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1.0 INTRODUCTION

A forward sequential digital filter, such as a Kalman filter, estimates a state
vector from measurements that were made preceding a timepoint in question.
This type of filter is suitable for processing measurement data in real time
because data following current time have not yet been received. However, it is

clear that the best estimate of a state vector at a given time will be obtained
by using data from both sides of the timepoint in question. Thus, optimal
postfactum state vector evaluation requires the use of a "smoothing" filter.

2.0 DEFINITIONS

xj = true state vector, at time tj

r
yj = g(xj) + g,j measurement vector at time ti. g j is zero-mean,

timewise-uneorrelated measurement noise

Qj = E(gj,g T) = measurement noise covariance matrix

xa/k = estimate of xj based on y 1 * , Y2* , •••+ Yk*

y j/j-1 = g(2i3/ j _ 1 ) = estimate of g(xi) based on J-1 measurements

P i =	 = measurement partials matrix at time tj
axj/j_1

Q/k = xj/k - xj = state estimation error

T
Ci/k E(Q/k,eJ/k = stag error covariance matrix

xj+1 = f(xj) + sj = forward integration equation for true state vector;
sj is zero-mean, timewise-uncorrelated state
noise.

T
S j = E(s j ,s j = state noise covariance matrix

4



Yj = g(xj ) + 3j = &(xj/j-1 - ej/j-'+) + gj

Assuming that ej /j _ 1 is smal

yj = E (—XJ/j_1) - Pj Ej

k
	 1
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xj+ 1 /j = f(xj/j ) = forward integration equation for the estimated state
vector

xj/N f-1(2[j+1,N) = backward integration equation for the estimated
(based on N measurements) state vector

8f

of+1/j =	 °ovward state transition matrix

ax
x = xj/j

O j/j+1 = (Dj+1/j = backward state transition matrix

N = total number of timepoints at which data are available

3.0 THE FORWARD ESTIMATE

Let the forward estimation equations be given by

yj/j _ 1 = g4j/j _ 1 )	 !	 (3.1)

! xj/j = xj/j -1 + Wj (Yj - Yj/j -1 ) !	 (3'2)

where Wj is the measurement weighting or forward gain matrix.

The error equation associated with equation (3.2) is obtained as follows.

e
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8(2Ej/j-1 ) 2 Y3/j-1

so equation (3.2) can be written

xj + Qj/j = Xj + €j /j-1 + Wj(gj	 Fj ^cj/j-1)
I

or

I 
	 s

s	 s
s	 !

Thus	
! €

j/ j = D j fj/ j-1 + W 
jg j

!	 TT I
Cj/j = Dj Cj/ j-1 Dj + Wi Qj Wj

The true state vector' is propagated ahead by

Xj+1 = f(xj) + sj = f (xj/j - ii/ J ) +-Aj

For small estimation errors

Xj+1 	 f( . j/ j) - @ j+1/ j .Ej/ j + s j

(3.3)

(3.4)

(3.5)

But

f()Lj/j) = xj+1/j n

and

_xj+1 = 2Ej+1/j - ej+1/j	 9

3 }
{
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so the propagation equations are

! xj+1/j = f(xj/J )	 1	 (3.6)

!	 !

! e j+1/j - Oj+1/3 Ej/j - sj
	 t	 (3.7)

(3.8)
I Cj+1/ 3 = Oj+1 / j Cj/j ^j+1/j + Si I

!

The Kalman filter equations are now completed by minimizing the quadratic form

zT C j / z with respect to Wj for all nonzero vectors z. This will cause

x j/ j go be a minimum variance estimate. Let

Ta_ z C j/ j z (a scalar)
3

Using equation 3.5

as	 T
3Wj ZT(-Pj Cj/j_1(I - Wj Pj) T - (I - Wj PJ)Cj/j-1 Pj

a

T	 1

+ Qj Wj + W3 Qj) z

T
= zT ( -Pj Cj/j-1(I - Wj P j )T + Qj Wi) z

T
+ zT (- (I - Wj Pj)Cj/j_1 P j + Wj Qj)

R	 i

This will equal zero if

( I - Wj Pj) C j/j-1 Pj = Wj Qj	
(3.9)

or if

4
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I	 !

