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ABSTRACT

The findings of a study of opportunities for commercialization
of systems capable of producing hydrogen from solar energy are presented
in two volumes. A compendium of monographs by specialists in the fields
of solar energy conversion technologies, hydrogen production technologies
and related technology descriptions from the general literature compri1ju
Volume II. This data base was used to support an evaluation and select-
ion process that identified four candidate solar/hydrogen systems beat
suited to commercialization within the next two decades.

This Volume I first reviews the background of the work and the muthods
used. Then an evaluation of the hydrogen product costs that might be achieved
by the four selected candidate systems is compared with the pricing Structure
and practices of the commodity gas market. Subsequently, product cost alld
market price match is noted to exist 

in the "small user" sector of the hydro-
gen marketplace. Barriers to and historical time lags in, commercialization
of new technologies are then reviewed. Finally, recommendations for develop-
ment and demonstration pr,s:-rams designed to accelerate the commercialization
of the candidate systems are presented.

(130 pages, 53 Figures, 15 Tables)
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NEW TECHNOLOGY

No reportable items of new technology have been identified in the con-
duct of this contract effort. This statement is responsive; to the require-
ment of Section 3.5.1.5, "New Technology," of JPL Specification 1030-26,
Revision B.

Authors Note - "Technolociies" and "S ystems" - Use of the "Perms

The authors have attempted to be consistent in using the words
"technology" and "technologies" in the sense that "systems" are
constructed using technologies. In many discussions, however, the
text must interrelate these terms in many different contexts and
clear sepe-ation in useage is not always possible.
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Section I

INTRODUCTION

A. Backoround

This systenit-, assessment provides all 
overview of the present state-of-

the-art of technologies and systems capable of producing and d,^liverilig
hydrugon from solar energy. Its primary objective -is to prcvidc the U.S.
Department of Bnorgy (DOE) with recommendations for appropriate development
and demonstration activities that may encourage commercialization of such
systems.

A secondary objective is to provide a means of supporting the develop-
ment of communications between the technological commulitty and the industrial
firms presently engaged ill the production, delivery, and use of hydrogen.

The overall effort was initiated by the DOE through its Division of
Energy Storage Systoms (STOR). The study's financial support was provided
through an ijltl^rdqency agreement between tho 

DOE 
and the National Aeromautics

and Space Administration via NASA's institutional contract with the Jet Pro-
1)ulsion Laboratory (NAS7-100). The organization of all assessment "core group,"
the development of the study approach, constraints and guidelines, and the
assombly of the basic technology data, base were performed by the JPL staff or
through outside consultants to JPL. lit accord with the DOE request to the
JPL to minimize j.ts in-house technical involvement, the detailed assessment
and final report preparation was contracted to Escher:Foster Technology
Associates, Inc. (E;F).

The pro joct- was accomplished over a period of approximate lay 18 moilth.s.
It has required the expenditure of approximately $100,000 of contracted and
consulting activity or approximately a 2--man-year level-of-effort, ilicludill'i
JPL in-house participation.

This report consists of a highly condonsod summary supported by details
cuntainod in its Appendixes. The appropriate Appondixe.,, are cited ill the
sununary and appropriate references are cited in the Appendixes.

B. Wt-hod j.,

The overall assessment approach involved throo cuntributing groups in
the performance of the activities illustrated in Fi pure I -

Monographs on solar energy conversion, hydrogen cilergy production and
delivery, and supporting technologies were provided by aut-horitics in these

various fields. A 4-parson core group performed an initial systems as:,oss-
ment and engineering analysis to screen combinations cif those tuclillologios
that miqht bu used in the production of hydrogen from solar 0110rgy (Stop I).
A study of the (joneral hydrogen market and aspects of the colilmorcialization
of now technology qcnerally was provided by E;F (Step 4) .

1
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Figure 1. SIMPLIFIED WORK FLOW OF THE PROJECT

Market price projections for hydrogen that resulted from this study
(Step 4), together with consideration of the general problems associated
with the commercialization of now technology, established the price range for
product hydrogen. Comparing the cost of hydrogen produced by a range of
candidate solar/hydrogen systems with hydrogen market price projections (Step
3), along with other considerations (Steps 2 and 5) led to the identified
neL,d for a further characterization of 4 candidate solar/hydrogen systems
(step 6) .

This study was predicated on the premise that solar energy will become
a major energy resource in the future. The study team has attempted to place
present and projected technological capabilities in perspective with the
realities of the marketplace for hydrogen as a commodity and as a fuel.
Although some might hope that broader areas of applicability for these tech-
nologies could be brought into being, the findings of this study indicate that
the earliest entry point for solar/hydrogen systems is in the small-user
commodity hydrogen marketplace. Then, if such an initial market entry can be
made, improvement and refinement of these systems and reductions in product
cost should follow. Finally, if solar/hydrogen product costs can be reduced
through these efforts, as fossil fuel costs increase, solar/hydrogen systems
might then evolve from the commodity gas market into the energy y.,s market.
(See Appendix I). (Also, see footnote on Page 29.)

2
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In the opinion of the study team, the 4 solar/hydrogen systems that ilave,
the must reasunrxhle probability of achieving a "commercialiv.od" status within
the , L,ext two ducades are

	

•	 Photuvoltaic/water cloctrolysis systems
	• 	 Solar Hiornlal-heat e^nginl^-generator/writ e-r e +li , ct re, ly.sis sy.;toins

	

•	 Wind ejiercly-gvnerator/water cle'ctrolysi.s sp;tcma;

	

•	 Small hydropower/water electrolysis systems.

St.rLl:^tur c,_ of This Report (Figure 2)

`Phis ruport is divided into two volumes. The monocjrallh:s provided 1?y
the y c (nit.ributi- nq technical. Tpeci.alists in the fi01(h-, oi' solar energy conver-
s i on h cllno locli ens and hydrogen production and delivery technologies have
hoop summarized, edited, compiled, and in many cds" extcn.;ivcly sijpplc^mout od
with information from the general literature: to form Volumo II, " Sus ar

	

II^ciruLe^n	 teem ` ucrhnologics." The systems assessment and pr(.1iminary sys-
tems euej.i.nocring efforts of the core group, supported by R:F, have het^n com-
pi led together wi th dove lopmont. and demon:;trat ion rocomwoudaLiun.o, to form
volume I, "Solar/lt drex eel Systems for the 1995-2000 q'inle i'r.ame4 "*

VOLUME ZI	 -}^n^n^^► 	 VOLUME 2

W

SURVEY OF

SOLAR ENERGY

CONVERSION TECHNOLOGIES
AND

HYDROGEN PRODUCTION
TECHNOLOGIES

• TECHNULOGY DESCRIPTION
• STATE -Of- THE-ART
• TECIINOECONOMIC CHARACTFRIZANON
• OTHER CONSIDERATIONS

RECOMMENDED SYSTEMS
CHARACTERIZATIONS

AND HYDROGEN MARKETS

STUDY
• SUBSYSTEMS ANALYSIS
a PRODUCTIUN SYSTEMS DESIGN SYNTHESIS
• PRODUCT COSTS CHARACTERIZATION
n HYDROGEN MARKETS STUDY
• COMMERCIALIZATION PR0BL E MS STUDY

D&D
RECOMMENDATIONS

n SUMMARY 01 FINUIN.,b

F 1 , 11 WO 2. CONTRACT END ITEMS FOR VOLUMES I AND T I ,
IN R _,'U\TI0N T() THE OVERALL PLOW OF PROD I:CT WOI.N

*	 'Pllc)e su]aC /hydrad	 systems potentially 	 te e tilts	 c^rt	 I +e'ye7nei-: ' s 1s)s1

t ime^ frame are	 in Appendix II .
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Section 11

APPROACH TO SOLAR/HYDROGEN TECHNOLOGY EVALUATION

A.	 Guidelines, Constraints and Approach

Guidelines and Constraints

The following guidelines and constraints provided the focus for this
assessment and led to the selection of the four candidate systems

1. The solar/hydrogen systems should be "commercializable" in two
decades. "Commercializable" is taken, for the purposes of this
assessment, as meaning:

•	 Basic research, development, and demonstration processes
will have been completed.

•	 All components and/or systems will be available for purchase,
though not necessarily as off-the-shelf vendor items.

•	 The purchaser will have reasonable confidence in the
costs, delivery schedule, and performance quoted by
the manufacturer.

2. Tho marketplace is the entire U.S.

3. Conventional business practices are to be used.

4. All hydrogen uses are to be considered.

5. There will be no major Government intervention or initiative
(i.e., no "mega-projects"), but the role of incentives is to
be considered.

6. No technological ' reakthroughs" are to be assumed.

These constraints and guidelines enabled the assessment to focus rapidly
on a method of categorizing the various technologies, and the systems com-
prised of these technologies. They also helped evaluate the systems in terms
of their potential for producing hydrogen at a cost compatible with some por-
tion of the existing and projected commodity and fuel gas markets.

Approach

The candidate technologies and solar/hydrogen systems composed of these
technologies were first evaluated in terms of their ability to meet Constraint
1 (principally, their state of development), then Constraints 6, 5, 3, and 4,
respectively. The cost of the hydrogen product, manufactured by the surviving
systems, was then characterized for evaluation with respect to Constraint 2
(the marketplace). The major problem encountered in this approach was the
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d' velopment of an appropriate basis for characterizing the product cost in a
useful manner.

An examination of the interrelationships between types of solar energy
conversion toohutjlcclies and hydrogen production technologies (Figure 3) illu-
,itrat-t•s that, while the various solar energy conversion technologies may be
soparated, the combination of technological options leading to the production
of hydrtxlen does nut invite easy categorization. The potential complexity of
the problem becomes even more apparent when the complete solar/hydrugen energy
system shown in Figure 4 is considered. From the "top to the bottom," this
system illustrates the point that solar/hydrogen production systems may be
designed and constructed which:

•	 May use direct, indirect, or a combination of both solar energy
forms as the primary enertly resource

•	 May be constructed over a range of scales

0	 May use any of a number of solar energy conversion technologies

•	 May use any of a number of hydrogen energy production technologies

Y	 May use any of a number of delivery options

•	 May serve two basic market uses: commodity gas markets, and fuel

gas markets

0	 May serve two market modes: capti ve (on site) and mLircha ► it .

SOLAR ENERGY

CONVERSION TECHNOLOGIES

DIRECT

pIDP111)T III. Y`.^I:i -^

PHOTIC	 P14014I AIAlYSIx

1'11+11 "I t I.I:TIO )t Y:;I'a

HYDROGEN ENERGY PRODUCTION TECHNOLOGIES

L'. t 1 T MIT Y'.:I:i

OI WAttll

HYORI[) EIECTHUtYilt:-

ELECTRIC	 1m 1141.,I1tGn11c:ELECTRICIT Y	t11rNMOCKMICAI.
WATLH SPUTTINt3

TIIE HMIt)NIC	
CGINAIon

titll. All HANIATION 	 HLt.I T11EWAtTHERMAL	 -- HEAT	 q I^-^—~
GONt:ENT1IATiUN	 \	 WATEH t4PtIT tiNG/

HEAT rN"IN1.

INDIR F 	

Till

RM1,cHE MICA:
4'Yt.tiS

WE Gh

u.:nAHn:at. dirt-	 - SHAFT POWER
,'IUUa •,o.t :. wAYI '. • ^• 1 I M:i

11.sm 1 il'1 cwt H

[111)4 UGIC At

IN I L TIME 111A rL
PROCLaSEB

HYDROGEN

Figure 3. AN ILLUSTRATION OF THE INTERRELATIONSHIPS DE WE N
CLASSES OP SOLAR ENERGY CONVERSION TECHNOLOGIES ANI7 HYDROGE.N

PRODUCTION TECHNOLOGIES

6



<U
N

N

(1)

04

Q

i

ru
a

a
MW"J

41

w

En

tj

W
in
w

o

En

O HEw

a^
t33 H

U
N
N

WH
Z

O

W WJF- W
^ H F

^
^

►
y

-
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The number of specifics system design permutations which could result
from the options illustrated in Figures 3 and 4 is obviously large. Moreover,
the picture is further complicated by the fact that all these options may be
modified by site-specific considerations such as the form and intensity of a
local solar energy resource, local environmental constraints and siting
restrictions, and a range of business economic considerations unique to a
specific hydrogen market or specific captive-user's business operations.
However, the screening with respect to Constraint 1 (commercializaebility)
considerably reduced tho number of system permutations which required in-depth
consideration by eliminating a large number of candidate technologies from
further consideration. Consequently, only the site-specific aspects of solar
hydrogen systems?; remained as an unbounded variable. Since it was not yet
possible to propose candidate sites realistically, it was concluder) that a
comparison between hypothetical site-specific system designs would not prove
useful.

it was then decided that the best approach was to go directly to the
most general parameters which could be used to characterize the solar/hydrogen
product cost using any given system at a specific site. The parameter
elected to characterize the system was total installed cost in dollars/kW
of hydrogen output capacity; the parameter elected to characterize the site
was plant factor. Using both installed costs and plant factors as inputs, a
resulting product cast was established on a utilitv f'inancinq basis (25-year
book life) and on an industrial financing basis t 'A- ye,r book life).

B. Commercialization Considerations (A endi x IV-B)

Trends apparent from the history of new technology commercialization indi-
cate that periods of time on the order of two decades are usually required
before commercialization can actually be achieved. This finding indicates
that the most advanced conversion and hydrogen production technologies
should be selected preferentially. A general assessment of the status for
the technologies investigated resulted in the findings presented in Figure 5.*

C. Market Considerations iApeendix IV-A)

Solar/hydrogen will not be competitive by the year 2000 with fuel
gas currently at $2.00-$3.00/million Btu or with liquid fuels currently at $8.00-
$10.00/million Btu. However, a market possibility does appear to exist in
the small-user hydrogen market place where prices for merchant hydrogen ranging
from $20-$200/million Btu are paid (Appendix IV). Four candidate systems were
found to have product costs in the range of $25 - $100 /million Btu (1980
dollars) for hydrogen at the solar/hydrogen system site. However, for non-captive
installations, delivery costs must be added to the product hydrogen manufacturing
cost.

*	 All investigated technologies are discussed in detail in Volume II.
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Figure: 5. A GENERALIZED ESTIMATE OF THE COMPARATIVE "MATURITY" OF
VARIOUS SOLAR ENERGY CONVERSION AND HYDROGEN PRODUCTION TECH-

NOLOGIES

D. Summary

Technologies that are the most mature can reasonably be expected to
offer the most information upon which to base reasonable product cost pro-
jections. it is also obvious that immature technologies, for which adequate
cost and performance projections are not available, cannot be definitively
assessed in terms of their ability to meet a market need. However, the
potential for breakthroughs in these technologies must be kept in mind even
though consideration of such breakthroughs was specifically prohibited by
the guidelines of this study.

The study team initially surveyed all technological options to deter-
mine their relative maturity. The hydrogen product price that could be pro-
vided by systems combining appropriate technologies was characterized as a
function of installed energy production capacity cost per kilowatt and
plant lead factor. Those technologies which offered a reasonable probal.i.].ity
of producing hydrogen within the range of present and projected hydrogQ n
market prices are recommended as being suitable candidates for commercializa-
tion within the two-decade constraint of this assessment.
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Section III

SOLAR HYDROGEN SYSTEMS FOR THE 1985-2000 TIME FRAME

Introduotiun

System Desi s

During this phase of the wori., polar/hydrogen systems made up of the
selected solar energy conversion technologies and water electrolysis were
synthesized. (See Figure 6 and Figures 8, 10, 12, and 14.) Electrolysis
J r, readily interfaced with the selected solar energy technologies and is
;:self a fully commercialized technology. Moreover, active research and
development programs are underway to improve the cost and efficiency of
electrolyzers.

CONVERSION	 REJECTED

	

LOSMS	 H2O 02 HEAT

	

SOLAR	 SOLAR

	

ENERGY	 WATER	 H2ENERGY	
CONVERSION	 ELECTROLYSIS

	

INPUT	 $ BTU
TECHNOLOGIES

FOUR CANDIDATES

Figure 6. A FIRST-LEVEL BLOCK DIAGRAM OF A SOLAR HYDROGEN PRODUCTION
SYSTEM COMPRISED OF A SOLAR ENERGY CONVERSION TECHNOLOGY AND A

WATER ELECTROLYSIS

System Economics.

In 1977, the Electric Power Research Institute (EPRI) introduced a Tech-
nical Assessment Guide for the electric power industry. This guide has since
been used throughout the utility industry in developing cost estimates for
energy systems; it established fixed-charge rates, the methods of handling
depreciation and investment tax credits, operating and maintenance costs,
etc., and it forms the basis of the cost analyses presented here.

The graph presented in Figure 7 was developed using the EPRI method.
Since this graph forms the basis upon which the four selected systems were
compared, understanding it is critical to understanding the subsequent dis-
cussion. For this reason, this method of presentation is discussed in some
detail.

11
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Given any state-of-the-art in a field of energy conversion technology,
a given energy production system using that technology can be deac:ibed in
terms of its nominal installation cost in dollars per kilowatt of hydrogen
energy* production capacity. For example, if a given energy production tech-
nology has an .installed price of $6000/kW, this price will be represented by
Line A in figure 7. A second parameter for describing an energy production
system is plant factor. If any energy producing system operates at approxi-
mately a 50% plant factor, each kilowatt of installed capacity would operate,
on the average, of 12 hours per day. If this were a hydrogen plant, and the
product could be sold at $100/million btu, sufficient revenue would be
earned to permit that plant to be a viable business enterprise if it were
financed on a 25-year book life basis (utility financing). Thus, the point
A-1 represents the minimum plant factor at which the $6000/kW hydrogen out-
put capacity system must operate to earn enough revenue to meet its finan-
cial needs under a 25-year book life constraint. If that system could be
operated at a higher plant factor, say 60% (point A-2), the hydrogen product
could be sold at less than $100/million Btu. If the same installation were
required to operate on industrial financing rules, i.e., a 5-year book life,
a plant factor of nearly 806 would be required to achieve a $100/million Btu
hydrogen product cost (point A-3).

If, through any of a number of moalis, i-hcs .i.nstal lod costs can be
reduced (line b), the plant factors required to earn suflic.:ic• nt revenue to
meet all plant costs would be reduced. Point B-1 and B-2 illustrate this
for the $100/million Btu hydrogen product cost and 25- and 5-year plant book
lives, respectively, for a facility installed capital cost of $3500/kW.

In the following presentation, the installed cost plant factor bound-
aries determined for the selected solar/hydrogen systems were overlayed on a
Figure 2-type: graph. This results in a rectangular area similar to the area
in Figure 7, defined by points A-1, A-3, B-3, and B-9. The area within the
boundaries illustrar.es the range of potential hydrogen product costs subject
to the actual installed cost, plant factor, and plant boob: life.

The plant factor boundaries determined for each case result: from data
available in the literature. Illiese are considered by the study team to be
reasonable. The actual plant factor for any system is a site-specific con-
dition dependent upon both, the energy available and the system, energy
storage, and sizing considerations. In all cases, lower plant factors are
possible, although generally not economic. Likewise, for those system
designs where sizing and storage can affect plant factor, higher plant
factors can be obtained, usually at the expense of under-utilizing the
energy resource or by increased capital costs.

The hydrogen product price range shown in Figure 7--$25 and $100 per
million Btu-- are representative of costs presently being paid and projected
to be paid in the forsecable future in the small-user sector of the general
commodity hydrogen market, which is the highest priced sector. of the hydro-
gon market (Appendix IV). These will be discussed later. Solar/hydrogen
systems which dry not yield an installed cost/plant factor area which has
some portion below the $100/million Btu, 25-year book life line will most
likely be non-competitive within the time boundary of this assessment (year
2000).

Higher heating value basis -- 61,000 Btu/lb.
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9ATTERV STORAGE I
I0WFERING1 AND 0

IAUXILIARY POWER 

HYDROGEN
STMAGE I

The following four solar/hydrogen systems were selected on the basis of the
assigned selection criteria (see discussion 

on 
Pages 5 - 10):

1. Hjotovoltaic/water electrolysis

2. Thermal heat engines/water electrolysis

3. Wind energy/water electrolysis

4. Small hydropower/water electrolysis.

it should be noted that no by,,product oxygen cost credit has been
assumed in any of the analyses presented in this assessment.

