
.,_-.c1

/......,.-,....0861X"lflf

stuezffo:M:NIV_II_IO_IzojSlOO_L

ffu!aszj.,pueuo!ae:_tj!:IzAjouo!aenleA_t

,.f¢¢0E000g61¢0_0g-IAI.I.-VSVN1

_0Z08tunpu_zotualAIlga!uqaal.VSV'NI

NASA Technical Memorandum 80205

Evaluation of Verification and Testing

Tools for FORTRAN Programs

Kathryn A. Smith

Langley Research Center

Hampton, Virginia

NI A
National Aeronautics

and Space Administration

Scientific and Technical
Information Branch

1980

SUMMARY

The traditional procedure to ensure the provision of quality, reliable

software involves extensive testing. In recent years, several automated

software verification and testing systems (V&T tools) have been developed to

discover errors in computer programs, saving computer and analyst time and

improving the quality of programs. Two such tools which may be used in the
analysis of FORTRAN programs have been installed and evaluated at the National

Aeronautics and Space Administration Langley Research Center. These are DAVE,

a static analysis tool, and PET (Program Evaluator and Tester), a dynamic

analysis tool. These V&T systems were evaluated using a series of test cases.

The results of this evaluation indicate that, despite some limitations, both

of these tools are significantly beneficial in the development and testing

of FORTRAN programs. Based on this analysis, these tools are recommended

for general use.

INTRODUCTION

Computers are becoming larger and faster. As a result, computer programs

are becoming more complex, and software tools for the development and testing
of programs are becoming increasingly important. A n_mber of tools are emerg-

ing for use in the software development and testing process. Included in this

number are several software tools which may be used in the verification and

testing of FORTRAN programs. Two such tools which have been applied to com-

puter programs at the National Aeronautics and Space Administration (NASA)

Langley Research Center (LaRC) are a static analyzer, DAVE (refs.] and 2),

and a dynamic analyzer, PET (refs. 3 and 4). This paper presents our evalua-
tion of these tools and our experiences with them.

Use of trade names or names of manufacturers in this report does not

constitute an official endorsement of such products or manufacturers, either

expressed or implied, by the National Aeronautics and Space Administration.

SOFTWARE DEVELOPMENT PROCESS

The software development process consists of several steps. The first

is the definition of program requirements. Figure] illustrates the basic

development phases which follow the establishment of requirements. Although

these steps may appear disjointed, they overlap in many instances. For exam-

ple, documentation should be developed concurrently with the program. Once

the program requirements are established, the design of the software can begin.

After completion of the design phase, the program is coded and several steps

of successive program testing begin. The first step is the use of a compiler

to perform a syntax analysis which checks that the program is compatible with

the grammatical structure of the programming language. Any syntax errors

should be corrected before going to the next phase of testing.

Frequently, a programmer will consider the testing completed at this point.

However, careful, disciplined testing includes both static analysis and execu-

tion time testing. Static analysis takes a subject program as input and tests

the logic flow and data flow through the program. After the logic- and data-

flew errors are found and corrected, the execution time testing begins. Part of

this testing is a dynamic analysis which identifies the portions of the subject

program which have been executed. Static analysis and dynamic analysis are dif-

ficult and time consuming without the aid of software tools. At LaRC, the DAVE

system is recommended for static analysis and PET is recommended for execution

time analysis of FORTRAN programs. When the execution testing is completed, the

documentation of the program can be completed, after which the program is ready

for productive use. Many of the steps used in software development are also

used in the acceptance of programs developed under contract and in the mainte-

nance and revision of existing programs. These steps are indicated by the solid

boxes in figure].

