
1\ 11\ 11111\ 111\ II 1\11 11\111 \111 \11\ 1111\111\\ IIIII 1\1 \11111 \1 11\ I

3 1176 00162 3280

I

f: .,

NASA Contractor Report 15930'

NASA-CR-159301

/9<60002)547

FUNCTIONAL SPECIFICATION OF THE PERFORMANCE
MEASUREMENT (PM) MODULE

Jeffrey E. Berliner

BOLT BERANEK AND NEWMAN INC.
Cambridge, Massachusetts 02138

NASA Contract NASl-15192
July 1980

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

,oL.AI~GLEY H:::SEM\C: j CEI JTEI\
UBR';;<Y, fMSA

.' j/''~I~T9t:1(. ~_IPIOI'II,,!

111
NFOI097 -------

1.

2.

'-
3.

Executive Summary
1.1 Introduction

Table of Contents

.
1.2 Overview of the PM Module: DAT/STAT

1.2.1 Overview of the DAT Subsystem •••••••••••
1.2.2 Overview of the STAT Subsystem
1.2.3 Overview of the Consistent File System

1.3 Evolutionary Development of the PM Module
1.3.1 Overview of the Baseline PM Module
1.3.2 Evolutionary Upgrades to the baseline PM Module

The DAT Subsystem •••••••••••••
2.1 DAT Subsystem Concepts

2.1.1 A Very Short Session
2.1.2 Common DATCommands:
2.1.3 Values

TYPE and SET
2.1.4 Expressions: Operators and Functions

2.2 DAT Tables
2.2.1 Making a Table via the Keyboard
2.2.2 Making a Table from a File ••••
2.2.3 Changing Data in a Table
2.2.4 Displaying a Table ••••••
2.2.5 Adding and Deleting Data in an Existing Table

2.3 Advanced Table Concepts ••••••••
2.3.1 Table Portions ••••••••••••
2.3.2 Extracting Table Portions •••••
2.3.3 Setting Table Portions •••••

.

2.3.4 Sorting a Table ••••••••••••••••
2.3.5 An Alternate Notation for Tables
2.3.6 Directory of Tables •••••••••
2.3.7 Renaming and Deleting Tables

2.4 Graphs ••••••••••••••• e .•••••••• ~ •••••

2.4.1 Example of a Graph .
2.4.2 Making a Graph from a Table •••••
2.4.3 Displaying a Graph ••••••••
2.4.4 Editing a Graph
2.4.5 Adding and Deleting Curves ••••••••••
2.4.6 Fitting Polynomials to Graphs

2.5 Using DAT Subsystem Procedures
2.5.1 Example of a Procedure

The
3.1

DAT Programming
Introduction to

3.2 Data Structures

Language .
the DAT Programming Language

.

.....

. ..
3.2.1 Constants, Variables and Expressions
3.2.2 DAT Tables ••••••••••••••••••••
3.2.3 Graphs .

3.3 Programming Statements

i

1
1
1
3
3
4
6
6
6

9
9
9

10
11
11
12
12
14
15
15
15
17
17
20
20
22
22
22
22
25
25
25
25
27
28
28
31
31

34
34
34
34
35
35
35

4.

5.

3.3.1
3.3.2
3.3.3
3.3.4

................................. Assignment Statements
Input/Output Statements ••••
Conditional Statements ••••
Block and Loop Constructs

·
...

3.3.5 Unconditional Jumps •••••••
3.4 Procedures ••.••••••••••••.••••

3.4.1 The PROCEDURE Statement and Arguments
3.4.2 The RETURN Statement •••••
3.4.3 The CALL Statement

·
3.4.4 Commenting Procedures ·

3.5 Building Procedures ••••••••
3.5.1 Editing Basics
3.5.2 EDITOR Commands

. .
· ..

The STAT Subsystem
4.1 Requirements of the STAT Subsystem ••••

4.1.1 Standard Statistical Analyses ••••

. . .

·
· ..

.....
. · · ..

....
· ... · .. · . · . ·

·
· 4.1.2 Interactive Operation

4.1.3 CDC Cyber-175 ••••••••
4.1.4 Data Transformation •••••• · · .. · ..

4.2 Candidate Statistical Analysis Packages
4.3 Two Prime Candidates: P-STAT 78 and SIPS

4.3.1 Standard Statistical Analyses •••••
4.3.2 Interactive Operation

· ..
4.3.3
4.3.4

CDC Cyber-175 •••••••• · · ..

· ·

· ... Data Transformation
4.3.5 Other Considerations

4.4 A Recommendation ••••••••••
· ... ·

·
A Consistent File System for the PM Module
5.1 Internal File Structures •••••• ·

5.1.1 Design Objectives
5.1.2 SIFT Files
5.1.3 SIFT Extended (SX) Files
5.1.4 SX File Structure
5.1.5 SX File Access

5.2 External File Structures
5.2.1 Design Objectives
5.2.2 Fields of File Names •••

·
· ·

5.2.3 Implementing External File Structures
5.3 Examples of Internal and External File Structures

5.3.1 Single-Run Data Files •••••••••• ..
5.3.2 Single-Run Measurement Files •••••••••

· ...

.....
. . · ... · .. · ·

5.3.3 Pilot-Summary Measurement Files ,
5.3.4 Overall-Summary Measurement Files

6. References ...

ii

36
36
37
38
39
40
40
40
41 ."\

41
41
42
43

46
46
46
47
47
48
48
49
49
50
50
50
51
52

54
54
54
55
57
59
61
64
64
64
65
66
67
68
69
70

72

Figure 1.1
1.2

~

Figure 2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Figure 5.1
5.2
5.3

List of Figures

Functional Block Diagram of the PM Module
Form of the Baseline PM Module •••••••••••

.............
A Typical Table•...................
A Typical Table Revised •••••••••••••••••••••••••••••••
A New Column of Data .•......•.......................•.
New Rows of Data •••••••••••• • ••••••
Extracting a Table Portion ••••• • ••••••
Sorting a Table ••••• • ••••••
A Directory ••••••••••••
A Simple Graph •••••••••
A Simple Graph Revised •••••••••••••• • •••••••••••
A Polynomial Fit to a Graph •••••••••••••••••••
A Spiral Drawn by Procedure SPIRO ••••••••••••• • •••
Procedure SPIRO•.......•.........

Format of a SIFT File
Format of One Block of an SX File ••••••••••••••••••
Overall Format of an SX File with Multiple Blocks

iii

2
7

13
16
18
19
21
23
24
26
29
30
32
33

56
60
62

1. Executive Summary

1.1 Introduction

~ The objective of the Performance Measurement (PM) Module is to
provide a computer-based interactive system for collecting and
analyzing data from a wide variety of experiments.

The challenge in the design of the PM Module is to provide a
system that will be broad and flexible enough to handle a wide variety
of experiments and performance measures, some of which have not yet
been conceived.

This document describes the design of the Performance
Measurement Module. It focuses primarily on what the PM Module would
do, and what it would look like to the user. The PM Module as
described here could take several man-years to develop. This report
suggests an evolutionary approach to the implementation of the PM
Module. with such an approach an operational baseline PM Module could
be running within a few months.

1.2 OVerv iew of the PM Module: DAT/STAT

The Performance Measurement Module consists of two subsystems:
a Oata Analysis and Transformation (OAT) subsystem and a Statistical
Analysis (STAT) subsystem. These subsystems are linked by a
Consistent File System. See Figure 1.1. Files containing raw
experimental data, such as time histories, are read and processed
using the OAT subsystem, producing files of performance measures.
These files, in turn, would be read and processed by the STAT
subsystem.

The OAT subsystem contains printing and plotting commands
examlnlng raw data and derived performance measures. The
subsystem contains printing and plotting commands for examining
performance measures and the statistical summaries.

for
STAT

the

There are primarily two reasons for dividing the PM Module
into these two subsystems. First, the primary functions of these two

'subsystems are quite distinct: data manipulation versus statistical
- testing, although their secondary fUnctions may indeed overlap.

Second, it appears likely that it will be possible to purchase a
statistical analysis package which would serve quite well as the STAT
subsystem.

Overviews of
in Sections 1.2.1 and
System is presented
development of the PM

the OAT and STAT subsystems are presented below
1.2.2., and an overview of the Consistent File

in Section 1.2.3. A plan for the evolutionary
Module is presented in Section 1.3. The OAT

- 1 -

~CONSISTENT FILE SYSTEM""

Q . ,.....S-U-B-~-~~-T-E-M- • Q--...... ~_S_U_~_~_~_~_T_E_M ...
EXPERIMENTAL

DATA FILES I MEASURE FILES
\

PERFORMANCE , \

ttl. -~
~ ~-- t:j -- -

- -

--
PRINT PLOT PRINT PLOT

OUTPUT OUTPUT

\~

DAT: DATA ANALYSIS & TRANSFORMATION

STAT: STATISTICAL ANALYSIS

Figure 1.1 Functional Block Diagram of the PM Module

- 2 -

subsystem and programming language are described in Sections 2 and 3,
respectively. The STAT subsystem is described in Section 4, and the
Consistent File System for the PM Module is described in Section 5.

~ 1.2.1 OVerview of the DAT Subsystem

The purpose of the Oata Analysis and Transformation (OAT)
subsystem is to provide a tool for the scientific investigator to
examine the data from his experiments. A useful analogy for this
subsystem is a programmable matrix calculator with a graphic display.
The current form of this subsystem has evolved over the past several
months, and is now based strongly on BBN~s RS/l data management
system. The subsystem began as a unified collection of relatively
fixed analysis programs, and has evolved to the current more
integrated and flexible form.

The OAT subsystem, which is operated using a simple
English-like command language, assists the user in managing
two-dimensional data tables, in visualizing this data through graphs,
and in preparing the data for statistical analysis via the Statistical
Analysis (STAT) subsystem. In addition, the OAT subsystem includes a
programming language which permits the creation of new procedures.
There are two major purposes for these user-defined procedures.
First, they enable the user to automate a sequence of analysis steps,
such as reading a file, computing some measures, and plotting the
results. Second, using the OAT programming language, the user can
conveniently create and modify new performance measures and try them
out on actual data.

The functional description of the OAT subsystem is divided
into two parts: a description of the OAT commands and a description
of the OAT programming language.

1.2.2 Overview of the STAT Subsystem

The purpose of the Statistical Analysis (STAT) subsystem is to
provide a tool for the scientific investigator to perform statistical
tests and make statistical inferences from his data.

As part of the design of the PM Module, a survey was made of
existing, commercially available statistical analysis packages. It
was hoped that such a package could be incorporated into the PM
Module, thereby avoiding needless extensive software development.

In order to be
statistical package would
requirements:

considered for use as the STAT subsystem, a
have to meet the following four basic

- 3 -

(1) Includes a large range of standard statistical

analyses, including analysis of variance.

(2) Runs interactively.

(3) Runs on a CDC Cyber-175 computer.

(4) Provides for data transformation.

The fourth requirement is the loosest. With a powerful data

transformation capability, a statistical analysis package could

fulfill virtually all the requirements of the entire PM Module. In

fact, we suggest in the next section that the PM Module be developed

in an evolutionary manner, with the first step being an Baseline PM

Module in which the DAT subsystem does little more than read and write

files, and the data transformation capabilities of the STAT subsystem

suffice.

Currently, there are two candidate statistical analysis

packages under consideration:

(1) P-STAT 78 produced by P-STAT, Inc. of Princeton,

New Jersey.

(2) SIPS produced by the Department of Statistics of

Oregon State University, Corvallis, Oregon.

A number of other packages were also considered, but have been

eliminated for one reason or another. In Section 4 of this document,

we present the requirements of the STAT subsystem in more detail, we

compare the various candidate packages, and make a recommendation.

The final decision on selecting a statistical package is left to the

LRC staff, and will be based in part on experience with the packages

gained in a trial period which is just now beginning.

1.2.3 Overview of the Consistent File System

The DAT and STAT subsystems are linked by a Consistent File

System. This file system provides a means for passing data from the

output of the experiments through the DAT and STAT subsystems. The

primary task of the Consistent File System is to maintain the

correspondence between the value of the data (e.g. the value of a

particular performance measure) and the identities of the data (e.g.

the name of the performance measure).

The" design of the Consistent File System for the PM Module has

two distinct parts: the design of internal file structures and the

design of external file structures. Internal file structures means

the choice of header content, record size, etc.: how does one identify

or find a particular datum within a file. External file structures

- 4 -

means the choice of file naming and accessing conventions: how does
one identify and retrieve a particular file for analysis.

The Consistent File System, described in Section 5, includes
internal file structures which are designed meet the following

~ objectives:

(1) Adaptable, so that a wide variety of experiments and analyses
may be accommodated.

(2) Self-documenting, so that the files may be shared by users
with little contact with each other.

(3) Expandable, so that a subset of the users can make an
addition to the file system.

(4) Upward compatible, so that features which are not
incorporated during the initial development can be added
later.

(5) Backward compatible, so that existing file handling software
(e.g. SIFT) can be used.