A.	 PI)otovoltaic/Water Electrolysis Production Systems (Figure 8, Appendix 111)

The installed cost/plant factor boundaries for photovoltaic solar/
hydrogen production systems are shown in Figure 9. Two regions designated as
"A" and "B" are shown. Region B assumes the achievement of the 1982 photo-
voltaic array cost goal of $2/peak watt electric (1975 dollars), with the
installed cost estimated to be 150, of the photovoltaic array cost. After
adjusting to 1980 dollars, the photovoltaic subsystem cost was matched with

SOLAR
ENERGY

4AS DMCI
SEAM AND

DIFFUSE
RADIATION)

PHOTOVOLTAIC
ARRAY

I CONTROLLER I

WATER
ELECTROLVZER

HYDROGEN
PRODUCT

C.I.; CONTROL INTCRFACE. E.G.. POWER CONDITIONING, VALVIN11 COMPRESSION.

Figurc 8. PHOTOVOLTAIC/ELECTROLYSIS PRODUCTION SYSTEM BLOCK DIAGRAM
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present technology electrolyzexs to obtain total system cost. Rlectrolyzers at
the 10-kW and the 30-MW system size level were selected to define the upper
and lower bounds of Region B. Region A was established in the same manner as
Region 8, with the difference being that the 1990 photovoltaic array cost goal
of $0.20/peak watt electric (1975 dollars) was assumed, along with advanced
technology electrolysis equipment.*

Come 1 rict i nn

For photovoltaic/hydrogen production systems to be commercially viable
in the small-user hydrogen market, the 1990 photovoltaic cost goals and the
year-2000 electrolyzer efficiency goals must be achieved. Neither present
technologies nor near-term projected technology improvements will yield
viable systems. However, these observations do not eliminate the need to
gather experience in the construction and operation of such systems between
now and 1990 to 2000 if there is high confidence that the photovoltaic and advanced
electrolyzes cost goals will be achieved.

B.	 Thermal Heat-Engine SolarZHydrogen Production Systems (Figure 10 and
Upendi x 111)

Figure 11 presents the estimated installed cost/plant factor boundaries
for thermal heat engine solar/hydrogen production systems; again, two regions
are shown. Region B represents systems in the 100-kW class for the 1990 to
2000 time period, and Region A represents systems of 1 to several hundred
megawatts for the same time period. Solar to electricity technology costs
ranged from $1800 per kW (1978 dollars) for the smaller systems in 1990 to
$1000 per W (1978 dollars) for the larger systems in the year 2000. The
electrolyzeretechnology assumed was midpoint (between present and advanced)
for the 1990 time frame, and advanced for the year-2000 time frame.

conclusion

Solar thermal heat engine/water electrolysis systems require additional
development. The key to their commercial viability lies mostly in cost
reduction through volume production in small-scale systems and possibly in
economies-of-scale in large systems.

H

* If systems were analyzed on the basis of today's electrolyzer and photo-
voltaic technologies, installation costs would be very high, in the range
of $20,000/kW of hydrogen output capacity, out of the range of Figure 9.
See Appendix III for a discussion of electrolyzer costs and efficiencies,
both present and future.
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Wind Ent , rqv/Water Electrolysis Productio n Systums Wiqui c 12
x III

Three estimated installed cost/plant factor boundary regions are shown
for wind energy solar/hydrogen production systems in Figure 13. Regions A
through C roughly correspond to systems of 10-MW, 500-kW, and 10-kW system
sizes, respectively. Except for Region A, which represents large 4ystems in
the year 2000, the regions' upper and lower boundaries reflect expected
system improvements with time.

Conclusions

Wind energy/hydrogen systems in the 10-kW class are presently not
economically viable. They may become so in the future if the wind energy
market develops sufficiently to permit significant cost re:iuctions through
mass production. With present technology, systems in the 500-kW class and
above appear economically viable at present and this situation will be
improved if volume production of large units is supported by growth in the
overall wind t ncrgy systems marketplace;.

I	 CONTROLLER

SOLAR WIND TURSINE	 WATER	 HYDROGEN
ENERGY

OAS WSW GENENATOR	 C'1	 ELECTROLYZE"	
G.1.	 PRODUCT

ENERGY ►
1

rSATTERY STORAGE=	 NYDROOEN
I	 IGUFFERING) AND 	 =	 STORAGE
S AUXILIARY POWER I

Cd. CONTROL INTERFACE. E.G, POWER CONDITIONING VALVING COMPRESSION.

Figure 12. WIND ENERGY SOLAR HYDROGEN PRODUCTION SYSTEM BLOCK DIAGRAM

D.	 Small. Hydropower/Water Electrolysis Production S ,ystt.nm s (Figure 1 4 and
Appendix 1II)	 Y

The functional diagram for small hydropower/hydrogen systems (Figure
14) is quite similar to that of wind hydrogen systems. Both convert an
indirect solar energy resource (contained in the form of kinetic energy of
a fluid) into shaftpower with the same sequence of energy conversion steps
leading to the hydrogen product. However, the hydropower case often provides
a greater degree of "manageability" of its falling water input and hence
higher plant factors than direct solar or wind conversion technologies.
This manageability is provided by the use of the upstream water reservoir as
an energy storage mechanism.
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HYDROGEN
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C-L' CONTROL INTERFACE E.Q., POWER CONDITIONING, VALVINQ COMPRESSION.

Figure 14. SMALL HYDROPOWER SOLAR/HYDROGEN PRODUCTION SYS`!'LM BLOCK DIAGRAM

Hydropower is a mature technology, with costs in 1980 dollars ranging
from $2750/kW for 200-kW systems down to $440/kW , for 

megawatt-size systems.
Since the technology is so mature, production-related cost reductions
(rather than technology-related cost reductions) are more likely for this
solar-to-electricity technology. However, in keeping with the current industry
practice of single unit custom production in response to a specific customer
order, no solar-to-electric subsystem high-production cost benefits have
been projected in this analysis. However, we do wish to emphasize that such
a cost-reduction avenue is potentially available. The cost and efficiency
benefits associated with electrolyzer subsystem improvements expected with
time are included in Figure 15.

Conclusions

Hydropower technologies, both current and advanced, in both Large and
small scales, can be employed in viable solar/hydrogen production systems.
However, the falling water resource is restricted in terms of siting options
and total resource available (Appendix IV).
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Section IV

THE HYDROGEN MARKET AND SOLAR/flYDROGEN SYSTEMS

This study has focused on those: solar/hydrogun production tuchnvloyitrs
with the best chance of achieving a commercialized status within the next two
decades. The cost of the hydrogen product produced by systems using the
selected technologies can meet manufacturing cost goals, which range from
$25/million Btu to $100/million Btu if these systems are operated as captive*
systems. To this cost must be added the cost of delivery, and its profit, in
order to determine the selling price to a potential customex if the systems
were operated to supply merchant hydrogen.

Two questions remain to be answered. First, who are the customers who
can afford to pay the calculated solar/hydrogen product prices? Second, what
are the problems that must be overcome in commercializing the solar/hydrogen
production technologies selected?

A. The Hydrogen Market (&pendix IV)

Figure: 16 places the hydrogen market in context with the total. U.S.
energy requirements for 1978. Hydrogen is not currently used as a fuel in
significant amounts. Rather, its predominant use is as a chemical feedstock
or as a commodity gas. Taken in terms of energy content, the total U.S.
hydrogen consumption amounts to about 0.8% of the U.S. annual energy consump-
tion. Nearly 96% (95.8%) of this 0.8% is used for the production of ammonia
and methanol and in the refining of fossil fuels; it is manufactured at the
processing plant site, i.e., it is captive hydrogen. Aroused 89% of the re-
maining 4.2% is also generated and used at the same location, i.e., it is
also captive hydro, enn; the balance (about 0.5% of the total U.S. hydrogen
consumption) is de.;Livered and sold by industrial gas suppliers as merchant
hydrogen. The sum of captive and merchant hydrogen used in areas other than
ammonia production, methanol production, and the refining industries comprises
the "small-user hydrogen market" (4.2% of the total U.S. hydrogen consumption).

The small-user hydrogen market is primarily comprised of chemical
industry applications, the metals industry, fats and oils processing, the
electronics industry, float glass manufacture, and the pharmaceutical indus-
try. The present and projected consumption patterns of these industries
between the present time and the year 2000 are presented in Figure 17. These
uses are projected to expand and can offer a long-term commercialization
opportunity for solar/hydrogen systems.

B. Who Can Afford To Pay The Price?

Today's small hydrogen user can obtain hydrogen by any of four options:

1.	 Can-site steam reforming of natural gas or naphtha

*	 User owned and operated.
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2. Purchases from some nearby facility where it is available as a
byproduct

3. Purchase from an industrial merchant gas company with delivery
by truck

A.	 4n-site electrolysis of water using grid power or on-site
generated power.

Figure 18 shows small-user hydrogen costs as a function of daily
demand. Table 1 adds further detail to the wide ranges of prices presently
paid for hydrogen delivered to small ur gers. Keeping in mind the prices for
solar/hydrogen of $25/million Btu to $100/million Btu previously presented,
it appears that there is a potential solar/hydrogen market now, and that it
is one that could grow in the next two decades.

me

40--
PURCHAEEO HYDROGEN,
TRUCK DELIVERED

ME ELECTR0

	

109	 100K	 1M	 10M	 low
GUAMTITY REWIRED. SCf/DAY

Figure 1.8, SMALrj USER HYDROGEN COSTS VS. REQUIRED DELIVERY RATS (1980 Dollars)

	

;jAppendix IV)	 (SPE-Solid Polymer Electrolyzer)

However, for solar/hydrogen to be viable, site-specific characteristics
such as the amount of solar energy available, flow rate, pressure, and purity
requirements must be compatible with at least one of the candidate solar/
hydrogen production systems' capabilities. Moreover, distances uetween the
solar/hydrogen production facility and the use to be served must be short to
minimize the transportation costs that must be added to the solar/hydrogen
product cost in non-captive applications.

Illustrative of this last point, industrial gas companies in the United
States view 100 miles as about the maximum economic distance for tube-trailer
delivery of pressurized gaseous hydrogen. Beyond this, it is necessary to
transport cryogenic liquid. '
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laidv 1. ACTIJAi, MERCHANT HYDROGEN PRICES PAID BY CUSTOMERS (Appendix IV)

1 ►►dividuad Customer Demand
(Mikliun SCF/year)

Delivered price of Hydrogen
6

1977 $/KSCF	 1980 $/10	 situ

0.20 50.00-60.00 178.00-213.60

0.35 28.50 101.50

0.50 !04.90 195.40

0.50 22.00 78.30

3.0 8.00 28.50

5.0 12.00 42.70

10.0 9.50 33.80

12.0 9.10 32.40

18.6 8.60 30.60

22.0 7.00 24.90

37.0 8.00 28.50

72.0 8.00 28.50

97.0 6.00 21.40

100.0 5.50-6.00 19.60-21.40

120.0 7.00 24.40

150.0 7.50-8.00 26.70-28.50

180.0 5.50-6.50 19.60-23.10

200.0 7.00-7.50 24.90-26.70

It is important here to note again that two factors have not been con-
sidered in this assessment effort. First, no credit has been assumed for the
oxygen coproduct since the value of this oxygen is highly dependent upon site-
specific consi,1Jrations. Secondly, some solar energy conversion technologies,
i.e., concentrating photovoltaic and solar thermal engine systems, could be
applied in cogeneration designs where additional earning potential (or cost
credits) could exist in the process heat byproduct. Again, opportunities
to apply synergistic design approaches are site-specific; therefore, no meaningful
hydrogen production financial analysis can be accomplished using some "ideal"
situation where product credit is claimed for oxygen and process heat.
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C.	 The Solar Il,dru en Corner Of The Market -- Another Consideration

in numerous small-urger markets, hydrogen is essential to the operation
of the process. However, it often comprises a very small portion of the
total product price. Thus, the user can afford to pay a high price because
the cost of hydrogen does not drastically affect the cost of manufacture of
his product; but, because it is essential, the user places a high premium on
being assured of a reliable and predictable supply. Thus, solar/hydrogen
systems might be especially competitive where they can provide the user with a
more reliable and more predictable (in terms of both price and supply) supply
of affordable hydrogen than can conventional sources. However, considerably
less information exists on the reliability of solar/hydrogen systems than on
the prices. 'Therefore, demonstration oY reliable operation is important, and
it can only be obtained by the operation c,f real systems.

D.	 Commercialization Issues (Appendix IV-B)

in the course of this assessment, the "commercializable," constraint was
by far the most severe in terms of screening the candidate solar/hydrogen
systems. Thus, an understanding of the total process--from first conception
of an idea to commercializing it and finally to a commercialized status--is
important.

it is significant to point out again that the sclar/hydrogen systems
judged to be commercializable by the year 2000, as discussed in this report,
may in fact be many years away from a commercialized status. Numerous factors
can delay the commercialization of new technologies; these factors as reported
for the chemical industry are shown in Table 2.

'fable 2. FACTORS CONTRIBUTING TO THE DELAY OF "FIRST REALIZATION" OF
NEW TECHNOLOGIES IN THE CHEMICAL INDUSTRY

(Appendix IV)

37.5%

29.2%

8.3%

4.2%

4.2%

16.6%

0.0%

100.0%

(1) No Market or Need

(2) Potential Not Recognized by Management

(3) Undeveloped Technology

(4) Resistance to New Ideas

(5) Poor Co-operation or Communication

(6) Other

(7) Shortage of Resources

Total
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With regard to the single major cause of delay, the fact that no market
or need fur the tOC11 ►1010gy exists (Table 2), we have addressed the market but
not tho need for solar/hydrogen production technology within this market. In
fact, the market is presently served adequately by other supply methods, and
solar/hydrogen can offer no major product improvement or cost reduction 'at
the present time save, possibly, for the considerations mantioned under (C)
above.

The factors relating to industrial management decision-making, and the
execution of these decisions (in Table 2), comprise the second largest cause
of delay. Hero, it must be recognized that a proposition to invest in solar/
hydrogen systems is extremely difficult to present to corporate- level. person-
nel today because, oven though the potential value of the system might be
acknowledyed, the time frame is beyond conventional corporate planning hori-
zons.
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Section V

CONCLUSIONS AND RECOMMENDATIONS

A..._	 Major conclusions

Solar/hydrogen systems could be operated on a commercial basis by some
small users within tile next two decades or shortly thereafter (Figure 19).*

In weighing the potential benefits against the risks involved, a com-
pany in the merchant hydrogen business, or a captive system owner., might
decide to install a solar/hydrogen system in the near-term; however, the
study team does not judge such a decision probable because it would mean that
the case for solar/hydrogen had been successfully pursued with management,
and this has not, in fact, been accomplished anywhere in the United States
as yet, to the best of our knowledge.

Moreover, design, construction, and operation of solar/hydrogen systems
require a practical knowledge of a rather wide range of technologies. While
some supplier and small-user firms have knowledge of some of these technolo-
gies, none are knowledgeable in all of them. Thus, before the solar/hydrogen
option can be considered by such firms, information on the requisite technolo-
gies must be brought together and uvaluated in light of that company's speci-
fic operations and presented in a manner that is meaningful to that firm's
management. Recognizing this problem, the DOE could provide the means for
bringing practical knowledge of solar/hydrogen conversion technology, and
related systems engineering, to management evaluation of these systems.

One approach--a cooperative approach to the development and demonstra-
tion of solar/hydrogen systems, which involves industrial firms working oil
shared-risk basis with the DOE--might offer some }tope of success. This
approach, involving initial Government support in the form of system demonstra-
tion projects, has substantial precedents and is discussed further in Appian
dix V.

If the DOE chooses not to support such an effort, it is the study
team's opinion that industry will not do so either within the next two
decades. This opinion is based on our judgement of the nature of the basic
business decision-making process as well as the presently perceived continued
availability of fossil feedstocks for hydrogen production through 2000.

*	 The development and commercialization of solar/hydrogen systems for
energy-related (as opposed to commodity hydrogen related) systems is a
distinct possibility. It is generally recognized that hydrogen can offer
technical advantages over electricity and heat, both presently involved
in solar energy applications, as an energy storage form. Hydrogen as a
transportation fuel is a case in point. However, it is not clear that
hydrogen can offer similar economic advantages, and thus have a general
place in the energy market. Because of this, the .potential for solar/
hydrogen energy system applications was not further treated in this
assessment.
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Moreover, since time lags for the introduction of now technologies are often
on the order of 20 years or more, near-term initiatives in solar/hydrogen
development and donionstration are needed if these systems are to become
commercialized in the early-2000 time frame.

B.	 Recommendations

The study team recommends the following to the Dep..rtinen • of Energy;

1. That the results of this Solar/Hydrogen Systems Assessment be
used to support presentations to those industrial firms most
likely to benefit from the solar/hydrogen option.

2. That an effort be made, integrated with the recommended indus-
trial liaison in (1) above, to develop cooperative participation
in the development and demonstration of the four selected solar/
hydrogen systems.

3. Contingent upon developing active participation by industrial
firms, that site-specific system design and organization-specific
economic analysis of selected solar/hydrogen systems be per-
formed.*

4. Contingent upon the outcome of (3), that appropriate development
and demonstration projects be defined and that a coordinated pro-
grain based on joint Industry and Government support and participa-
tion be executed.

These analyses should consider the product value of the y hydrogen,
oxygen and process heat to be produced, individually, and in combina-
tion.
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TECHNICAL PAPERS AND PRESENTATIONS PRODUCED DURING THIS ASSESSMENT PROJECT.

The following technical papers and presentations were prepared by the
Jet Propulsion Laboratory and Escher:Foster Technology Associates, Inc., under
the JPL in-house effort and contracted Solar/Hydrogen Systems Assessment effort.

1. Hanson, J.A., "Concepts for Solar Production of Hydrogen," presented
at the Institute of Gas Technology Symposium "Hydrogen for Energy
Distribution," 24-28 July 1978, Chicago, Illinois (Proceedings).

2. Hanson, J.A. and Escher, W.J.D., "Toward the Renewables: A Natural
Gas/Solar Energy Transition strategy," presented at the 14th
Intersociety Energy Conversion Engineering Conference, 5-10 August
1979, Boston, Massachusetts (Proceedings).

3. Hanson, J.A., Escher, W.J.D. and Foster, R.W., "Future Production
of Hydrogen From Solar Energy and Water: A summary and Assessment
of U.S. Developments," presented at the International Symposium --
Hydrogen in Air Transportation, 11-14 September 1979, Stuttgart,
Federal Republic of Germany (Proceedings).

4. Hanson, J.A., "Solar Hydrogen," presented at the ' Solar and Hydrogen
Seminar/Workshop, presented by the Clean Fuel Institute Ut al.,
6-8 January 1980, Riverside, California.

5. Escher, W.J.D., Poster, R.W. and Hanson, J.A., "Assessment of
Solar/Hydrogen Systems," presented at the Department of Energy
Chemical/Hydrogen Energy Systems Contractor Review, 13-19 No-
vember 1979, Reston, Virginia.
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APPENDIX I

BACKGROUND AND RATIONALE FOR SOLAR/
HYDROGEN SYSTEMS

SOLAR ENERGY SYSTEMS

Introduction

This section provides a brief background on solar energy as it relates to

the production and use of hydrogen as a fuel and as a commodity gas. Solar

energy conversion technologies which are applicable to the production of hy-

drogen are treated more specifically in Volume II of this report.

Direct and Indirect Solar Energy Resources

Solar energy is available as direct radiation and in indirect forms such

as wind energy and hydropower.

Direct specular or beam radiation that is received from the sun is per-

haps the most apparent form-to consider. This is the only form usable by con-

centrating (optical) solar energy conversion systems, e.g., central receiver

or "power tower" systems.

Less obvious, Lit still a direct energy input form, is diffuse radiation.

This form of solar energy varies depending on the air mass penetrated (a func-

tion of solar inclination from the zenith and altitude), atmospheric torpidity,

water vapor, dust, and aerosol content. Flat-plate collectors and photovoltaic

converters, amonq others, can utilizes diffuse radiation.

