SFLELY
REAF DIRECTLY CatLSy
i INDEX INPARM | gUynsTR R - e — —_
REAF DIQFCTLY AND INRIRECTI Y CALLSI
—— _COMSTR __IMODEX . tWPARY sURSTo VERIEY s n ——
7 REAF 18 DIHECTLY CALLED Ryy
CisyRps
REPKEY NIRELTLY CALLSE
3. __CLOSEP _ GET.__ . INTSY. _LOCATE _PUT _ SURSTR VERIFY ;?
REFKEY BIRFCTILY AND INFIRECTIY CALLS? _§
—. . CLOSEP _COMSTR. GET.___ __YNDEY | OCAYE bBUY ROLL_ SUBSYR__VERIPY > &
3 REPKEY IS BIRECTLY CALLED BY¥1 o&
CIsuPy A A
“REPR GTFECTLY CALLS: O ~
*y . __ GET___ _| Lacrie_ pov aUBSTR oA .
REPR DTRECTLY AND TNDIPELTIY CALLS: ,\"-&3
e - BEY . LOCREL _PUT_____mOlLL . SUBSTR DA)
t4 REPR IS DIRELTLY FALIER RYs \}» y
AMIFTLE BFER CYOUTE MOVSER REPREC RESTRY &
“REPREL DINECTLY CALLS: b
' . CLOSFP INDEY _ _ {NPARM REPR ~ e e e ——— '
REPREC DIRFCTLY 8NP TNOTRECTI Y CALLSt
LLOSEP _COMSTR_ GET .. . YHDEX_ INP4AM_LOEREC PUT _ RpPR ROLL SUSSTR _VERIFY
1) REPHEC 1§ DIRECTLY CALLED AV,
C1SliRL
RESTRy DIRECTLY CALLS:
(o _ __ APSCHT_ APSINT _ aPGTUP AUPQST _CLNSEP__DELR . __GETREC_LMYTAB_ REPR _ SEYINL _SUBSTR _TFORM__ xXINt
RESTRx PIRECYLY AND INDIRECTIY CALLSt . .
e BOQEFY_ APSCNT__APSEL APSIMI_ APSTUR AUPOST_ CHAR. ___ CLOSEP___CGO4STR__PELKEY _DELR___ENDSEY _GET. . . GETREC____
& IsDEX INPARM «QMKFY | 8ND LHVYAR LNOT LOCATE LNCREC LODFMT LODREC LOR NHITS PART POsT
PuT RANGE REPR TIN 5 1oL R ATUS SyASTR THORM VERIFY X¥Int XXtInNg
¥XoUT
W] strzt _18 luREcrtx CALLED.BY: — -
REST
RLeLPR ru_nscru LALLE:
" ADDDT ADDEN ADPLY ADRNM SEPR CFIND COMSTR INDEY
BICLPY DIAECTLY Anfy TNDIPELTIY CAILSH
ADDDT ADDFN ADDLY ADDNM AEPR CETND CWAR COMSYR OTEINT ENDEX INPARM STAEPR SURSTR VERIFY
\A__BLCLPR 1S_DIRPECTLY CALLED BYy. . P e = 202 e et e 28, s m :

'

—ROLL. __DIYECTLY_CALLS)

CICFDF JNSNER

NCOMNE,

DAl RYCEMTI W LA suRvRdsd: U @b e

bl

ND ONE,

- POl .. 1% BIRECTLY. CALLED av} e e -
GEY epr
A, .PRPELPP DIFECTLY CALLS, - — —_ —
« e ACDEY ADDF* aDDLY ADDNM AFSR CFIND £DMSTR INDEY .