(6) Convenient, so that reading and writing the files requires
just a few lines of code.

(7) Efficient, so that the computing resources are not unduly
burdened.

The Consistent File System also includes external file
structures which simplify the task of identifying and retrieving a
particular file for analysis. The system is ,in fact, a file-naming
convention, supported by appropriate software, with multi-field file
names. The fields would serve to identify the following attributes of
the file:

(1) The user who "owns" the file: his group and his name.

(2) The experiment to which the file pertains: the name of the
experiment, the subject and run number.

(3) The type of file: time-series data, processed data, etc.

(4) The version number of the file.

These file naming conventions would probably also be very useful for
keeping track of programs pertaining to the PM Module, such as FORTRAN
source files, documentation files, etc.

- 5 -

1.3 Evolutionary Development of the EM Module

The preceding section (1.2) was a functional description of a

rather complete PM Module. Such a module could take several man-years

to develop. This section describes an evolutionary approach to the

implementation of the PM Module. In this approach, the ultimate

design would remain as described above. The approach to this goal,

, howeverr would be via an evolutionary development, beginning with a

baseline PM Module of somewhat limited power, and proceding via a

series of upgrades to a complete PM Module.

There are two very important advantages

development. First, it should be possible

baseline PM Module running within a few months.

experience gained in utilizing the early stages

guide the design of the later stages.

to this evolutionary
to have an operational

Second, it allows the
of the PM Module to

In the next two sections, an overview of the baseline PM

Module is given, followed by a tentative series of upgrades.

1.3.1 Overview of the Baseline PM Module

The purpose of the Baseline PM Module is to provide a useful,

working system with a minimum development effort. The form of the

Baseline PM Module is shown in Figure 1.2. It consists of the

statistical analysis package selected for the STAT subsystem, with

some additional code so that the consistent file system could be

utilized to read time history data files and to write performance

measurement files.

The DAT subsystem implemented in this Baseline PM Module would

be rather primitive. It would include a workable subset of the

functions of the DAT subsystem. It would be implemented by adding a

few new functions (such as FFT and plot functions) to the data

transformation capabilities of the STAT subsystem.

1.3.2 Evolutionary Upgrades to the Baseline PM Module

The Baseline PM Module, as described in the previous section,

falls short of the full PM Module in four major areas:

(1) interactive graphics,

(2) interactive data transformation,

(3) automated data transformation, and

(4) improved conversational front-end.

- 6 -

EXPERIMENTAL
DATA FILES

SUBSYSTEM STAT Q
& MINIMAL

DATA --
TRANSFOR-

MATION

I \
~

PERFORMANCE
MEASURE FILES

I , -----
---- ------
r- -
--j

PRINT PLOT

OUTPUT

Figure 1.2 Form of the Baseline PM Module

- 7 -

Once the Baseline PM Module is running, these three areas could be
upgraded to the level of the full PM Module.

The first area to be upgraded would almost certainly be
interactive graphics. It is widely recognized that graphical
presentation of numerical results can be of tremendous value to the
person exploring a set of experimental results. The Baseline PM
Module provides a very limited capability in this area, it would be an
appropriate place to begin the upgrade.

The next area to be upgraded might be the data transformation
capabilities. Whether the work began with interactive data
transformation (i.e. building towards the OAT subsystem command
language), or automated data transformation (i.e. building towards the
OAT programming language), or both together, would depend on the
experience gained with the early utilization of the Baseline PM
module.

The decision to add a more conversational front-end to the PM
Module would depend on the type of people who were expected to use t~e
system. Such a front-end could be very attractive to the scienti~t
who is relatively unfamiliar with computer-based systems. On the
other hand, other users might find that it introduced an unnecessary
overhead.

- 8 -

2. The DAT Subsystem

2.1 D~ Subsystem Concepts

The OAT subsystem provides a convenient and efficient way to
collect, store, analyze and examine research data. The user provides
the system with numeric or textual data in tabular form from either an
existing file, or from the computer terminal keyboard. Using a simple
command language, the user can revise the data tables, create new data
tables, display the data tables, create graphs of the data, revise the
graphs, display the graphs on the terminal, and save the tables and
graphs as files for later use.

Although the OAT subsystem~s command language provides a
powerful set of tools for data manipulation and analysis, a user may
create new procedures using the OAT programming language. This simple
programming language allows the user to perform all of the OAT
subsystem~s commands under program control. The two major purposes
for these user-defined procedures is (1) to automate frequently
performed sequences of analysis steps, and (2) to conveniently create
and modify new performance measures.

The OAT command language is described in this section (2.),
and the OAT programming language is described in the next section
(3.) •

Although the OAT subsystem has little or no statistical
analysis capabilities built into it, it is easy for the user to write
data tables as files which would be read by the STAT subsystem.

2.1.1 A Very Short Session

The OAT subsystem is a powerful system which includes table
structures for holding data, making graphs, etc. However, in this
introductory session, the OAT subsystem will be used as a simple desk
calculator. This session will introduce a number of concepts which
will be explained later.

When the OAT subsystem is ready to accept a command, it types
the prompt character ntn. From that point on, until the user types
the GO character (ALT MOOE or ESCAPE), the system is waiting for the
user to finish typing. When the GO character is typed, it begins to
execute the command. It is not ready to accept another command until
"tn is typed again.

The following session uses only the TYPE and SET commands:

tTYPE 3.14159 <GO>
3.14159

- 9 -

iTYPE PI <GO>
EMPTY
iSET PI'TO 3.14159 <GO>
iTYPE PI <GO>
3.14159
iTYPE PI*10 <GO>
31. 4159
iTYPE ~DIAMETER OF CIRCLE IS: ~, 10 <GO>
DIAMETER OF CIRCLE IS:
10
iSET' RADIUS TO 5'.7 <GO>
iTYPE NOCR ~RADIUS OF CIRCLE IS: ~" RADIUS,,~
DIAMETER OF CIRCLE IS: ~, 2*RADIUS,.~
AREA: OF'CIRCLE IS:~, PI*RADIUS**2 <GO>
RADIUS OF CIRCLE IS: 5.7
DIAMETER OF CIRCLE 1'S: 11.4
AREA OF CIRCIlE IS: 102.07
fQUlT <GO>

2. i~. 2; COmmoni DAT Commands: TYPE: and~ SET'

The DAT subsystem manipulates and displays data by executing
commands' which, the' user types in, to it., A common, command, wh ich is
usedi in' tine' above very short session-, is the TYPE command,_ which, tells,
the D~T' sUbsystem' to type a: va,lue. The' user can. specify, several
values' to TYPE by separating the values by commas. Each value will be
typed on' a new line,. unless the TYPE NOCR command is used. "NOCR"
stands for no carriage return. The general form for the TYPE
statement is':

TYPE [NOCR] {value}

where [••• l indicates an optional argument, and { ••• } indicates that
several arguments may be present separated by commas.

The SET command is used to change the value of a variable; it
d'oes not cause anything to be typed out. The general form of the SET
command is:

SET variable TO expression

A useful, although not necessary, feature of the DAT subsystem would
be to allow the use of "=" interchangeably with the set command:

variable = expression

Variables are used to store results that may be used later.
The user need not do anything special to make a variable exist; the
DAT subsystem takes care of that when a variable is used for the first
time. It also has an explicit representation for data which is not

- 10 -

known, the value EMPTY. This is the value all variables have when
they are first created.

2.1.3 Values

There are four different kinds of data values in the OAT
subsystem:

FIXED - An integer, e.g. 4, -5, 0, 15123

FLOAT - A number with a decimal point, or written with
an "E" followed by a number, to mean "times 10 to
the number." For example, 3.14159, 3.5E12, 2E-7

TEXT - Text values are strings of typed characters,
enclosed in single quotes. For example, ~THIS IS
A TEXT.~, ~3~, ~RADIUS OF CIRCLE IS:~

EMPTY - This is a special value. It is used to
indicate that the value is not known. EMPTY may
be used in computations, but it typically produces
an EMPTY result. For example, EMPTY + 1 is EMPTY.

2.1.4 Expressions: Operators and Functions

Values may be computed in the OAT subsystem by means of
expressions. An expression is formed by using operators and functions
to combine constants and variables.

The order of evaluation of an arithmetic expression may be
explicitly indicated by parentheses. Where this is not done,
expressions are evaluated in the following order:

(1) **(exponentiation) and - (unary minus)

(2) * and I (multiplication and division)

(3) + and - (addition and subtraction)

Within these constraints, expressions are evaluated from left to
right. Thus A/B*C is evaluated as (A/B)*C. The only exception to
this left-to-right rule is exponentiation where A**B**C is evaluated
as A**(B**C).

There are four categories of operators available in the OAT
subsystem:

Arithmetic: +, - *, I, **

- 11 -

Relational: EQ, NE, LT, GT, LE, GE

Log ical: AND, OR, NOT

Text: CAT (concatenation)

There are six categories of functions available in the OAT
subsystem:

Trigonometric: SIN, COS, TAN, •••

Numerical: SQRT, EXP, LOG, MAX, MIN, ...
Text: CHARS, CAT, •••

Data Type: TNUM, TYPE, EMPTY, NUM.TO.TEXT,

Graphic: DLINE, DMOVE, ERASE, ...
Miscellaneous: GETFILE, PUTFILE, YESANSWER, ...

2.2 DAT Tables

One of the most important entities in the OAT subsystem is the
data table. Figure 2.1 is a typical table. It contains data from a
realistic (though fanciful) data set concerning the influence of a
drug called TAIL-GRO on the growth of armadillo tails.

2.2.1 Making a Table via the Keyboard

This table was constructed using the MAKE TABLE command. This
command prompts the user for the title of the table, row names and
column head ings, . and for the data values compr is ing the body of the
table.

The MAKE TABLE dialogue that led to the table in Figure 2.1 is
given below:

iMAKE TABLE ARMA <GO>

TITLE OF TABLE? ARMADILLO TAIL-GRO DATA <GO>
ARE THERE ROW NAMES? YES <GO>
ARE THERE COLUMN HEADINGS? YES <GO>
ENTER COLUMNWISE? YES <GO>
NAME OF ROW 1 = A352C <GO>
NAME OF ROW 2 -A601D <GO>
NAME OF ROW 3 = A705R <GO>
NAME OF ROW 4 = A852R <GO>
NAME OF ROW 5 = A965D <GO>

- 12 -

ARMA 3C X 7R ARMADILLO TAIL-GRO DATA

I I 1 PERSONALITY I 2 DOSE (MG) I 3 TAIL (CM) I
==
Il.A352C II FRIENDLY 8.2 7.9
--
I 2. A601D I I QUIET I 13.2 I 24.3
--
I 3. A705R I I NASTY I 25.3 I 26.3
--
I 4. A852R I I QUIET 7.9 8.2

I 5. A965D I I NASTY I 36.1 I 35.5

I 6. A572C I I FRIENDLY 9.6 7.7
--
I 7. A631D I I FRIENDLY I 11.5 I 27.5

Figure 2.1 A Typical Table

- 13 -

NAME OF ROW 6 = A572C <GO>
NAME OF ROW 7 = A631D <GO>
NAME OF ROW 8 = NEXT <GO>
COL 1 HEADING = PERSONALITY <GO>
COL 1 ROW 1 = FRIENDLY <GO>
COL 1 ROW 2 = QUIET <GO>
COL 1 ROW 3 = NASTY <GO>
CO~ 1 ROW 4 = QUIET <GO>
COL 1 ROW 5 = NASTY <GO>
COL 1 ROW 6 = FRIENDLY <GO>
COL 1 ROW 7 = FRIENDLY <GO>
COL 2 HEADING = DOSE (MG) <GO>
COL 2 ROW 1 = 8.2 <GO>
COL 2 ROW 2 = 13.2 <GO>
COL 2 ROW 3 = 25.3 <GO>
COL 2 ROW 4 = 7.9 <GO>
COL 2 ROW 5 = 36.1 <GO>
COL 2 ROW 6 = 9.6 <GO>
COL 2 ROW 7 = 11.5 <GO>
COL 3 HEADING = TAIL (CM) <GO>
COL 3 ROW 1 = 7.9 <GO>
COL 3 ROW 2 = 24.3 <GO>
COL 3 ROW 3 = 26.3 <GO>
COL 3 ROW 4 = 8.2 <GO>
CO~ 3 ROW 5 = 35.5 <GO>
COL 3 ROW 6 = 7.7 <GO>
COL 3 ROW 7 = 27.5 <GO>
COL 4 HEADI~G = EXIT <GO>

2.2.2 Making a Table from a File

In the PM Module, it is particularly important for the user to

be able to make a table from data that is in an existing file. For

this purpose, there are two types of commands available, commands for

opening, closing and otherwise manipulating PM data files and commands

for reading and writing these files.

The general form of the command to open a file is;

OPEN FILE filename

The general form of the command to close a file is:

CLOSE FILE filename

The general form of the command to make a table from a file is:

MAKE TABLE tablename FROM filename

- 14 -

The general form of the command to make a file from a table is:

MAKE FILE filename FROM tablename

Each of these commands invokes a dialogue specifying the portions of
the table or file to read and write.