Indirect solar energy forms relate to biological, atmospheric, oceanic,

meteorological, and/or climatological aspects in which physical materials are	 i

affected by the input of solar energy. The result is chemical, kinetic and poten-

tial, and thermal energy available for conversion into useful wurk.	
a

Examples of indirect solar energy forms are wind, falling water (providing

hydropower), ocean waves, stored thermal energy (temperature differences with

ocean depth), and biomass. Each of these: can be tapped by spacial conversion

systems, some of which go back into technological antiquity--for example, wind-

mills and water turbines. Others, such as wave-power devices and ocean thermal

I-1
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energy conversion (OTEC) systems, are in the research and development stage at

the present time.

Both direct and indirect solar energy conversion systems ran be used for

the production of hydrogen. This prospect is covered in Volume XI of this

report. The present Volume I focuses on several candidate solar/hydrogen Sys-

tems which are believed to offer commerc3alization potential by the year 2000.

Delivered Forms of Solar Energy Systems

Today, energy is produced, delivered, and used in three basic forms: as

chemical energy (fuels), as electrical energy (electricity), and as thermal

energy (heat). This is presented schematically in Figure 1-1.

Figure I-1. ENERGY DELIVERY MODES

in proportion, fuel energy is the largest of the three forms, approximating

92% of the energy projected to be consumed in the United States. Vlectricity,

usually requiring chemical fuels for its generation, is the next-largest con-

tributor at about 8%. However, because of losses in energy conversion and

delivery, the electrical utilities comprise about 22% of the national total

energy needs. This represents a lumped generation, transmission, and distribu-

1-2
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tion efficiency of approximately 300, 2

Thermal energy, although in large demand as the actual end-form of energy

usage (009. 0 space-heating, industrial process heat and steam), is seldom delivered

over any substantial distance. The combustion of fuels or eslectrioal heating

at the demand- or use-point ,yields the required heat. Improved energy-conversion

efficiency can oft;rt be achieved through waste-heat utilization and "Total

Energy" systems concepts.

Utility district heating, in association with electricity generation, is

a commercially mature technology, but with limited application today. However,

renewed interest in this approach is evident. Recent emphasis on cogeneration

of electricity and process/space heat is aimed at increasing overall energy

conversion efficiency. Solar/hydrogen production systems can be implemented

as a part of cogeneration system designs.

A specific form of indirect solar energy of great importance is represented

by fossil fuels. While fossil resources represent naturally processed solar

energy initially converted via photosynthesis, this assessment views the pros-

pects for technologically processed solar energy in the form of hydrogen. As

will be discussed, solar/hydrogen can be directly used as a carrier of solar

energy, or it can be used in the synthesis of alternative liquid and gaseous

hydrocarbon fuels, e.g., synthetic fuels.

Today, solar energy conversion devices, both those in use and those under

research and development, are directed to providing just two of these three

energy forms: heat and electricity. (See Figure I-l.) The solar-production

of chemical energy forms has not yet been pursued to the market stage, nor is

this pursuit even well-initiated in terms of R&D.

The solaz-production of hydrogen is basic to solar-derived chemical energy

forms. This is because hydrogen is basic to all hydrocarbon fuels, as well as

being a candidate future fuel in itself.

HYDROGEN ENERGY SYSTEMS

The focus of Volume I is upon these solar/hydrogen systems which are viewed

as commercializable within the next two decades, i.e., bZ the year 2000.

It is the study team's belief that the markets to be served by the selected

candidate solar/hydrogen systems are less likely to be for energy (fuel) appli-

cations than those requiring hydrogen as a chemical commodity. This use com-

?	 9
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prises the major portion of the hydrogen market today, and this market is

projected to expand substantially over the next two docadon.

Beyond this 2000 time-horizon and/or if "extraordinary" programs to

develop hydrogen-energy systems are pursued earlier, energy applications might

then be of great potential significance.

The emphasis of Volume I is on non-energy uses of hydrogen, together with

special, small-scale energy use possibilities. For completeness, this Appendix

addresses the concept of large-scale hydrogen energy :systems as well.

Background and orientation

Over the past decade, a new concept for an overall energy system based on

hydrogen has been proposed and is under active consideration by a number of

researchers in the world energy community. Presented initially as the "Hydrogen

Economy'13 ' 4 , and now known more generally as the Hydrogen Energy System concept,

this scheme envisions hydrogen produced from water as a universal "energy

carrier." As such, hydrogen is recognized to be a secondary energy form, just

as electricity is. It is not a new energy source.

A primary energy source is necessary for producing hydrogen, just as fossil

and, to a far lesser extent today, nuclear fuel, is required to generate elec-

tricity. This study is concerned with those unique hydrogen production possi-

bilities in which the primary energy source is the sun. The purpose of this

Appendix is to provide background on the hydrogen energy system, other hydrogen

applications, and the general status of hydrogen-related efforts today. This

is followed by an expanded discussion of non-energy hydrogen applications, the

emphasis of this volume.

The Hydrogen Energy System Concept_

The hydrogen energy system concept is shown in general form in Figure I-2.

It is comprised of three steps:

1. Production--Production of hydrogen involves the use of a primary energy
resource to operate a process capable of producing hydrogen with water
as the basic "feedstock." Usually oxygen, the other elemental constitu-
ent of water, is also produced as a coproduct.

2. Delivery--The delivery step is nominally subdivided into: 2a - transport
(or transmission), 2b - storage, and 2c - distribution. For each of these
substeps, several technical alternatives are available. For example, the
hydrogen transport (long distance) and distribution (local) function can
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Figure 1-2. THE HYDROGEN ENERGY SYSTEM CONCEPT

be handled by either pipeline or vehicle carrier means. Similarly,
hydrogen storage approaches range from industrially established
pressurized gas and cryogenic liquid storage techniques to projected
metal hydride and underground storage concepts.

3. Use--The conventional use-sector categories, as shown in the diagram,
are: electrical utility, commercial and residential, transportation,
and industrial.

It should be stressed that the components and arrangements presented in

Figure 1-2 are highly generalized. Most of the technical options from which

actual systems of interest might be ultimately synthesized are represented.

concerning the physical scale of the system, an inference might be drawn

that only large-scale central, production facilities tied to large-capacity,

long-distance transmission systems, major storage facilities, etc., are within

the bounds of the concept. Such a restrictive interpretation is not meant.

Small-scale systems are also projected to be important since nearer-term hydrogen

1-5
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energy systems are likely to be locally, community, or rvgionally based. In such

systems, disatanoes between production and using systems could bcs of the order of

meters, rather than tens or hundreds of kilometers. For instance # complete

solar/hydrogen systems can be envisioned as being implemented on a single-

`	 residence basin.

The operation of the system is proposed to be as follc_vs%

1. Primary energy is used torow duce hydrogen (and usually oxygen) from
water through appropriate "water splitting" processes.

2. Hydrogen (and possibly coproduct oxygen) is transported to distribution
points.

3. Hydrogen storage capability, as noted, can be transport/transmission-
step associated or distribution-step related.

4. Distribution of hydrogen to the user and, more specifically, to actual
consuming devices and systems (which also might integrate storage capa-
bility), completes the delivery step.

5. Hydrogen end-use for the intended purpose at hand, be it as a chemical
feedstock, or as a fuel/energy form, is the final step. Where hydrogen
is combusted with oxygen, water is formed in the same amount as used to
produce: that hydrogen (i.e., the original feedstock is not permanently
"used up" but can be returned to the environment).

Indirect Uses of Hydrogen in Energy 8p2lications

Having emphasized the direct delivery and use of hydrogen in the discussion

above, possibilities for its intermediate use should be highlighted as well. One

of these is the use of hydrogen energy for electricity generatione* A second use

is found in hydrogen's potential role in the production of alternative, ncn-

petroleum fuels, e.g., synthetic hydrocarbon fuels, or "synfucis".

As illustrated in Figure 1-3, substantial amounts of hydrogen are required

for the upgrading of coal and kerogen (the hydrocarbon material of oil shale)

for the production of liquid and gaseous fuel forms ranging from "syncrudes" to

substitute natural gas (SNG). On one hand, this involves adding hydrogen

chemically--hydrogenation--to these low-hydrogen content carbonaceous starting

materials to increase their hyd',  gen/carbon ratio to that of a refinable crude.

On the other hand, hydrogen is also a vital treating material for the

removal of unwanted constituents, such as sulfur and nitrogen. A typical

upgrading hydrogen requirement for both hydrogenation and clean-up in producing

* As reflected in Figure 1-2 (upper right-hand corner)

t	 'I
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a Liquid product is 2 to 3 MSCF per barrel of product. in energy terms, this

means that the order of 15% of the finished synfuel energy is required to be

added in the form of supplied hydrogen for upgrading. Additional hydrogen is
used in refining.*

SYNFUELS REQUIRE
HYDROGEN

SOLID COAL, OIL
	 0

SHALE, TAR SANDS
	

LIQUID SYNFUEL

Figure: I-3. FUNDAMENTAL ROLE OF HYDROGEN IN SYNFUELS PRODUCTION

Conventionally, this hydrogen is produced on--site, using the raw feed-

stock or a side-steam product with water in a gasification process. Incremental

capital, operating, and feedstock costs are incurred to achieve this captive

hydrogen production capability.

Alternatively, were hydrogen to be available from an external source,

(e.g.. k via a gas pipeline) at a competitive; cost, it could contribute to

efficient-. synfuels production. Or, if hydrogen were locally produced from

sources other than the basic carbonaceous raw materials, it, and very possibly,

the coproduced oxygen, could be utilized in synfuels production.

* Such hydrogen use is routine in oil refineries at present, e.g., hydro-
treating, a specific example being hydrodesulfurization.
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In summary, hydrogen produced from non-fossil, primary energy resources

and water, and delivered to electrical generating and synfuols production

facilities, could be used to produce these energy forms. This would constitute

an intermediate energy use of hydrogen, a rucugnizud facet of the general.
hydrogen energy system concept.

Status of Hydrogen Energy Systems

The hydrogen energy system concept briefly describud is not in existence.

Outside of the Space Program and certain specialized but limited industrial

applications, hydrogen is not presently used as a fuel. Rather, the principal

use of hydrogen today is as a chemical intermediary in the industrial chemicals

business and in oil refineries.', 6

In a ntmiber of industries, where hydrogen is available as an "off gas"

from certain processes, usually at low pressure and in impure form, it is

used as a fuel for local process heat, or even wasted by flarinq. The total

amount consumed in this manner is negligible.

Research and development activities specifically direrted toward energy

uses of hydrogen are at the beginning stage. Following the early studies and

assessment efforts (e.g., see References 3-9), a modest level of support for

hydrogen energy systems is underway, principally under the II.S. Department of

Energy (DOE).* At present, work on hydrogen is spread throughout several of

the DOE's program areas.

Focus of the hydrogen-energy aspects (aside from its vital role as an

intermediary in synthetic fuels production) is in thc Di.vision of Energy

Storage Systems (STOR), where a general energy R&D effort is underway (see

References 8 and 9), and in the office of Transportation Programs (OTP), where

hydrogen is included as an "advanced fuel" candidate under the Alternative

Fuels Utilization Program (AFUP; gee Reference 10). Prese-ntly, funding within

the DOE is of the order of $5 i ,,.0.1lion/year for STAR and OTP. A roughly equiva-

lent-sized effort on hydrogen production for synfuels applications is underway

in the Fossil Energy organization of DOE.

Also, the National Aeronautics and Space Administration (NASA) is funding

specific hydrogen-energy R&D. Its principal program, tho Space Shuttle develop-

ment, is predicated on hydrogen as its fuel. still it) the initial assessment

*This assessment is supported under a DOE activity.
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phase, NASA and other organizations worldwide are also pursuing liquid hydrogen
an a candidate future aircraft fuel (see e.g., Reference 11).

It is clear that hydrogen energy systems are at the early assessment and
initial R&D stage at this time. Other than the space program's established use
of the hydrogen-oxygen rocket propellant combination, no significant energy
(fuel) use of hydrogen is being made today. The DOE is supporting a limited
level of research and development of applicable technologies under its fossil
energy, energy storage systems, and transportation activities.

HYDROGEN CHEMICAL AND FEEDSTOCK (Non-Energy) APPLICATIONS

Markets judged most likely to use solar-produced hydr^.gon up to the year
2000 are those requiring commodity hydrogen for various chemical uses. Of
particular interest is the "small user" class of applications, the economics
for which have been treated by Corneil et al. 5 As noted by Cornell., "U.S. con-
sumption of small user hydrogen now totals about 250 million SCF/day (0.03
quad/year); about 3% of the total industrial hydrogen including that used in
oil refining, atiunonia synthesis, and methanol manufacturing."

At the present time, this market is served by both merchant and captive
hydrogen. Industrial gas companies routinely deliver hydrogen in quantities
ranging from a few standard pressurized gas cylinders (capacities of several
hundred SCF, or about one pound of hydrogen) to trailer loads of liquid hydrogen
(up to 13,000 gallons each, about 4 tons).

On-site production of (captive) hydrogen is the alternative approach
selecl`led by many small-quantity hydrogen users. Water electrolysis and the
steam reforming of natural gas or light hydrocarbon liquids (e.g., naphtha)
are both employed for on-site hydrogen supplies,with the latter predominant at
present in the U.S. Selection of the specific method pivots on those technical
and economic requirements and constraints unique to each hydrogen user, and the
relative availability and cost of electricity or the requisite hydrocarbon
feedstock material.

Commodity Market Penetration Possibilities

The specifics of the small user market demand, and the controlling
economic and operational considerations necessary for user decision-making in
choosing a source of hydrogen, are discussed in some detail in References 5 and
6. A brief overview follows.

pp---
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Small user hydrogen prices vary as a function of the amount of hydrogen

used. There is a steep rise in the price paid by the user as the use-rate

decreases. These relatively high prices are affordable because either, 1) the

hydrogen costs are a relatively small part of the total product or services

cost involved, or 2) hydrogen is vital to the operation of the user's business

operations, or both.

If solar/hydrogen systems were cost-competitive with the established

sources of supply of small-user hydrogen, as well as being able to meet the

user's technical/operational requirements (reliability, schedule, purity, etc.),

investment in an appropriate on-site solar/hydrogen system would be open to con-

sideration if, in fact, such systems were available.

Alternatively, industrial gas hydrogen suppliers might determine that,

for certain markets served, an on-site customer-matched solar/hydrogen produc-

tion system might be preferable to the customary supply methods. Finally, an

industrial gas supplier might elect to have a central solar/hydrogen facility

for its main supply purposes.

One important issue, in this respect, is the relatively high cost of

hydrogen transport from source to market. Gaseous tube-trailer transport

provides a very low payload mass-fraction (usually less than 1%), which limits

the suppliers profitable operating radius to about 200 miles. On the other

hand, liquid hydrogen transport, though demonstrated over continental distances,

incurs an expensive liquefaction step and costly, sophisticated transport and

handling equipment.

If a remote market is to be served by an industrial gas company far

removed from its source of supply, and if adequate solar energy resources are

available at/near the market, the company might elect to establish a new solar/

hydrogen "plant" to best serve tha market That plant could be sited in the

proximity of the customer, or centrally with local distribution to multiple users.

RATIONALE FOR EARLY COMMERCIALIZATION CANDIDATES (by 2000)

Over the next two decades, it is not expected that solar-produced hydrogen

will be able to compete on a cost basis with conventional fossil fuels or with

other alternative fuels that may be available. Further, hydrogen produced from

fossil fuels, e.g., by natural gas steam reforming, is projected to be available

in the year 2000 at costs of -9 low as $7.50/million Btu (1980 dollars), well.

below the costs associated with any identified solar/hydrogen production method

examined in this assessment.

I-10
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If solar/hydrogen systems are to be able to achieve an onset-of-commer-

cialization status before the year 2000, markets capable of paying prices for

hydrogen well above fuel gas costs must be identified. The question resulting

from this consideration, then, is; is there an identifiable market now, or in

the near future:, in which: 1) hydrogen prices well above .fuel prices exist,

and 2) appropriate solar/hydrogen systems can effectively compete with alterna-

tive sources of hydrogen supply?

The provisional answer to this question is "yes"; the small user hydrogen

market. (See Appendix IV-A.) Characteristically, this market involves commodity

use of hydrogen, rather than energy use.

Illustrating the possibilities, Appendix IV-A relates small-user hydrogen

price trends with the amount of hydrogen used by an individual consumer. For

a range of hydrogen usage rates, the prices paid are substantially higher than

the costs of hydrogen projected for several candidate solar/hydrogen systems

examined in this study.

This being the case, there is a potential opportunity for commercializing

one or more of these candidate systems.

SUMMARY: BACKGROUND AND RATIONALE

Initial solar/hydrogen production is believed most likely to be marketed

as a commodity material for chemical purposes. Further, in view of today's

hydrogen pricing structure and the relatively high cost of solar/hydrogen, it

is likely to be the small user market which will be initially penetrated.

Based on these theses, two alternative approaches for effecting small-

user commodity hydrogen market penetration, both captive and merchant, become

evident:

1. The user can consider installing a solar/hydrogen system on-site.

2. An industrial gas supplier can consider setting up solar/hydrogen supply
facilities to serve one or more hydrogen customers in its vicinity, thus
reducing the characteristic high over-the-road transportation cost.
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APPENDIX II

SOLAR/HYDROGEN TECHNOLOGIES FOR
THE "BEYOND 2000" TIME FRAME

General Discussion

The major portion of this volume treats those solar/hydrogen production

technologies and systems selected as candidates for commercialization within

the next two decades, i.e., by 2000. This appendix reviews those additional

technologies that might find commercial application in the post 2000 time

frame.

Direct Solar Energy Conversion Processes

These processes consist of three subcategories (photo-electric, electric,

and thermal) and seven specific primary processes, as shown in Figure II-1.

a. Photo-Electric Processes

This subcategory includes three specific solar energy conversion processes:

biophotolysis, photocatalysis, and photo-electrolysis. The commonalities

shared by these processes are: 1) in each process, photons initiate electro-

chemical reactions which result in the production of hydrogen and oxygen and

2) each process is in the research stage with respect to efficient and econom-

ical hydrogen production.

(1) Biophotolysis

Biophotolysis is a process which involves the direct photo-production of

hydrogen by biological systems using water as an electron source. Both

in vivo (hiving systems) and in vitro (artificial systems containing subcell-

ular components) hydrogen-producing systems are under investigation. Consid-

erable interest has developed in constructing hydrogen-producing systems with

isolated biological components (in vitro). This approach promises higher

conversion efficiency than in vivo systems but requires the solution of a

number of difficult technical problems, including: 1) stabilization of

biological components, 2) physical separation of oxygen and hydrogen producing

activities, 3) simplification of the photosynthetic system, and 4) developing

systems capable of utilizing a wider portion of the incident solar spectrum.

I
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1

These activities are research-oriented, and practical. In vitro systemic are not	 j

likely to be forthcoming in the immediate Future. This technological pathway

must, for now, be assessed as one which requires further research before com-

mercial-scale: application can be considered.

(2) photocatalysis

The challenge in photocatalytic processes is to add recyclable catalytic

material to water that will absorb solar light spectra and deliver the absorbed

energy in a manner that will result in a hydrogen and oxygen producing reactions

without consumption of the catalytic material. Current approaches involve near

simultaneous photocatalytic oxidation and reduction reactions that yield oxygen

and hydrogen followed by a dark reaction in which the reagents recombine to

their original form. Candidate reactions currently under study require the use

of relatively rare and expensive materials, e.g., rhodium complexes. Cycles

based on more abundant materials must be developed before this technology can

be considered as a potential source of hydrogen.