DAVE

Description

DAVE is a static software verification tool which was developed by the

Department of Computer Science, University of Colorado, under a grant from the

National Science Foundation. LaRC obtained DAVE from the University of Colorado

in]976. It is a system tool for gathering information about global data flew

in syntactically correct ANSI FORTRAN] programs and for identifying the anomal-

ous use of data in these programs. DAVE is called a static analysis tool,

because the FORTRAN program is neither compiled nor executed; instead, informa-

tion is gathered about the subject program by analyzing the source code. DAVE

uses global data flow analysis to reveal suspicious or erroneous use of data;

that is, it examines all possible data paths. Thus, DAVE offers a multimodule

analysis capability not available in the Control Data (CDC) FORTRAN Extended

(FTN) compiler at LaRC. In general, DAVE does not require any modification of

the subject program, nor does it require any intervention by the user during

execution. The steps in DAVE system execution are shown in figure 2. The appen-

dix describes the procedure to use DAVE at LaRC.

DAVE issues three types of diagnostics - "errors," "warnings," and "mes-

sages." "Error" diagnostics indicate likely execution errors. These errors

include such things as variables uninitialized on all paths, a constant subrou-

tine argument assigned a value in the subroutine, and a subprogram FUNCTION name

never assigned a value. "Warning" diagnostics are possible execution errors.

Examples of warnings include: variables uninitialized on some paths and varia-

bles unused on some paths. The "message" diagnostics are used to give informa-

tion about COMMON blocks and COMMON variables. For example, a message would

identify those COMMON variables in a module which are initialized in BLOCK DATA.

The user has the option to select the diagnostics he desires.

]American National Standard FORTRAN, ANSI X3.9-] 966.

2

Res our ce s

The DAVE system consists of four programs (phases) which are executed

sequentially. Information is passed between phases by intermediate files.

(See fig. 2.) The largest phase of DAVE (PHASE2) requires 207 0008 words of

memory at LaRC. The execution time depends on the length (i.e., number of lines

of code) and complexity of the subject program (e.g., number of subroutines and

variables). Timing information for several test cases is provided in table I.

For these test cases, the average execution time/line of input code was 0.09 sec

on the Control Data CYBER] 75 (or 0.45 sec/line on a CYBER] 73) at LaRC. Execu-

tion time/line increases as the size of the subject program increases. There is

no direct relationship between DAVE execu-tion time and FORTRAN compilation

time. In separate test cases, DAVE time ran from 25 times the compilation time

(800 lines of code) to]30 times (7200 lines). A comparison of FORTRAN compila-

tion time and DAVE execution time is shown in figure 3.

Exper iences

DAVE was first installed at LaRC in]976. An improved version, DAVE 8.0,

was installed in]977. Although this second version of DAVE performed well,

its execution time was greater than desired. With the help of the University

of Colorado, changes were made to DAVE, in the fall of]977, that decreased

execution time by as much as 47 percent. The new version works well on small

and medium programs (i.e., less than 2000 lines of code). DAVE was originally

written to accept only ANSI FORTRAN, a limitation which was not entirely satis-

factory. While improving DAVE execution time, changes were made to handle some

non-ANSI FORTRAN. The LaRC version of DAVE will now process the following non-

ANSI input/output (I/O) features: NAMELIST, ENCODE/DECODE, and BUFFER IN/BUFFER

OUT. In addition, most other non-ANSI statements now are treated as comments.

An updated version of DAVE, which analyzes many widely used non-ANSI features

of FTN, has become available. It is anticipated that this version will be
installed at LaRC.

Approximately] 5 people have used DAVE since its installation at LaRC.

It has been used on several applications programs, including a cross-assembler,

an ozone model program, and I_TRAN, a structured preprocessor. DAVE typically

found three to five errors in test programs that were syntactically correct,

including some in production use. Generally, these errors were characterized by

incorrect use of subroutine parameters. This particular type of error is dif-

ficult to detect by ordinary means. DAVE has found errors that are several

levels deep. For example, a literal parameter was passed through three subrou-

tine calls and then changed at the lowest level. A simplified example follows:

PROGRAM TEST

CALL SUB] (].)
oe.