! Wj : CJ/J-1 Pj (P j CJ/J„1 Pj + Qj )- 1 1	 (3.10)
1	 !

which is the optimal forward weighting matrix. Note that the predicted resid-
ual variance is

r	 r	 T	 i
E((Y t YJ/J-1)(YJ -.YJ/J-1) T = P CJ/J-1 P j + Qj 1	 (3.11)

This information, free of charge, can be used to edit, say, 60 residuals.

Substituting equations (3.9) and (3.10) into equation (3.5) yields

Cj/j = Dj Cj/j_ 1 : Cj/j_1 Dj	 (3.12)

Or, using equations (3.3) and (3.10) for the optimum Wj,

!	 !

Ci/i = C j/j-1 - Cj/j-1 Pi(P Cj/ j- 1 Pi t, QP-1 Pi Cj/,)-1 t	 (3.13)

This is the equation for Cj/j when Wj is optimum.
r

4.0 THE BACKWARD (SMOOTHED) ESTIMATE

For i , 1, 2, ..., N-i let the backward, or smoothed, estimate of the state
be given by

C.

t

a

1a



8OFM32

A	 1

AN-i/N =	 1(!N-i+1/N)	 (4.1)

1	 1
1	 A	 I

1

	

AN-i/N : 1N-i/N + On-i (N-i/N-i - AN-i/N) 1	 (4.2)

I	 1

where BN-i is the backward gain matrix to to derived.

For the purpose of deriving error equations, equation (4.2) will be modified in
the following manner. From equation (4.1), it is seen that

AN-i /N ° f-1(XN-i+1 /N-i + (IN-1+11N 2W-i+ 1/N-i))

For small state estimation errors

A

AN-i/N 2 2[N-i/N-i + P .i/N-i+I (AN-i+1/N xN-i+1/N-i)	 (4.3)

Substitution into equation (4.2) yields

A

	2EN-i/N 2 AN-i/N + ON-i (xN-i+1/N-i - AN-i+1/N )	(4.4)

or

I	 I

! M-i/N = ;N-i/N-i - (ON-i/N-i+1 - GN-i ) I
!	 I

(XN-i+1 /N-i - XN-i+11N)	
1	

(4.5)

where the backward gain matrix GN-i is

I	 I
I GN-i ° BN- ('N-i/N-i4,1 1 	 (4.6)
1	 I

6
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The error equation associated with ,x^_i/N is obtained from equation (4.5)

EN-i/N : fi-i/N-i + (tN-i/N-i+1 ` Gn-i) (^N-i+1/N - -EN-i+1/N-i)

But from equation (3.7), it is seen that

EN-i/N-i = ON-i/N-W(1 N-1+1/N-i + AN-i)

Thus, the state error propagation equation is

SN P-i/N = (ON-i/N-1+1 - ON-i) SN-i+11N t
!	 1
!	 + GN-i ,EN-i+1/N-i	 1
!	 t

+ ON-i/N-i+1 spa-i

In order to evaluate

T
CN-i/N- H (EN-i/N EN-i/N)

expressions for

T
E(eN-i+1/N -^N-W/N-i)

and

T
ls( eN-i+1/N sN-i)

are needed. To obtain these, define the matrix HN-i (i = 2 t 3, ..., N- 1) by
11	1

7
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!	 !

I
HN-i ' ((tN-i+1/N-i+2 - ON E-i+1 ) HN-i+1 '+ ON-i+1 ) !

tN-i+2/N-i+1 pN-i+1	 !

!	 t	 (4.8)
1 and	 !
!	 1

1 HN-i = AN n I - WN P N	for i	 1
t	 !

Using the state error propagation equations (3.4) 0 (3.7) and (4.7) ► it can
be shown that

T
E (SN-i+1 /N I1-3.+1/N-i) = NN-i CN-i+1 /N-i

(4.9)

and

T
1" (EN-i+1 / N s.N-i )	 -H N-i SN-i	 (4.10)

It can now easily be shown that

	

1	 !