(3) Photoelectrolysis

Photoelectrolysis can be viewed as a fluid analoc of a photovoltaic cell

which is combined with an electrolytic cell. Theoretical conversion efficiencies

of 45% have been calculated. The highest experimental conversion efficiencies

(10% to 11%) have been achieved with monochromatic light. The best total

solar spectral efficiency attained thus far is about 2% or 3%. Aside from

these low demonstrated efficiencies, the major problem with these systems is

that the electrode materials are thermodynamically unstable when the cell is

operating. Corrosion of electrodes with a resulting drop in conversion

efficiency is a major problem. This general field is relatively unexplored,

and rapid advances in the technologies could be possible. Nevertheless,

photoelectrolysis cannot currently be included among the contenders for

near-term, commercial hydrogen production.

b. Electric Processes

The tern "electric processes" is employed here to encompass photovoltaics

(including concentrating hybrid photovoltaic concepts), thermionic technologies,

and solar thermo-electric phenomena. The latter is distinct from the solar

thermal-to-heat-engine-to-electrical generation concept in that electricity is
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produced directly.

(1) Photovoltaic Systems

Photovoltaic technology is a selected candidate for near-term commercial-

ization.

(2) Thermoelectric Systems

The generation of voltage between the junctions of dissimilar metals

when a temperature difference exists between the two (the Seebeck effect) is

the basis of operation of thermocouple/thermopile systems. This effect has

found practical application, with low-energy conversion efficiency, in space-

craft power-supply systems which use radioisotopes as heat sources. While

significant advances have been made in this technology, low conversion

efficiency remains the major barrier to its application for solar energy

conversion devices. Moreover, solar thermoelectric technology is not being

actively developed in the United States.

(3) Thermionic Processes

The unique features and characteristics of solar thermionic power include

relatively high theorectical efficiencies, on the order of 20%, and the poten-

tial for operating these systems at high temperature. High temperature opera-

tion of solar therraionic systems, like concentrating photovoltaic systems, offers

the opportunity to use the rejected heat to drive shaftpower devices in bot-

toming cycles. At second glance, however, thermionic power generation faces

several difficult technical challenges.

With presently known materials, the optimum hot-to-cold junction tempera-

ture ratio is about 2. Today's best materials can produce this ratio, but

the temperature of the total system at which this ratio is produced is too

low to permit the cost-effective operation of inexpensive shaftpower devices

to support a bottoming cycle.

Presently, the major limitation is that, with higher temperatures, the

cold electrode becomes an electron emitter and acts to reduce the potential

available from the junction. New developments in materials are required. We

do not consider, thermionic technology to be a likely candidate for commercial-

ization of solar/hydrogen production in the United States within the next two decades.
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c. Thermal Processes

(11 Solar Thermal Heat-Sn ine Processes

Solar thermal heat-engine systems are a selected candidate technology

for near-term commercialization.

(2) Direct Thermal Water S121ittinq

At 30000K and one atmosphere pressure, approximately 1.4% of water vapor

is dissociated. This fraction increases with decreasing pressure and increas-

ing temperature. A number of theoretical treatments of this approach for

hydrogen production have been performed. Even if the very limited laboratory

work on this method indicated basic technical feasibility, ultimate commercial

attractiveness still lies far in the future. Materials engineering will pose

basic challenges as will methods for obtaining acceptable system net energy

efficiencies considering the very high temperatures that must be maintained.

Additionally, there is a critical problem of separating the product hydrogen

and oxygen. At this time, direct thermal water splitting must be considered

to be theoretical, long-range possibility for commercial hydrogen production.

(3) Solar Thermochemical and Hybrid Electrolytic-
Thermochemical Production of Hydrogen

A large number of families of closed-cycle reactions that result in the

dissociation of water into hydrogen and oxygen while preserving the inter-

mediate reagents have been proposed and studied. Some investigators consider

commercial thermochemical hydrogen production to be a real possibility if a

continuous high-temperature (700 to 10000C) heat source is available. However,

barring major advances in high-temperature thermal energy storage, solar energy

hardly represents an attractive continuous thermal energy source. For all of

the foregoing reasons, as well as for several more specific considerations not

mentioned here, the commercial potential of solar-driven thermochemical and

hybrid electrolytic-thermochemical approaches to hydrogen production appears

remote at this time. Specifically, the following two technical milestones

must be achieved before serious consideration can be given to this approach:

1) commercially acceptable reaction cycles are demonstrated beyond reasonable

doubt, and 2) a commercially viable, high-temperature, thermal energy storage

technology that can compensate for intermittency of the primary solar energy

resource is demonstrated.
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Indirect Solar Enema Conversion Processes

Indirect solar energy processes fall into three major classes: 1) thermal,

as manifested in the ocean thermal gradient, 2) kinetic, as manifested in winds,

waves, and falling water sites, and 3) biological, as manifested in the produc-

tion of biomass. However, the related primary conversion technologies fall

into only two subcategories in the categorization system employed here: 1)

mechanical, combining thermal and kinetic, and 2) biological.

d. Mechanical Solar Conversion Technologies

To be examined briefly under this subcategory are wind energy conversion

systems, ocean thermal energy conversion, ocean wave power, and hydropower.

(1) Wind Energy Conversion Systems (WECS)

wind energy conversion systems are a selected candidate for near-term

commercialization.

(2) Ocean Thermal Energy Conversion (OTEC)

In the tropical oceans, the temperature gradient between the warm surface

water and the cold water that is 500 to 600 meters below the surface is approx-

imately 400F. This AT gives a theoretical Carnot efficiency of approximately

7%. This oceanic temperature gradient represents a huge solar energy resource

if it can be tapped. At present, a closed Rankine cycle employing ammonia as

the working fluid is the energy conversion technology of choice. Open-cycle

systems have been investigated, as well as several exotic: approaches to vapor-

ization and hydraulic-head production. The requirements for pumping huge

volumes of water, accommodating pressure drops within the system and coping

with other parasitic losses result in the estimates of practical system

efficiencies for electricity production being no more than 1% or 2%. In

spite of OTEC's low-net energy prospects, the U.S. Department of Energy is

actively supporting OTEC component and subsystem developments with about $40

million for Fiscal Year 1980. The first subsystems test of heat exchangers

and cold water pumping aboard a converted ship hull called "OTEC-1," sized for

one megawatt electrical production are scheduled for mid-1980. If OTEC-1 and

subsequent small-scale, complete system tests are successful, it is possible

that commercial-sized OTEC systems might be developed in the 1990's. There

are, of course, numerous problems which might delay or preclude this supposition.

V_`
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Since OTEC is Obviously situ-specific to deop ocean water locations, it is not

broadly applicable to the continental United States in terms of siting. It

is mainly for this reason that OTHC in not a selected system in this study.

(3) Ocean Wave Power

Outside of low-level assessments being conducted in a multi-national

study effort, ocean wave power, an a renewable energy resource, is not being

seriously pursuod in the United States.

(4) Hydropower

Hydropower is a selected candidate technology for near-term commercialization.

b. Biological Conversion Technologies

I

Concepts for producing hydrocarbon energy forms from biomass are many and

varied. Primary biomass feedstocks span the spectrum from urban and animal

wastes through a variety of forestry, agricultural, and urban wastes # to a

variety of plant grow-out options from unicellular algaes, to grasses, to

silviculture, to massive at-sea farms of the giant brown kelp, Macrocystus

pyrifera. Authoritative estimates of the potential of biomass to supply U.S.

energy needs range from a few percent to U.S. total requirements depending upon

the assumptions employed. Also, depending on the type of feedstock available,

both biochemical and thermochemical means of converting feedstocks to liquid

and gaseous hydrocarbon fuels are possible, e.g., fermentation and gasification.

However, the authors do not consider biomass feedstocks to be viable

candidates for commercial hydrogen production within the foreseeable future.

Although it certainly is technically feasible to derive hydrogen from cellulosic

feedstocks through thermochemical processes, the following arguments are

offered against doing so on a commercial scale: first, the not energy

efficiency of the process chain which stretches from biomass production to

hydrogen delivery is very low, less than 1%; second, processes with very low

net energy efficiencies invariably will result in very expensive final products;

third, compared with common hydrocarbon fuels, hydrogen is relatively difficult,

hence, expensive to store and transport; and fourth and most significant,

common hydrocarbon fuels can be derived from biomass feedstocks at higher net

energy efficiencies and lower costs, in general, than can hydrogen. Therefore,

there appear to be few, if any, convincing technical or economic arguments for

11-7
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large-scalu, commercial production of hydrogen from biomass feedstocks. How-

ever, it is recognized that certain unusual, and probably localized, economic

and institutional conditions could constitute exceptions to this general

statement. Nonetheless, though technically feasible, biomass-produced hydrogen

is; not selected as a candidate for near-term commercialization of solar/hydroguti

production procos3s oos.
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APPENDIX III

DESIGN CONSIDERATIONS AND COSTING ANALYSES -
SELECTED SULAR HYDROGEN SYSTEMS

General

This Appendix presents design and economic characterizations of those

solar/hydrogen systems selected in accord with the guidelines stipulated for

the assessment.	 ow

A technical characterization of each selected sysatem is presented on a

block-diagram level and relevant systems engineering aspects discussed.

Following this, the selected systems are characterized trom an economic

standpoint. This is done in context with a simplified solar/hydrogen produc-

tion facility cost model for a range of facility book-life assumptions covering

both industrial and utility financing. Costs ranges of hydrogen products are

presented for the selected systems as a function of installed capital costs

and plant factors. The time-period considered for cost estimation is 1980-

2000. (Costs are presented in 1980 dollars.)

A. TECIRUCAL CHARACTERIZATION OF SELECTED SYSTEMS

1.	 REVIEW OF THE SELECTED SECTS and HEPTS (See Volume II for details)

a. General

Based on the selection methodology and criteria discussed in Section II,

four solar energy conversion technologies (SECT) and one hydrogen energy

production technology (HEPT) have been selected for analysis. These systems

qualify for selection in that they appear to be commercializable by 2000

through essentially conventional business practices operating under normal
market fakes. Further, no extraordinary Government funding would appear to

be necessary, nor would technological breakthroughs be required. Demonstration

project support would appear to be desirable and appropriate as will be dis-

cussed in Appendix IV.

These selected candidates are -

•	 SECT: 1. Photovoltaic Conversion

2. Solar Thermal Heat Engine Conversion

3. Wind Energy Conversion

4. Small Hydropower
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•	 HEPT: Water Electrolysis.

b.	 Selected Solar Energy Conversion Technologies (SECTS)

(1) Photovoltaic Conversion

A Photovoltaic cell is generally in the form of a solid-state diode which

has been made from various semiconductor materials. The ,preponderance of U.S.

experience is with silicon cells :hich have been in use since 1955 when Bell

Telephone Laboratories successfully powered telephone amplifiers in field

tests. Various other applicati..ons have been demonstrated, but these have been

of a limited nature, due mainly to the high cost of these systems.

Cost reduction is the prime objective of DOE's Low-Cost Solar Array program

being managed by JPL. This program is funding technology developments and

stimulating high volume solar cell procurements to achieve cell cost reductions.

A pilot plant is being designed to produce photovoltaic grade silicon

from $50/kilogram to less than $10/kil.ogram. Various research programs are

underway to develop inexpensive methods for producing basic materials, cells

and cell array assemblies. Encapsulating materials for constructing cell-

assemblies are presently available. However, additional materials are being

evaluated to define the most cost-effective, long-term materials.

Silicon photovoltaic cell production processes are well understood. Some

process validation la still necessary before process automation can be under-

taken. Currently, there are some process sequences that theoretically result

in costs equal to the LSA project goals of $2.00/watt by 1982 and $0.50/watt by

1986 (1975 dollars), and some advanced technology cell processes offer the hope

for even further cost reductions.

(2) Solar Thermal Heat Engine Energy Conversion

Solar thermal heat engine system research and development in the United

States is following Several paths. At present, the principal application,

particularly for the larger systems, is electricity generation. Other applica-

tions include shaftwork outputs for irrigation pumping, cooling-system compressors,

etc. Technical concepts include: 1) small distributed systems in which the

focal-point heat engines are integral with a parabolic "dish" reflector, 1) the

central receiver, or "power tower" concept, in which multiple individually-

aimed reflectors (heliostats) concentrate solar beam radiation on a single

thermal receiver supported by a central tower, and 3) arrays of line-focusing
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(parabolic crass-section cylindrical.) reflecting concentrators, and ranalagous

devices. These concepts are at the demonstration stager e.g., performing

irrigation water pumping. Rankine, Brayton, and Stirling engine applications

are under investigation.

Like photovoltaic systems, the solar thermal heat engine approach has a

relatively mature technology base. Development programs are aimed at lower

capital costs with low-maintenance designs and long-term reliability. Consid-

ering that peak operating temperatures range between 500 and 2000 0F, materials

technology is highly important. A potential overall system efficiency of better

th-An 30% and levelized busbar costs of electricity in the range of 50 to 60

mills/kilowatt-hour have been projected for solar thermal systems. This

technology appears to be a reasonable candidate for commercial-scale solar

hydroger. production by the year 2000.

(3) Wind Energy Conversion (WECS)

Wind systems are presently being developed by the U.S. Department of

Energy in its Wind Energy Conversion Systems Program. The present emphasis

is on relatively large wind turbine generators (0.1 to 1.0 megawatts) of the

horizontal axis type. Other efforts directed toward small-scale wind energy

conversion systems are also underway with the goal of applying such systems to

distributed or decentralized system designs. There is no doubt that wind energy

conversion represents both a potentially large energy resource combined with a

near-term approach opportunity.

One of the challenges in wind energy conversion is the large fluctuation

of output power due to wind velocity variations. (Power output is proportional

to the cube of the wind speed.) Wind speed may vary significantly in minutes or

seconds and over a wide range daily and seasonally. Moreover, windless (zero-

output) situations may persist for days or weeks in some locations.

Because the basic technology is reasonably mature, and because new design

approaches are producing promising results, WECS technology is also judged to

be a reasonable candidate for hydrogen production via electrolysis.

(4) Sma11 Hydropower

Hydropower systems employ mature technology that is generally practiced

on a large scale. However, most available and suitably located large hydro-

power resources in the continental United States have already been exploited
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for utility electricity generation. This is not always the situation in other

countries, including the lesser developed countries, nor is it the situation

in Canada, for example. Investigations are underway on the production of

hydrogen from Canadian hydropower resources in the northern areas of Canada

and its transmission overland for both energy and chemical feedstock users.

The use of small-scale hydropower resources, i.e.,<5 MWe, for the electro-

lytic production of hydrogen and oxygen from water is being investigated by the

').S. Department of Energy. One development and demonstration project is pre-

sently being supported on a modest scale. The total. U.S. resource of existing

dam sites is large in number but relativ!ly small in overall energy content--

representing an annual output level of less than 0.3 quad* at most. Small

hydropower systems therefore represent favorable, but rathor limited, oppor-

tunities to construct solar/hydrogen systems. This potential contribution

should not be overlooked but the use of small-scale hydropower systems to

produce hydrogen in substantial fuel gas quantities is clearly not feasible in

the United States.

c. Selected Hydro ey n Energy Production Technology (HEPT)

(1) Water Electrolysis

Water electrolysis is the unique hydrogen energy production technology

considered for solar/hydrogen production systems. The requirement for electri-

cal power (and water) as its basic input permits it to be readily interfaced

with each of the selected SECTs discussed above.

Being a fully commercialized technology, water electrolysis meets the
stated selection criteria. Further, research and development programs to

improve the cost and efficiency of electrolyzers are actively underway.

2. First Level System Descriptions

a. General (See Figures III-1 and III-2)

Four solar energy conversion technologies and one hydrogen energy produc-

tion technology have been selected for synthesis into solar/hydrogen systems

based on the assigned selection criteria. These technologies can be viewed as

*	 One quad = 1015 Btu.
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being directly represented by subsystems l which are integrated into four solar/

hydrogen production systems;

1. Photovoltaic/Electrolysis Production Systems

2. Thermal. Heat Engine/Electrolysis Production Systems

3. Wind Energy/Electrolysis Production Systems

A.	 Small llydropower/El.ectrolysis Production Systems.

b. l"hotovoltaic/Electrolysis Production Systems

In this class of system, shown functionally In Figure 111-3, beam and/or

diffuse aolar radiant energy is received by photovoltaic cell arrays physically

supported in a fixed or tracking mechanical support assembly. Those photovoltaic

-grays terminate in an output circuit(s) from which electrical power can be

extracted whenever the array is illuminated by incoming solar radiation.

H2O 	
02

SOLAR ENERGY Y I
HYDROGEN	 H2INPUT	

Y

SYSTEM

HEAT

a. Basic ;.olar/Hyi!,Ljgen System Block Diagram

SOLAR	 HYDROGENSOLAR ENERGY	 ENERGY	 ENERGY	 1-12_INPUT

	

	 4 CONVERSION 4 PRODUCTION	 $/BTUTECHNOLOGIES TECHNOLOGIES
(SECTS)(HEPTS)I ................................ ....... J	 .

b. First Lelel Division of the Basis Solar/Hydrogen System into
SECTS and HEPTS (Rejected Heat and Q 2 Coproduct omitted for
Clarity)

Figure 111-1. Basic Solar/Hydrogen Production System
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AUKILIARY POWER ^

I HYDROGEN I
STORAGE
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CONVERSION	 ELECTROLYSIS	 FI2 -

INPUT	 TECHNOLOGIES	
""(SECTS)

L STORAGE 111

L _ STORAGIE IZI

LSTORAQE ISI

Figure 111-2. A General or Representative Solar/Hydrogen Production;
System Block Diagram Considering Control Interfacing
and Energy Storage Needs in Real Systems

I CONTROLLER I

SOLAR
ENERGY	 PHOTOVOLTAIC
	

WATER	 HYDROGEN
OAS DIRECT	 ARRAY

	
ELECTROLYZER
	

PRODa«.'T
SEAM AND

DIFFUSE
RADIATION!

C.L: CONTROL INTERFACE, EA. POWER CONDITIONING. VALUING, COMPRESSION.

Figure III-3. Photovoltaic/Electrolysis Production System Block Diagram
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The electrical output must be matched to an electrolyzer input requirement

either directly or through an active "control interface"

Battery storage may be connected At the photovoltaic output/electrolyzer

input interface as suggested in Figure III-3. However, for the overall system

storage requirement, i.e., that needed for the purpose of matching solar energy

input and user demand, hydrogen storage can be installed at lower cost than

battery storage.*

The output hydrogen is routed to the second con::rol interface for proses.,,

sing to meet specified output requirements such as pressure, flow rate schedule,

and purity. if the e]lectrolyzer provides an elevated-pressure output a hydrogen

compressor may not be needed.

In many cases, particularly if storage is utilized, compressors will be

included as interface components.

c. Thermal Heat-Engine/Electrolysis Production systems

Thermal heat-engine based solar energy conversion systems can be operated

with non-concentrating collectors (high-performance flat-plate collectors).

However, because of their low intrinsic efficiency, such systems are not gener-

ally favored.

Concentrating collector systems are assumed in the functional diagram of
Figure III-4. Direct beam (or specular) solar energy input is required with

active sun-tracking. Operating temperatures for the working fluid circulating

through the focal absorber depend on many factors, including collector geo-

metric concentration ratio, relative inlet flow and temperature, thermal losses,

and achievable optical /tracking accuracies.

I	 The thermal working fluid goes to a control interface leading to either

the heat engine-generator, a thermal storage subsystem, or both. A common
s

variant has thermal storage placed in series between the collector and the

heat engine.

`

	

	 The directly or indirectly .  ted working fluid is used to operate the

heat engine. Following the theI.i :1 rejection step, this fluid is returned for

reheating. The specific working fluid is selected on the basis of the type of

heat engine used as well as the range of involved temperatures. The heat

This point is discussed in detail in attachment A to this Appendix.
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engine provides output energy iL the form of shaftpower.

Electricity is produced by a shdtt-driven generator which can either be a

conventional, fixed-frequency AC design or an unconventional, AC or DC design,

e.g., acyclic generator. Generator output electrical Dower is switched,

regulated, transformQd, and/or otherwise "conditioned" within the second con-

trol interface equipment group. As in the case of the photovoltaic system,

battery storage can be provided. However, as discussed in attachment A, this

does not appear to be the most cost effective approach.

Electricity passing through the second control interface equipment to the

water electrolyzer produces hydrogen as discussed in the photovoltaic system.

The third (hydrogen product) control interface and hydrogen storage subsystem,

if provided, involve essentially the same considerations as discussed for the

photovoltaic system.