END

SUBROUTINE SUB] (A)

B=] 0.0

CALL SUB2 (A, B,C)

3

RETURN

END

SUBROUTINE SUB2 (X, Y, Z)

Z=Y**2

X=5.0*Z-Y

RETURN

END

In this example, the literal parameter (].) is passed from the main program

to subroutine SUB]. SUB] in turn passes it as the first parameter (A) in

its call to subroutine SUB2. In SUB2, the first parameter (X) is not used

as an input, but rather X is set to the value of a computed expression. This

computed value will replace the present value of X, which is passed back to

SUB] and the main program. Thus, the value of the literal (].) in the main

program is destroyed. This could cause some unknown and untraceable errors

in the main program. An error of this type generally is not detected by the

LaRC FTN compiler.

Other errors which have been detected include incorrect number of subrou-

tine parameters in calling program, uninitialized variable passed as an input

parameter to a subroutine, and disagreement on subroutine parameter type.

Evaluation

Most of our experiences with DAVE have been favorable. DAVE can be a

cost effective verification tool whether used as an aid in the development or

acceptance of new programs or in the maintenance of existing programs. Our

experiences have shown DAVE to be an effective tool when used with small to

medium sized programs. Execution time required for programs of this size is

not unreasonable. As can be seen in figure 3 however, execution time increases

significantly with program size for programs over 2000 lines long. Thus, DAVE

is not recommended for use with long programs. One other drawback of DAVE

(LaRC) is that some non-ANSI constructs still cause DAVE to halt. Among these

are octal constants, variable names with more than six characters, and OVERLAY
statements.

From the user's point of view, DAVE is easy to use. It requires only a

few control cards and does not require user intervention or interaction during

execution. On the surface, DAVE appears to give the same sort of diagnostics

as a compiler. Actually, it has a multimodule capability not available on the

FTN compiler and, thus, can detect errors not easily found by other means.

The overall evaluation is that DAVE is a useful analysis tool when used in

the development and maintenance of small to medium FORTRAN programs. DAVE is

easy to use and provides analysis diagnostics not available from other sources,

thus saving analyst and computer time.

PET

Description

PET (Program Evaluator and Tester) is a package of programs designed as an

automated aid to assist in the debugging, testing, and documentation of FORTRAN

programs. PET is a proprietary program which was acquired by LaRC from the

McDonnell Douglas Astronautics Company in the spring of] 977 as part of the

MUST (Multipurpose User-Oriented Software Technology) program.

PET is a two-step process consisting of a preprocessor and a postproces-

sor. The preprocessor instruments the user's FORTRAN program based on the

options specified. That is, PET translates the user's options into code which

is inserted into the program. When the instrumented program is executed with

test data, the PET inserted code generates an intermediate file of run-time sta-

tistics. These statistics include execution counts and information on assign-

ment variables and DO-loop parameters. After execution, the postprocessor sorts

through the run-time statistics and generates the requested reports. Figure 4

is an illustration of the way PET interacts with the user's program. The pro-

cedures to use PET at LaRC are described in the appendix.

PET generates several types of reports which can be used to determine the

thoroughness of test cases. These reports are generated for each instrumented

module and in summary for the whole program. The module reports include a syn-

tactic profile, an operational profile, an assertion summary, and a detailed

execution report. The syntactic profile indicates such things as the number of

executable statements, the number of nonexecutable statements, and the number

of comments. The operational profile gives such information as how many state-

ments were executed and what percentage of the total executables were used.

Syntactic and operational profiles are shown in figure 5. The detailed execu-

tion report gives execution counts for all lines of code and optionally reports

the first/last and minimum/maximum values of assignments and first/last values

of DO-loop parameters. An example of the execution report with these options is

shown in figure 6. Summary reports include syntactic and operational profiles

which are composites of the modular profiles, a module operational profile, a

module execution summary, and a module timing summary with an optional relative

timing histogram.