	

!	 T	 T	 !
I ON-i/N = ON- i/N-i+1(CN-i+1/N + (I -' HN-i ) 'N-i - SN-i HN-i ) ON-i/N-i+1	 !

	

1	 7	 T	 !

	

!	 - ON-i(CN- i+1/N + (I - H N-i ) SN-i - ("N- i+1/N-i HN-4) @N-i/N-i+1 !

	

!	 T	 T	 !

	

!	 ON-i/N-i+1tCN-i+1/N + SN-i(I - H N-i ) - HN-i CN-i+1/N-i' GN-i	 1

	

1	 !

	

!	 + GN-i (CN-i+1/N + CN-i+1/N-i. (I - H N-i )	 HN-i CN-i+1/N- i )ON-i 1

	

!	 !

(4.11)

The backward, or smoothing, L Aniiations for optimal or suboptimal W e s and G's
are summarized in table I.

8
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^.	 The matrix GN-i will now be chosen so as to minimize the quadratic form,
zTCN-i/N z, for all z. N-i/N will then be a minimum variance estimate of

The value of GN- i (which accomplishes this) is easily seen to be

T
GN-i = tN-i/N-i+ 1 ( CN-i+1 /N + SN-i(I - HN-i ) - HN-i CN-i+ 1/N-i)

T
x ( CN-i+ 1/N 4* 	 - HN-i ) - HN-i CN-i+1/N-i)-1

(4.12)

It is also easily seen that

T
tn-i/N-i+1 - GN-i = 'PN-i/N-i+1 (CN-i+11N,,i - SN-i) (I - HN-i)

T
X ( CN-i+ 11N + CN-i+1/N-i ( I - HN-i)

- HN-i CN-i+11N-i)-1
(4,13)

Substituting the optimum value of GN -i, given by equation (4.12), into equation
(4,11) yields

T	 T
CN-i/N = ON-i/N-i+1 (CN-i+1/N + (I - HN-i )SN-i - SN-i HN-i)'ON-i/N-i+1

T	 T
- GN-i(CN-i+1/N + ( I - HN-i) SN-i - CN-i+ 1/N-i HN-i . ) `^N-i/N-i+1

(4.14)

From the equations using the optimal forward gain matrix (equations (3.9),
(3.10), and ( 3.12)) it can be shown, using proof by induction, that

-1

HN-i = CN-i+1/N CN-i+1/N-i	 (4.15)

The previous equations may be combined in several ways to give the optimal
smoothing equations. Three versions are presented here in tables II, III, and
IV.

9
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sometimes, as a check on the functioning of the filter, it is desired to see
how well residual statisticar agree with their predicted covarianoe matrix.
Table V shows three forms of residuals with their associated covariance
matrices.

Suppose that a smoothed estimate of the state is required at the fixed epic
time, tn. Using version 3 of the smoothing equations (table IV), it can be
shown that the equations in table VI result. Note that these equations operate
forward in time in conJunction with the normal forward (Kalman) filter
equations.

The question arises as to which version of the smoothing equations is best.
For problems with nonlinear dynamics, the author prefers version 1. Version 2
is simpler and faster, but it has a residual, with a time tag that is not at the
correction time. An additional linearity assumption has been made in this ver-
sion, namely

2[N-i+1/N-i - 2[N-i+1 /N = ON-i+1 /N-i ( 2iN-i/N-i - AN-i/N ) 	(4.16)

Version 3 also suffers from this defect. Version 3 is relatively simple and
needs no backward integrator. However, take the limiting case where the 	 to
noise covariance is zero. Versions 1 and 2 correctly integrate the state uack-
ward by

4N-i/N = P- 1 QEN-i+1 /i0
	

(4.17)

But, version 3 integrates backward by

xN-i /N = XN-i/N-i + ON-i/N-i+1 (XN-i+1/N - AN-i+1/N-i)	 (4.18)

which is not as accurate as equation (4.17). In the case of linear dynamics,

xN-i/N = ON-i/N-i+1 KN-i+1/N
	

(4.19)

and all versions give the same answers except for computer roundoff error. In
the case of linear dynamics, the author prefers version 3 of the smoothing
equations.