CONTRaUAR

{OLAN NEAT ENGINE-	 WAYEN NVD1100EN
ENEII{V	 COU{CTON	 C.I. f7EME11AT011	 C.I.	 ElECT110LVZEh C.I.	 "WOUCTIM CNIECT	 (ZCW8NTIIATNI{i

NAY MIA

1 1
1
1
1

f TN{11YAL i 1 {ATTEIIV {TONAOE '̂ MVGIIQOEM
{Td1A{E IDWFE1NN{I AND	 ; STORAGE
  AUNILIAl1V IOWEN

C,L: CONTROL NITM/ACI. IM. POW@@ CONDITWMNb VALV"NL C06WM{{ION.

Figure 111-4. Thermal Heat Engine Solar/Hydrogen Production System Block
Diagram
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d. wind Energy/Electrolysis Production systems

Figure II1-5 presents a simplified block diagram of the wind/hydrogen

production system.

CONTROLLER

SOLAR WIND TURSINE WATER HYDROGEN
ENERGY

IAS WM ..r GENERATOR
C.1.

ELECTROLYZER
C I. PRODUCT

ENERGYI
1

I SATTERV STORAGE HYDROGEN
(SUFFERINGS AND	 = STORAGE

1 AUXILIARY POWE q I ,

C,L: CONTROL INTERFACE. EALo POWER CONDITIONINS VALVINO COMPRESSION,

Figure 111-5. Wind Energy solar/Hydrogen Production System Block Diagram

In this system, the "collector" is a wind turbine (or other aerodynamic

coupling device) which transforms a portion of the kinetic energy of wind

passing through its characteristic "swept area" into shaft-work. However,

the specific power level available from wind can vary widely in magnitude as a

function of time. The wind-turbine designer must cope with this variability as

a fundamental "given," e.g., protecting the equipment from overspeed conditions.

For this reason, the interfacing of the turbine-generator and the water electro-

lyzer subsystems may pose special problems.

Output shaftpower of the turbine is used to drive an electric generator.

When compared with the usual case of closely regulated AC or DC electricity

output required for powering conventional electrical devices and/or for utility

grid interconnection, the wind/hydrogen application may ease the system

designer's job substantially in the generator subsystem.

From the electricity-to-electrolyzer control interface downstream the

wind/hydrogen system is similar to those systems already discussed.
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e. Small Hydropower1ElectrolXsis Production Systwu

A functional diagram for a small hydropower/hydrogen system (Figure II1-6)

is quite similar to that of wind hydrogen systems. Both convert an indirect

solar energy resource (contained in the form of kinetic energy of a fluid) into

shaftpower with the same subsequent energy conversion steps leading to the

hydrogen product.

I	 CONTROLLER	 1

SOLAR	 t
ENERGY	 C.I.	

HYDRAULIC TURBINE-

IAS FALLING	
GENERATOR

WATER)

WATER
	 HYDROGEN

ELECTROLYZER
	

PRODUCT

r1^8;ZOIR STORAGE 1
1	 OF WATER	 j
L------------

1

I SATTERY STORAGE j

)SUFFERING) AND
AUXILIARY POWER I

HYDROGEN
STORAGE

CX CONTROL INTERFACE, EA, POWER CONDITIONING. VALVINe COMPRESSION,

Figure III-6. Small Hydropower Solar/Hydrogen Production System Block
Diagram

However, the hydropower case often provides a greater degree of "manage-

ability" of its falling water input not available in wind systems. This

manageability is provided by the use of the upstream water reservoir as an

energy storage means. Within site-specific restrictions, energy can be extracted

on a scheduled basis by the hydraulic turbine thus providing higher plant

factors.
This feature is reflected in Figure II1-6 by the "reservoir storage"

noted, the upstream control interface being a valve in the penstock. The

control of stored energy in an upper reservoir is referred to as "ponding" and

is associated with a change in water level in the reservoir. Ponding is

typically done such that hydropower-generated glectricity can be produced for
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a utility grid during peak load periods (thereby producing the most valuable

power).

Hydropower/hydrogen systems uniquely provide a second storage mode, not

available in hydroelectric applications, namely, energy storage as product

hydrogen. This permits a certain "decoupling" between the schedule of water

flow (usually at a fixed head condition) through the turbine and product

hydrogen flow. Where "run of the river" operation is mandated, no ponding is

possible. Here, by virtue of the hydrogen storage provision, the user can still

draw the product energy form on an "as required" basis, not usually available

with electricity producing systems under the same circumstances.

The remaining subsystems and equipment items downstream of the hydraulic

turbine would be functionally similar to those described in the three preceding)

system concepts.

3.	 SYSTEMS ENGINEERING CONSIDERATIONS

a. General

The four selected solar/hydrogen systems have been characterized to a
first-order technical level in the preceding section. (See Figures III-3 to

6) The constituent technologies incorporated into optimal solar/hydrogen

systems are treated more comprehensively in Volume II.

The integration of subsystems that utilize these technologies into

optimal solar/hydrogen systems will involve a systems engineering process.

This is approached as a matter of "interface engineering" combined with detailed

attention to subsystem design. Although such detailed considerations are both

market and site specific, some preliminary observations and characterizations of

solar/hydrogen systems engineering are appropriate.

b. Approach: A Review by Subsystems and Control Interfaces

s
Since each of the selected solar/hydrogen systems incorporates a water

electrolyzes subsystem, this will be discussed as a basic module. Hydrogen

storage for which several technical alternatives exist is discussed as a

directly related subsystem. This discussion will include the control interface
i

between the electrolyrer and hydrogen storage subsystem and the "user interface."	 4

Moving upstre= from the electrolyzer, the generator and its prime

mover in three of the systems, and the photovoltaic array in the fourth, i.e., 	 +,
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the source of electrical power in each system, will be discussed. This discus-

sion will include the generator/electrolyzer control interface, and battery

storage considerations.

The solar energy collection/conversion subsystem and its associated

control interfaces, if any, will be covered. Thermal storage will be mentioned

in connection with the solar thermal system alternative.

Finally, system control and overall operation will be briefly addressed.

This will include consideration of the basic solar energy supply/hydrogen demand

matching requirement.

c. Water Electrol zer Subsystem and Associated Control Interfaces

(1) Special Contacts with Electra mazer Manufacturers

Individual technical contacts were made with the three major North

American electrolyzer manufacturers: The Electrolyser Corporation, Ltd.

(Toronto), Teledyne Energy Systems, and the General Electric Coinpany.1,2,3

The principal intent of this survey was the establishment of general system

interface and operating requirements for the electrolyzers used as subsystem

elements of solar/hydrogen systems. Of particular interest was the determina.

tion of potential "degree of freedom" available to interface solar-electric

subsystems with the electrolyzers; an application departing from the conventional

electric utility grid connection situation.

The electrolyzer is a flexible and "robust" system element from the inter-

facing point of view. Most designs are capable of accepting fast start-ups

and rapid transients,.including moderate-duration power overloads, if the

electrolyzer is in its standby or operating mode. This usually involves only

the activation of ancillary equipment, such as electrolyte circulation pumps

and cooling systems.

Three types of electrolyzers are either commercially available or in the

product development stage: the bipolar alkaline, the unipolar alkaline, and

the solid polymer electrolyte (SPE) designs. Within the scope and depth of

the assessment, no particular design preference among these types for solar/

hydrogen applications is perceived, nor is there any obvious preferential

match-up for a given type with one or another of the four selected solar-to-

electric technologies.
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None of the three manufacturers evidenced any great concern or real

problem areas in the applications discussed here. Details are discussed

further in Volume II, Section III.

The principle findings from this survey of manufacturers regarding

electrolyzer interfacing and operation within solar/hydrogen systems were:

•	 Electrolyzer power controls can, in favorable designs, be reduced
to an on/off switch (even during start-up), provided the power source
peak output does not exceed the design limits of the electrolyzer.

•	 System temperature control is essentially automatic; however, when
the system is not operating, it must be kept above freezing temper-
ature.

• Continuous cycling operation, as anticipated in most solar energy
systems, may require special system considerations. (This is not
a restriction.)

•	 With the exception of routine maintenance and an occasional detailed
inspection, unmanned operation of electrolyzers is feasible.

(2) Hydrogen Compressors

At present, most electrolyzers provide hydrogen product at essentially

atmospheric pressure. Three exceptions are Teledyne's HS and projected HP

units, which provide gas output in the range of 60 to 70 psig, and Lurgi's

"Electrolytor" units, rated at 30 atm (about 450 psig).

General Electric's SPE electrolyzers are intended to produce hydrogen

at pressure, with upper-limit estimates of about 600 psi. Their commercial

product line is expected to have an output pressure of about 100 psi.

Depending on specific user requirements, pressure electrolyzers may

eliminate the need for mechanical compressors. It is possible that atmospheric

electrolyzers can serve low-pressure hydrogen without compression for certain

applications, e.g., protective atmospheres.

Generally, however, and especially if conventional pressure-vessel gas

storage is to be provided, hydrogen compressors will be needed. These are

currently provided as ancillaries by electrolyzer manufacturers if desired by

the customer. (A recent general survey and assessment of hydrogen compressors

is provided in Reference 4.)

(3) Hydrogen purification Units and Dryers

The principal impurity in the hydrogen product stream is usually oxygen.
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(However, even "raw" electrolytic hydrogen is produced at about 99.94 purity.)

The oxygen can easily be removed by means of a "deoxo" catalyst unit. which can

be installed in the product gas line. The catalyst causes hydrogen to react

with the oxygen, removing it. Heat and water vapor are produced which are

removed by a cooler, followed by a water separation device. Refrigeration or

absorption type dryers can be employed if ultra-dry hydrogen is required.

(4) Hydrogen Flow Control and Metering

Conventional hydrogen valves, regulators, and flow-meters for the control

and metering of product gas are available.

d. Hydrogen Storage Subsystem (An Option)

Hydrogen storage system technology is extensively discussed in Volume II

of the report (Section IV-D). The following alternative storage techniques

are available for consideration in system designs pressure-vessel, cryogenic

liquid, metal hydride, underground (and underwater) storage, chemical-compound

and organic chemical storage.

For smaller solar/hydrogen systems, pressure-vessel storage and metal

hydride storage, are the most likely techniques. Larger systems can use the

liquid hydrogen approach which best fits the requirement of long distance,

large-quantity transport of hydrogen by vehicular means.

Underground (and underwater) storage of gaseous hydrogen generally

implies large-volume systems as well as site-specific methods. Chemical

storage of hydrogen suggests special-application-oriented uses of hydrogen.

If hydrogen storage capability is required within the system, a site- and

demand-specific systems analysis must be performed for sizing purposes and

determining other technical requirements. Appropriate equipment, associated

with the storage subsystem or the control interface, must be provided for

transferring requisite amounts of hydrogen into and out of storage.

e. the
E

Three of the four selected systems incorporate an electrical generator

driven by a shaftpower-producing prime mover (viz., heat-engine, wind-turbine,

and hydraulic turbine). The fourth derives electricity directly from a photo-

voltaic array.

Conventional generators have generally been used in solar/electric
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systems that have been demonstrated to date. This is a result of 1) conven-

tional utilization of the generated electricity (appliances, utility grid

interconnection), and 2) the ready availability of production generator hard-

ware from a mature technol rxy base'.

However, in the systems examined for this assessment, the electricity will

be used for water electrolysis. Generator/electrolyzer matching requirements

may well suggest, or even dictate, unconventional generators. These may range

from special adaptations of standa.1rd generator types to new and different

designs. An exampie of the latter would be the acyclic DC generator.

More specifically, the design cha4longe to be addressed is that of

appropriately matching the generator and power-conditioning equipment associ-

ated with the generator-to-electrolyzer control interface. An opportunity to

create a favorable match without resorting to costly, efficiency-reducing,

electric power-conditioning equipment appears uniquely feasible for solar/

hydrogen systems. The considerations involved in power source/electrolyzer

matching are discussed in Attachment B to this Appendix.

f. Battery Storage Subsystems (An Option)

The block diagrams for the selected systems have indice,ted the possibility

of employing electric battery storage. As discussed in Attachment A, it is

doubtful that bulk energy storage applications for batteries would be

incorporated into solar/hydrogen systems examined in this assessment. The

cost of battery storage is not favorable in comparison to the cost of the

hydrogen storage alternative.

The issue of "battery-storage" at the electric generator/electrolyzer

interface requires further assessment within the framework of site specific

system designs. Such a matching function would likely be dictated largely

by electrolyzer electrical input requirements such as those dictating initial

start-up, power transients and regulation, and shut-down conditions which can

be tolerated. Battery storage might usefully provide short-term energy storage

for overly-rapid input, power-level transient control, DC smoothing and over-

load protection.

g. Thermal Storage Subsystem (An Optionfor Solar Thermal Systems Only)

In assessing proposed solar theroa1 energy conversion systems dedicated
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'to electricity generation conducted to date, thermal energy storage is usually

incorporated. Thermal stora;;e can serve as a buffering device to decouple the

heat-engine and generator components physically are operationally from solar

collector subsystem output fluctuatioxis, as well as providing bulk energy

storage..race. Several specific design approaches have been utilized for achieving

these functions.

Inoluding bulk energy storage within the system increases the plant

factor for those subsystems downstream of the solar collector subsystem. This

provides higher energy conversion rates during lower-than-rated insolation

periods, as well as extending plant operation into or through periods when

solar input is unavailable.

h. Control and Operation

Each of the selected solar/hydrogen systems has been shown to include a

control subsystem which is connected to each energy conversion and storage

subsystem at each control interface. (See Figures III-1 through 6.) In

practice, depending on system size, availability of the solar energy resource,

user hydrogen demand patterns, and many other aspects, the control function

will be much more simple than that suggested.

Some degree of system control is necessary to permit proper, efficient,

and safe operation of any solar/hydrogen system.

B. COST CHARACTERIZATION OF THE SELECTED SOLAR/HYDROGEN PRODUCTION SYSTFjMS

1. Economic Assumptions

In 1977, EPRI introduced a Technical Assessment Guide for the electric

power industiy. 5 The fixed-charge rates specified in the Guide for use in

economic evaluations are given in Table III-1. The tax preference column

assumes the use of accelerated depreciation and the availability of investment

tax credits. Since these allowances are a result of current tax laws, which

have a history of frequent change, SPRI recommends the inclusion of tax

preference considerations only for studies of near-term projects.

Because the economic evaluation presented herein is not necessarily

directed toward the electric power industry, but related to industry in

general, a departure from the EPRI recommendations is considered warranted.

This departure, however, is straight-forward: The assumed weighted cost of

capital, 10% in the EPRI Guide, was increased to 15% for the general industry
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case being addressed here. The effect of this change on the fixed-charge

rate is shown graphically in the bar chart of Figure III-7 for the "no-tax-

preference" case.

Table 111-1. EPRI RECOMMENDED FIXED CHARGE RATES5

Facility Life, years

'	 Levelized Fixed Charges,*

Without Tax Preference 	 With Tax Preference

5 34	 29

10 23	 19

15 20	 16

20 19	 15

25 18	 15

*	 Includes return, depreciation, allowance for debt retirement dispersion,
income taxes, other taxes, and insurance. Excludes operation and
maintenance.

Due to the importance of energy conservation and alternative energy

systems to the Nation's economic future, a tax preference case has also been

assumed for this study. Table III-2 shows the resulting fixed-charge rates

u zed.

Table III-2. FIXED '4ARGE RATES ASSUMED

Facility Book Life, years Fixed Charge Rate,

5• 36.00

10 26.25

15 23.73

20 23.50

25 23.25
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Figure 111-7. Comparison of Fixed-Charge Rates For Two Weighted Costs
Of Capital

2. Operating and Maintenance Cost Assumptions

In addition to the basic financial assumptions, which reflect the

required ra;,:e of return, annual system operating and maintenance (O&M) costs

must be determined. O&M cost estimates represent an area of costing uncer-

tainty, given that solar/hydrogen energy systems do not have an operating

history from which to draw. However, some of the components and subsystems

making up conceptual systems discussed in this report have histories of opera-

tion which can be used for guidance in developing system O&M cost estimates.
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In general, the levelized annual costs reported for such systems range

from 2% to 7% of the installed facility cost depending on the plant size and

the extent of automated operation, 6-13 For this analysis, an annual O&M cost

of 3* of the total installed plant cost was assumed. This considers that the

selected solar energy conversion subsystems--photovoltaic, wind, solar thermal,

and small hydropower--.re all expected to be amenable to highly automated

designs.

As historically demonstrated, water electrolyzes systems require very

little attention from operating personnel, on the order of less than one hour

per day, and work is in progress to further automate electrolyzer systems.1-3

In brief, this subsystem area is considered "industrially mature."

Figure III-8 presents the plant installed capital cost and plant-factor

combinations which result in a range of hydrogen costs from $25 to $100/million

Btu for both 5- and 25-year plant book lives, This presentation, though

approximate, is felt to be generally •valid with the possible exception of two

extremes: 1) low-cost, very small plants, and 2) high-cost, large plants.

In these cases, the 3% allowance for O&M should probably be adjusted upward

for the low-cost plant and downward for the high-cost plant. Such adjustments

can be considered in subsequent analyses of specific solar/hydrogen systems.

3. Subsystem and System Costs

All of the selected solar/hydrogen production systems consist of a

water electrolyzer subsystem plus a solar-to-electricity subsystem of one of

four types. For each case, in this analysis, the total system cost is assumed

to be simply the sum of the cost of the two subsystems. Special, separate

attention was riot given to any additional interfacing costs associated with

the integrated systems. Instead, the cost of those interface elements built

into each subsystem (e.g., the AC-to-DC converter within the electrolyzer

.Ubsystem) was assumed adequate to cover all interface needs. In cases where

this assumption may not hold, the magnitude of potential system cost differences

is estimated to be less that + $50 per kilowatt of installed hydrogen produc-

tion capacity, a relatively small fraction of total cost. All equipment costs

are expressed in 1980 doll.:irs unless otherwise stated.

a. Water Electrolyzer Costs

Figure III-9 shows the assumed installed costs for the water electrolyzer

i,
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subsystem on a basis of dollars per kilowatt of hydrogen output capacity for

both present (1980) and advanced (2000) technology systems. These costs are

based on published data, with the advanced electrolyzes costs predicated on

the achievement of a mature industrial status for present developmental sys-

tems. 8-12 ' 14 The two cost curves shown represent essentially all types of

competitive technology and design approaches.
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The total electrolyzer subsystem efficiency (not just the cell efficiency

which is somewhat higher) in this analysis was taken as 70% for present tech-

nology (1980 basis) and 85% for advanced technology (2000 basis). A midpoint

efficiency of 77.5% and a midpoint cost were: assumed for 1990 time-frame: pro-

jections.

b. Solar/Hydrogen Subsystem Cost Considerations

Cost estimates For hydrogen produced from solar/hydrogen production

systems are provided in the next several subsections as a function of installed

capital cost ($/kW of hydrogen output capacity) and plant factor. In each

case, the system cost ranger, will be shown as areas on the plots. These

reflect both the effect of time (assumed technology improvements and/or tine

establishment of volume prcduction rates) and system size. These considerations

affect the vertical dimensions of the system-associated areas.
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The plant factor ranges are the limits that one would normally expect

for the specific system under consideration. This mainly reflects character-

istics of the involved solar-to-electric subsystem.

With the exception of thermal heat-engine solar/hydrogen systems, the

inclusion of energy storage is not considered in the plant factor ranges

shown. The inclusion of energy storage here, resulting in a broad plant factor

range for solar thermal heat-engine systems, derives from the nature of the

available literature on solar thermal electric systems, which include energy

storage.