Y _RECLPR DIRFCYLY AND InnIREPTI Y cALLSe

APDRY ADDFN ADDLT ARDNW AEPR CFIND CHAR CAMSTR DTEINT INDEX INPARM STALPR SULSTR VERLIFY
T _RPCLPR 18 DIRECTLY. £ALLED_RYs - — .
CICEDRF
~SEL_. _DIPECTLY CALLSY.
) CIMATN EAD UNTTS
SEL NITRECTLY AMn IMDIRECYIY CALLSY
ACCHN ADDDTY ADPFY ADNKEY ADDLT ADDNM ADDR ADDREC AEINIT AEPR APSCNT APSEL APSINT APSTUPR
Y ATTECH AUFILE . AUPDST . RESIN___BLDTHF. CAUFIL _CFCR G IND CHAR __CICFDF _.GIMAIN__LIRP —.CI9UB] LISuUB2
CISHRI CISURL ETEURS CISURS ALFANP CLOSEL CLOSEP CMDRY CMPUTE COMBIN COMSTR CRESTS OBPRG ULELETE
— _.DEL«EY IEL& ___RELFEC LMYSFHY_DISPOD _DISPLA _DTEIRT.. END ENDSET .EXCHMD _EXCHMDS EXDPAND Flht FORW
3} FRRwM F1emp FTEMY GET GETCLD GETPAR GETREC HEADER INDEX INPARM JFDFCR JNSACR JPRPCR KOQ“KEY
Lakp 1ASTY 1HMVT4R L MOT LOPATE LOCREC 1ODEMT LODREC LOR LY0R H0QDE. MOVEEG NHITS BARSESL
PARSEP PART POST PRLTIN PSWRD PUT RANGE REAF REPREY REPR REPREC RESTRX RLCLPR koLL
O POLIBR_ SELFET. SELREC.. SETIM{__SETIN2 _SETQUT._SEUNIV.._SYINUS _ SORTP S0RTS _ SPCSEY . SPLUS._ Su2t _.. BSDRT
STAEPY STATUS STENT |UBSTR TFOR™ TEORMW TFORMZ TJUMP UNITS UNLOQCK VERIFY XPOST XHEF RAING

e ARIN2 __XXOUT_. - —— - e — e

Y 3EL IS DIPECTIY CALLED v

——— —— —— —

hn nuMe
SELECT DIRFCTLY CALLSE
y___ __ ENDSEY _GET. _ _1MDEY - TNPARK | OCATE _NHITS _ RANGE __ SUBSTR__VERIFY —
SELECT DIRECTLY &kD TYMDIRECTIY rALLSt .
e CPUSTR _ENDSFT BRT. __ WIMPEY _ YNPARM LOGATE)L OR NHITS __PuT RANGE . ROLL . SETINY SETINZ _SEIODUT
[+) STATUS SUBSYR VERTFY w¥Iwm| ¥AINg XXour
SELECY 15 DICECTLY C4{1ED Ryy
C15ua?

Gy _SELREC DIRECTLY, CaLLS _

ACes0 ENDSFY f(ZREC SETOUT w¥npf
~SELREC DIRECTLY tAB _TNNIRECTLY_CALLS)

ACCNO COMSYR FNOSFT GET INBEX INeARM | OCREG NWITS #PUY ROLL SETOUT STATUS SUBSTR VERIFY
¥yt .
“ SELRELYS DIRECTLY CALIED BY:
€3__. ___ADBREC CISURS__
SETINY DIRECTLY €ALLSY
- LuponweE,
€ SETIM) DYFECTLY AND TNDIRECTLY CALLSt
NN ANE
SETI} 1 IS NIREETLY CALIED BYe -
(5 R CFLR _CMPUTE__ rOvaInN _RISPLA _ GETCLD _ _GETPAR _ JFDFCR_ JNSNER _ JPRPCR__POSY. _ _RANGE ~-RESIRX _SORTS.. . ¥REP. _ __ . ___ R
SEYINZ DIRECTLY CaALLS
— NODME,
& SETIN? DIRECTLY AND TAPIRECTIY CALLS!
NG gNE,
SETIM2 TS DIRECTLY CALLED BYy
€_ __ COMPIN,_ _PGST _ _ RANGE
SETOUT DIAECTLY EaLls:
. _.NO_ONE,_
€& SETQUT DIRECTLY AND TNDIRECTLY CALLSY
NG_OMVES

SETOUT 15 DIRECTLY CALLED &Yy
= ez GOFRIN GETCLO _GETPAR INSNCR__POST _ RANGE _ SELREC SORTS__ S9CSET
SEUNTV DIRECTLY LaL]S{

. GEY NHITS _PUT _ SUESTR ___
w SEUNIV OTRECTLY END INDIRECTLY CALLSY
COKSTR GEY TNDEY TNPARM WHITS PuY pLL STATUS SUBSTR VERIFY
SEUNIV 15 FIRECTLY CALIED BY3
i CIsURS —— e —— ——r——

TSMINME PIRECTLY CaLLSTT T
pELR PSWRD

« SYINUS RTRECTLY snn TunyoEery TRlLsyTTTTTTTT T e e e
PELR GFT IAFEFe BC.EN ont ani