Figure 7 is an illustration of the way probes are inserted into the subject

programs to keep track of execution counts. The PET options are controlled by
PET directives which are inserted into the source code. These directives are

implemented to look like FORTRAN comments. For example, selection of the option

which reports the minimum/maxim_ values of assignment variables is accomplished

by inserting the following option card into the user's program:

COPT=]

This can be selected for all or part of a program. To change options, the user

would simply insert a new COPT card. A complete description of the PET direc-
tives can be found in the PET user's manual (ref. 4).

Among the many features of PET are a modular capability and an assertion

capability. The modular feature allows the user to optionally instrtmlent all

or any part of his program. This option allows existing instrumented code to

be combined with new or modified modules. In the modular mode, only the changed

modules are input to the preprocessor, resulting in reduced preprocess and com-

pilation time. This particular feature is useful when testing only the modified
pacts of large programs.

The assertion capability allows user inserted statements to assert that

computed values meet given criteria. Local (at a given line of code) and

global (over a module) assertions are available. The assertion checking option

is useful in debugging and in verifying that a program is operating correctly.

PET will report any violations of these assertions and will give a summary of

violations for each module. For example, the user may assert that a vari-

able T is greater than-290.0, whenever it is computed in a module by insert-

ing the following comment card at the beginning of the module:

CASSERT VALUE(T) (GT.-290.0)

The PET preprocessor will insert a test into the user's program wherever vari-

able T appears on the left side of an assignment statement. Whenever this

assertion is violated during execution, a counter will be incremented. The

postprocessor will sort these violations and will report the number and loca-
tion of violations.

Resources

The PET preprocessor uses]45 0008 words of memory and the postprocessor

62 0008 words of memory for execution on a CYBER]73 at LaRC. Execution time

for test cases ranged from 5 to 40 seconds for the preprocessor and from 3 to

] 0 seconds for the postprocessor on a CYBER]73. Run-time field length for

the subject programs was increased by about 30 percent. This may vary slightly

depending on the options selected. The execution time of most test programs was

increased by about 20 to 50 percent. Table II is a summary of the resources

used by our test cases.

Exper iences

PET was installed at LaRC in]977. The initial version of PET did not

recognize certain FORTRAN constructs, such as certain sequences of multiple
statements. These problems have since been corrected. The few limitations to

PET are offset by its effectiveness as a software tool. These limitations are

as follows:

(]) Increased execution time of the subject program

(2) Logical IF statements are rewritten as logical IF/NOT
statements in instrumented code

Since its installation at LaRC, PET has been used by about 20 people. PET

has provided some outstanding results on a variety of programs. For example,

the use of PET output as an aid to pinpoint problem areas enabled a program-

mer to streamline one program extensively, reducing the cost/run by over 80 per-

cent. In another example, PET was used as an aid to pinpoint those parts of a

program executed most frequently. By making appropriate program changes, the

programmer was able to cut execution time by a factor of 2.5 from 90 seconds to

36 seconds. The execution counts of PET were used to aid in debugging a pro-

gram. These counts quickly revealed that an entire section of code was never

executed, although it should have been. The assertion capability has been used

as an aid in the conversion of an old program to FORTRAN Extended. In this

instance, PET was used to pinpoint the range of a variable exponent causing an

underflcw condition and some extraneous error messages.

PET also can be used to check the effectiveness and completeness of test

cases in determining if all possible branches and paths have been tested. This

feature can be used during the development of new programs, in the acceptance of

programs developed under contract, and during the testing of modifications made

to existing programs to provide test coverage results.

Evaluation

Experiences with PET have shown it to be an effective analysis tool when

used in the verification and testing of FORTRAN programs. PET is useful in both

the development and maintenance of programs, providing an analysis capability

not otherwise available. This includes such things as: the assertion capabil-

ity, the relative timing of modules, and the run-time statistics. The flexibil-

ity of the modular mode allows instrumentation of new or changed modules as they

are added to a program. The assertion capability is useful in detecting compu-

tation of erroneous data based upon user specified criteria. PET also provides

testing coverage assessment with its run-time statistics, which allows a user to

determine the effectiveness of test cases.