In each case, no single cost of hydrogen is specified. Rather, cost/

plant factor boundaries are defined and overlayed on the previously described

general cost estimation plot (Figure III-8) for each of the selected systems.

c. Photovoltaic Solar/Hydrogen Production Systems15,16

For photovoltaic solar/hydrogen production systems, the installed cost/

plant factor boundaries are shown in Figure III-10. Two regions marked "A"

and "S" are shown. Region B ass ,anes the achievement of the 1982 photovoltaic

array cost goal of $2/peak watt electric (1975 dollars), with the installed

cost estimated to be 1.50% of the photovoltaic array cost. After updating to

1980 dollars, the photovoltaic subsystem cost was matched* with present tech-

nology electrolyzers to obtain total system cos•"-.. Electrolyzers at the 10-kW

and 30-MW system size level were selected to defina the upper and lower bounds

of Region B. Region A was established in the same manner as Region B, with

the difference being that the 1990 photovol.'.'^ arraa,t cost goal of $0.20/peak

watt electric (1975 dollars) was assumed, along with advanced technology

electrolysis equipment. If systems were to be assemkiled on the basis of

today's electrclyzer and photovoltaic technology, costs would be very high,

in the range of $20,000/kW of hydrogen output capacity, out of the range of

Figure III-10.

d. Thermal Heat Engine Solar/Hydrogen Production Systemc7:15,17

Figure III-11 presents the estimated installed cost/plant factor_ bound-

aries for thermal heat engine solar/hy& ogen production systems and, again,

two regions are shown. Region B represents systems in the 100-kW class for the

1990 to 2000 time period, and Region A represents systems of 1 to several

*	 The size of the solar-to-electric subsystem (in kw e ) requiiod per kW 
of electrclyzer equals 1 divided by the electrclyzer efficiency M. 2
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hundrod megawatts for the same time period. Solar to ulectricity subsystem
cost ranged from $1800/kW e (1978 dollars) for the smaller 

systems in 1990 to
$1000/kW 

0 (1978 dollars) for the larger systems in the year 2000. Electrolyzur
technology 

assumed was midpoint (between present and advanced) for the lg,)O
time frame, and advanced for the year 2000.
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e. Wind Energy Solar/Hydrogen Production S^ems5,10,13,18-20

Three estimated installed cost/plant factor boundary region.; are shown

for wiz .energy solar/hydrogen production systems in Figure ITT-12. 'file

Regions -	 .-ough C roughly correspond to systems of 10 MW, 500 kW, and 10

kW, respect.1,ely. Except for Region A, which represents tho Large systems in

thQ year 2000, the regions' upper and lower boundaries reflect expected sys-

tom improvements with time. Table 111-3 shows the time dependent cost values

used in establishing each regions' boundaries, in 1980 dollars.
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f. 'Small Hydropower Solar/Hydrogen Production Systemsl2,15,21

Hydropower represents a rather mature technology, with cost estimates in

1980 dollars ranging from $2750/k.W 
e 

for 200-kW systems down to $440/kW 
a 

for

megawatt size systems. Production-related cost reduction, rather th-ij tech-

nology-related cost reductions, are much more likely for this solar-to-

electricity subsystem. However, in line with the current industry practice of

single unit, custom production in response to a specific customer order, no
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solar-to-electric subsystem high-production cost benefits have been projected

in this; analysis although such a cost-reduction avenue is potentially available.

The cost and efficiency benefits associated with electrolyzer subsystem improvo-

monts with time area included.

Table III-3, INSTALLED COST OF SUBSYSTEMS FOR WIND ENERGY SOLAR/HYDROGEN
PRODUCTIOA SYSTEMS

Wind-to-Elictric Subsystem,	 Water Electrolyzar Subsystem,
Year _	 $/kW	 WH (Clef. Figure ITT-9)

urge Systems	 i lu Mw)

2000	 522-607	 185 (Advanced Technology)

Medium Systems	 ( 500 kW)

1990	 1150	 700 (Midpoint Technology)

2000	 575	 450 (Advanced Technology)

Small Systems	 ( 10 kW)

1980	 3450
	

4522 (Present Technology)

2000	 1150
	

2082 (Advanced Technology)

Figure III-13 shows the two regions defined by the estimated installed

cost/plant factor boundaries for small hydropower solar /hydrogen production

systems. The difference in these two regions is the cost and efficiency of

preoent technology electrolyzers versus advanced technology elect:rolyzers.

4. Cash-Flow Benefits From Modular Construction

In cont?raeL to conventional utility system energy conversion faci.litles

which are characterized by --

•	 units with very large outputs, and

•	 relatively long construction periods.

Solar/hydrogen systems (and solar energy systems generally) are amenable to

modular construction. Such modules would tend to have 1) smaller unit outputs

(a fraction of the total ultimate plant), but 2) early "on-line" productive

capability.

In future time frames, say beyond 2000, where large solar/hydrogeti pro-

duction systems might be developed, the "modularity" potential of solar

energy systems can provide economic advantages. When compared with a more

conventional large energy production facility, such as a nuclear-electric
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power plant, the ability to productively operate portions, or modules, of the

solar facility prior to the completion of the entire plant can improve the

caxh-flow position and reduce the debt-load associated with building the

total facility. or If a leveraged position is preferred, the internal funds

guner-itod are avail,xible for other investment opportunities.
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This amount of capital available is calculated as a combined equity

principal" and a dent retirement allocation. b This . i!—tint, on a love+l ized

,.nnual basis, equals the total installed plant cost times d sinking fund

factor. Where= the sinkina fund factor (SFF I ) is%

(111--1);Vp k n	 k
'	 (1*k)n .. 1

and

k - after-tax internal rate of return assumed here to equal to the after-tax
weighted cost of capital. (Thus, for xa tax rate of 50% and a weighted
cost of capital equal to 15%, k - 7.5%.)

n - plant book life.

For a modular energy production facility of the: samo size and total cost,

each plant module is taken to be equal to 
C1* 

of the conventional plant and

is assumed to take--; one year to become operational. As an example, if t.hc! cc,n-

ventional plant construction time is 5 years, 5 modules of the modular plant.

being compared are assumed constructed in series. These modules would pro-

gr t:,,:;ively come "on Lines" at the end of the first through t.ltt, i i ft h yvat-.

As can be seem from Figure 111-14, the modular appro.ecat offi!rs more

financial advantage~ to the shorter book life investment decision than to -he

longer utility type (24 to 25 year book life) practice.

	

d	 Tho actual disposition of this return is a company decision; it may bt,
added to dividend payments or reinvested in other projects.

	

b	 Debt rai:irement is W;sumod to occur at the end of the plant book life.

	*c	 CT construction time of conventional plant.
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ATTACHMENT A
TO

APPENDIX III

COMPARATIVE COST ANALYSIS OF ALTERNATIVE ENERGY STORAGE
SUBSYSTEMS IN THE SELECTED SOLAR/HYDROGEN SYSTEMS

Introcuction and Purpose of Analysis

Energy storage is an important consideration in solar/hydrogen systems

because of the requirement for matching the user demand schedule for hydrogen

with the variable solar energy input. Several types of energy storage sub-

systems, and locations within the overall system, can be considered for solar/

hydrogen systems (Figure A-1):

•	 Type 1: that directly associated with the solar energy conversion
(or SECT)

r	 Type 2: that associated with the control interface between the SECT
and the water electrolyzer

•	 Type 3: product hydrogen storage, between the electrolyzer and the water.

Table A-1 presents each of these in context with the selected candidate

systems. All four selected systems share in their ability to use both elec-

tricity- and hydrogen-based storage. Additionally, thermal heat-engine systems

can incorporate thermal energy storage. In fact, inclusion of thermal storage

is more the rule than the exception in thermal-electric systems studied to date

(e.g., Reference 1).

With the several alternatives available, it is important to understand

how each storage mode affects system design and integration. Most significant

is the comparative impact on the cost of the hydrogen product from each

approach. The study briefly summarized here was carried out to gain a better

understanding of these points. Specifically, an indication of the lowest cost

storage approach for each selected system was sought.
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!Figure A-1. GENERALIZED SELECTED SOLAR/HYDROGEN SYSTEM

Table A-1. ENERGY STORAGE SUBSYSTEM TYPES FOR THE SELECTED SYSTEMS

Type 1 Type l Type a

Photovoltaic ^- Electricity Iiydr oquil

'Thermal Thermal Electricity tlydre,don

wind -- l loc.tri.oi I y Hydro tlen

hydropower --* E l scar i s it y i lycir-Uclrn

*titiper reservoir 4tc7t cvio ("pc?tadiII I )") is a disci- Iwt I)ossi.bi.lity, excrilit
where run-cif-tno-river UIenition is nt?t`l':hary. Ifiow(' vvr, p(ii,dinn

storage, though an advantaqur,us approach, is neat. further c)u!;i clue(++1

here.
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Assumptions

The following simplifying assumptions were made:

1. All systems considered were dedicated to hydrogen production only (no
electrical or thermal side production).

2. Energy storage capabilities added serves only the storage function related
to the hydrogen product output. (Other possible system benefits, e.g.,
interface buffering, were not considered.)

3. The storage system does not add to the system's peak output capability.

4. Storage modes were limited to the following approaches:

•	 Thermal	 -- state-of-the-art, with specific approach depen-
ding on the system and its operating temperature

•	 Electricity	 -- state-of-the-art, lead-acid storage battery sys-
tems of the type considered for utility load-
leveling service, etc.

•	 Hydrogen	 -- conventional pressurized gas storage container
systems, such as those fabricated from gas line-
pipe with storage pressures of about 1000 psi,
equipped with compressors assumed operated by
product-hydrogen fueled heat engines at 0.30
thermal efficiency.

5. The thermal, battery, and hydrogen storage systems had the fixed capital
costs and operating efficiencies given in Table A-2.

6. Overall water electrolyzer subsystem capital costs were $300/kWhr, and
efficiency was 80%.

7. Overal:- annual plant factors for the four selected solar/hydrogen 'systems
were:

•	 Solar thermal heat-engine - 0.25

•	 Photovoltaic, wind, and hydropower - 0.20 and 0.50

8. Capital costs for the SECT-related subsystem, i.e., the equipment
upstream of the electrical interface (solar collector-plus-generator)
were:

•	 Solar Thermal

- Collector and transport subsystem = $300 and $106/kWtl,

- Heat Engine = $250/kWe

•	 Photovoltaic, wind, and hydropower = $3000 and $1000/kWe

4.	 The heat engine's assumed efficiency is 30%.
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Table A-2. ASSUMED CAPITAL COSTS AND OPERATING EFFICIENCIES FOR ENERGY
STORAGE SYSTEMS

Capital Cost a 	Operating
Story e T e	 $ 106 Btu	 Efficiency, in out

Thermal	 13,185b	 0.80e

Battery	 29,300c	 0.a0f

Hydrogen	 3,260d	 0.919

d	 All costs inflated to 1980 dollars using 5%/year.

b	 Based on thermal storage system cost of $45AWhr (References 2,3).

c	 Based on battery cost of $60/kWhr with two cell rebuilds over 20-year
life at $20/kWhr each. Does not include AC-DC conversion equipment,
does include shelter (Reference 2).

d	 Based on a capital cost of $1.06 SCF; includes compressor (References 4,5).

e	 Includes pumping= split evenly between input and output functions.

f	 Does not include AC-DC conversion equipments split evenly between input
and output functions.

9	 Efficiency loss occurs on input mainly from compression.

Method of Analysis

Since the purpose of the analysis was to determine relative costs of

storage among the storage subsystem candidates applicable to the selected

solar/hydrogen systems, an incremental--rather than an absolute--hydrogen

output requirement approach was taken.

The simplified system of Figure A-2 was evaluated for an incremental

increase in hydrogen production over an unstated "present" capability. The

total incremental amount added (10 6 Btu) was to be retainable in energy storage

within the system, and cycled on a daily basis. Further, the storage modes

were not considered to increase the system's peak output. This consideration

allowed all components downstream (toward the output side of the system) of the

storage system to retain their initial size. The benefit of this assumption

is that the final cost of the battery and therma •1 storage system increments

was held down. If the stored 106 Btu increment were to be used to increase

I
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Figure A-2. SOLAR/HYDROGEN SYSTEM WITH ENERGY STORAGE ALTERNATIVES AS
ANALYZED

peak output over a 1 hour time period, system cost would increase about

$179,000 for the thermal storage mode and $91,000 for the battery storage

mode. The hydrogen storage mode costs would be the same whether used for

output leveling or adding to the peak output since no system components are

affected by the flow rate from storage at this point in the system.

As suggested by the assumptions made, the basically similar characteris-

tics of three of the solar/hydrogen systems--photovoltaic, wind, and hydro-

power--permitted them to be treated in a single calculation for two plant

factors. The thermal heat-engine system was treated by itself for one plant

factor.

Incremental storage costs were calculated considering;

•	 Added capital cost for the storage capacity of the type in question.
(Note: only one storage system at a time was examined.)

• Added capital Lost required for upsizing of subsystems upstream of the
storage system to produce the energy form placed into storage (thermal,
electrical, hydrogen).

•	 All affected storage and energy conversion subsystems efficiencies.
(Note: efficiencies have a direct effect on subsystem up-sizing.)

Table A-3 presents the results of the analysis in terms of total system

cost for a storage system that provides 10 6 Btu of hydrogen output.
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Discussion of Results

The main findir,g of the analysis is that hydrogen storage is the lowest

cost option among hydrogen, battery, and (where applicable) thermal energy

storage approaches. These alternative storage approaches were found to have

costs which range from about 201 to 70% over hydrogen storage.

For the systems evaluated at two plant factors, 0.20 and 0.50 (photo-

voltaic, wind, and hydropower), the cost advantage for hydrogen storage was

greater at the larger plant factor. It was also more advantageous at the

lower of the two solar energy conversion system capital cost assumptions.

For the solar thermal heat-engine system, the battery and thermal

storage systems cost about the same, with these costs being about 27% higher

than hydrogen storage at the $500AWth collector and energy transport subsystem

cost, and 47% higher for the $1C0/kWth case.

Additional findings showed that for battery or thermal storage to become

the preferred storage method in terms of cost at some future date, considerable

improvements in the system component values assumed here would be required. For

battery systems, efficiency and cost changes which resulted in a XX tem cost

reduction equal to the price of the current technology battery would make

battery and hydrogen storage costs about the same. Whether or not such a

cost reduction can be achieved in the future is highly conjectural.

For the thermal storage system to be competitive with hydrogen storage,

a system cost decrease equal to 50% of the current technology thermal storage

component cost would be required. This reduction for thermal storage appears

to be possible with large systems and high efficiency heat engines.
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Tice: Conventional Power Source Interface

In common practice, the electrolyzer, which for a given hydrogen output

rate appears as a c!Qns tan t-current. variaMe-voltage load, is connected to the

AC power grid. The grid, however, in the ideal sense, is a constant voltage

source with infinite current capabilities. Since this Sofas not match the

c:le3ctrolyze:r's needs, a control interface--in addition to AC-to-UC conversion--

must also transform the power source such that it appears as a controlled

source. This transformed source could be modeled as either a controlled

voltage or controlled current source using either voltage or currant as the

controlling reference. For the purpose of this discussion, and given that

the electrolyzer needs a form of current control (e.g., via -voltage control),

we have elected to model the source as a voltage-controlled current source.

(Sea figure B-3.) The selection of how this control voltage is generated is a

specific design choice. one common method is to generate the reference volt-

age via a current sensor in the AC circuit feeding a Silicon Control Rectifier

bridgcr.

POWER SOURCE
	

LOAD

I

V, = G
or

V1
RAG

Figure B-3. AN IDEALIZED POWER SOURCE WITH AN IDEALIZED ELECTROLYZER AS
A LOAD
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The Uncunvu nt ional Power Source Interface

The intL-rfaco of the electrolyzur with unconvent tonal power sources,

such as solar-to-t-lectric systems, adds an additional v.jri,jblt! to this inter-

fdcu oonl.rul. A.-i with the conventional case, thv power uiairce must lie grants-

formed such that it appears as a controlled current iiourev. The difference

is that the r•forence voltatic (assuming voltage caltrol.) must also reflect

the power available, since the source Is now a variable powoc sourr ,_^ rather

than an "infinite." or constant power source.

Rotat inq Machines

If more or less conventional constant-speed, rotating, electrical
generation equipment Is employed in the unconventional power source, angular

velocity ( RPM) sensors might be employed to obtain the additional reference.

(Power demand heyond system capability results in a decreasing RPM.) Caution

must be exercised, however, since conventional speed control systems also

sense RPM, and undesirable feedbacks could result. With solar-to-electric

systems--such as solar thermal electric and hydropower- -sensors in the:

power stream could be used. Still another method is to design the power

system such that the output voltage and corresponding current change with the

power input and also match the voltage-current characteristics of the electro-

lyzer. This approach could simplify the power control requirements and, if

the system used PC generation, could eliminate the need for conventional.

power control equipment and offer efficiency as well as cost advailtages.

Photovoltaics

The photovoltaic solar-to-electric system is a special case. The

intrinsic nature of the photovoltaic device is that it is a ,ontrolled

current power source, the control in this case being the solar input level.

Converting this power to AC, and allowing the solar-to-electric system to

interface with the more or less conventional AC to DC power control units,

does not appear to be the preferred course of action. Rather, the direct
coniiection of the photovoltaic arrays to the electrolyzes, thereby eliminating

the cost and inefficiency of power conversion equipment, is recommended.

The results of two independent experiments on photovoltaic/electrolytic

hydrogen generation suggests that this match may be possible.1,2 While
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neither experiment achieved this match,* the investigators concluded that

Intrinsic matching was a distinct possibility. Figure B-4 shows one such

projection for a photovoltaic array having a peak output of about 115 watts,

coupled with an olectrolyzer having four cells. The el.ectrolyzor used was the

"Elhygen-R" hydrogen generator manufactured by Milton Roy Co. Its volta(Je-

current characteristics were previously shown in Figure 8-2. The photovoltaic

array was a surplus Mariner IV solar panel. As can be determined from Figure

B-4, the projected photovoltaic/electrolyzer operating points are within a few

percent of the maximum power available, with the largest difference being

about 4.64.

l.) SOLAR RADIATION WAS DE'tRMINEO
USING A CALIBRATED RALLOON
FLIGHT SOLAR CELL WHICH IS
REFERENCED TO AIR MASS ZERO
2.) SOLAR PANEL OPERATING TEMP

WAS NOT MONITORED.
HOWEVER, IT CAN BE

106.2 W	 OETERMINEO FROM V.
WITHIN A FEW DEGREES

Peru = 115.5W

55.9 W	 110.2 W
80.8 W

Pf"89: 91.1 W
47.52 W

90.0 W
68.9 W	 82.2 W

PMMN = 82.5 W

CELL I CELLS I CELLS

7W _L14.9W J21.8W
25.8 W

20
12.9

no/cm
18 INPUT

38.5

16

"W%cm
14 INPU1

12 IN UT

r	 23.9 N
10

u

	

	 ELEC
CEL

8	 l

b	 ,r"JON27
WIC

PUT

A

Pmix T
25.2 W

0	 2	 4	 6	 a	 lu	 i s	 1y

VOLTAGE, VO4%

Figure B-4. SYSTEM COMPOSITE SOLAR PHOTOVOLTAIC AND HYDROGEN
ELECTROLYSIS CELL INTERACTIONI

The optimum matching of the photovoltaic and electrolyzer system was
not a sought-for objective in these experiments.
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Becauav future photovoltaic solar/hydrogen production systems will clearly
be at a larger scale than these experiments, and brucause 

the knee of the cur-

rt-riL/voltacle curve for the photovoltaic arrays 
in 

those 13yHtems is broader,

the Pilot ovolt.a.1 C/o lectrolyzer match on a larqor scal-a was invostiqatod. Us ing

published dat.a on photovoltaic arrays from Solar. Power Corporation and olvetro-

lyzer polarization curves from Teledyne Energy Systems, d photovoltaic output/

cloctrolyzur requirement voltage--current composite was assembled (Figure B-5).
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pe
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TECHNOLOGY
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*110	 TOO	 700	 Z;-	 "A0	 1100	 1	 1100

VOLTAGE, VOLTS

ri.clure B-5. VOI;rAGE- CURRENT COMPOSITE FOR PHOTOVUU.VAIC SOTAR/11YDROGEN
PRODUCTION FACILITY

The Uloctrolyzor selected as the photovoltaic array load consisted of

several hundred culls in series (540 and 560 for the current technology sys-

tem, and 630 cuid 650 for the advanced technology system) , with active c(Al

areas of 2 square feet and 0.9 square foot for the current and advanced tech-
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nology Etyutoms, respectively.**

To provide tho voltage current characteristics of this load, tho photo-

volflaic array consisted of 1400 parallel strinys of 2465 tiortes coioloolud

cults (55 millimeters 
in 

diameter). Peak power output at 100 111W/C111 2 solar

intensity, 2 1) ()(' ambient temperature, was calculated to bo 91S W.