2.2.3 Changing Data in a Table

The DAT subsystem provides a simple mechanism for making
changes to the data in a table. In order to change the dose for
armadillo A63lD in table ARMA (Figure 2.1), the user would use the
CHANGE command as follows:

iCHANGE ARMA <GO>
ROW? 7 <GO>
COL? 2 <GO>
VALUE? 17.5 <GO>
ROW? EXIT <GO>

The resulting table would then be as shown in Figure 2.2. Notice that
the value in the last row of column 2 has been changed from 11.5 to
17.5.

2.2.4 Displaying a Table

The DISPLAY command is used to display a table. The command
that would display the table ARMA as shown in Figures 2.1 and 2.2 is:

iDISPLAY ARMA <GO>

2.2.5 Adding and Deleting Data in an Existing Table

The ADD COLS and ADD ROWS commands are used to add data to an
existing table. Executing one of these commands re-enters the MAKE
TABLE dialogue. For example, adding a column of scale shapes to the
table ARMA is performed via the following dialogue:

iADD COLS TO ARMA <GO>
COL 4 HEADING = SCALE
SHAPE <GO>
COL 4 ROW 1 = TRIANGLE <GO>
COL 4 ROW 2 = TRIANGLE <GO>
COL 4 ROW 3 = TRIANGLE <GO>
COL 4 ROW 4 = TRIANGLE <GO>
COL 4 ROW 5 = SQUARE <GO>
COL 4 ROW 6 = DIAMOND <GO>
COL 4 ROW 7 = DIAMOND <GO>

- 15 -

ARMA 3C X 7R ARMADILLO TAIL-GRO DATA

II 1 PERSONALITY I 2 DOSE (MG) I 3 TAIL (CM) I
==

I 1. A352C I I FRIENDLY 8.2 7.9 I
--
I 2. A601D I I QUIET I 13.2 I 24.3 I

--
I 3. A705R I I NASTY I 25.3 I 26.3 I
--
I 4, A852R I I QUIET 7.9 8.2 I
--
I 5. A965D I I NASTY I 36.1 I 35.5 I

--
I 6. A572C I I FRIENDLY 9.6 7.7

--
I 7. A631D I I FRIENDLY I 17.5 I 27.5

--

Figure 2.2 A Ty~ical Table Revised

- 16 -

COL 5 HEADING = EXIT <GO>

This new column of data could be displayed using the table
portion form of the DISPLAY command:

iDISPLAY COL 4 OF ARMA <GO>

and the table portion would be displayed as shown in Figure 2.3.

Similarly, data on an additional set of 15 armadillos would be
added via the ADD ROWS command. These new rows of data could be
displayed via the command:

iDISPLAY ROWS 8 TO 22 OF ARMA <GO>

and the table portion would be displayed as shown in Figure 2.4.

Data may be deleted from an existing table via the DELETE
command. It turns out that rows 6 and 17 of table ARMA are identical.
Row 17 may be deleted using the following command:

iDELETE ROW 17 OF ARMA <GO>

2.3 Advanced Table Concepts

Some advanced table concepts are presented in this section,
the most important of which is the notion of table portions. An
alternate notation for tables is also presented, along with
information on renaming and deleting tables.

2.3.1 Table Portions

One of the most powerful concepts that is available to the DAT
subsystem user is the table portion. A table portion is a rectangular
subset of the cells of a table. It may be described by specifying
certain rows, certain columns, or certain cells of a table. Here are
some examples of table portions used to display only part of a table
of data:

DISPLAY ROWS 1, 3 TO 5, 8 OF DATATAB <GO>
DISPLAY COLS 5 TO 9, 1 OF DATATAB <GO>
DISPLAY ROWS 1, 2 OF COLS 6, 9 OF DATATAB <GO>
DISPLAY COL 2 OF ROWS 1 TO 3 OF DATATAB <GO>

The statements shown above specify a portion of the table named
DATATAB by listing the rows, columns, or both which are to be
included. The four ways to specify such a table portion are:

- 17 -

ARMA 3C X 7R ARMADILLO TAIL-GRO DATA

I I
4 SCALE

SHAPE
=========================
I 1. A352C I I TRIANGLE I

I 2. A601D I I TRIANGLE I

I 3. A705R I I TRIANGLE I

I 4. A852R I I TRIANGLE I

I 5. A965D I I SQUARE

I 6. A572C I I DIAMOND I

I 7. A631D I I DIAMOND I

Figure 2.3 A New Column of Data

- 18 -

~ ARMA 4C X 22R ARMADILLO TAIL-GRO DATA
--~------I I 1 PERSONALITY \ 2 DOSE (MG) I 3 TAIL (CM) I 4 ~~~~~

==~========================

I 8. A536R II SICK I 24. 7 I 31. I SQUARE

I 9. A867R II I 31.2 I 33.8 I SQUARE

110. A945C I I SICK 8.9 I 8.9 I TRIANGLE I

111. A856R I I QUIET 9.3 I 7.8 I DIAMOND
--~--------------

112. A978D I I NASTY I 29.1 I 32.9 I DIAMOND

113. A877R I I DUMB I 14.8 I 34.1 I DIAMOND

114. A938C I I QUIET I 36.2 I 35.6 I DIAMOND

115. A937R I I FRIENDLY I 40.2 I 36.9 I SQUARE

116. A749C I I NASTY I 35.2 I 35.2 I SQUARE

117. A572C I I FRIENDLY 9.6 7.71 DIAMOND

118. A462C I I SICK 7.8 8. I TRIANGLE I

119. A465R I I QUIET 9.2 8.3 I DIAMOND

120. A465D I I DUMB I 17.9 I 30.9 I TRIANGLE I

121. Al14R II FRIENDLY I 46.1 I 38.7 I SQUARE I

122. A593D II NASTY I 34.1 I 34.8 I SQUARE I

Figure 2.4 New Rows of Data

- 19 -

(1) ROW[S] <list> OF tablename
(2) COL[S] <list> OF table name
(3) ROW[S] <list> OF COL[S] <list> OF tab1ename
(4) COL[S] <list> OF ROW[S] <list> OF tab1ename

The n<list>n construct contains numeric values or entries of the form:

<numeric-value> TO <numeric-value>

Entries in the list are separated by commas.

In addition to extracting a table portion by specifying row

and column numbers, table portions may also be selected by conditional

tests of values. The format for this more powerful version of a table

portion is:

tab1ename WHERE <expression>

An example of the use of this feature is included in the following

section.

2.3.2 Extracting Table Portions

The MAKE TABLE command may be used in conjunction with a table

portion to ,extract a table portion from an existing table and make a

new table from it. For example, if one wanted to examine the

armadillo data in just the cases involving high doses, the following

commands could be used to make a new table and display it:

iMAKE TABLE HIGHDOSE FROM ARMA WHERE COL 2 GT 10 <GO>

iDISPLAY HIGHDOSE <GO>

The resulting table HIGHDOSE is shown in Figure 2.5.

2.3.3 Setting Table Portions

The SET command can be used to change the value of a variable

(see Section 2.1.2), or a single cell in a table, or all the cells in

a table portion. For example the commands:

iSET ROW 3 COL 2 OF DATATAB TO 2.71828
iSET ROW 2 COL 3 OF DATATAB TO ROW 3 COL 2 OF DATATAB

would set row 3 column 2 and then row 2 column 3 of table DATATAB to

2.71828. Similarly, the commands:

iSET COL 5 OF DATATAB TO 1.414 <GO>

- 20 -

HIGHDOSE 4C X 14R

I I 1 PERSONALITY \ 2 DOSE (MG) I 3 TAIL (CM) I 4 ~~~~~
===
I 1. A601D II QUIET I 13.21 24.3 I TRIANGLE I

I 2. A705R II NASTY I 25.3 I 26.3 I TRIANGLE I

I 3. A965D II NASTY I 36.1 I 35.5 I SQUARE

I 4. A631D I I FRIENDLY I 17.5 I 27.5 I DIAMOND

I 5. A536R I I SICK I 24.7 I 31. I SQUARE

I 6. A867R II I 31.2 I 33.8 I SQUARE

I 7. A978D I I NASTY I 29.1 I 32.9 I DIAMOND

I 8. A877R I I DUMB I 14.8 I 34.1 I DIAMOND

I 9. A938C I I QUIET I 36.2 I 35.6 I DIAMOND

110. A937R II FRIENDLY I 40.2 I 36.9 I SQUARE

111. A 7 49C II NASTY I 35.2 I 35.2 I SQUARE

112. A465D II DUMB I 17.9 I 30.9 I TRIANGLE I

113. A114R II FRIENDLY I 46.1 I 38.7 I SQUARE

114. A593D I I NASTY I 34.1 I 34.8 I SQUARE

Figure 2.5 Extracting a Table Portion

- 21 -

would set all the cells in column 5 of table DATATAB to 1.414.

2.3.4 Sorting a Table

The DAT subsystem has a special command for sorting a table by

the data in a specified row or column. The SORT command sorts in

ascending order unless the user types DESCENDING at the end of. the

command. For example, the following command would sort the data in

table HIGHDOSE by the dose amount and display the result:

ISORT HIGHDOSE BY COL 2 <GO>
tDISPLAY HIGHDOSE <GO>

The reSUlting table is shown in Figure 2.6.

2.3.5 An Alternative Notation for Tables

The DAT subsystem recognizes ~TBL~[1,2] as an alternative

notation for specifying the cell ROW 1 COL 2 OF TBL. Thus, one may

think of a table as a two-dimensional array, and use this alternative

notation to address the data items.

2.3.6 Directory of Tables

The names and sizes of all the tables that are created are

held in a special table called the DIRECTORY. To get a complete list

of the directory, the user can type:

tDIS DIRECTORY <GO>

A typical directory is shown in Figure 2.7.

2.3.7 Renaming and Deleting Tables

It is a good idea to keep the DIRECTORY "cleaned-up", by

giving tables short but meaningful names, and by deleting unwanted

tables. To rename a table, the RENAME command is used:

tRENAME TABLE FOO TO ~STATS~ <GO>

To ~~~ a table, the DELETE command is used:

iDELETE TABLE <table name> <GO>

This will remove the table from the directory, and delete the

corresponding file on the disk. Once the table is deleted, the data

is lost.

- 22 -

..,""-- --

HIGHDOSE 4C X 14R

I I 1 PERSONALITY \ 2 DOSE (MG) I 3 TAIL (CM) I 4 ~~~~
===
\ 1. A601D \ \ QUIET \ 13.2 \ 24.3 \ TRIANGLE \

\ 2. A877R \ \ DUMB \ 14.8 \ 34.1 \ DIAMOND

\ 3. A631D \\ FRIENDLY \ 17.5 \ 27.5 \ DIAMOND

\ 4. A46SD \\ DUMB \ 17.9 \ 30.9 \ TRIANGLE \

\ 5. AS36R \ \ SICK \ 24.7 \ 31. \ SQUARE

\ 6. A70SR \ \ NASTY \ 25.3 \ 26.3 \ TRIANGLE \

\ 7. A978D \ \ NASTY \ 29.1 \ 32.9 I DIAMOND

\ 8. A867R \ \ \ 31.2 \ 33.8 \ SQUARE

\ 9. AS93D \ \ NASTY \ 34.1 \ 34.8 \ SQUARE

\10. A749C \ \ NASTY \ 35.2 I 35.2 I SQUARE

Ill. A96SD I I NASTY I 36.1 I 35.5 I SQUARE

112. A938C II QUIET I 36.2 I 35.6 I DIAMOND

113. A937R II FRIENDLY I 40.2 I 36.9 I SQUARE

114. Al14R II FRIENDLY I 46.1 I 38.7 I SQUARE

Figure 2.6 Sorting a Table

- 23 -

2C X lSR

II 1 TABLE I 2 SIZE I
======================================

sllARMA I 2 I

I 6 II AXES OF ARMAPLOT I 2

I 7 II CURVES OF ARMAPLOT I 2

I 8 I I DATA OF ARMAPLOT 2

9 II DATATAB 44

I 10 II AXES OF HIPLOT I 2

I 11 I I CURVES OF HIPLOT I 2 I

I 12 I I DATA OF HIPLOT 2 I

I 13 II TBL I 3

I 14 II HIGHDOSE I 2

I is II STATS 4

Figure 2.7 A Directory

- 24 -

-

2.4 Graphs

The Dat subsystem provides a powerful yet convenient mechanism
for creating two-dimensional graphs from data which is stored in
tables.

2.4.1 Example of a Grapb

Figure 2.8 is an example of a simple graph.
graph was extracted from the data in columns 2 and 3
which is displayed in Figure 2.2.

The data for this
of table ARMA,

2.4.2 Making a Grapb from a Table

This graph was constructed using the MAKE GRAPH command. This
command prompts the user for the title of the table, the x and y axis
labels, the x and y axis forms (linear or log), the sources of the x
and y values, the curve symbols, and curve labels.