A final case needs to be mentioned. The forward Kalman filter frequently pro-
cesses successive scalar measurements at a single timepoint rather than the
measurement vector. That is, a four-element measurement vector may be pro-
cessed as four scalar measurements, all at the same timepoint. This is equiva-
lent to setting 0 = T and S = 0 between measurements. For the smoothing

10
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equations, save only the reaults after the last scalar measurement has been
processed. The results at this time will be equivalent to processing all mea-
surements at once as a vector.

t
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TABLE I.- SMOOTHING EQUATIONS FOR OPTIMAL OR SUBOPTIMAL
GN-i and DN-i I - wN-iPN-i

!	 !

! Initialize	 !
!	 !

!	 HN-i = DN = I - WNPN	 CN-i+1.!O CN/N	 x4-i+1/N = XN/N
!	 !
!
! For i	 1. 2 1 .... N-1	 !

t	
of	

-1	
t

4DN-i+1/N-i= ax
	

ON-/N-i+ l	 ON-i+1/N-i	 !

!	 x !EN-i/N-i	 !

! AN-i = AN-i /N + GN-i ON-i+1/N-i (XN-i/N-i - AN-i/N)	 !

!	 T	 T	 !
!	 CN-i/N	 ON-i/N-i+ l(CN-i+1/N + (I - HN-i )SN-i - SN-i HN-i)^N-i/N- +l	 !

!

	

	 T	 T	 !

' GN-i (CN-i+ 1/N + (I - HN-i )SN-i - CN-1+1/N-i HN-i )@N-i/N-i+l !

!T 	 T	 !
N-i/N-i+ l (CN-i+l/N + SN-i (I - HN-i ) 	 HN-i CN -3+1/N-i^GN-i !

!	 + GN-i (CN-i+ l/N + CN-i+ l/N-i (i - HN-i ) 	 HN-i CN-i+ l/N-i )CN-i !
!	 1

!	 HN—i- 1 ° <<^N-i/N -i+1 - GN-0 HN- + GN-iN-i+l/N-i DN-i 	!

l2
	 ;s 

9
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TABLE II.- VERSION 1 OF THE OPTIMAL SMOOTHING EQUATIONS
FOR OPTIMAL FORWARD (KALMAN) EQUATIONS

!	 !
! Initialize	 t
1	 i

r.^	
!	 ON-1+1/N = CN/N	 3N-i+1/N = NI N	 r

1 For i = 19 2, .... N-1	 t

!	 1

1	 ,N-i/N = f-1(2[N-i+1/N)	 !
1

!	 1
!	 aye	 - 1	 !
1	 ON-i+1/N-i = --	 ON-i/N-i+1 = ON-1+1/N-i	 !
!	 ax t
1	 _ x = AN-i/N-i	 t
i
1	 T	 !
!	 BN-i -' ON-i/N-i+1 SN-i ON-i/N-i+l(CN-i/N-i	 1
!	 1
1	 T
1	 + ON-i/N-i+1 SN-i ON-i/N-i+1)-1

	
t

!	 1

!	 XN-i/N ?EN -i/N + BN-i (XN-i/N-i - AN-i/N)

1	 ON-i/N = CN-i/N-i ` ( I - BN-i)ON-i/N-i+l(CN-i+1/N-i

!	 T	 1
!	 - CN-i+l/N ) ON-i/N-i+1 (I - BN-i)T	 1

!	 T	 1
1	 = (1 - BN-i)%-i/N-i+l CN-i+1/N ON-i/N-i+1 (I - BN-i)T	i
1	 !
1	 + BN_i CN-i/N}-1	 1
1	 1
!	 T	 !
1	 (I - SN-i )ON-i/N-i+1 CN-i+1/N ON-i/N-i+1 (I - BN—i ) T	 !
1
1	 T	 !

!	 + (I - BN-i ) ON-i/N-i+l SN-i 'PN-i/N-i+1	 1

1	 T	 !
! NOTE: I - BN-i = CN-i/N-i ( CN-i/N-i + ON-i/N-i+l SN-i ON-i/N-i+1)-1

	 !