The PET system can be easy to use, depending on the options selected. The

PET directives, which look like FORTRAN comments, are inserted into the user's

code, requiring a minimal amount of program modification. Since the execution

of the PET preprocessor and postprocessor is controlled by NOS procedure files,

only a few extra control cards are needed by PET users. PET does have a few

drawbacks. These include the increased execution time and storage requirements

of the subject program, and the special handling required for OVERLAY programs.

The modular mode, however, may be used to ease these problems.

CONCLUDING REMARKS

In this paper we have discussed the automated verification and testing

tools, DAVE and PET, used in the analysis of FORTRAN programs at Langley

Research Center (LaRC). These tools form an effective, complementary set of

tools for testing FORTRAN programs. The overhead cost of using these tools

may seem high, but this cost is offset by the effectiveness of DAVE and PET.

In fact, the overhead incurred when using these tools is not unreasonable

since each of these tools need only be used a few times. Some of the types

of errors found by these tools are not readily detected by other means. Result-

ing improvements made on test programs at LaRC have shown that these tools are

cost effective aids in improving software quality.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

June 26,]980

APPENDIX

PROCEDURES FOR USE OF DAVE AND PET AT

LANGLEY RESEARCH CENTER

DAVE

The DAVE system is simple to use. It requires only two inputs: (]) the

source programs to be analyzed and (2) a file specifying the DAVE options

desired. Available options include simulation of missing subprograms (SI)

and suppression of specified diagnostics (SU). Through the SU parameter, the

user can optionally suppress selected diagnostics or whole category of diag-

nostics. The maximum memory required by the DAVE system is 207 0008 words.

The DAVE system is accessed on the Network Operating System (NOS) at Langley

Research Center (LaRC) by calling procedure file DAVE, using the following
control cards:

GET, DAVE/UN= 82487 ON.

CALL (DAVE (INPUT= infl, OPTIONS=opfl)

where

infl = name of file containing the subject program

opfl = options file

The procedure file controls the execution of the four phases of DAVE and the

transfer of files between these phases. A sample deck setup using DAVE would
be:

GET, MYF ILE.

GET, DAVE/UN= 82487 ON.

CALL (DAVE (OPTIONS=INPUT, INPUT=-MYFILE)
END OF RECORD

S I=ON

END OF FILE

In the example, the user's FORTRAN program is on file MYFILE. The user has

selected the option SI=ON, which means that missing subroutines will be simu-

lated by DAVE. Also, no diagnostics will be suppressed. Additional informa-

tion is available in The DAVE System User's Manual (ref. 2).

PET

Usage of the PET system is controlled by two procedure files, PREPET and

PSTPET. PREPET activates the preprocessor and, based on the options selected,

the preprocessor inserts code into the programs which is used to generate an

intermediate file of run-time statistics. After instrumenting the code, PREPET

also controls compilation of the FORTRAN source code and, if specified, handles

9

APPENDI X

the modular features. Upon completion of PREPET, control is returned to the

user for execution. After execution, the user calls PSTPET to activate the

postprocessor. PSTPET automatically sorts the run-time statistics and gen-

erates the PET reports.

PET options are selected by inserting PET directives into the user's pro-

gram. These directives look like FORTRAN comments with a C in column]. There

are three types of PET directives: (]) the COPT card which controls the type of

run-time statistics, (2) the CONENDCASE card which controls when run-time sta-

tistics are to be_ collected, and (3) the CM3D card used with the modular mode.

The most frequently used directive is COPT which can be used to select

or change the run-time statistics. The options which can be selected are:

O__tion Action

] min/max on assignment statements

2 min/max on DO-loop variable parameters

]6 first/last on assignment statements

32 timing on modules

These options may be selected singly or in combination (by s_ming the options

selected). For example, COPT=] 7 would give min/max and first/last values on

assignment parameters. A complete description of the PET directives and the

control cards needed to run PET is given in the PET user's manual (ref. 4).