The MAKE GRAPH dialogue that led to the graph in Figure 2.8 is
given below:

#MAKE GRAPH ARMAPLOT <GO>

TITLE OF GRAPH? EFFECT OF TAIL-GRO ON TAIL LENGTH <GO>
X AXIS LABEL? DOSE(MG) <GO>
X AXIS LINEAR (LIN) OR LOG? LIN <GO>
Y AXIS LABEL? TAIL
LENGTH <GO>
Y AXIS LINEAR(LIN) OR LOG? LIN <GO>
X VALUES FROM TABLE(T) OR ENTER(E)? T <GO>
ENTER TABLE PORTION: COL 2 OF ARMA <GO>
ENTER SOURCE OF CURVE 1: TABLE(T) OR FUNCTION(F)? T <GO>
ENTER TABLE PORTION: COL 3 OF ARMA <GO>
CURVE SYMBOL? SQUARE <GO>
CURVE LABEL? ARMADILLO DATA OF 1/6/79 <GO>
CONNECTED -- YES(Y) OR NO(N)? N <GO>

__ .0"",--

~--....... ~

EXIT(E) , NEW X-VALUES(X) OR Y-VALUES(Y) FOR NEXT CURVE: E <GO>

2.4.3 Displaying a Graph

The DISPLAY command is'used to display a graph. The command
that would display the graph ARMAPLOT as shown in Figure 2.8 is:

iDISPLAY ARMAPLOT <GO>

- 25 -

EFFECT OF TAIL-GRO ON TAIL LENGTH

37.7
c

c

c
cr:ll

c
32.7 c

c c

27.7 0
c

TAIL
c

22.7
LENGTH

17.7

12.7
c

7.7
O. 5. 10. 15. 20. 25, 30. 35. 40. 45. 50.

a ARMADILLO B~T~(a~)1/6/79

Figure 2.8 A Simple Graph

- 26 -

2.4.4 Editing a Graph

The DAT subsystem does a reasonable job in selecting the
proper defaults for upper and lower limits on axes etc. However,
there are a number of parameters which may be changed through the
graph editing commands. There are two sets of parameters which can be
changed by the editing commands: axis information and curve
information. There are five variables which may be set for each axis.
The table below shows the name of the variables and their assigned
values:

VARIABLE

LABEL
LINLOG
LOW
HIGH
UNITS

VALUE USE

<text> name of axis
LIN or LOG linear or log axis
<numeric value> lowest value shown
<numeric value> highest value shown
<numeric value> units per tick

These variables may be TYPEd or SET like any other DAT subsystem
variable.

There are five variables which pertain to the curves:

VARIABLE

LABEL
SYMBOL

CONNECTED
LINE

FUNCTION

VALUE USE

<text> in legend
<letter or plotting symbol
plotting symbol>

YES or NO connected by lines?
<text> type of connecting line
(see below)
<text>

The LINE specification can be one of the following:

SINGLE
DOUBLE
DOT
DASH
DOT DASH
DOT DOT DASH

FUNCTION accepts an expression in X from which it generates a set of Y
values, e.g.

'X**2 + SIN(X/2)'

The curve variables may be accessed using the following syntax:

- 27 -

SET <variable> OF CURVE <number> OF <graph name> TO <value>

When a graph is first constructed, these variables are all given

values.
-

In the following dialogue, the user adjusts the LOW and HIGH

values of ARMAPLOT and then DISPLAYs the revised graph:

fSET LOW OF Y AXIS OF ARMAPLOT TO 0 <GO>

tSET HIGH OF Y AXIS OF ARMAPLOT TO 40 <GO>

tDIS ARMAPLOT <GO>

The revised graph is shown in Figure 2.9.

2.4.5 Adding and Deleting Curves

Once a graph has been constructed, curves may be added or

deleted. Deleting curves from a graph is similar to deleting rows or

columns from a table. The user simply types:

'DELETE CURVE[S] <list> OF <graph name> <GO>

The list or curves is a list of curve numbers of the curves to be

deleted. The curves are numbered in the order they are listed in the

legend b@low the graph, starting with 1.

Adding curves to a graph is similar to making the graph in the

first place. The user simply types:

tADD CURVE[S] TO <graph name> <GO>

This will re-enter the make graph dialogue at the point where the X

specifications are determined for a curve.

Any curve additions or deletions have a permanent effect. The

original graph will have been altered. Subsequent displays of the

graph will show the new form.

2.4.6 Fitting Polynomials to Graphs

The OAT subsystem allows one to fit a polynomial to a curve of

data points on a graph. The result is the addition of a function

curve to the graph. To fit a straight line to a curve, the FIT LINE

command may be used1 to fit a polynomial to a curve, the FIT

POLYNOMIAL command is used. Figure 2.10 is a graph called GROPLOT

containing a curve of data points to which a straight line has been

fit via the following command:

- 28 -

EFFECT OF TAIL-GRO ON TAIL LENGTH
40. ' c

c
35. c . c 0

cd2

c c
30.

c c
25. c

TAIL
LENGTH 20.

IS.

10. c
iii

5.

0
O. 5. 10. IS. 20. 25. 30. 35. 40. 45. 50.

DOSE(MG)
D ARMADILLO DATA OF 1/6/79

Figure 2.9 A Simple Graph Revised

- 29 -

10.

g.

S.

7.

6.

5.

4.

3.

2.

1

GROPLOT

o 5. 10. 15. 20. 25. 30. 35. 40. 45. 50.

+ DELTA TAIL(CM)
0.lS9049*X +0.812604

Figure 2.10 A Polynomial Fit to a Graph

- 30 -

,FIT LINE TO CURVE 1 OF GROPLOT

2.5 Using D~ Subsystem Procedures

DAT subsystem procedures are written in the DAT programming
language which is described in the next section. These procedures may
be invoked either directly at the DAT command level or within another
procedure.

There are two methods of invoking a procedure: (1) the CALL
statement, e.g.

iCALL GETLINE(STRING,CHAN) <GO>
iCALL ERASE <GO>

and (2) as a function call, e.g.

iSET X TO SIN(Y) <GO>
iX = SIN(Y) <GO>
iTYPE COS(Y) <GO>

The call statement is used if the procedure does not return a result.
Such a procedure is run for its side-effect, such as changing the
value of its arguments or performing input or output.

2.5.1 Example of a Procedure

SPIRO is a procedure that draws fancy spirals, such as shown
in Figure 2.11. This figure was produced by calling SPIRO as follows:

iCALL SPIRO(123,123,1.02,lOOO) <GO>

The procedure SPIRO is written in the DAT programming language; its
code is shown in Figure 2.12. Detailed information on the DAT
programming language is presented in the next section.

- 31 -

Figure 2.11 A Spiral Drawn by Procedure SPIRO

- 32 -

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<TOP OF TEXT>
/* SPIRO */
PROCEDURE(RAD,ANGL,ATT,NUM,XO,YO);
/* THIS PROCEDURE DRAWS FANCY SPIRALS */

CALL ERASE;
ANG=O;

/* CLEAR THE SCREEN */

IF NARGS=4 /* OPTIONAL ARGUMENTS * /
THEN DO; XO=512; YO=390; END;

DO I = 1 TO NUM; /* LOOP NUM TIMES */
Xl=RAD*COSD(ANG)+XO;
Yl=RAD*SIND(ANG)+YO;
IF Xl>1023 OR Yl>780 OR Xl<O OR Yl<O
THEN DOEXIT; /* EXIT IF OFF SCREEN */

CALL DLINE(XO,YO,Xl,Yl); /* DRAW THE LINE */

XO=Xl; /* UPDATE VARIABLES */
YO=Yl;
RAD=RAD*ATT;
ANG=MOD(ANGL+ANG,360) ;

END;

END;
<BOTTOM OF TEXT>

Figure 2.12 Procedure SPIRO

- 33 -

3. The DAT PrograDllling Language

3.1 Introduction to the DAT Programming Language

The OAT programming language permits the user to create new

procedures. There are two major purposes for these user-defined

procedures. First, they enable the user to automate a sequence of

analysis steps, such as reading a file, computing some measures, and

plotting the results. Second, using the OAT programming language, the

user can conveniently create and modify new performance measures and

try them out on actual data.

The OAT programming language is an integrated part of the OAT

subsystem. Thus, OAT commands and OAT programming statements are

interchangeable; programming statements may be used at the OAT

command level, and OAT commands may be employed within procedures. In

addition, the data (tables and graphs) are accessible from either the

OAT command level or from within procedures. Whatever manipulation

can be done at the command level, can also be done automatically,

within a procedure.

3.2 Data Structures

All of the OAT subsystem data types and data structures are

accessible from the OAT programming language.

3.2.1 Constants, Variables and Expressions

There are four types of data values available in the OAT

programming language: FIXED numbers, FLOAT numbers, TEXT values, and

an EMPTY value. These have the same meanings and uses as in the OAT

subsystem, and are described in Section 2.1.3.

Variables are data items that can change in value, unlike

constants, whose values are explicit and unchangeable. Any variable

may be assigned any of the four types of data values. Variables used

in a procedure should be assigned a value before they are referenced

in a statement or expression. This process is known as initializing a

variable. An uninitialized variable is considered to be EMPTY.

Variables do not have to be "declared" before they are used, however;

space is allocated to a variable when it is used for the first time.

A variable is referred to by a variable name.

consist of an arbitrarily long string of characters,

which must be alphabetic.

This name may
the first of

Values may be computed by means of expressions. An expression

is formed by using operators and functions to combine constants and

- 34 -

variables. The expressions, operators and functions available are the
same as in the OAT subsystem, and are described in Section 2.1.4

3.2.2 O~ Tables

The data tables available in the OAT subsystem are also
available in the DAT programming language. In the OAT programming
language, however, tables are made either from a file, or from an
existing table portion. The MAKE TABLE dialogue is not available.
One could create a table by MAKEing a table ,and assigning the row and
column names, and data values via the SET statement. Similarly, the
CHANGE TABLE command is not available; one could. merely SET the data
values to new values. In general, the DAT subsystem commands which
produce a dialogue are not available; the rest are available.

3.2.3 Graphs

The graphs available in the DAT subsystem are also available
in the DAT programming language. As with tables, however, the MAKE
GRAPH dialogue is not available. One would create a graph by MAKEing
a graph from a table, and assigning the title, axis labels, etc. via
the SET command. Similarly, the dialogue following the DELETE CURVE
and ADO CURVE commands are not available; one would merely SET the
parameter values. In general, as with tables, the DAT subsystem
commands which produce a dialogue are not available; the rest are
available.

3.3 Programming Statements

The set of DAT programming statements is small and powerful.
There are only six types of statements:

assignment statements,
input/output statements,
conditional statements (IF-THEN-ELSE),
block and loop constructs (DO-END block, DO loop, DO-WHILE),
unconditional jumps (GO TO) •
and procedure calls and returns,

All DAT procedures (programs) are constructed from combinations of
these six elements, plus any of the command-level The first five types
of statements are covered in this section, and the last, procedure
calls and returns are covered in the next section 3.4. commands.

In general, DAT programming statements can be written in any
format. Statements can be broken by carriage returns or by multiple
spaces between words. At least one space is required between separate
words, and each statement must be terminated with a special character

- 35 -

- a semicolon ("~"). The semicolon is analogous to the <GO> character

at the command level.

3.3.1 Assignment Statements

Assignment statements may take one of two forms. Either the

SET statement is used, or the "=" operator is used. The general form

of the SET statement is:

SET variable TO expression~

An assignment statement using the "=" operator takes the form:

variable = expression~

3.3.2 Input/OUtput Statements

Input and output statements constitute the means of getting

data in or out of DAT procedures. The basic I/O elements are

extremely simple. The INPUT statement is used for input, and the TYPE

statement for output.

The basic input statements in the DAT programming language

are:

INPUT numeric-variable~

INPUT TEXT text-variable;

An input statement does two things: (1) It causes the program

to pause and await the entry of a value to be entered by the user via

the keyboard~ and (2) it sets the variable named in the INPUT

statement to the value entered.

Numeric values are entered with the INPUT statement. The data

supplied to an INPUT statement must be a number, terminated with the

<GO> key. The INPUT statement checks that the value is either a FLOAT

or a FIXED, and returns an error message if it is not.

TEXT values are input with the INPUT TEXT statement. Any text

entered will be taken as the value of the text variable. The text

must be terminated with the <GO> key. If no text is typed (i.e., just

<GO» the text-variable will have the value of the null text (~~), not

EMPTY. Upon responding to an INPUT TEXT prompt, the text string need

not be quoted; the DAT programming language does this implicitly.

All of the normal DAT subsystem display commands are valid

within the DAT programming language, apd they comprise the best way to

output such variables as tables and graphs. For numbers and text,

there are two simple statements:

- 36 -

TYPE variable:

TYPE NOCR variable:

The first statement types out the value of any variable followed by a
carriage return. The TYPE NOCR outputs the variable without the
carriage return.

The TYPE statement can output an arbitrarily long list of
variables, if the variable names are separated by commas. A carriage
return will be typed after each value.