1
t

13



TABLE III.- VERSION 2 OF THE OPTIMAL SMOOTHING EQUATIONS 80FM32
FOR OPTIMAL FORWARD (KALMAN) EQUATIONS

1	 !

1 Initialize	 !

1	 ^	 -

CN-i+1/N m CN/N	 3N-i+1/N s xN/N

!	 !
! For i = 16 20	 N-1	 !

t	 !

!	 xN-i/N 2 f-1 (xN-i+1/N ) 	!
(

!	 of	 -^	 ^
!	 ON-i+1/N-i	 ON-i41/N-i	 !
!	 aX	 !
!	 x = AN-i/N-i	 !
l	 !

!	 -1	 !

!	 GN-i = ON-i /N-i+1 SN-i CN-i+ 1/N-i	 !
!	 1i	 !!	 EN-i/N " -i/N + GN-i(xN-i+1/N-i 3N-i+11N ) 	l

!	 CN-i/N = CN-i/N-i - (ON-i/N-i+ l	 GN-i )(CN-i+1/N-i	 !

!	 - CN-i+1/N ) (ON-i/N-i+ 1 ' GN-i)T	 !

!	 = ( ON-i/N-i+ 1	 (;N-i )CN-i+ 1/N (ON-i/N-i+1 - GN-i)T	 !l	 !!	 T	 !

!	 + %-i/N-i+ 1 - GN-i ) SN-i ON-i/N-i+1	 !
!	 i
! NOTE: GN-i = BN-i ON-i/N-i+1 	!

14
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TABLE IV.- VERSION 3 OF THE OPTIMAL SMOOTHING EQUATIONS
FOR OPTIMAL FORWARD (KALMAN) EQUATIONS

t^	 1

1 Initialize	 t
1	 !

CN-i+1 /N = CN/N	 !N-i+ 1/N = XN/N

!	 !
! For i = 1. 2. .... N-1	 t

t	
!

!	 8f	 _1	 !
!	 IPN-i+1/N-i =	 ON-i/N-i+1 = ON-i+1/N-i

"	 I	 8x	 !

!	 x = -i/N-i	 !
!	 t

!	 T	 -1	 I

!	 RN-i = CN-i/N-i ON-i+1/N-i CN-i+1/N-i	 !

!	 = IPN-i/N-i+1 (I - SN-i CN-i±1 /N-i)	 (Preferred form)	 !
!	 i

!	
I

! !(N-i/N = XN -i/N-i + RN-i (XN-i+1/N - 2EN -i+1/N-i)
!	 1
!	 !
!	 T	 !
!	 CN_i/N = CN-i/N-i - RN-i (CN-i+1/N-i - CN-i+ 1/N )RN-i 	 tI	 !!	 T	 T	 !

!	 = RN-i CN-i+1/N RN-i + RN-i SN-i ON-i/N-i+1	 !
s	 !
:	 t
! NOTE: RN-i = (I - RN-i) ON-i/N-i+1 = ON-i/N-i+1 - CN-i	 !
t	 !

15
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TABLE V.- SMOOTHING RESIDUAL COVARIANCE MATRICES 	
k^

!	 t
The covariance matrix of the residual N-i/N-i - xN-i/N is	 !

t	 !

1	 T	 t	 4

!	 ON-i/N-i+1(CN-i+1/N-i - CN-i+11N ) ON- /N-i+l	 t
!	 i
1	 1
I The covariance matrix of the residual _xN-i/N-1 ` IN-i/N is

!	 t
!	 T	 t
! (T - BN-i )0N-i/N-i+1 (CN-i+1/N-i ' CN-i+ 11N ) 08-i/N-i+1 to BN-i)T	 t
!	 1

!	 = (ON-i/N-i+ 1 - ON-i)(CN-i+ 1/N-i - CN-i+1/N)(@N-i/N-i+1 - ON-i)T t

I	 !

! 