Figure R-5 shows the voltage-current composite for tho photovoltaic

solar hydrogen production system. Based on the calculations made, the 13110to-

voltaic/clectrolyzvr intrinsic match appears quire goM. The relatively

broad peak-power-band allows for a considerable variation in the electrolyzur's

polarization curve while maintaining good power utilization over a wide range

of solar input intensities. In addition, the system would tend to be self-

rogulatilicl. During cold starts, the polarization curve of a cold vloctrolysis

system would he displaced to the right of those shown in Vigtire B-5 and move

to the left as tho operating temperatures incIreasod. If for tiome reason the

electrolysis units' polarization curve moved further to they loft than normal,

the currant limited nature of the photovoltaic array wi 11 limit the Clectro-

lyzer currant loading to a few percent over its rated load--,a Vontlittoll

which the ulect-rolyzer can handle provided the operating Lomporaturo does

not exceed specified limits * It should be noted that tht, two principle

causes of a Ieft-ward movement in the eloctrolyzers' polarization curve is

increasod temperature and shorted electrolysis cells. As can be sooll from

the examp.%e shown in Figure B-5, the shorting of as many as 20 electrolysis

culls would have little off-ict on the system's loading. In the Ca-'-o of Over-

temperature, the system's temperature monitors would shut- the system down

before damaqinq current levels were obtained if in fact they photovoltaic

array could provide this high current lovel..

Tile selection of active cell area was an arbitrary do,4ign paralli0tor its
this assessment, allowing both the current and advaiicod tochilology
electrolysis systems to interface with the photovoltaic array 

in 
an

optimal manner. These cell areas do not necessarily represent current

or future manufacturing plans.
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APPENDIX IV.

SOLAWHYDROGEN -~ ITS POTENTIAL MARK T gD=
AND

TECE_ 1NOLOGY COMMERCIALIZATION CONSIDERATIONS

General

The scope of study has been directed toward those solar/hydrogen pro-

du.tion technologies with the best chance of being "commercializable" within

two decades. This constraint has enabled the study to be a focused one.

Within this constraint, the study team has addressed the problems of the

selections of candidate technologies. The installed costs, and cost of pro-

duct, under varying financial assumptions and rules were determined for

systems using those selected technologies.

This appendix will address two remaining questions. First, who are the

customers that can afford to pay the indicated solar/hydrogen system and/or

product prices? Second, what are the problems that must be overcome in com-

mercializing the selected solar/hydrogen production technologies?

A. SOLAR HYDROGEN -- ITS POTENTIAL MARKET SECTOR

1. Overview of the Present Hydrogen Market

Figure IV-1 places the present production of hydrogen in context with the

energy consumption of the United States. While the hydrogen usage is small in

national energy consumption terms, hydrogen is a critical feedstock in ammonia

production, methanol production, and petroleum refining. Within the total

hydrogen market, there is a small segment comprising the "Small User" hydrogen

market. This market includes such uses as the synthesis of chemicals, metallur-

gical processing, electronic component manufacture, vegetable oil processing,

and many other uses. 1 The small hydrogen user can obtain hydrogen by selecting

from any one of four options:

1. Ons',te steam reforming of natural gas or naphtha

2. Purchase from some nearby location where it is available as a
byproduct for sale, e.g., as merchant gas by an over-the-fence
pipeline
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0 0

TOTAL U S ENERGY (070) TOTAL HYDROGEN	 SMALL USER HYDROGEN
TO QUADS	 0.65 0 (016%)	 0.027 Q (4.2%)

TOTAL HYDROGEN	 SMALL USER HYDROGEN	 MERCHANT HYDROGEN
0.65 Q (0.69)	 0.027 Q (4.2 %) 	 0.0029 Q (10.7%)

PROPOSED
SOLAR HYDROGEN
INITIAL MARKET

Figure IV-1. THE USE OF HYDROGEN IN 'Till; U.S.
IN CONTEXT WITH TOTAL U.S. ENERGY CON-

SUMPTIONS

3. Purchase from an industrial merchant gas company with delivery by
truck

4. On-site electrolysis of water using grid power or on-site generated
power.

As can be seen in Figure IV-2, this "small user" market sector presently

pays a premium price for hydrogen. .

EPRI has reported the use and pricing of hydrogen produced by the on-

site electrolysis of water in competition to merchant hydrogen costs in the

present time frame. 2 This comparison of cost to demand rate is illustrated

in Figures IV-3 and IV-4. The hydrogen costs in $/million Btu represents

the competition that projected solar/hydrogen production systems must meet to

achieve commercial success.

This same analysis  investigated the probable future of the merchant

portion of the small user market. This market is projected to expand sig-

nificantly in the future as shown in Figure IV-4. Thus, the opportunity for

solar/hydrogen systems to enter this marketplace is expected to be available
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Figure IV-Z. SMALL USER HYDROGEN COSTS VS. REQUIRED
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Figure IV-3. COMPARISON OF MERCHANT.HYDROGEN PRICES
WITH ADVANCED ELECTROLYZERS PRODUCTION COSTS FOR

INDUSTRIAL USERS AS A FUNCTION OF DEMAND FOR
1980, IN CONSTANT 1977 DOLLARS2
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Figure IV-4. COMPARISON OF MERCHANT HYDROGEN PRICES WITH
ADVANCED ELECTROLYSIS PRODUCTION COSTS FOR INDUSTRIAL

USERS AS A FUNCTION OF DEMAND FOR 2000, IN CONSTANT
1977 DOLLARS2

for the duration of, and beyond, the time frame studied here, i.e., two

decades.

2.	 Small User Hydrogen Market Demand and Pricing Structure

Consideration of the Small User Hydrogen Market Sector

In its recent assessment for the Electric Power Research Institute,

entitled "The Market Potential for Electrolytic Hydrogen," The Futures

Group, Inc., provides a picture of the small user hydrogen market in the

United States. 2 Placing this sector in context with total hydrogen production

and use, the report describes this market as follows:
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"The largest use of hydrogen (excluding its use in
petroleum refining and in the manufacture of ammonia
and methanol) is for the manufacture of industrial
chemicals. Chemical companies with annual hydrogen
demands io excess of several hundred million SCF produce
their requirements by steam reforming (most commonly
of natural gas), or pipeline generally from a proximate
source. There is a tendency for the larger chemical com-
panies to consolidate their hydrogen-requiring processes
at one location where either natural gas is available
or there is a supply of by-product hydrogen."

"Small companies manufacturing specialty chemical
products rely on merchant hydrogen, often paying premium
prices to assure quality and reliability of supply.
The hydrogen demand by the (small) chemical industry is
projected to grow from about 49 billion SCF in 1977 to
188 billion SCF in the year 2000, following an annual
growth rate of 6%."

"Five other industrial product categories represent
the reriuinder of major small users of hydrogen;
pharmaceuticals, fats and oils, metals, electronics,
and float glass."

This "small user hydrogen" market constitutes less than 5% of total

U.S. hydrogen production and use (approaching 85 billion SCF or 0.027 quads

in 1977). However, it is both a growing market and - most significant to the

solar/hydrogen potential -- it is the market-sector presently paying the high-

est prices for hydrogen.

The projected demand through 2000 for small user hydrogen and reference

statistics for 1977 are presented in Table IV-1.

Table IV-1. PROJECTED DEMAND FOR SMALL USER

HYDROGEN (Billion SCF/Year)2

1977 1980 1.985 1990 1995 2000

Chemical 49.2 58.6 78.4 104.9 140.9 187.9

Pharmaceuticals 0.5 0.7 0.9 1.3 1.8 2.4

Fats and Oils 8.1 8.7 9.6 10.0 10.6 11.0

Metals 10.0 11.1 13.2 15.3 18.6 22.1

Electronics 2.1 2.4 3.1 4.0 5.1 6.5

Float Glass 0.9 1.0 1.2 1.4 1.8 2.1

TOTAL 70.8 82.5 106.4 136.9 178.6 232.0
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in Figure IV-5o these hydrogen demand trends are plotted Individually

and cumulatively. A second scale in included showing the energy equivalent

of this dentand in terms of the higher heating value (HHV) of the product

hydrogen.

Figure IV-5. PROJECTED U.S. MARKET VOLUME FOR THE SIX

IDENTIFIED MAJOR SMALL USER HYDROGEN MARKETS:
1980-20001

Ca)t ive and Merchant H dro gen in the Small User Market

At present, small user demand is met mostly by on-site, or "captive,"

hydrogen production techniques, including the steam reforming of light hydro-

carbons and, to a much lesser extant, water electrolysis. Table IV-2 lists

the 1977 "'merchant" or industrial gas hydrogen ^ 'ietration of the small user

* Sue Flyuru W-1
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categories given earlier. The total of 9.1 billion SCF comprises 13% of

the total of the 70.8 billion SCF total for thf identified small user mar-

ket in 'T'able IV-1.

Table IV-2. MERCHANT HYDROGEN SHARE OF SMALL USER IIYVW)uLN MAWET
(1977)

H dro en Use Billion SCF % of Market

Chemicals 3.0 32.9

Pharmaceuticals 0.6 6.6

Foods 0.7 7.7

Electronics 2.1 23.1

Metals 1.2 13.2

Float Glass 0.7 7.7

Other 0.88 8.8

TOTAL 9.1 10U.0

Figure IV-6 presents the projected merchant hydrogen market for 1980-2000

by categories of use. it can be seen that the chemicals, electronics, and

metals uses are projected to be the largest customers for the small user hy-

drogen market through 2000. Part of this market will be served by merchant

hydrogen.

Prices Paid for Merchant Hydrogen

Recalling that, today, merchant hydrogen comprises only 13% of the small

user hydrogen market, it is of interest to examine the prices paid for this

hydrogen. Based on the special user survey reported by The Futures Group,

Table IV-3 presents the prices paid by level of product demand by individual

consumers. ) This is stated in 1977 dollars by volume and (added for the

present report) in 1980 dollars per million Btu (HIM).

The method of hydrogen delivery, with some overlap reported, was reported

to be approximately as follows:
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Tablu IV-3. A(VUAL MERLIJANT HYDROGEN PRICES PAID BY CUSToMLksi

Individual Customur Wmand
(Million SCF/year)

Delivered Price ofI drop	 n

1977 $1K5CV	 1980 $/106 Btu

0.20 50.00-00.00 178.00-213.60

0.35 28.50 101.50

U.50 54.90 195.40

0.5u 22.00 78.30

3.0 8.00 28.50

5.0 12.00 42.70

10.0 9.50 33.80

12.0 9.10 32.40

18.6 8.60 30.60

22.0 7.00 24.90

37.0 8.00 28.50

72.0 8.00 28,50

97.0 6.00 21.40

100.0 5.50-6.00 19.60-21.40

120.0 7.00 24.40

150.0 7.50-8.00 26.70-28.50

180.0 5.50-6.50 19.60-23.10

200.0 7.00-7.50 24.90-26.70

Demand Range, 106 SCF/year
	

Customer Delivery Method

0.05
	

Cylinder - Gas

	

0.5-20.0
	

Tube Trailers - Gas

	

20.0-200.0
	

Cryogenic Trailers - Liquid

Using the price/quantity survey results as input data, The Futures

Group study team established a best curve fit:
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IV-11

r . __

p 
0.0583 + 0.0451 log V	 (IV-1)

where;

p # price/1000 SCF (1977 $)

v - annual demand on I0v1 SCF/year

(The coefficient of correlation for the fit was 0.851.)

This is plotted in Figure IV-7 along with the original survey data points.

A scale reflecting dollars per million Btu has been added (1980 dollars*).

Cast of Merchant Hydrogen

These prices reflect several cost components as incurred by the indus-

trial gas companies** plus their profit on sales. The principal costs are:

•	 Cost of hydrogen production

•	 Cost of hydrogen delivery (transportation, storage, distribution)

• General cost of business-associated services, i.e., maintenance of
equipment and alternative supplies for reliability, cost of sales,
and other costs of an overhead nature.

•	 Profit.

Hydrogen production costs by natural gas steam reforming (the prevalent

approach) are dependent on production plant size, feedstock, and utilities

cost, and other fixed and variable costs. Reference 2 indicates the following

production cost ranges:

Plant Size, 106 SCF/day
	

$/1000 SCF, 1977 $ $/10 6 Btu, 1980 $

1-10
	

3.00
	

10.68

10+
	

2.00
	

7.12

*	 A 5%/year escalation of price was assumed giving an escalation factor
of 1.157 for 3 years.

** As Reference 1 notes, "Over 90% of the merchant hydrogen market- is
divided among three industrial gas suppliers: Air Products, Linde, and
AI RCO.
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Figuie IV-7. 1977 MERCHANT HYDROGEN PRICES`

The report further states the following about ilIdUSLYidl. JJS COMI)aIly

concerns about feedstock availability in the future: 2

"Alit -icipatiliq the possibility of reformer fuudstocli, Cur-
tailments, or an uneconomical escalation of feedstock
prices, the merchant hydrogen producers have been exam-
ining the production of hydrogen by coal gasifiers. They
do not, at this point, appear to be anxious about the
availability of natural gas. Even in hard-hit states like
Ohio (where natural gas sales have been curtailed)
gas for the production of merchant hydrogen runtained con-
tinuously available. in fact the availability of hy-
drogen from a merchant source is one of the major
sallinq points that the industrial gas suppliers use to
sell 9"s atmospheres to the metals industry. While the
industry will continue to keep its options open, steam
reforming probably will remain the main source of hy-
droyen supply for the merchant hydrogen."
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"TI

liydrotjeii transportation costs contribute a very significar •. increment

to delivered prfoo. As a light gas, hydrogen is costly to transmit as a

pluHaurized cjaa because of the very low payload fraction of over-the-road

tube trailer transporters.

ltltmtr.atintj this, a standard ga ga 	 woighliiq about. 125 poi ► dli

stores only about I pound of hydrogen at approximately 22UO prig. Thus,

Ole mass-fraction of product delivered is well below 1%, si(jnifyti)q high

over--the-road delivery costs. This problem is characterized for bulk

i-IoliVely LUba trailers as follcWmt 2

"')TanoporLatioli costs call add si,jiiificaiftty to the price:
of morol ►ant hydrogen . Tube trailot -B (crustintj $30,000 for
40,000 SCF capacity to $90,000 for 130,000 SCF capacity)
are usud to deliver hydrogen up to 200 milos, beyond wilicil
Uio costs become prohibitive. Aver4ge costs exclusive of
the trailer costs arcs 	 $1.0() per running mile; all
additional b cents per mile is cunsidermi a reasonable
utitimate fur the trailer cutit8 (41). ( 111heso costs are
for deliveries of not loss than 50 miles. Por shorter
diStWICOS all hourly irate of $25 May be Used to C011111UL0
delivery costs.) On-site storage would be One or more
,jas trailers, and charges run about $10 per month for
each thousand SCP of stowage provided."

Litluid hydrogen deliveries are much more efficient 
in 

this rayard, but

the rvlat.ivoly expensive liquefaction process is required (,it Lilt) Production

ptmitl md sophisticated cyrogenic containers and servicing SytLellia are

rutted read at tho customer's facility. -,

mlStil l il:yT

AppoiMix 11.1 presented the estimaLod vust of I)rudut:t. hythoticl, II'S i lI9 t 1

four SelvIcLed candidate solar/hydrogen production tochnolutjit.)u. Theso costs of

product Work) shown to be influenced by 1..-Avale Of iloplet(lontation of the sol-Cir/

llykil*o^jull production systems, tile: 	 of the mallufactur i Ilk] cost,s of

the 14mikicLioll okluipmouL to tile volume in which it lliay be 111,11111fact' virod, alld tho

imploVoillolits that may be itlade 1.11 the achliolugies Over time.

Jud%jed wLLIiiIl Lite two decade CullUilercializatio ►l coast raj lit , it is not

00asull,lblo Lo oxj)t,oL- solar hydl:o9eli to be I)roduced, and detivered, at a prict,

k.-olliputiLivo WiLII conventional fuels, e.g., natural kjas. Within Lilt-, comillodity
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hydrogen sector, the price paid by users of over 100 , 000 SCI'/day also appear

to present difficult problems for solar /hydrogen systems penetration. How-

ever, for uses of less than 100,000 SCr/day, i.e., in the "small user" sec-

tor, a market opportunity for solar /hydrogen systems does appear to exist at

a cost of product in the range of $25-$100/million Btu.

In the following section of this appendix, the time that xemains before

the year 2000, the two decade constraint, will be discussed in terms of past

experiences in the development and commercialization of new technologies.

A point will be made that all this time will probably be required if past

experience is a valid indicator..

Yet this past experience is based on situations where the new technology

offered a clear benefit, either in new capability or reduced cost of product,

or in combination of both, in conventional markets. In the case of solar/

hydrogen systems, the proposed new technologies do not provide a clear advan-

tage in conventional market terms. At best, they may be competitive in site

locations where advantageous solar energy resources are available and market

prices that can be paid may match the capability of at least one of the four.

technologies.

In the opinion of the investigators, the full two decades (i.e., 1980-

2000) will be required to achieve commercialization of solar/hydrogen in the

small user hydrogen market sector. However, complete: penetration of that mar-

ket is not judged to be a practical goal within that time period. No signi-

ficant penetration of the total hydrogen market can be projected by solar/

hydrogen systems within that two-decade time frame. Further, no significant,

penetration of the national energy sector can be projected within that two-

decade time frame. However, it must be noted that these conclusions are based

upon conventional business practices and reliance on the general history of

the time spans required to introduce new technology under more desirable

circumstances; a situation that may not be representot.ive of the problem that

must be faced in the long term energy future of the United States.

The above considerations comprise the basis for the Logic that led to

selecting those candidate technologies that are past the research phase and

well into the demonstration of actual performance capability on a signifijant

scale. Technologies that require a longer time before even basic practi-
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ability, or performance competitive to existing technologies can be demon-

strated, have been rejected on the basis of the two decade study constraints and

historical indications of the time required to achieve "commercialization."

B. TECHNOLOGY COMMERCIALIZATION CONSIDERATIONS

The guidelines, or constraints, that have guided this assessment effort

leading to the selection of the four candidates are:

•	 The solar hydrogen systems should be "commercializable" in two
decades. "Commercializable" is taken, for the purposes here, as
meaning:

-	 Basic research, development, and demonstration processes will
have been completed

-	 All components and/or systems will be available for purchase,
though not necessarily off-the-shelf vendor items

-	 The purchase will have reasonable confidence in the costs,
delivery schedule, and performance quoted by the manufacturer

•	 The marketplace is the entire United States

•	 Conventional business practices are to be used

•	 All hydrogen uses are to be considered

•	 No major government interventions or initiatives (i.e., no "mega-
projects"). The role of incentives can be considered

•	 No technological "breakthroughs" are to be assumed.

1.	 Time Lags i.n the Commercialization of Technologies

In the course of this system assessment, the investigators have encoun-

tered a wide range for the estimates of the time that would be required to bring

any solar energy based hydrogen production technology to the "commercialized"

status.

Study of the specific subject of "commercialization" shows that there is

a limited amount of information available. Study of this subject by Mogee3

indicates that the problem of understanding this process begins with tht., lack

of a consistent definition 'of the phases comprising the total process. This

problem is further compounded by the diversity of the fields of application

of technology and the diverse nature of the problems to which technology is

applied within these fields. In addition, the time at which the process is

Iv-15



initiated introduces another significant variable. Some products are ahead

of their time at the original conception and lie dormant until the proper

market conditions appear. Others appeared at most advantageous times and

were rapidly developed using unusual methods. Examples of the latter include

the aircraft gas turbine engine and the atomic bomb--technologies that would
have taken much longer periods of time to develop or that would not have been

developed at all in the conventional marketplace.