3.3.3 Conditional Statements

A conditional statement is one that tests a condition and
executes a command based on the results of the test. The basic
conditional construct is the IF ••• THEN statement, and its adjunct, the
ELSE statement.

The IF ••• THEN statement can be formally expressed as:

IF boolean-expression THEN statement:

where "boolean-expression" is any expression (or single variable)
which evaluates to TRUE or FALSE. Any legitimate expression
containing relational or boolean operators meets this criterion, as
does any function that yields a truth-value.

The "statement" portion of the IF ••• THEN construction may be
any legal OAT programming language statement that can be executed,
including another IF ••• THEN statement, or a DO ••• END block (see
3.3.4).

When the boolean-expression in an IF ••• ELSE statement is
evaluated as FALSE, the THEN statement is not executed. When the
boolean-expression is TRUE, the THEN statement is executed.

The ELSE statement is an extension of the IF ••• THEN statement
that increases its power. It must immediately follow an IF ••• THEN
statement. The general form of the IF ••• THEN ••• ELSE construction is:

IF boolean-expression THEN statement:
ELSE [statement]:

where the statement following the ELSE is optional. The effect of the
ELSE statement is to specify an alternative action to be performed
when the IF condition is FALSE. The statement following the ELSE is
optional so that nested IFs and ELSEs may be paired even when some
ELSE alternatives do not exist.

- 37 -

3.3.4 Block and Loop Constructs

The DO ••• END block combines a group of statements into
constructs that are treated logically as a single statement. Here is
the general form of the DO ••• END block:

statement:
statement:

statement:

where "statement" is any executable statement, including both simple
and nested conditional statements.

One of the most important uses of the DO ••• END block is to
program a series of operations, based on the outcome of a conditional
statement. For example:

IF NOTEMPTY(X)
THEN DO~

E~:

TYPE X:
SUMM=SUMM+X~

ELSE TYPE ~EMPTY VALUE~:

A DO ••• END block can also be used following an ELSE statement.

The DO loop is a special form of the OO ••. END block which
allows a group of statements to be executed in an iterative way. DO
loops may be further classified into two distinct types: the basic DO
loop and the DO WHILE loop. The basic DO loop repeats a set of
operations a number of times, with the number of iterations specified
in the DO statement. The DO WHILE loop is more open-ended: it
continues its iterations an unspecified number of times, repeating the
set of operations as long as the specified condition holds.

The general form of the DO loop is as follows:

DO counter = start-value TO quit-value [BY increment]:
statement:
statement:

statement:

- 38 -

"Counter" is a numeric variable that keeps count of the number of
times the loop is repeated. "Start-value" and "quit-value" specify
the number of iterations. The counter proceeds from the start-value
to the quit-value by an increment of 1 each time the loop is executed,
unless a different increment is specified in the "BY increment"
option.

The general form of the DO ••• WHILE loop is as follows:

DO WHILE (boolean-expression);
statement;
statement;

statement;
END;

where boolean expression is any expression that evaluates to TRUE or
FALSE. The parentheses around the boolean-expression are required.
The loop will continue to iterate until control returns to the first
line and the boolean-express"ion is evaluated as FALSE.

For greater flexibility, DO loops and DO ••• WHILE loops can be
terminated before the normal quitting condition is reached by means of
the DO EX IT and DONEXT statements. When a DOEXIT statement is
encountered in a loop, control immediately passes out of the loop to
the statement following the END. When a DONEXT statement is
encountered in a loop, control jumps back to the first line of the
loop and the next iteration is performed.

3.3.5 Unconditional Jumps

A GO TO statement causes control to jump to a statement with a
specified label. The general form of the GO TO construct is:

GO TO label;
statement;
statement;

statement;
label: statement;

where "label" is a legal name, meaning that it must be a legal
variable name. Any statement, except and END statement can have a
label. Labels must be unique within a single procedure, although more
than one GO TO statement can refer to a single label.

- 39 -

When a GO TO statement is executed, control is transferred to

the statement marked by the label specified in the GO TO.

3.4 Procedures

Procedures in the DAT programming language are analogous to

subroutines in FORTRAN. A procedure has a name by which it can be

referenced, and allows for arguments to be passed to and from it.

The three statements which make procedures usable are

PROCEDURE, CALL and RETURN.

3.4.1 The PROCEDURE Statement and Arguments

The PROCEDURE statement delimits and identifies a block of

code as a functional unit. The end of the procedure is delimited with

a corresponding END statement. The general form of a procedure is:

PROCEDURE procedure-name [(arguments)] J
statementJ
sta tement J

statement1

The "procedure-name" is the name given when CALLING a procedure. The

"arguments" are data values that are supplied to the procedure, upon

which the procedure operates. Within a procedure definition,

arguments are "dummy" variables having no value until the procedure is

called. When the procedure is called, the constants, variables or

expressions given in the CALL statement are substituted ~or the dummy

statements in the PROCEDURE statement. The procedure then operates on

the real values. The CALL statement is discussed more fully in

section 3.4.3. The arguments in a PROCEDURE statement must be

enclosed in parentheses, and if there are more than one argument, they

must be separated by commas.

3.4.2 The RETURN Statement

The RETURN statement is used to exit from a procedure. There

may be more than one RETURN statement in a procedure. The general

form of the RETURN- statement is:

RETURN [value] 1

- 40 -

where the optional nvalue n may be a constant, variable, or expression.
If the value is absent, the RETURN statement causes an immediate exit
from the procedure in which it occurs, and a return to the place from
which the procedure was called. The form of the RETURN statement with
the value is used to transfer data from a procedure, as well as to
exit a procedure~ the nRETURN valuen statement is used to make a
procedure behave like a function. For example if the procedure FOO
takes two arguments and returns a value, it could be invoked by a
statement such as:

NEWVAL = FOO(A,B)~

where NEWVAL is a variable to which the value returned is assigned,
and A and B are the arguments supplied to FOO.

3.4.3 The CALL Statement

As noted in the previous section, a procedure that returns a
value can be invoked as a function call, by setting a variable to the
value of a procedure. This form of invocation cannot be used be used
for procedures which do not return a value. To invoke such a
procedure the CALL statement should be used. The form of the CALL
s ta tement is:

CALL procedure-name [(arguments)]~

where nprocedure-name" is the name given in the PROCEDURE statement
defining the procedure, and the optional arguments are one or more
constants, variables, or expressions, separated by commas.

3.4.4 Commenting Procedures

A procedure definition can contain statements that are not
executed. These statements are called comments, and are usually used
to describe the purpose and effects of the procedural statements. A
comment is set off by the characters "/*" (slash, asterisk) at the
beginning and n*/" at the end. These symbols and any text that occurs
between them are ignored and never executed. Any characters may be
included within the comments delimiters but the delimiters
themselves. Comments may continue through any number of lines, and
may be placed anywhere in the definition, except in the middle of a
single word.

3.5 Building a Procedure

In the previous section, the definitive features of
procedures, their uses, and the means by which they are invoked were
discussed. In this section, the creation of procedures is discussed:
how to enter them into the DAT subsystem.

- 41 -

3.5.1 Editing Basics

The DAT subsystem includes a simple editor which is used to

edit procedure definitions •. The editor is a "line-oriented" editor,

similar to the EDIT program in use at LRC.

To initiate editing of a procedure, the user types at command

level:

iEDIT PROCEDURE procedure-name <GO>

where "procedure-name" can be the name of an existing procedure, which

is to be modified1 or it can be the name of a new procedure, as yet

undefined.

If it is ordinary text that is being created or edited and not

the definition of a procedure, the command would be:

iEDIT TEXT text-name <GO>

where "text-name" is the variable name to use for the TEXT constant

being edited. To have a PROCEDURE definition typed out at the

terminal, the command to use is:

iTYPE DEFINITION OF procedure-name <GO>

or

iTYPE DEF OF procedure-name <GO>

On the other hand, to have a TEXT constant typed out at the terminal,

the command to use is merely:

iTYPE text-name <GO>

Once the EDIT command has been given to enter a new text, the

EDITOR responds by displaying the following:

o <TOP OF TEXT>
1
2 <BOTTOM OF TEXT>

If the text of a short procedure were to be input, using the editing

commands listed below, the EDITOR might display:

o <TOP OF TEXT>
1 PROCEDURE (A) 1
2 TYPE A1
3E~;

4
5 <BOTTOM OF TEXT>

- 42 -

Only the three statements on lines 1-3 are in the actual definition.
The new line numbers are added automatically. The EDITOR updates and
redisplays the text (renumbering the lines) after each editing
command. For example, if the statement "A = A+l~ <carriage-return>"
were to be added after the PROCEDURE statement, the screen would
display:

o <TOP OF TEXT>
1 PR:OCEDURE (A):
2 A = A+l:
3 TYPE A;
4 END:
5
6 <BOTTOM OF TEXT>

The EDITOR displays at most 25 lines of text on the screen:
which lines are on the screen are under the user's control via the
screen commands discussed below. When lines are inserted into a full
screen, the lower lines move off the bottom of the screen to
accommodate the new lines above. The EDITOR does not permit editing
ay off-screen lines. To edit a line, it must first be displayed on
the screen.

3.5.2 EDI'l'OR CoDDDands

The EDITOR permits four kinds of actions:

(1) FORWARD and BACK permit the user to control which portion of
a long text appears on the screen:

(2) INSERT, KILL, and CHANGE permit line-at-a-time changes to the
text:

(3) REPLACE permits replacements within a line:

(4) EXIT and ABORT take the user from the EDITOR back to
command-level.

Any action which results in a change to the text causes the
screen to be redisplayed. However, unless one of the screen commands
has been given, redisplay begins with the same line at the top.

Here are the detailed specifications of the commands (portions
in brackets are optional):

3.5.2.1 The FORWARD CoDlDand

F[ORWARD] [line-count] <GO>

- 43 -

FORWARD moves text upward into the screen area. If the

optional line-count is included, FORWARD will move that number of

lines forward into the text. If the line-count is not included,

FORWARD moves the text so that the line following the last line

currently displayed will be at the top of the new screen.

3.5.2.2 The BACK CoDDlland

B[ACK] [line-count] <GO>

BACK moves the text downward into the screen area. If the

line-count is not included, BACK moves the text so that the line

preceding the first line currently displayed will be at the bottom of

the screen.

3.5.2.3 The INSERT Command

I [NSERT AFTER] line-number <GO> INSERT:
one or more lines of text <GO>

INSERT accepts lines of text (separated by carriage returns)

and places them after line-number. The line-number argument is not

optional. Note that two "<GO>"s are required one after the

command specification (following which the EDITOR types the word

"INSERT:"), and one after the last line of input text.

3.5.2.4 The KILL Command

K[ILL] first-line-number [[TO] last-line-number] <GO>

KILL deletes line first-line-number, or the lines

first-line-number through last-line-number inclusive, depending upon

the option specified.

3.5.2.5 The CHANGE Command

C[HANGE] first-line-number [[TO] last-line-number] <GO> INSERT:

one or more lines of text <GO>

CHANGE is exactly the equivalent to a KILL followed by an

INSERT. It avoids an extra erase and redisplay of the screen, and

implicitly inserts the specified text beginning at the same position

as the text deleted.

3.5.2.6 The REPLACE Command

- 44 -

R[EPLACE] line-number <GO> REPLACE: text-to-match <GO>
WITH: text-to-substitute <GO>

Replace permits a single portion of a line to be replaced with
another group of characters, without retyping the entire line. It
finds the first occurrence in line line-number of the text-to-match,
and replaces it with the specified text-to-substitute, then redisplays
the screen.

Note that three n<GO>"s are required: one after the command
specification, following which the EDITOR types "REPLACE:"1 one after
the text-to-match, following which the EDITOR types "WITH:"1 and one
after the text-to-substitute. If the text-to-substitute is omitted,
the text-to-match will merely be deleted. Carriage returns may be
included in either text argument, and thus reduce or increase the
number of lines.

3.5.2.1 The EXIT Command

EX[IT] <GO>

EXIT transfers control back to command-level, saving the newly
edited version and replacing the old version with the new.

3.5.2.8 The ABORT Command

ABORT <GO>

ABORT transfers
original text unchanged.
will be preserved. ABORT
its accidental execution.

control back to command-level, leaving the
No changes that have been made in the EDITOR
cannot be abbreviated in order to prevent

- 45 -

4. The STAT Subsystea

The purpose of the STAT subsystem is to provide a tool for the

scientific investigator to perform statistical tests and make

statistical inferences from his data.

As part of the design of the PM Module, a survey was made of

existing, commercially available statistical analysis packages. It

was hoped that such a package could be incorporated into the PM

Module, thereby avoiding the needless time and expense of extensive

software development. Most of the statistical packages under

consideration have taken more than about five man-years to develop.

4.1 Requirements of the STAT Subsystem

In order to be
statistical package would
requirements:

considered for use as the STAT subsystem, a

have to meet the following four basic

(1) Includes a large range of standard statistical analyses,

including analysis of variance.

(2) Runs interactively.

(3) Runs on a CDC Cyber-175 computer.