An example of a no,nodular (sequential) case would be:

user control cards

GET, PREPET, PSTPET/UN=824870N.

CALL (PREPET (COMP IL_ INPUT)

user load and execute sequence

]0

APP ENDI X

CALL (PSTPET)
EOR

COPT=-51

user's source program

EOR

program data

EOF

This example represents a sequential run in which the entire program is to be

instr_nented for PET option COPT=-5]. This is the combination of options 1, 2,
]6, and 32.

]1

REFERENCES

]. Osterweil, Leon J.; and Fosdick, Lloyd D.: DAVE - A Validation Error Detec-

tion and Documentation System for Fortran Programs. Software - Pract. &

Exper., vol. 6, no. 4, Oct. -Dec.]976, pp. 473-486.

2. Fosdick, Lloyd D. ; and Miesse, Carol: The DAVE System User's Manual.
Cu-CS-] 06-77, Univ. of Colorado, Mar.]977.

3. Stucki, Leon G. : A Prototype Automatic Program Testing Tool. AFIPS Confer-

ence Proceedings, Volume 4], Part II -]972, Fall Joint Computer Confer-

ence, AFIPS Press, c.]972, pp. 829-836.

4. Churchwell, J. B.: Program Evaluator and Tester (PET) User's Manual.

NASA CR-] 59295,]977.

]2

TABLE I.- DAVE TIMING STUDY

DAVE test No. of Execution Time/line of
Compute r

case blocks a time, sec code, sec

CYBER]75] 228]2.438 0.0545

CYBER]75 2 500 46. 250 .0925

CYBER]75 3 7]5 6]. 02] .0853

CYBER]75 4 704 76.0] 6 .]07

CYBER]73 5 704 290.075 .4]2

6400b 6 228 57.946 .254

6400 7 965 592.30] .6]3

6400 8]579 2068.779].3]

aNote blocks are lines of executable code.

bcontrol Data series 6400 computer system at LaRC.

]3

..J

TABLE II.- PET RESOURCES STUDY

With PET without PET

PET PREPET FORTRAN Test case PSTPET Memory, FORTRAN Test case Memory,

test case execution time, compile time, execution time, execution time, octal words compile time, execution time, octal words
sec sec sec sec sec sec

] 25.273 23.83 4..568 3.347 66 562]2.352 3.544 52 370

2]5.639]7.366 8.335].94 40 455]2.675 5.]70 27 753

3 38.942 29.94]976. 4.703]]4 3]3 8.688 899.]]05 000

4 5.553]].]3 .643 9.226 26 6]0].395 .01]7 027

5 35.772 23.6]3 256.6]] 4.829]2]]3] 21.095 230.55]]12 454

Note: Times are in central processing unit (CPU) seconds on a CYBER] 73.

r

! I

' DESIGN ,'I
I

| !
!

' CODING ',
I

I

m !

SYNTAX, ANALYSIS

COMPILER

STATIC ANALYSIS __ Used once for

__ __ __ new program or

DAVE - data flow major- modification

EXECUTION TESTING L

--_ PET- execution | --t Test

analysis / Cases

-1:15 YES [,
[:I,DOCUMENTATION',

--'
NO r........ "iI

IOPERATION !,
I

Need additional L __!
test cases

Figure l.- Software tools used in verification and testing of programs.

15

SUBJECT

FORT_N
PROG_M

__ DAVE PHASE 0

_ TEST FOR ANSI FORTRAN
-- NUMBER PROG_M BLOCKS

1 / CLASSIFYSTATEME_S
/

/

@< ,__ DAVE PHASE l

BUILD DAVE
I DATA BASE

DAVE PHASE 2

DATA FLOW ANALYSIS

DAVE PHASE 3

OUTPUT RESULTS

Figure 2.- Steps in DAVE execution.