Mogee3 reports on the findings of a Battelle Columbus Laboratories study

completed for the National Science Foundation in 1973. In this study, the

representative time lags from "first conception" (defined as being when the

idea was first conceived) to "first realization" (defined as being when the

product, technology or process is accepted into the marketplace), appearing

to be analogous to this study's definition of "commercialization", were

prast:nted. Trebles IV-4 and IV-5 summarize the findings concerning time lag

as developed from nine empirical studies of the subject.

Table IV-4. TIME YAGS FROM "FIRST CONCEPTION" TO "FIRST REALIZATION"
FOR NOTABLE TECHNOLOGICAL INNOVATIONS3

1. Heart Pacemaker 32 years

2. Hybrid Corn 25 years

3. Hybrid Small Grains 19 years

4. Green Rc.,volution Wheat 16 ,years

5. Electrophotography 22 years

6. Input-Output Economic Analysis 26 years

7. Organophosphorus Insecticides 13 years

8. Oral Contraceptive 9 years

9. Magnetic Ferrites 22 years

10. Video Tape Recorder 6 years

Mean Duration 19.2 years

Factors Causing Delay in'Innovation

Mogee 3 cites Langrish, et al., a with regard to the factors causing delay

in introducing new technology:

"Langrish, et al., have studied several factors causing delay in innova-
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Lion (sec; IV-6 and IV-7). For the overall sample of 84 highly
successful innovations, the most frequently-occurring causes of delay
were the failure of a related technology to be sufficiently developed
and the lack of a market or expressed need. Some types of innovations
were c-baractortzed by other important delay-causing factors. Chemical
innovations seem to have been plagued by the failure of management to
recognize potential while craft innovations were delayed relatively more
frequently by rosource shortages. Table IV-7 shows that the pattern of
delaying factors differs between innovations representing a large
technological change and those representing a smaller technological
change. Shortage of resources was the most froquunt delaying factor for
large rhanqea, but was less important for small changes, a finding which
seems intuitively reasonable. On the other hand, bottlunecks caused by
the insufficient development of related tuchnolotly wars of primary impor-
tancu to small change and of less importance to large change."

Table IV-6. RELATIVE FREQUENCY OF OCCURRENCE OF PACWORS CAUSING DELAY
IN THE COMMERCIALIZATION OF INNOVATIONS

Relative Occurrunt:t^ of Factors

Chemical Mech. Eng. Eleutrical. 'Craft' All
n - 12 n - 40 n = 23 11 = 9 n - 84

8.3 30.2 50.0 30.6 32.5

37.5 25.4 8.7 25.0 22.5

29.2 4.7 2.2 5.5 7.6

4.2 16 4.3 2.8 9.8

0 13.1 8.7 25.0 11.3

4.2 5.6 4.3 0 4.4

16.7 5.0 21.8 11.1 1.1.9

factors causing delay
in innovation

Some other technology
not sufficiently
developed

No market or need

Potential not recognized
by Management

Resistance to now ideas
(or over-attachment to
old ideas)

Shortages of Resources
(manpower or capital)

Poor co-operation or
communication (Inter-
and Intra-firm)

Not classified
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Table TV-7. RELATIVE OCCURRENCE OF FACTORS CAusrNG DEIdNY IN COMMERCIAL-
TZATIONS AS AFFECTED BY MAGNITUDE OF TECHNOLOGICAL CHANGH4

Relative occurruncu of factors M

Factors causing delay in Large technology Smaller technology
innovation change change

n	 11 n w 73

Some other technology not

now

16 35

sufficiently developed

No market or tived 16 23.5

Potential not recognized by 9 7
management

Resistance to new ideas (or 11.5 9.5
over attachment to old ideas)

Shortages of resources 20.5 10
(manpower or capital)

Poor co-operation or 9 4
communication (inter-
and intra-firm)

Not classified 18 11

2. Observations

It is suggested that the findings on commercialization of new technology,

which have been presented on preceding pages, should 
be used as a "checklist".

The problem of achieving commercialization of solar/hydrogen production tech-

nology should be viewed in the same perspectives.

With regard to the time required to achieve commercialization, the study

stipulations or guideline of two decades appears to be the time period about

which previous commercialization data points cluster.

With regard to the factors causing delay, rearranging Langrish's
4 find-

ings in Table IV-6 in descending order of frequency of occurrence might provide

additional guidance. Here, the study team will be a bit presumptuous, in

light of the limited data available, and we will select the chemical industry

examples. The result is:
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1. No market or need 37.5%

2. Potential not recognized by
management

3. Unde6loped technology 8.3%

4. Resistance to new ideas 4.2♦

5. Poor co-operation or communication 4.2%

6. Other 16.6%

7. Shortage of resources 0.0%

100.0%

In the previous section of this Appendix, we have addressed the market

but not the need for solar/hydrogen production technology within this market.

In fact, the market is presently served adequately by other production

methods. Solar/hydrogen production offers no product improvement or cost of

product reduction at the present time.

The factors relating to industrial management decision making, and the

execution of these decisions (2,4, and 5) comprise the second largest class

of cause of delay.

From the start of this assessment project, the study team assumed that

the technology must be relatively well developed.

The availability of adequate financial resources has been a cause of

delay in other sectors but not in the chemical industry.

The key factors that can impede the commercialization of solar/hydrogen

production systems appear to be those directly related to industrial. manage-

ment decision making.

3. A Review of the Industrial Management Decision Making Problem

The decision-making process within industry is on the critical path

between the new capabilities coming from the technological. community and the

eventual commercialization of any solar/hydrogen production technology. It

is appropriate to review the problems faced by industrial management decision

makers in such a situation.

The objective of this review is to point out those answers that can be

provided by the technological community regarding the production of hydrogen
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from solar ont^rqy; but mart, Importantly, to point out those answers that

cannot be provided by the technological community but which can only be
answared by individual Industrial organizations. This is a basic limitation
implicit in tho two volumes comprising this systems assessment report. The

ilivusti gator.-i can only liope to prusent a technological argument, taken to a

common ground, c(lsf of product, and the complation of the 'irgumont, ptisitivLAy

ur noyatively, must be developed by interested industrial oryanizatJonys.

Pici u, - I V -8 1 , rvoonts a simp I ified i I Ilia Lr at itin of thele numert)us fat,-torbi

that industrial decision makers must consider. Obviously, it is unnecessary
to consider all of these factors in all decision making situations. However,

the concept of making a major chancle in process technology would require con-
sideration (if all aspects in varying deqrees within varinins roe  vc)rporatt:

oryall i Z.lt i - I ^ ,
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Figure IV-8. A SIMPLIFIED PRESENTATION OF THE FACTORS INFLUENCING THB

BUSINESS MANAGEMENT DECISION MAKING PROCESS
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The activities required to support the corporate-level decision-making

process in situations of the type under discussion hero may take a variety of

formes and involve varying numbers of individuals, but it will require detailed

knowledge on:	 '

1. Shareholders expectations and attitudes

2. Tl:e corporate resources available for application to the continued
operation of the business

3. The capability of the present plant, the costs of operation and
maintenance, the invested and outstanding capital resources, the
suitability to the market demand patterns, etc.

4. The alternative conventional investment options open within, and
without, the corporation

5. The company's customers needs

6. The company's need for materials, purchased goods and services,
available labor resources, available skills, etc.

The technological community may conjecture on these issues but it is

unlikely that any useful results will come from such exercises unless they

are based on real business situations. The technological community can

develop new technological options and can present these: options for considera-

tion by management. This is true whether the development comes from within or

without a corporation. These options can be presented in terms of their appli-

cability to producing a product on a competitive basis. This is the approach,

and the limit of the approach, presented in this assessment study.

4. Summary

In previous sections, and supporting appendices, we have attempted to

develop and present the following major points:

1. That the process of "commercialization" of new technologies, using
conventional business practices operating in a free market system,
is a process requiring long time periods.

2. That a decision to pursue a new technology, by a large corporation,
a small business, an independent innovator or an entrepreneur, is
strongly based upon perceptions of the market value of the technology.
This decision can be aided in some ways, and delayed in others, by
government actions.

3. That, in at least one sector of the commodity hydrogen market, viz.,
"small user" hydrogen production, there are indications that solar
hydrogen production processes m ay be competitive in some specific
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combinations of site-specific solar resources and hydrogen market
demand. Idantification of the most favorable locations can best be
accomplished by firms that are presently onqatjed in supplying these
markets, Including self •supplving users of (captive) hydrogen.

in thu opinion of the investigators, individual initiative to Chango the

feedstock bast used by firms presently engaged in the mirkoting of merchant

hydrogen, or organizations operatinq small-user captive OVStL?MS, to tinlikelU

for a numbur of individual reasons and for combinations of those reasons:

1. The op inion is widel y held that there is an avAlablo and aduquate
sut)i)lv of Petroleum and other fossil feedstocks.

2. Tho uncertainty of the continued availabilit y of natural qds, na ►►►tha
and other conventional feedstocks in the Ionq torm rei)rcsonts an
unknown. By being an unknown, this point cannot l3v used as an
invest nt justification for shifting to different feedstock bases
and/or. technologies. The concept only introduces an additional
element of uncertainty into lunch 	 corporate planning. This
eloment of uncertainty is insignificant in lbo (it aural level of
uncertainty caused by present economic conditions. Paradoxically,
the level of economic uncertainty is affected by the uncertainty
associated with fossil feedstock availability generally--i.e., the
' Ienergy problem". However, this problem is generally judged to be
outside of the scope of consideration for conventional long-range
corporate planning. Such problems are addressed by corporations
only in terms of the direct threat to the corporation which can be
met by actions embodied in the long-range plan which can be carried
out with corporate resources in all forms (which includes supplier
and supporting industry technologies). If the proposed action can-
not be accomplished with projected corporate resources, no action
will be included within the plan.

A further point can be raised with regard to individual. corporate initia-

tives. An individual firm electing to shift to non-fossil derived hydrogen

in the merchant gas market, or small user captive market, might place itself

at a competitive disadvantage in that marketplace (with the possible exception

of a small us( where hydrogen use is critical but represents only a small

component of total product cost in what might be a secure marketplace). Thus,

it would not be logical to be "first" in making the shift; rath er being

"second" or "third" would be considered more prudent.

Fuel gas, or energy use, of hydrogen is not, at present, an approach

viewed as practical for any business firm to consider as a subject for inclusion

in long-range corporate plans. (However, special exceptions to this may exist.)
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Generally, there appears to be a need, perceived by some iw1ustrial

firms, to develop a reasonably accurate information base on the commercial

practicality of the application of now technology to the production of small

user hydrogen. Major firms in the industry have demonstrated this interest

specifically in the area of the application of small-scale hydropower systems

to tho production of small user hydrogen. 1 As yet, this demonstration remains

to Vie accomp I i shed.

The justification for such industrial interest appears to be reasonably

based, and approtpriately timed, with the need to obtain sufficient, valid

information to support logical and reliable evaluation and treatment of the

technological alternatives within corporate long-range planning. The types

of efforts that appear to be needed are of a "pre-long-range planning"

nature. That is, their consideration in the present time-frame would appear

to be of interest to selected businesses, but an "outside stimulus" may be

required to bring about developments. It is in this situation that govern-

ment interest and financial stimulation is viewed as necessary and appropriate.

Section IV
REFERENCES

1. Corneil, Hampton G., Heinzelmann, Fred J. and Nicholson, Edward
W.S., Economics of Small Usor Hydrogen, Proceedings of the
Symposium on Hydrogt:. i for Energy Distribution, Institute of Gas
Technology, Chicago, Illinois, July 1978.

2. The Market Potential for Electrolytic 	 Report Prepared
by the Futures Group, Glastonbury, Connecticut, for the Electric
Power Research Institute, EPRI Project No. 1086-4, Report No. EM-
1-154, Palo Alto, California, August 1979.

3. Moqee, Mary Ellen, Time Lags in the Proluction of Technological
Innovations, office of National R&D Assessment, National Science
Foundation, Washington, DC, January 1976.

4. Langrish, J., Gibbons, M., Evans, W.E., and Jevons, P.R., Wealth
from Knowledge: A Study of Innovation in Industry, John Wiley &
Sins, New York, 1972 as cited in Reference IV-3-

IV-25



APPENDIX V

CONSIDERATIONS REGARDING DEMONSTRATION PROGRAMS
AS PRESENTED IN

RAND REPORT R-1 `326-DOC e ANALYSTS OF FEDERALLY FUNDED DEMONSTRATION PROJECTS
AND

THE CHARPIE TASK FORCE REPORT

General

While the objectives of research and development programs (two different

types of activities in terms of grogram objectives) should be familiar to the

reader, th(.+ subject of Demonstration Programs, and particularly federally

supported 1)rc,yrams of this type, has only recently bevit subjeci- c=d to study and

analysis.

The first investigation of these specific types of programs was a study

by the Rand Corporation supported by the U.S. Department cif Commerce (Refer-

ence V-1). The results and conclusions developed by the Rand investigators

were used, in conjunction with other studies in the same or similar areas, by

a Task Force of investigators, the Charpie Task Force, to produce a management-

oriented set of guidelines for ERDA shortly before that organization was

merged into the Department of Energy (Reference V-2).

A brief discussion of the key points of these two efforts is presented

here in order to provide perspective on Demonstration Programs. In the

opinion of thla study team, the status of the four selected solar/hydrogen

systems is appropriate to initiating Demonstration Programs aimed towards

accelerating their commercialization.

Rand R-1926-C, Analysis of Federally Funded Demonstration Programs

Throughout the Rand study, a general theme continually reemerges. This

is that those projects involving joint participation by government and

industry are more often the successful demonstration programs. Where joint

involvement does not exist, the probability of success is lessened.

In pursuing any demonstration project, both the involved industry and

the federal government agencies have historically attempted to achieve one

or more of the following goals:
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externalities is no longer a barrier to decisions about the adoptiono manu-

factur ► , regulation or subsidy of the technology. A project can be an infor-

mation succvss if the findings are positive or negative, but regardless of tliu

outcome, it is critical that the: 	 regarding those findings be effectively

dlstieminatkld within the affected industry.

A demonstration project is an application auccess if those agencies and

orqanizatit^ns involved in the specific program area  with the reli-

ability of the system and the quality of the gootis or services it delivers.

This is a "local" measurement as restrictee, to the organizations, equipment,

etc., involved in the I.-)articular demonstration program. The third measure of

a demonstrations outcome is the extent to which the technology is consequently

passed intn quneral use. In the particular case represented by a sol.ar/

hydrogen project, this effective dissemination of the findings of the program

to commodity hydrogen consumers or merchants is the major criteria for success.

Figure V-1 illustrates the interrelationships between participating

organizations and agencies, the program objectives, the two basic processes

of program planning and program operation and the information products .result-

ing from the program operation.

Effective information dissemination is essential if diffusion success is

to be achieved. The key to a good program and affective information dissem-

ination is good project planning. A Project Management Master Plan should

be dt-,vuJQI'Wd with this specific objective, among many other objectives, in

mind.

for Planning and Operation

As a well designed program plan can contribute to maximizing the

probability of demonstration program success if it is followed, the Rand

investigators studied the nature of the procedures that contributed to

previous successful demonstration program plans. They concluded that planning

for the operation of a demonstration program should specifically include the

target groups who are expected to make use of the demonstration's result.

The following guidelines were proposed:

1. Potential adopters and other target audiences should help plan the
demonstration through advisory panels, or preferably as direct
participants.
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2. Whery substantial technologicnl uncertainty exists, planning for the
demonstration should include organizations that have conducts+d
resoarch and developmant or field teats of the technology.

3. Where resolution of external uncortaintivr:- (such au hoalth, Siltety
and cnavir(mmental quality standards) fs lmport.rnt, tlu- it- lvv:atit
i'vdvr,^l, :state and local rcaqulatory ag c , ncr os should be diroctly
iuvtdvvd in planning for tho demonstration.

4. c'nnett-t y planning should be done at tho looal oper.atinq level with
federal review, and not by the federal agency.

5. The dome>nstrati.on should include private, soctor firms with Strong
incerstives to become manufacturers or suppliers of the toohnolocly.

Charpicy mask Porc •e Re port

The investigation performed by the Rand Corporation wa;; proscnt:vd as a

general study of the problem. its findings, conclusions and recommendations

were prosentoo in general terms and not particularly related to the programs

and projects being performed by the Department of Energy. The work accom-

plished by the Charpie Task Force, chaired by Dr. Robert A. Charpie, inter-

preted the Land findings together with the results of other , supporting

studies, into a scat of recommendations specifically or.iontod to DOE acti-vities

as appropri ato to RD&D programs. The initial study was proparod undor BRDA

spons ors) ai p.

The Charpiv mask Force recommendations were summarized and pro-, sstvc:l In
two catcyorius: first, recommendations related to the role of ERDA as a

commercialization agency within the federal government:, secondly, recommnenda-
tions diroutly related to demonstration projects as incentives to conunerciali-

zation:

"ERDA as a Commor ui4alizat.i.on Agency Withi n the Govc>a:•nmont"

1. ERDA :should bo reorganized so as to emphasize v.nergy rontmorcial.ization
planning.

2. GRDA should avoid becominq committed in advance to Dart-icul,ax tvc:hnologi-
cal solutions.

3. LRDA ;should avoid launching projects which would frustrate R, D and D
initiatives isa the private sector and terminate fund.irac7 of proioots which
industry demonst.rrate s it is prepared to finance with its own funds.
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4. ERDA tillould identify a total strategy to achieve final commorci.alization
for o,ich major demonstration project. This requi ros establi.: hiikq com-
morcial as well as technical objectivon for each l;vparato project.

5. I RDA shc.ruld develop a procedure for drawing on the kno w- flaw of 01v out-
side crcmmnunity in developing pragraw strateclivs ind in leaching st ' .1te-
gic deoi,;ions which affect the course of major progi ^nns.

6. ERPIh .;hcnlld have t-ho prime responsibility for taking tho init:iativo for
federal government program definition and planning.

7. LRDA .,hould si2ek logislative authority to provide pro jout support., when
llecessar y , .ill the way to the point of commercialization.     

8. ERDA should st ,ek as a matter of policy to maximize dire vt: invtllvemont In
extant i(In of major pro jects by the most competent Car"ttanizatioils ill the
°ciutsidu" sector which are likely to be involved in any ultimately
successful commercialization effort.

9. ERDA should develop procurement procedures approl.ia late to its role: ill
promotion commercialization.

ln. The mission of ERDA should be broadened to encompass all. aspects of the
coinmerc.ialization of new energy sources.

11. At every level of ERDA, in connection with evt'rry program or project.--
1arge and small alike--the agency as a whole all() each of its managers
as an individual must believe that commercialization is the mast .impor-
tant end result, and that commercialization by the private sector will.
only occur it ERDA succeeds in obtaining the maximum possible assistance
from they private sector and in integrating private senor resources into
every phase of the ERDA program.

The Demonstration Project as an Incentive to Commercialization

1. Tho federally supported demonstration project can play a useful role,
both in accelerating the availability of new technology, and in bringi.nq
technical captions to a point where they can serve as a credible hedge
againtit future uncertainty.

2. Every effort should be made to avoid moving into the demonstration
phase prematurely.

3. Demonstrating a technology which will not be economically competitive
at the conclusion of the demonstration will not result in a commercial
follow-on.

4. Creating conditions favorable for normal private exploitation will, when
possible, be more effective than government managed projects.

5. The private sector can make important market and technical illput.s to the
planning of demonstration projects.
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6. The terms and conditions of the relationship should be dutexmined by an
open invitation for proposal.

7. In manacling its contribution to a demonstration, 1RDA should be evor-
mindful of its unique role in attempting to foster cnmmcrcial application."

ROff' rQnCOS Ci I-0d

1. Baer, W.S., Johnson, L. L. and Morrow, L.W.,An^1 5i^5 ()f VodcraIIy
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Expvrim(^ntal Technol ogy Incentive program of the U.S. Wpartment of
Commerce, Rand Corporation Report No. R-1926- DOC, Santa Monica,
Californio, April. .1976.

2. Charpic> Task Porco, The Demonstration Project cm a Procoduro for
Accolurat i IlL tho Application of New Technology, U.S. Department of
Enf,rciy, Assistant Secretary for Research Applicat: ons, Keport No. DOE/
PA-003-1, UC-13, Washington, DC 20461, February 1978. 
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