(4) Provides for data transformation.

4.1.1 Standard Statistical Analyses

The STAT subsystem should be capable of performing many

different types of statistical analysis. Some examples of classes of

standard statistical analyses are the following:

(1) Descriptive statistics. This includes measures of central

value (mean, median, mode), measures of variability

(variance, standard deviation, differences between

percentiles, etc.), measures of skewness, measures of the

agreement with a Gaussian distribution, along with tables

and plots of frequency distributions, histograms, etc.

(2) Analysis of Variance. This analysis is used to determine the

relationship and measure the contributions of a number of

independent variables with a dependent variable, where the

independent variables are categorical. This analysis is

most relevant for the PM Module. One of the most frequently

used experimental paradigms in research on performance

measures is to make sets of runs with one (univariate) or

more (multivariate) conditions at several discrete levels.

- 46 -

The outcome of these runs is a set of performance measures,
some of which will have a relationship to the varied
conditions. Analysis of variance is the technique used to
measure these relationships.

(3) Correlation and Regression Analysis. This analysis . is also
used to determine the relationship and measure the
contributions of a number of independent variables with a
dependent variable, but here all the variables are
continuous. Scatter diagrams are also useful in examining
these relationships.

(4) Tests of a Model. A variety of statistical tests may be used
to determine whether a set of experimental results differs
from the predictions of a model. These include t-tests,
chi-squared tests, etc.

(5) Discriminant Analysis. This analysis is used
whether groups are different based on the
available in some number of analysis variables.

to decide
information

(6) Factor Analysis. This refers to a number of techniques for
analyzing correlation coefficients. The goal is to discover
a few basic patterns or components in the relationships
found in the correlation matrix.

(7) Other Analysis Techniques.
non-parametric tests, et al.

4.1.2 Interactive Operation

These techniques include

In order to allow for the efficient interchange of information
between the analyst and the computer, the STAT subsystem must be
interactive. The system must allow the analyst to interrogate the
data base repeatedly and rapidly examine different statistical
measures of different performance measures. It is also very
desireable to be able to switch to a batch mode of operation once an
analysis procedure is selected for use with a large data base.

4.1.3 CDC Cyber-175

The entire PM Module must run on The CDC Cyber-175 computer at
LRC. This machine runs the NOS operating system. Any statistical
packages which do not run on this system at present would have to be
converted. In general for a package of this size, the conversion cost
would be prohibitive, if it were even possible.

- 47 -

4.1.4 Data Transformation

This requirement is the loosest. With a
transformation capability, a statistical analysis
fulfill virtually all the requirements of the entire
more modest goal is to meet the requirements of
Module.

The basic requirements of data transformation

powerful data
package could

PM Module. A
the Baseline PM

are:

(1) Edit data. Experimental data often contains values which are
anomalous or erroneous, and which must be edited.

(2) Select data. It is important to be able to specify and
select a subset of the data for analysis.

(3) Sort and Merge data. Data from various sources often has to
be combined for joint analysis. For example, several runs
from one subject might be combined for a subject summary, or
several runs from several subjects under one condition might
be combined.

(4) Create new variables from old. This transformation
capability would allow performance measures to be created
from raw experimental results such as time series. There is
virtually no limit to the degree of flexibility that would
be useful here.

4.2 Candidate Statistical Analysis Packages

In the course of conducting the survey of existing,
commercially available statistical analysis packages, on the order of
sixty different packages received at least cursory consideration.
They ranged from small, limited purpose packages to large general
purpose packages1 from free, unsupported software to multi-thousand
dollar systems with annual upgrades1 from card oriented batch systems
to highly conversational systems with on-line instruction1 and from
non-integrated subroutine libraries to fully integrated operating
systems. The primary sources of information regarding these packages
were two papers: Shucany, Minton and Shannon (1972), and Anderson and
Sims (1977), as well as numerous conversations with many users of
statistical packages.

After a preliminary investigation of the packages, the number under
consideration was reduced to the following three:

(1) P-STAT 78, produced by P-STAT, Inc. of Princeton, New Jersey.

(2) SIPS, produced by the Department of Statistics of Oregon
State University, Corvallis, Oregon.

- 48 -

(3) SCSS, produced by SPSS Inc. of Chicago, Illinois.

The first of these three candidate packages to be examined in
detail was SCSS. It was found to have many strong features including
a highly conversational front end, reasonable data transformation
capabilities, and a moderate range of available statistical analyses.
It had two major shortcomings, however: (1) It would not be available
for operation on the' CDC Cyber computer for at least six months or
perhaps a year, and (2) It did not include analysis of variance. On
the basis of these two shortcomings, SCSS was not given further
consideration.

The two remaining candidate packages, P-STAT 78 and SIPS were
examined next. Their strength and weaknesses are discussed in the
next section.

4.3 Two Prime Candidates: P-STAT 78 and SIPS

These two statistical analysis systems are compared by first
considering how well they meet the four criterion listed above. Other
factors, such as documentation, vendor support, and cost are then
considered.

4.3.1 Standard Statistical Analyses

Both SIPS and P-STAT 78 include a wide range of standard
statistical analyses, although SIPS has a significantly broader range
than P-STAT 78.

(1) Descriptive Statistics. Both packages compute a
of descriptive statistics, along with tables
P-STAT 78 provides a more complete and flexible
formatting the output for reports.

wide variety
and plots.

facili ty for

(2) Analysis of Variance. P-STAT 78 contains a multi-variate
analysis of variance subsystem. However, it is rather
inconvenient to use; the software is not nearly up to the
standards of the rest of the P-STAT package. SIPS contains
adequate univariate and multivariate analysis of variance
subsystems.

(3) Correlation and Regression Analysis. Both P-STAT 78 and SIPS
include fairly comprehensive correlation and regression
analyses.

(4) Tests of a MOdel. Both P-STAT 78 and SIPS include a variety
of statistical tests of this type. SIPS offers a
significantly wider range of tests, including several
parametric and non-parametric tests.

- 49 -

(5) Discriainant Analysis. P-STAT 78 includes discriminant
analysis. SIPS includes discriminant analysis a part of the
MANOVA subsystem.

(6) Factor Analysis. Both P-STAT 78 and SIPS include commands
for performing factor (principal components) analysis of a
covariance matrix, and for performing rotations based on
this analysis.

(7) Other Analysis Techniques. SIPS
non-parametric tests such as
Kruskal-Wallis, sign test, etc.

4.3.2 Interactive Operation

includes
Wilcoxon,

a variety of
Mann-Whitney,

Both the P-STAT 78 and SIPS systems operate interactively:
both allow the user to rapidly explore a set of statistical analyses,
to drop one and pursue another as the results are obtained. P-STAT 78
provides a greater level of diagnostic error messages and a more
elegant scheme of error recovery. The glaring exception to this
feature occurs in the P-STAT 78 Analysis of Variance routines where a
simple user error can crash the entire P-STAT system.

Both the P-STAT 78 and SIPS systems provide convenient
mechanisms for operating in a batch mode, as might be desired when
analyzing a large data base. P-STAT provides a more convenient method
for setting up the batch run: the user has the ability to edit the
typescript generated in a smaller interactive run.

4.3.3 CDC Cyber-175

Both the P-STAT 78 and SIPS systems are written primarily in
FORTRAN, and will operate on the CDC Cyber-l75 computer at LRC.
P-STAT is written in machine independent form, and has been made to
run on a CDC Cyber system by means of a preprocessor conversion
program. SIPS has been developed exclusively on CDC computers and has
not yet been converted for use on other machines. It is highly
optimized for use on the CDC Cyber computers under the NOS operating
system, and should run significantly faster than P-STAT on the
Cyber-175 at LRC.

4.3.4 Data Transformation

Both P-STAT 78 and SIPS provide mechanisms for fairly
extensive data transformation. Although neither system would fulfill
all the requirements for data transformation for the entire PM Module,
either one would meet the requirements of the baseline PM Module.

- 50 -

Both systems allow for
sorting and merging data. In
variable to be created from
variables from arbitrary sets of

editing data, selecting data, and
addition, both systems allow new

old ones. The ability to create new
old variables is limited.

4.3.5 Other Considerations

The P-STAT and SIPS systems have similar or1g1ns; both began
as statistical analysis systems serving a university computing center.
P-STAT was originally developed at Princeton in 1962, and SIPS at
Oregon State University in the early 1970~s. The aims and directions
taken by the two systems following their initial development, however,
have been somewhat different.

The emphasis in P-STAT has been on making the system appealing
to as broad a community as possible. The following attributes of the
P-STAT system result, at least in part, from this emphasis:

(1) The documentation for P-STAT is very complete and up-to-date.
Each feature of the system is explained in some detail.

(2) The system works on a wide variety of computer systems
(including IBM, UNIVAC, DEC, CDC, Honeywell, Burroughs,
PRIME, INTERDATA, Hewlett-Packard, and Harris), although it
is probably not highly optimized on many of them.

(3) A private corporation, P-STAT, Inc., has been established to
sell and support the P-STAT system. Consequently, the
problems encountered by users are handled effectively.

(4) The interactive front-end (the user interface) of P-STAT is
quite sophisticated. When P-STAT is used interactively, an
editor file is kept which contains both the commands and
data records which have been typed in. This file can be
accessed at any time to fix errors, or to add, delete, or
replace commands or data. The corrected commands can then
be re-executed. The editor file can be saved for use in
another interactive session of for submission as a batch
job.

(5) There is great flexibility in providing well formatted tables
and graphs, which are suitable for inclusion "as-is" in
reports.

(6) Although the range of available
large, there has not been an
exhaustive set of analyses.

statistical
effort to

analyses
maintain

is
an

(7) P-STAT contains commands which read and write BMDP and SPSS
system files. Thus, the P-STAT user has access to two of

- 51 -

the most powerful and widely
statistical analysis systems.

available batch

(8) In short, the emphasis is on ease of use, rather than on

statistical completeness.

In contrast, the emphasis in SIPS has been on making the

system as useful and as powerful as possible for people at Oregon

State University. The following attributes of the SIPS system result,

at least in part, from this emphasis:

(1) Documentation for SIPS is adequate but not exhaustive. New

users would probably require at least occasional telephone

consultation with the SIPS staff.

(2) The system is highly
system. It does
systems, although
future.

optimized for the CDC
not currently work on

such conversions may be

Cyber computer
other computer

done in the

(3) The Department of Statistics of Oregon State University

maintains the SIPS system. User problems must be handled by

this group only on a part-time basis. During the SIPS trial

period at LRC, user problems were handled effectively.

(4) The interactive front-end (the user-interface) is a

straightforward command processor with good error checking

etc. As a result, the system is very efficient use.

(5) The output is generally presented in a clear and readable

format, although there is not much flexibility in formatting

tables and graphs.

(6) There is a large emphasis on providing as complete a set of

statistical analyses as possible. New functions are

continuously being added. However, there are no convenient

links available to BMDP or SPSS.

(7) In short, the emphasis is on statistical completeness, rather

than on universal useability.

The cost of the P-STAT system to LRC would be $5000 for the

first year and $2000 for subsequent years~ the cost of the SIPS

system would be $5000 for the first year and nothing for subsequent

years.

4.4 A Recommendation

Either the P-STAT 78 or the SIPS system would meet the minimum

requirements of the STAT subsystem. However, it is felt that the

- 52 -

superior statistical capabilities of the SIPS system, especially in
the area of analysis of variance, far outweighs the I/O advantages of
P-STAT for the intended usage in the PM Module. The expected superior
efficiency of the SIPS system is another strong factor. For these
reasons, it is recommended that LRC purchase the SIPS system for use
as the STAT subsystem in the PM Module.

- 53 -

5. A Consistent Pile Systea for the ~ MOdule

The Consistent File System link~ the OAT and STAT subsystems.
This file system provides a means for passing data from the output of
the experiments through the OAT and STAT subsystems. The primary task
of the Consistent File System is to maintain the correspondence
between the value of the data (e.g. the value of a particular
performance measure) and the identities of the data (e.g. the name of
the performance measure).

The design of the Consistent File System for the PM Module has
two distinct parts: the design of internal file structures and the
design of external file structures. Internal file structures means
the choice of header content, record size, etc.: how does one identify
or find a particular datum within a file. External file structures
means the choice of file naming and accessing conventions: how does
one identify and retrieve a particular file for analysis.

5.1 Internal File Structures

5.1.1 Design Objectives

The internal file structures of the Consistent File System are
designed meet the following objectives:

(1) Adaptable, so that a wide variety of experiments and analyses
may be accommodated. The system must handle experiments and
performance measures which have not yet been conceived.

(2) Self-documenting, so that the files may
with little contact with each other.
system should store both the value and
units, type, etc.) of each datum.

be shared by users
To achieve this, the

the identity (name,

(3) Expandable, so that a subset of the users can make an
addition to the file system with no impact on the other
users, and without making existing files unreadable.

(4) Upward coapatible, so that features which are not
incorporated during the initial development can be added
later.

(5) Backward compatible, so that existing file handling software
(e.g. SIFT) can be used.