16

DAVEEXECUTION
TIME,

sec

3000

DAVEEXECUTIONTIME
2500

COMPILATION
TIME,
sec 2000

35-

30 - 1500

25- FORTRANCOMPILE

20- 1000

15-

I I I I I I I 0
0 IO00 2000 3000 4000 5000 6000 7000

LINESOFCODE

Figure 3.- Comparison of FORTRAN compilation time and DAVE execution time.

17

SI_plOURCEPROGRAM
trumentedWith

cial Comments

PREPROCESSOR _

_ Analyze FORTRANCode
Insert Code To

Gather Statistics
SOURCEPROGRAM

TEXT AND
INSTRUMENTATION
DATA

_INSTRUMENTED

SOURCE [I
PROGRAM ITEST DATA I

L I

SOURCEPROGRAM
COMPILE

AND
EXECUTE

USERI/0

I SUMMARY I

REPORTS 11
l IAUTOMATED I---

-_ _-- POSTPROCESSOR __PROGRAM_
GeneratePET Reports

Figure 4.- PET interaction with user's program.

18

PROGRAM EVALUATOR AND TESTER REPORT

FOR MODULE PCH

SYNTACTIC PROFILE

TOTAL NUMBER OF SOURCE STATEMENTS 91

TYPE OF STATEMENT NUMBER PERCENT OF TOTAL

EXECUTABLE SOURCE 52 5"7,1

NONE XECUTABLE SOURCE _]. 3_,I

COMMENT 8 8,8

ASSERTION DIRECTIVE 0 0,0

NONSTANDARD 15 16,5

BRANCH 5 N/A
CALL :> NIA

UNFORMATTED IID 2 NIA

FORMATTED II0 15 NIA

OPERATIONAL PROFILE

TOTAL EXECUTION COUNT 13755

TYPE OF STATEMENT NO EXECUTED PERCENT EXECUTED

EXECUTABLE SOURCE 51 98,1

BRANCH 5 100,0

CALL 2 100,0
UNFORMATTED I/O 2 100,0

FORMATTED IlO 1_ 9B ,3

Figure 5.- PET syntactic and operational profiles.

19

tO
0

STATEMENT

NUMBER LISTING FOR MODULE PCH (LEADING N INDICATES CONVERSION WARNINGS) COUNT SPECIFlC .EXECUTION DATA

5q AMAT(Zpl)•SST b17 NIN • .18uIEE-03 MAX • .18040E-03
FIRST- .1804OE-03 LAST • .IBOIBE-03

60 AMAT(192)'HSV b17 MIN " .5531&E-04 MAX • .42883E-u3
FIRST- ._ZBB3E-03 LAST • .55313E-04

61 AMAT(292)-SSV b17 MIN - ,182blE-OZ MAX - ,5084bE-D2
FIRST• o_uB40E-OZ LAST • .182BIE-02

62 BMAT(1)--HTV 617 MIN --,LBO37E-03 MAX • ,61615E+00
FIRST- .bl_lbE+O0 LAST • .1157bE-II

63 BMAT(2)--STV b17 M1N •-,lbgTbE-02 MAX - .3bO19E-02
FIRST- .3bOI_E-OZ LAST - .120ZZE-05

64 IOP'I 617
65 CALL MATINV(Z;ZgAMAT91,BMATJIOPpDETERMelSCALEPIPIVOTJINDEX) b17
66 DEL1-ABS(BMAT(1)ITC(I)) b17 MIN - .£_EE-OO MAX • .1_b_3E-_2

FIRST- ._Bb6OE-OZ L_SI - °11018E-Og

67 DEL2-ABS(BMAT(2)IVC(I)) b17 MIN • .Bxg_E-05 MAX - .Z5gbZE-OI
FIRST- .Z5962E-OL LAST • .q8571E-05

68N PRINT qpOEL1pDEL2_BMAT b17
69 IF(DEL1.LT.E1.AND.DEL2.LT.EZ) GO TO 33 b17 Lb TRUE 599 FALSE
70 TC(I)-TC(I)+BMAT(1) 599 NIN - .12924E+04 MAX - .12924E+04