Q% |

4

SMINMS 18 DIRECTLY C4lLER RYy

—.. . tiI5U9% R e e
SDRTP OYRECTLY CaALL &g 1
& . .. CLOSEL. TNDEY __TMPRRv_ SORTS _ _SURSTR _ _ _ e e . ———
<, o= SQRTP NTFFCTILY AND IARIRECTrY CALLSY
CLOSFL_ [CHMETS pEY AETREC INDEY INPARM KOMKEY 1 45f LOGREG LODFMY LODREC PART PuT. ROLL
SETINY SETEUT &CRTS SSORT SURSTR VERIFY ¥XXINt Xwour
T _90ORTP 79 PIPECTLY LaLLED BYl
C'SU"“ .
_305.15 DTIRECTLY CALLSE . o
= GEY GETRFE oYY SETIN{ 4EYOT S8SORYT SUBSTR XXIN{ XXOUT
SORIS _DYFECTLY AND INATRFCLTIY £M1SY
LonsTe GET GETRFC INDEX INPARM XOMKEY LOCREC LODFMY LODREC PARY PuT ROLL SETIN] BETOUT
.- 5%0RT_ SUSSTR WERIFY___eXInNL_ . ¥XOUY_. — ... — - - -
SPRTS I DIRECTLY CALIER RYy .
_ .. “ppTR m e e e e — - —_— -
D SPESEY DIRECTLY CALLSy
ACND EWNSTT ywnFy RETOUY SHASTR XXOUT
SPCRET AIRELTLY AnD INPIRFCTILY CALLS9:
M. ACeD L _COYSIR LENDSET.. TEDEYX._ _INPARM_NMITS _ PUT RALL SETOUT._STATHUS _SUBSTR _VERIEY __ xxXuul ‘
SPCSEYT IS HIRECTLY CaLLED BY:
N o5 £371:1-1 — -
Yy SPLUS PRIPECTLY cm_q,
ARGS - p Yl PUT
SPLUS DISECTLY 4ng *ROIAFCTLY CALL9:
~ Anpe GET . | OEREC. PSWRD. _PUT ROLL SUBSTR —— e —— e e e e
SPLUR I& DIRELTLY CALLED AYy .
CISURY o ol s - s (et emmnim
o SQZE RIRECTLY anLqp
Y ANE .
SGZE DIBECTLY &An IMDTRECTI Y CALLST i
— . .ND ONE_ ———
SGZE 1S5 BIRECTLY £aL £0 BYy
. BEINIT .
& S$SDRT DIRECTLY CatLsy X
GEY PART ByT .)
" 8§S50RT DIRECTLY AND TNDIRECTIY CALLS:
@___ .COvSTR_ GET ___ wOMKEY_DART . pUY . ROIL . SUBSIR — .
8SO0RT 18 DIPECTLY CALLED RY}
.. BUPOST _SORYS -
O SYAEPR BIRECTLY LiLLS1
NO ALE
STAEPF DERECTLY AND TNNIRELTLY CALLSE
@ _ . Mo QMR [" — - e - :
STAEPR :5 D!‘?ECTLV c.u_tsn ayy
LEER o
G STATS DIRECTLY cm_n .
InpAPu
STATHIS DIRECTLY nNn TNRIRECTHY CALLS:
@ _ COMSTR _IMDEY _ _INPARN | VERIFY _—
STATUS 1§ DIRECTLY CRALLED 8V,
. J9EGIM CIKAIN MuITS -——
& STCNT DRIRECTLY CAlLSH
IxwhEY INPARK gqurSTE
STENT DIRECTILY AND INDIRECTIY CALLS:
G . CCYSTR__ TAMREX _ TNPARM__SUBSTQ _VERYEY ! .
BYENT 18 DIRECTLY CALLED aY:
——e GISURR —
&) SUBSTR FIRFCYLY FilLey
HO_ONE,
SURSTYR DIPFCTLY Anh TROIREETIY CALLSY :
Feee. JND ODME - . _— . —_— .
SURSTR 18 DIRECTIY caLLED Avy
- . ADDFw ABPKEY ADDR ANBRFEC APSEL _ APSTUR L ATTACH ANFILE _ALP08Y _ REGIN. . CIMATIN _CLOSEL...CuCSI__CMPUTE .
» COMRTY PEEREC pELKFY ARTEINT FunSFY EXgMT EXSMDS ExPAND FTCMO HEADER JPRACR PARY Poat KaNGE
Repr EemwFy prog DFSTPY SELFeT SERNTY EINTP §9R*tg 37567 STONT TFoe~ TEDRMa IFI-%T TJuwP