(6) Convenient, so that reading and writing the files requires
just a few lines of code.

- 54 -

(7) Efficient, so that the computing resources, such as CPU time,
disk space, memory, etc., are not unduly burdened.

5.1.2 SIFT Piles

Over the past several years a file structure, or format, known
as SIFT was developed at LRC. The goals of the SIFT file system were
similar to the goals of the PM Consistent File System. It is not
surprising then, that many, although not all, of the design objectives
of the Consistent File System are met by SIFT. In this section, the
SIFT file system is described, and its strengths and weaknesses
indicated.

Figure 5.1 illustrates the format of a SIFT file. The file is
divided into blocks, and each block is divided into header and data
sections. The header section describes the layout or format of a
record in the data section. The data section contains a set of data
records in this format.

The header section consists of four records which specify the
number of variables in each data record, and the name (e.g. input or
error), units (e.g. grams, meters), a power of ten (e.g. 10**3), and a
reference value for each variable.

The data section consists of any number of data records. Each
record contains one value for each variable. The data section is
terminated by a special END record.

The SIFT file system has the following strengths:

(I) Self-documenting. Each datum is identified by name and
units.

(2) Expandable. Subsets of users may add variables to a
particular file with little or no impact on other users.
The limit of expandabi1ity is determined by the size of the
read/write buffers.

(3) Convenience. It is extremely convenient for users to access
SIFT files. Simple FORTRAN read and write statements are
all that is required.

(4) ~fficiency. Accessing SIFT files consumes little CPU time or
program memory, since read and write requests are simple.

On the other hand, the SIFT fi·le system appears to have the
following weaknesses:

/ ..
(1) Adaptability. A serious limitation on the adaptability of

SIFT files is that they cannot handle arrays conveniently.

- 55 -

==

Block 1

Header
Section

Data
Section

'NAME', N, FNAME(N)
'UNIT', N, FUNIT(N)
'10', N, FDECML(N)
'ZERO', N, FREF(N)

'DATA' , N, DATA(N)
'DATA', N, DATA(N)

.
'DATA', N, DATA(N)
'END', N, DATA(N)

==

Block 2

Header
Section

Data
Section

'NAME', N, FNAME(N)
'UNIT', N, FUNIT(N)
'10', N, FDECML(N)
'ZERO', N, FREF(N)

'DATA' , N, DATA(N)
'DATA' , N, DATA(N)

'DATA' , N, DATA(N)
'END', N, DATA(N)

==

Figure 5.1 Format of a SIFT File

- 56 -

(There is no 5HDIMEN key, and N for data records would have
to differ from N for all other records.) In addition, only
real (floating point) numbers are currently handled,
although some other (single-word) types could probably be
added easily.

(2) Efficiency. SIFT files may make inefficient use of disk space
since the record size is variable. The minimum size for a
physical disk record is 64 words, so that if the record size
were 16 (which is a reasonable size for scalar data) then
3/4 of the disk space used would be wasted. In addition,
the user program must allocate a core buffer which is large
enough to handle any record which it might encounter. Also,
since these files are accessed sequentially, if some
application requires random read access it will be very
slow: random write access may be impossible. Finally, an
application requiring very long records may be limited by
the maximum physical record size allowed by the NOS
operating system.

(3) Upward compatibility. Some features, such as vectors, could
probably be implemented later in an upward compatible
fashion. Other features, however, such as random access or
uniform record length, are probably excluded.

5.1.3 SIFT Extended (SX) Files

In order to fulfill more of the design objectives of the PM
Consistent File System, we have developed a file structure which is a
natural extension of SIFT. This structure, which we call SIFT
Extended or SX, combines the basic concepts of SIFT with a set of
additional features.

As currently developed, the SX file structure may be
of as being like the SIFT structure with a set of extensions.
these extensions are optional: they may be implemented
depending on the priorities of the LRC staff.

thought
Many of

or not,

The following list of the SX extensions is divided into three
groups. It is recommended that the first group be given a high
priority for implementation. Many of the objectives of the PM
Consistent File system would be met by implementing this group. It is
recommended that the second group of extensions be given a medium
priority. The extensions in this group are designed to improve the
efficiency and increase the flexibility of the SX file system. It is
recommended that the third group be given a low priority, and that
their implementation be deferred until some experience with the SX
file system has been obtained.

- 57 -

The following is a list of the high priority SX extensions to

the SIFT file system. These extensions could be implemented quite

simply, using FORTRAN READ and WRITE statements: no extra software

would need to be written.

(1) Arrays. The SX files will support array data conveniently.

There would be a header record which specified the size

(i.e. dimension) of each variable in a data record.

(2) Variable types. The SX files will support varied data types

conveniently. The basic types will be REAL, INTEGER, ad

CHARACTER. The SX routines will not use this information,

however: it will merely be storable and retrievable.

Therefore, users will be able to add their own types, such

as DATE, etc.

(3) Expanded Header. In the SIFT file system, the header

contains a description of the format of the data records.

In the SX file system, the header would be expanded so that

it contained its own "data" record, called a header record.

It would then contain a description of that record, along

with a description of the data records. For example, the

header record might serve to identify a run of an experiment

(e.g. the date, subject, experimental conditions, etc.),

while the data records would contain the results of the

experiment (e.g. time series of input, error, etc.).

The following is a list of the medium priority SX extensions

to the SIFT file system. Unlike the first set of extensions, these

extensions would be implemented in a set of SX file utility routines.

Therefore access to the SX files would not be via FORTRAN READ and

WRITE statements, but rather via calls to these routines.

(4) Buffered File Records. To avoid the inefficiencies of very

small disk file records, the problem of a maximum disk

record size, and the requirement for a core buffer large

enough for the largest record, SX file access will be

buffered. Actual disk records will be a uniform size

(probably 128 words), and are distinct from SX records which

can be any size. Whenever an SX record is accessed, the

required disk records will be automatically written in or

out as required. A secondary advantage of buffered file

records is that there is a considerable efficiency gain when

the file records are sma111 many file records are read into

memory with a single disk access.

(5) Random Access. The SX files will be accessible via random

access. Readers will be able to access any existing record.

In addition, random access will permit header information,

such as the location of the last record or the time the file

was last written into, to be updated as needed. The current

- 58 -

NOS FORTRAN supports random access files (OPENMS, READMS and
WRITMS). However, it imposes the requirement that an array
be kept in the users memory space (FL) of length equal to
one plus the maximum number of disk records in the file.
This could be a significant problem if several large sx
files must be open concurrently. It is expected that a
FORTRAN 77 conforming compiler will become available within
a year or so~ such a compiler should support random access
without this overhead.

(6) Read/Write Conventions. Data may be written into an SX file
as an entire record or as a set of fields within a record.
Data is read from an SX file only as a set of fields within
a record. This restriction on readers is intended to
guarantee the expandability of the SX file structure. For
example, if a reader assumed that the position of the fields
within a record was not going to change, he might read whole
records and extract the fields himself. The resulting code,
however, would be vulnerable to a change in the structure of
a record, such as the addition of a new field. This
extension would, however, impose an inefficiency, hopefully
small, on readers.

The following three additional extensions are given low
priority~ their implementation should probably be deferred until some
experience with the SX file system has been obtained. However, care
should be taken in the design not to preclude incorporating these
extensions at a later time.

(7) SX Supplied Fields. The SX file system might automatically
supply one or two fields a each record is created. Two
possibilities are Record-Number and Entry-Time.

(8) Access Control. The SX file system should probably contain
some kind of access control. This control would have to
work within the constraints imposed by the NOS operating
system. A minimum form of access control would require
users to specify a mode of access (e.g. read, append, or
write) when they opened an SX file. The SX routines would
then enforce access mode restrictions.

(8) SX Directory. For many applications where SX files contained
multiple Header/Data blocks, it would be useful to have a
directory of the blocks. This directory would be written
before the first block.

5.1.4 SX File Structure

Figure 5.2 illustrates the format of one block of an SX file.
As in SIFT files, the header section describes the layout or format of

- 59 -

===

Header
Section

I

Pre-Header:
LPH, NREC, DATECR, TIMECR, USERCR

Header Record Descriptor:
NFLDH, FNAMEH(NFLDH), FSIZEH(NFLDH),

FUNITH(NFLDH), FTYPEH(NFLDH)

Header Record:
Field 1, Field 2, ••• , Field NFLDH

Data Record Descriptor:
NFLD, FNAME(NFLD), FSIZE(NFLD),

FUNIT(NFLD), FTYPE(NFLD)

Data Record 1:
Field 1, Field 2, ••• , Field NFLD

I Data Record 2:

Field 1, Field 2, ••• , Field NFLD
Data ---
Section

Data Record NREC:
Field 1, Field 2, ••• , Field NFLD

===

Figure 5.2 Format of One Block of an SX File

- 60 -

a record in the data section, and the data section contains a set of
records in this format. The major difference between the sx and SIFT
files blocks is that the SX header contains additional information.

The Header section contains four records: a pre-header, a
header record descriptor, a header record, and a data record
descriptor. The Data section contains data records. All of these
records in both the Header and data sections are divided into fields.
The fields of the pre-header, header record descriptor, and data
record descriptor are fixed. The fields of the header record and data
records are determined by the users. These fields are all described
below and are summarized in Table 5.1.

The pre-header contains the length of the pre-header (LPH),
and the number of records in the data section (NREC). It might also
contain the date and time the block was created (DATECR, TIMECR) as
well as the user who created the block (USEReR). The header record
descriptor contains the number of fields in the header record (RFLDD),
and the name, size units and type of each field (FNAMEB(NFLDH),
FSlZEB(NFLDH), FONITB(NFLDH), PTYPEH(NFLDH». The header record
contains NFLDH fields as described by the header record descriptor.
The data record descriptor is analogous to the header record
descriptor and contains the number of fields in each data record
(NFLD), and the name, size, units and type of each field (PNAME(NFLD),
FSlZE(NFLD), FONIT(NFLD), FTYPE(NFLD». The data records contain NFLD
fields as described by the data record descriptor.

Figure 5.3 illustrates the overall format of an SX file with
multiple blocks. The first block, called the SX Deader contains the
location of the SX Directory (LOCDIR), the location of the current EOF
(LOCEOF), the current number of blocks (RBLK), and the maximum number
of allowable blocks (MAXBLK). The SX Directory contains the location
of the start of each block in the SX file.

5.1.5 SX File Access

In this section, the means of accessing SX files is described.
As noted in Section 5.1.3, if only the first three high priority SX
extensions to the SIFT file system are implemented, then the SX files
could be accessed using just FORTRAN READ and WRITE statements; no
extra software would need to be written. If however, additional
extensions are desired, then the following set of SX utility
subroutines would provide users with a convenient mechanism for
accessing SX files. The following list of routines would allow users
to open and close SX files, to read and write SX record descriptors,
and to read and write SX records.

(1) OpeningSX Files.

- 61 -

===
sx Header LOCDIR, LOCEOF, NBLK, MAXBLK

===

sx Directory

Location of Block 1
Location of Block 2

Location of Block NBLK

Location of Block MAXBLK
===

Header Section
Block 1

Data Section
======~==

Header Section I
Block 2 ----------------------------------

Data Section I
===

===
Header Section

Block NBLK
Data Section

===

Figure 5.3 Overall Format of an SX File with Multiple Blocks

- 62 -

SXNBN: Opens a new SX file
SXOLD: Opens an existing SX file

These two routines require that the files to be opened be
specified by name at run-time. The current NOS FORTRAN
compiler does not support this capability. A set of
assembly language (COMPASS) routines with this capability,
however, has been developed at LRC. In addition, a
FORTRAN 77 conforming compiler, which should become
available within about a year, would also support this
capability.

(2) writing SX Record Descriptors.

SXDEFB: Writes a header record descriptor
SXDEF: Writes a data record descriptor

(3) Reading SX Record Descriptors.

SXRECB: Returns information about a set of fields of a
header record, specified by field numbers.

SXFLDB: Returns information about a set of fields of a
header record, specified by field names.

SXREC: Returns information about a set of fields of a data
record, specified by field numbers.

SXFLD: Returns information about a set of fields of a data
record, specified by field names.

(4) writing SX Records.

SXWRRB: Writes an entire header record.
SXWRFB: Writes a set of fields in a header record, specified

by field numbers.
SXWRR: Writes an entire data record.
SXWRF: writes a set of fields in a data record, specified by

field numbers.

(5) Reading SX Records.

SXRDFB: Reads a set of fields from the header record,
specified by field numbers.

SXRDF: Reads a set of fields from a data record, specified
by field numbers.

Note that header and data record descriptors are written as
entire records, whereas they may be read by field names or field
numbers. This is because while writers would presumably know what
fields are to be written, readers might not know any of the field
names or might desire to search for a specific field name. Also,
writers can access header and data records by either entire records or
by field numbers, whereas readers must access these records by field

- 63 -

numbers (having obtained these field numbers by reading header or data

record descriptors).