FIRST- ,IzgZ4E+04 LAST • ,12924E+04

71 VC(I)-VC(I)+BMAT(2) 599 HIN - ,24623E+O2 MAX • °6671BE+02
FIRST• .Z_b23E+OZ LAST - .6671BE+OZ

72 22 CONTINUE 59g

73N PRINT 101 _ 0
76 101 FORMAT(26HOMAX.ITERATIDNS EXCEEDED)

33 PRINT IO0_NO(I)jPRAT(1)pVEI(1)sTEI(1)IXMACH(I}p

76N IVC(1)pTC(1) ZB
77 100 FORMAT(15,6EI_.B)

78 C P(VgT)
7g PZT(I)-FONC(VC(I)_TC(I)) 18 MIN • .23oZIE+01 MAX l .57077E+01

FIRST" .blO77E+01 LAST • .2362LE+01

BO PZRT(I)-PZT(I)IPEE 18 MIN • ,92£9gE-03 MAX • .2227BE-OZ
FIRST- .IZZ7BE-O2 LAST • .921ggE-03

Figure 6.- Sample PET output.

BEGIN lREADx,y
I

-- n L __

I 1
I COUNT(1) I
L_ I

I Z=I
/

I I

i COUNT(2)l
[1 1 I

_ COUNT(4) END
I-- L

I COUNT(3) I
L_ I

I--- - - -I I.... 1
I COUNT(5) I I COUNT(6) I
[I L I

P-- 1

I COUNT(7) I
I__ I

]7.--
y=y/2
X=X*X

I
Figure 7.- Insertion of PET counters.

21

1. Report No. 2. Government AccessionNo. 3. Recipient's Catalog No.
NASA TM-80205

4. Title and Subtitle 5. Report Date
EVALUATION OF VERIFICATION AND TESTING TOOLS FOR July]980

FORTRAN PROGRAMS 6. Performing Organization Code

7. Author(s) 8. PerformingOrganization Report No.

Kathryn A. Smith L-I 3665

10. Work Unit No.

9. PerformingOrganizationNameand Address 506-61-1 3-02
NASA Langley Research Center

Hampton, VA 23665 '11. Contract or Grant No.

13. Type of Report and Period Covered

12. SponsoringAgency Name and Address Technical Memorandum

National Aeronautics and Space Administration

Washington, DC 20546 14.Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

In recent years, several automated software verification and testing systems have

been developed for use in the analysis of computer programs. Such tools not only

discover errors in computer programs, but they save computer and analyst time and

help to improve the quality of programs. This paper discusses two such tools, the

static analyzer DAVE and the dynamic analyzer PET, which are used in the analysis

of FORTRAN programs on the Control Data (CDC) computers at NASA Langley Research

Center. The report describes the evaluation of these systems based on a set of

test cases. These tools were found to be effective and complementary, and they

both are recommended for use in testing FORTRAN programs.

i

17. Key Words (Suggestedby Author(s)) 18. Distribution Statement

Software tools PET Unclassified - Unlimited

FORTRAN programs
Verification

Tes ting

DAVE Subject Category 61

19. Security Classif.(of this report) 20. SecurityClassif.(of this page) 21, No. of Pages 22. Price

Unclassified Unclassified 21 A02

For sale by the National Technical Information Service, Springfield, Virginia 22161 lIASA-Langley, 1980

National Aeronauticsand SPECIAL FOURTH CLASS MAIL Postage and Fees Paid

,,_,C"ace Administration BOOK National Aeronautics andSpace Administration
NASA-451

Washington,D.C.
20546
Official Business

Penalty for Private Use, $300

_A If Undeliverable (Section 158
POSTMASTER:

Postal Manual) Do Not Return

	00771
	00772
	00773
	00774
	00775
	00776
	00777
	00778
	00779
	00780
	00781
	00782
	00783
	00784
	00785
	00786
	00787
	00788
	00789
	00790
	00791
	00792
	00793
	00794
	00795
	00796