| %1

UNLOLK
_TFApW__DIRFLTLY CALLS)Y -
CHAk CRMSYR TNDARM QURSTH
2 TFORA ODIRECTLY AND_ INDIRECTLY CALLS:2 .
< > CHAR COMSTR TNAEY TNPERM SUIRSTR VERIFY
» __TEdEY 78 DIREFCYLY £ALLEN Py,
ALFILE PESTRYX .
N _TEORMS DIRECTLY. CALLSL.
SuBstR
~ TFORY¥s DIRECTLY_AND _INVIRECTLY CALLS:E
M 2UBSTR
TEOR¥# 15 DIPLCTLY FALLED BYY -
CFCR JFDFER JNSNCR JTPRPLR
™ TFORvZ NIRECTLY CALLS:
CHpb EO¥STR DTFINT =U8S5TR
__JFGPYZ _DYRECTLY_4ND INDIRECTLY CALLSE - ——— - —
~ CHaR CO¥STR ATEINT TNDEY INPARM SURSTR VERIFy
YeOPYy 18 DIWECTtY (811 ED Avy
fere JFOFCR IPRPCR
M TJUMR. DIFFETLY CALLSS . —

c—— e e - e ——e = — e - - ed e e e e —— - — o e a U e ———— i ——— e e iaan

- N o)
ThDEY INPARY SUASTR - =
D TguvR DYQECYLY AND INOIREETLY CALLS: . eremm o e — e e - - — G
“% COMSTR INLEY woARs 8UBSTR VERIFY ga
TIY»2 15 DIFECTLY CALLED RYy =
CISUPL Pd_@
€3 _UNITS DIRECTLY CALLSt .. . & e - - — _ - . —_ gl e SO —_—
LASY Q ‘.U
_UNTTS DYRECTLY, &ML INDIRECTILY. CALLSY —
£AMSTE LAST - 5
UNITS 1§ DIRECTLY CALLED &Y} e M
. SEL L
€y _UNLOEX DTREGTLY CALLSY —_ -8
toMsTH LODREC POwRh sURSTR -
_UMLpEx OIQECTLY. _AKD INMDIQELTLY. CAtLS
. COMSTR GET | GCREC (ODREr PSWRD ROLL SUBSTR
UNLPCK TS DIRECTLY (aLLED R¥y
Ctsuny ' !
63__VERIFY DTRECTLY €AlLSH
INLEY
_VERIFY DIRECTLY AND JMOIPEETIY CALLSY
3 CANSTR TNDEX '
VERIFY 15 DIRECTILY CallED RY)
LDDXEY AFPR APSEL rIMaINM CHPUTE COMBIN DBPRO DELKEY INPARM RANGE REPKEY SELECT
_¥POST, NIFFCTLY Cal)l sy
CLOSEP INDEX INPARM DOSTY
_XPDSY DTRECTLY AND_YNOIRECTIY CALLSY
L) CLOSEP CO¥STR QET TNPBEX TNPARK LAND LNOT LACATE LOR Ppst Put ROLL SETINY SETIN2 .
SETONT SURSTR VEQIFY wxINi ¥XIN2 XXOUT
xp0s¥ 15 PIRECTLY CALIED RY:
e L1SLIRS —
XREF DIECTLY CAL{ S}
e JHPBRY SEYINE WXTN{
© XREF DIKECTLY AND TNDIRPECTLY CALLSH
COHSTR GFY THREY YNPRRv POLE SETING VERIFY XXINy
XREF 1S DIRECTLY CALLED RYs
G __ CVSUBS o e -
¥xInt CIPECTLY CALLS:
— BEY e ..
@ Y¥INt COTRECYL¥ AND TNDIRECTIY CALLSS
GET S0LL
¥XTNT 18 DIRECTLY COLLED Ay
€ ___ _CFCR___ CMPUTE DISPl A GETCLD GFTIPAR JFDFCR JMSENCR, JPRPCR_LAMND LNOY LoR RANGI RESYRX_ BORIS __
XREF
_¥XINE O DTRECTLY. CALLSY . L. L e o e . . !
() hEY

¥vTad PIREFATIY ANPA TAATODEPRTIV Filloa

<

&%l

GeY ROLL

A

T_XxTN2 _18 DIRECILY. CALLED _BY)
La¥D LunT LOR ' !