The covariance matrix of the residual xN-i+11N-i - xN-i+1/N is	 I

!	 f

CN-i+1/N-i - ON-i+1/N	 !
!	 !

i
r-

IIF
IF
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allote that the above equations opera
the normal forward (Kalman) filter
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TABLE VI.- OPTIMAL SMOOTHING EQUATIONS a FOR

A FIXED EPIC TIME, to

!

I At time	 t ;
1

t.,	 initialize
t
1
1

1	 Cn/n+J-1
1

a Cn/n Xn/n+J-1 s Xn/n Kn+J-1 = I	 t
1

1 For	 J -	 1.	 2.
!

3. 	 ... I
1

!

On+j/n+,j
of

-1 = 8x
'On+3-1/n+j =

t

1	 !
tn+j/n+j-1

ri

A = xn+j-1/n+j-1

! T	 -1 t
!	 Rn+,j-1 On+j= Cn+J-1/n+j-1	 /n+3-1 Cn+j/n+j-1 !

` ! = On+J-1/n+J (I - Sn+j-1 Cn+j/n+,j-1) (preferred form) t

! !
Kn+j = Kn+j-1 Rn+j-1

!

Xn/n+j = Xn/n+j-1 + Kn+j (En+j/n+j - Kn+j /n+j-1)
!

r !

!	 Cn/n+,j = Cn/n+j-1 -

T	 !

Kn+j (Cn+,j/n+j-1 - Cn+j/n+J)Kn+j	
I
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5.0 THE BACKWARD EQUATIONS OF MOTION

Many ( perhaps most) Kalman filters contain exponentially correlated random
state variables in the state veoor. In this case, backward integration is
more involved than gust setting AT negative. A simple example will illus-
trate the problem.

Let the acceleration of a point be ax(t). Let ax be an exponentially
correlated random variable, constant over each integration step. Position, ve-
locity and acceleration states are integrated forward in the Kalman filter by

xi+1 = xi + xi AT + ax , i AT2/2	 (5.1)

^i+1 2 ^i + ax , i AT	 (5.2)

ax,i+1 2 a ax , i	 (5.3)

where

a	 exp(-AT/'pax)	 (0 < a < 1)	 (5.4)

Solving the above equations for xi, xi and ax , i yields the backward integra-
tion equations

xi = xi+1 - xi+1 AT +a ax,i+1 AT2/2	 (5.5)

xi = xi+1 - a ax,i+1 AT	 (5.6)

1
ax,i = a ax,i+1	 (5.7)

a
where AT = ti+1 - ti > 0. To integrate backwards, the rules are this: for
the nonexponentially correlated states

j

18



a. Exchange the i and i+ 1 subscripts	

80FM32

b. Set AT z -QT
i

o. Replace ax with -ax
a

For the exponentially correlated state, integrate backward by using

.	 1
d.	 ax'i = $ax,i+1

The above example was for linear dynamical equations where the inverse solution
was easily obtained. However, for complex nonlinear dynamics, the rules are
precisely the same. For example, consider that the acceleration of a point is
given by the nonlinear differential equation

x = ax(t) - k(t)x2	(5.9)

where ax ( t) and k ( t) are exponentially correlated random variables,
constant across the integration step. Note that k(t) symbolizes a time vari-
able drag coefficient, Note that

x = -2kxx = -2kx(ax	 kx2 )	 (5.10)

The forward equations of motion are easily seen to be

2 D 

3®	 xi+1 = xi + xi AT + (ax,i - ki ti) 
^2 
2 - 2ki xi(ax,i - ki ri) 

6

(5.11)

w	 xi+1 2 xi + (ax,i - ki xi) AT	 2ki xi (ax,i - ki ^i) AT2/2	 (5.12)

ax,i+1 ^ a1 ax,i	 (5.13)

ki+1 = a2 ki	 (5.14)

19	
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where

a1 : exp(-QT/Tax)	 (5.15)

a2 * exp(-&T/Tk)	 (5.16)

To obtain the backward equations of motion, merely apply the previously
defined simple rules.