5.2 External File Structures

5.2.1 Design Objectives

The external file structures of the Consistent File System

simplify the task of identifying and retrieving a particular file for

analysis. The system is in fact a file-naming convention, supported

by appropriate software, with multi-field file names. The fields

would serve to identify the following attributes of the file:

(1) The user who "owns" the file: his group and his name.

(2) The experiment to which the file pertains: the name of the

experiment, the pilot and run number.

(3) The type of file: time-series data, processed data, etc.

(4) The version number of the file.

These file naming conventions would probably also be very

useful for keeping track of programs pertaining to the PM Module, such

as FORTRAN source files, documentation files, etc.

5.2.2 Fields of File Names

File names are divided into four fields, User, Experiment,

Type, and· Version, corresponding to the above four attributes of a

file. The fields could be separated by a character such as "In:

User/Experiment/Type/Version

To accomodate files of other types, i.e. not experimental data, the

Experiment field could be given the more general name of FileName:

User/FileName/Type/Version

These fields could, in turn, be further divided into

subfields, to more specifically identify the file. The sub-flelds

could be separated by a character such as ".". Thus a file name with

four fields could have the following sub-fields:

User ==> Group.UserName

FileName ==> Experiment.Pilot.Run

- 64 -

Type ==> MajorType.MinorType

Version ==> MajorVersion.MinorVersion

5.2.3 I.p1ementing External Pile Structures

Implementing these external file structures, i.e. long,
multi-field file names, directly under the NOS operating system would
be extremely difficult, if not impossible. The NOS operating system
is limited to file names of seven letters or less, with each user
having his own set of file names. A feasable approach, however, would
be to write a program which somehow maintained a correspondence
between long user-oriented file names, and short machine-oriented file
names. At the present time, two programs are in existence at LRC,
which approach this capability: The File Information and Cataloging
System (PICS), and The Permanent File Cataloging System (CCATSYS).
The applicability of these two programs to the needs of the PM
external file structures is discussed below.

5.2.3.1 Pile Information and Cataloging System (PICS)

FICS provides a method for identifying, cataloging and
displaying contents of the permanent file system. The system is built
as an inverted tree structure, composed of information nodes. The top
level node is called the root node. Below the root node are other
nodes, connected to each other by branches. Some of the nodes, called
data base nodes, are associated with file entries which describe
actual NOS files. Each data base node may have file entries for a
number of NOS files.

One way of using FICS would be to associate the FICS node
levels with the User field and its sub-fields Group, User Name , or
perhaps some others. The Type field would be handled by the "Type
Description" portion of the file entry in the data base. The
remalnlng fields, FileName and Version, would have to be handled by
the 80 character File Description provided by FICS.

Another way of creating the above external file structures
using FICS would be to associate each node level with a field (or
subfield), and each node at that level with an instance of that field
(or subfield). The file entry could then be used to complete the file
name and to store other information about the file. A disadvantage of
this approach is that only a priviledged user, called the Tree Boss,
is allowed to create new nodes. Therefore, only a Tree Boss can name
files.

There are three disadvantages of FICS. First, the system
appears to be somewhat cumbersome. Although practice users might
become proficient, it seems that for this application FICS requires an

- 65 -

unduly large time investment to learn to use. Second, the procedure

for adding a new file to FICS, while not terribly inconvenient, is

manual and requires some effort on the part of the user, both to

remember to perform the operation as well as to do it. Third,

although FICS provides a means of associating seven letter file names

with longer, more meaningful names, users are still required to invent

unique seven letter file names for all their files. A possible

extension to FICS would be for the system to generate unique file

names which the user might never even see directly.

5.2.3.2 Permanent File Cataloging System (CCATSYS)

CCATSYS provides another system for identifying, cataloging

and displaying contents of the permanent file system. CCATSYS is

somewhat smaller than FICS, and is analogous to a single data base

node of FICS. Consequently, it is suitable for each user to maintain

his own CCATSYS catalog, obviating the User field. In a manner

similar to FICS, the Type field would be handled by the File Type

facility of CCATSYS, and the remaining fields FileName and Version

would be handled by the 37 character File Description provided by

CCATSYS.

CCATSYS has one major advantage over FICS, although it shares

some of the disadvantages of FICS. The advantage is that CCATSYS

appears to be extremely easy to use, much easier than FICS. On the

other hand, as with FICS, the procedure for adding a new file to

CCATSYS is manual, and users are still required to generate unique

seven letter file names. The major disadvantage of CCATSYS is that

only 37 character File Descriptions are permitted versus the 80

character descriptions permitted by FICS. In addition, whereas a FICS

"tree" could serve a large number of users, individual CCATSYS files

are required for each user. On the other hand, CCATSYS users could

easily read each others CCATSYS files and printouts.

Overall,
system of choice
The advantage of
disadvantage of
users.

it appears that CCATSYS would be the cataloging

for implementing the PM External File Structures.

the relative convenience of CCATSYS far outweighs the

not being able to share the cataloging system across

5.3 Examples of Internal and External File Structures

The following examples illustrate how these internal and

external file structures could be used. Suppose Burnell McKissick of

the simulation group at LRC is running an experiment called "G-SEAT",

using four pilots (ABC, DEF, GHI, and JKL). See Ashworth, et al.

(1977) for the details of this study.

- 66 -

.

5.3.1 Single-Run Data Files

Each run of the experiment would produce a Single-Run data
file with a name such as:

LRC-SIM.MCKISSICK/G-SEAT.DEF.4/SX.DATA/1.0

which would correspond to subject DEF and run 4. If the run had to be
redone for some reason, the new file might be version 1.1. The header
record of this file would include the following fields which identify
the file, and possibly some others which more specifically identify
the experimental conditions:

==
NFLDH = 12

FNAKER FSIZEH FUNITH FTYPEH VALUE

Group 1 CHAR LRC-SIM
UserName 1 CHAR MCKISSICK
Experiment 1 CHAR G-SEAT
Pilot 1 CHAR DEF
Run 1 CHAR 4
MajorType 1 CHAR SX
MinorType 1 CHAR DATA
MajorVsn 1 INTEGER 1
MinorVsn 1 INTEGER 0
Condition 1 CHAR SEAT-ON
Samp1eRate 1 SAMP/SEC REAL 16.0
Date 1 DATE ll-FEB-79
==

The data records of this file would consist of eleven fields, one for
each system state:

==
NFLD = 11

FNAKE

TKE
TKL
TKC

T

FSIZE

1
1
1

1

FUNIT

DEGREES
DEGREES
DEGREES

SAMPLES

FTYPE

REAL
REAL
REAL

INTEGER
==

- 67 -

~-.--

5.3.2 Single-Run Measure.ent Files

One analysis scheme would be to analyze each such Single-Run

data file to produce a corresponding Single-Run measurement file:

LRC-SIM.MCKISSICK/G-SEAT.DEF.4/SX.MEAS/l.0

The header of this file would include the same fields as the preceding

data file except that the file type would be SX.MEAS instead of

SX.DATA.

==

NFLDB = 12

FRAMER FSIZEB FUNITH PTYPEB VALUE

Group 1 CHAR LRC-SIM

UserName 1 CHAR MCKISSICK

Experiment 1 CHAR G-SEAT

Pilot 1 CHAR DEF

Run 1 CHAR 4

MajorType 1 CHAR SX

MinorType 1 CHAR MEAS

MajorVsn 1 INTEGER 1
MinorVsn 1 INTEGER 0
Condition 1 CHAR SEAT-ON

SampleRate 1 SAMP/SEC REAL 16.0

Date 1 DATE ll-FEB-79

==

The file would contain just a single data record with one field for

each of the 90 performance measures:

==

NFLD = 90

FRAME

MTKE
MTKL
MTKC

TS+
TS-

FSIZE

1
1
1

1
1

FUNIT

DEGREES
DEGREES
DEGREES

SECONDS
SECONDS

PTYPE

REAL
REAL
REAL

REAL
REAL

==

- 68 -

5.3.3 Pilot-Sumaary Measurement Files

Later, one could combine these single-run measurement files
across runs to produce pilot-summary measurement files:

LRC-SIM.MCKISSICK/G-SEAT.DEF.ALL/SX.MEAS/l.O

where ALL indicates all runs. The header record of this file would
consist of the following fields:

==
NFLDH = 10

FNAMEH FSIZEH FUNITII FTYPEH VALUE

Group 1 CHAR LRC-SIM
UserName 1 CHAR MCKISSICK
Experiment 1 CHAR G-SEAT
Pilot 1 CHAR DEF
Run 1 CHAR ALL
MajorType 1 CHAR SX
MinorType 1 CHAR DATA
MajorVsn 1 INTEGER 1
MinorVsn 1 INTEGER 1
SampleRate 1 SAMP/SEC REAL 16.0
==

The data records of this file would consist of three fields
identifying the run, plus fields for the 90 performance measures:

==
NFLD = 93

FNANE

Run
Condition
Date
MTKE
MTKL
MTKC

TS+
TS-

FSIZE

1
1
1
1
1
1

1
1

FURIT

DEGREES
DEGREES
DEGREES

SECONDS
SECONDS

FTYPE

CHAR
CHAR
DATE
REAL
REAL
REAL

REAL
REAL

==

- 69 -

5.3.4 Overall-Su.mary Measurement Files

Still later, one could combine the Pilot-Summary measurement

files to produce an Overall-Summary measurement file:

LRC-SIM.MCKISSICK/G-SEAT.ALL.ALL/SX.MEAS/l.O

where ALL.ALL represents all pilots and all runs. The header record

of this file would include the following fields:

==

NFLDB = 10

FRAMER FSI ZED FONITB

Group 1
UserName 1
Experiment I
Pilot 1
Run I
MajorType 1
MinorTyPe I
MajorVsn 1
Mifi8tVsri I
Samp1eRa te I

!'TYPED

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
INTEGER
INTEGER
REAL

VALUE

LRC-SIM
MCKISSICK
G-SEAT
ALL
ALL
SX
DATA
1
1
16.0

==

The data records of this file would consist of four fields identifying

the pilot and the run, plus fields for the 90 perf9rmance measures:

==

NFL» = 94

FRAME FSIZE FUNi:T PTYPB

Pilot I CHAR
Run I CHAR
Condition 1 ;.. CHAR
Date I DATE
MTKE I DEGREES REAL
MTKL I DEGREES REAL
MTKC I DEGREES REAL

• .
TS+ 1 SECONDS REAL
TS- I SECONDS REAL
==

- 70 -

-c

Finally, this Overall-Summary measurement file would be in a
form suitable for statistical analysis by the STAT subsystem. In
fact, one could obtain preliminary statistical results from this
experiment by analyzing Pilot-Summary files or even Single-Run files
with the STAT subsystem.

- 71 -

6. References

Anderson, R.E. and F.M. Sim (1977). "Data management and statistical

analysis in social science computing," ~erican Behavioral

Scientist, 20: 367-409.

Ashworth, B.R., B.T. McKissick and D.J. Martin, Jr. (1977).

"Objective and sUbjective evaluation of the e£fects of a G-seat on

pilot/simulator performance during a tracking task," Presented at

the Tenth NTEC/Industry Conference, Orlando, FL:

Barr, A.J., et a1. (1976). A User~s Guide to SAS 76, Raleigh, NC: SAS

Institute Inc.

Brainerd, W., Ed. (1978). "Fortran 77," Communications of the ACM,

21, 806-820.

Buhler, R. and S. Buhler (1979). P-STAT 78 User~s Manual, Princeton,

NJ: P-STAT Inc.

CDC (1979). Fortran Extended Version 4 Reference Manual, Sunnyvale,

CA: Control Data Corporation.

CDC (1979). ROS Version 1 Reference Manual, Sunnyvale, CA: Control

Data Corporation.

Coover, E.R., et a1. (1974). "Design of an optimally compatible

social data analysis system: the first steps," Social Science

Information, 13: 105-146.

Donaldson, J. and B. Ankeney (1978). File Information and cataloging

System (FICS), computer Sciences Corporation.

Nie, N.H. and C.H. Hull (1979). The SCSS Conversational System

Release 3.1 Preliminary User~s Manual, Chicago, IL: SPSS Inc.

Rowe, K. and J.A. Barnes (1978). Statistical Interactive Programming

System (SIPS) Beginner~s Manual, Corvallis, OR: Department of

Statistics, Oregon State University.

Rowe, K. and J.A. Barnes (1978). Statistical Interactive Programming

System (SIPS) Command Reference Manual, Corvallis, OR: Department

of Statistics, Oregon State University.

Russell, C., et a1. (1979). RS/1 User~s Manual, Cambridge, MA: Bolt

Beranek and Newman Inc.

- 72 -

Shucany, W.R., P.D. Minton and B.S. Shannon, Jr. (1972). "A survey of
statistical packages," Computing Surveys, 4, 65-79.

Whitehead, S. (1979). RS/1 Primer, Cambridge, MA: Bolt Beranek and
Newman Inc.

Howell, R. D., Guillebeau, W. M., Long, R. L. (1980). IIInterface File Tape
Concept ll

, SDC Integrated Servi ces, Inc., NASA CR 159284.

- 73 -

End of Document