& _XKDUT _DIRECTLY Cabys8y
= PuT

“s yxoyr DIPECILY AND INDIREATI Y CALLSY

ouT ROLL .
“_¥xGUT 15 DPIPECTLY CALLED Byp..

EYDSET GETCLD GETPAR JNENCR LAND LNOT LOR RANGE SELREC SORTS SPCSET
! . —— — -
B -
o -
T ¢
. L -
3 T
b —— Z
g e So :

s
L e
. bl .
St
BT
') £ N
55
) - el @ e .
I
n) o .
L J - —————
o -
v) _—
u k]
)
4

3.2.3 NEW BUFFER FORMATS, COMMON BLOCKS, AND TABLES

On the following pages are described new buffer formats and tables,
along with the new common blocks which contain them.

TR

COMMON BLOCK CLTBL

This common block contains the 50 word array named COMMAS,
which is the Comma Location Table.

154

COMMA LOCATION TABLE

Table that points to the commas which surround relational,
replacement, and BY clauses, and repart expressions in the
packed input string for the command. It is a one-dimensional
array of four-byte integers.

.Word 1 - binary integer whose absoclute value is the last used
word of the Comma Location Table. A negative value is
used for the JP §RP commands to indicate that the
command terminating exclamation point was encountered
by subroutine SQZE.

Words 2-n ~ binary integers whose values are the character

numbers in array CMD of /SY3CCM/ where significant

syntactical commas occur.

%5

COMMON BLOCK SY3COM

Ayariable or Array

CTBL(5,50)
FCTBL(5,10)
WBUF (50)
WBF(7,50)
SBF(7,20)
TBF(7,30)
MLMT(2,20)
MTCT(3,2)
BPT(10,5)
REG(16)
CMD(100)
NCTBL
NFCTBL
NWBE

NSBE

NTBF
NMLMT
NMTCT
NBPT

Usage

Normal Command Table

Function Command Table
Working Buffer

Working Buffer Format

Source Buffer Format

Target Buffer Format
Multilevel Move Table

Move Table Control Table

BY Processing Table
Intermediate storage registers
Packed input command

last used row number in CTBL
last used row number in FCTRL
last used row number in WBF
last used row number in SBF
last used row number in TBF
last used row number in MLMT
last used row number in MTCT
last used row number in BPT

Il

COMMAND TABLE

General layout for the normal command table and the function
command table. Each row of this five-column table represents
an operation to be performed by the execute command subroutine,
EXCMD,

Column 1 - 1 word - binary integer pointing to the first operand.
A positive number is the row number of the Working Buffer
Format. A negative number means an intermediate storage
register, and its absolute value tells which register.

Column 2 - 1 word - positive binary integer representing the
operation to be performed. See Command Operations Table.

Column 3 - 1 word - binary integer pointing to the second operand
for binary operations. Same type pointer as column 1.

Column 4 - 1 word - binary integer pointing to the location where
the result of the operation ' is to be stored. Same type
pointer as column 1.

Column 5 - 1 word - binary integer whose value is the row number
of this command table to which a jump is made when the
current operation cannot be performed due to absence
of data in an operand.

151

COMMAND OPERATIONS TABLE °

This table does not exist as an identifiable entity in the

software.

It is an explanation of what is meant by a row

of a command table and a definition of what operation is
performed for each operator by the subroutine EXCMD. In
the description below, columns 1-4 of a command table are
referenced by the terms OPND(1), OPERATOR, OPND{2), and
RESULT, respectively, and CFLAG is a logical argument in
the call to EXCMD.

" OPERATOR

[IR N

10

11

12

13

OPERATION PERFORMED

ADDITION: OPND(1l) + OPND(2)-+RESULT
SUBTRACTION: OPND(1) - OPND(2)~+RESULT
MULTIPLICATION: OPND(1) * OPND(2)+RESULT
DIVISION: OPND(1)/OPND(2)~+RESULT

.LT.: IF OPND(1l) < OPND(2), THEN .TRUE.»CFLAG,
OTHERWISE .FALSE.+CFLAG

.LE.: 1IF OPND(1) < OPND(2), THEN .TRUE.+CFLAG,
OTHERWISE .FALSE.-+CFLAG

EQ.: IF OPND(1) = OPND(2), THEN .TRUE.»CFLAG,
OTHERWISE .FALSE.+CFLAG

NE.: TIF OPND(1} # OPND(2), THEN .TRUE.=CFLAG,
OTHERWISE .FALSE.-CFLAG

.GE.: TIF OPND(1)> OPND(2), THEN .TRUE.-+ CFLAG,
OTHERWISE .FALSE.-CFLAG

.GT.: IF OPND(1)> OPND(2), THEN .TRUE.-+ CFLAG,
OTHERWISE FALSE., »CFLAG

COUNT: 1IF OPND(2) IS NOT BLANK, THEN OPND(1)
+1+ OPND(1)

NUM. MIN.: THE NUMERICAL MINIMUM OF OPND(1) AND
OPND(2) + OPND(1)

NUM. MAX.: THE NUMERICAL MAXIMUM OF OPND(1) AND
OPND(2) + OPND(1)

==
5§

OPERATOR OPERATION PERFORMED

14 ALPHA MIN.: THE ALPHA MINIMUM OF OPND{1) AND
OPND(2) - OPND(1)

15 ALPHA MAX.: THE ALPHA MAXIMUM OF OPND{1) AND
OPND(Z) -+ OPND(1)

16 TRANSFER: OPND(1)-+ RESULT

\ %

BUFFER FORMATS

General layout for Source Buffer Format (SBF), Working Buffer
Format (WBF), and Target Buffer. Format (TBF).

Column 1 - 1 word - SBF: temporary key field indicator for CF
command
WBF: the value to be used for initialization after
printing of a results field
TBF: print flag to associate printing of this field
with a change of a BY - field (BY processing table
Tow number N)
Print flag = 2*N-1 means print this field at top
of BY number N '
Print flag = 2*N means print this field at bottom
of BY number N

Column 2 - 3 words - SBF: first word is data base format row
number of key field for CF command.

WBF: four types of data: (1) alphanumeric characters
representing field names, (2} $Lbb in first word
for integer literal in command line, (3) $Tbb in
first word for alphanumeric literzl in command line,
(4) $Rbb in first word for calculatiod results

TBF: First word is row number of WBF of desired output
field. Second word is key field indicator for CF
command. Third word is data base format row
number of key field for CF command.

Column 3 - 1 word - SBF, WBF, TBF: starting character for actual
value in buffer being used. (In WBF, the data is actually
in the command line instead of the working buffer if

column 2 = $ Thhb

Column 4 - 1 word - SBF, WBF, TBF: length of field (in characters)

0

Column 5
-1
0
1
2

- 1 word - SBF, WBF, TBF: type of data in the field:
means a binary integer contained in 4 characters
means an alphanumeric character string

means an integer in a numeric character string

means a date in YDDD numeric character string format

4]

MULTILEVEL MOVE TABLE

Each row of this two-column table represents a move of data to
be made by TFORMW subroutine.

Column 1 - 1 word - binary integer whose value is the row number
of the Source Buffer Format array where information
about the field in the Source Buffer is located.

Column 2 - 1 word - binary integer whose value is the row number
of the Working Buffer Format array where information
about the field in the Working Buffer is located.

MOVE TABLE CONTROL TABLE

Each row of this three-~column table defines which moves in the
Multilevel Move Table are to be performed for the record in
the Source Buffer from a particular data base level.

Column 1 - ! word - binary integer whose value is the starting

row number in the Multilevel Move Table.

Column 2 - 1 word - binary integer whose value is the number of
rows in the Multilevel Move Table to be processed via
TFORMW subroutine to get all the needed data transferred
from the Source Buffer to the Working Buffer at a
particular data base level.

Column 3 - 1 word - binary integer whose value is the format
number for records at this data base level.

43,

BY PROCESSING TABLE

Each successive row of this table defines a successively lower

level subgroup of the input data and the processing associated

with a

Column

Column

Column

Column

Column

Column

change at that subgroup level.

1 - 1 word - binary integer; index to Working Buffer
Format (i.e., row number) pointing to the Grouping Field
Name (GFN). If 0, it means the GFN was E§E. If <0, then
a calculation must be performed before a test for the BY
change can be made.

2 - 1 word - binary integer; starting row number of normal
command table when column 1 is <0,

3 - 1 word - binary integer; number of rows of normal
command table to be processed when column 1 is z0.

4 - 1 word - binary integer; starting row number of normal
command table for use when the value of this BY field or
calculation changes.

5 - 1 word - binary integer; number of rows of normal
command table to process when the value of this BY field
or calculation changes.

6 - 5 words - current value of the GFN for this subgroup
level. An integer or calculation result is stored in
the first word, whereas a text field may be all 20
characters.

4%