1	 1.2	 2
Xi = xi+1 xi+1 AT + 

s1 
ax,i+1 ` a2 ki+1 xi+1	 /2

+ 2 a2 ki+1 xi+1 
a1 

ax,i+1 - a2 ki+1 xi+1 oT3/6 	
(5.17)

1	 1

xi ° xi+1 - -- ax, i+1 - '_ ki+1 xi+1 / ^T
a 1	 a2

1	 1	 1	 .2	
2- 2a2 ki+1 xi+1 al

ax,i+1 - a2 ki+1 xi+1 &T
2/2	

(5.18)

1
ax,i	

a1 ax,i+1 	
(5.15)

ki =	 ki+1	 (5.20)

a2'

where AT above is a positive quantity.

Finally a word about the inverse of the state transition matrix. ON-i+1/N-i
is almost always of the form

20



p0 ; 1.2250 kg /a13 (6.5)
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^ i 	 ♦2

0	 04

Where tq is frequently diagonal. The inverse is then easily seen to be

01 1 	 -0,1 02 
W4'

^N-i/N-i+ 1	 (5.28)

0	 041

6.0 EXAMPLEMPLE 1

Very precise altitude measurements will be made of a Falling sphere in order
to determine the density of the atmosphere. The sphere will be dropped
from an altitude of h = 11 000 meters. Altitude measurements will be made
every 0.1 second. The altitude measurement random noise will have a standard
deviation of

aq = 0.1 meter	 (6.1)

1
The equation of motion is given by

x = -ag + 20D - 0 x2	 (6.2)

where the acceleration due to gravity is

as = 9.8 m/sect

For h < 11 000 meters the atmosphere density is assumed to be given by

P = (1 + 6) A0 (1 - 0.0065h/288.15) 4.2559 	(6,4)

where

21

I



8OFM32

Equation (6.4) with d x 0 is the equation for the 1962 Standard Atmosphere.
1606 is the percentage deviation from the standard. d will be a state
variable in the filter.

Let

2

CD W : 0 .01 k
	

(6.6)
E

Then equation ( 6.2) becomes

! x = -9.8 + 0.006125(1 - 0.0065x/288.15)4•^555(1 + 6)x2 t	 (6-1)

t	 1

From equation (6.7) (with x = 0) the ground (x = h = 0) impact velocity is seen
to be about 40 m/sec = 89 mph. At an altitude of x = h x 11 000 meters, the
steady state velocity is about 73.4 m/sec g 164 mph. The sphere takes about
207 seconds to reach the ground (with b = Vii).

For the real world, 6 will be chosen to be

6 = 0.05 cos -
(200)

(6.8)

Thus the real-world density will deviate from the 1962 Standard Atmosphere by
±5 percent. For the filter world, 6 will be taken as an exponentially correl-
ated random varlablo whose standard deviation is 0.035 (3.5 percent) with a
time constant of 100 seconds. That is, for the filter world

8 i+1 = a 6 1 + a6 vIT -- P ni
	

(6.9)

a = exp(-OT/T)
	

(6.10)

T = 100 seconds

G6 = 0.035

22



axi+ 1 	 aXi
`^22 = aX 

= 1 + --7- AT
i

4 8OFM32

n it zero-mean, timewise-uncorrelated, state noise with a unit variance.

The state vector, x, will be

x altitude, h

x= x-h
(6.11)

d z scale factor error

for purposes of obtaining the state transition matrix, the following equations
of motion are used.

xi+1 = xi + xi AT + xi AT2/2 	 (6.12)

xi+1	 xi + as QT	
(6.13)

6i+1 = a di	
(6.14)

where AT = 0.1 second and x was given by equation (6.7). Elements of the
forward state transition matrix are

axi+1	 axi
O11 =

ai	 ai
= 1 + 	AT2/2	

(6.15)

axi+1	 ax

0 12 = a*	
i

= AT + a- - AT2/2
(6.16)

axi+1 	 axi

013
	

aai 	 88i f5T2
/2 	 (6.17)

axi+1	 aXi
021	

axi	aXi
.._'-` =	 AT	

( 6. 1 8 )

f
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8^i'.j 	
8-10^3 = .^	 AT (6.20)

36 1	 8.61

36i+1
031 = =,0 (6.21)-

a6i+1 
X32= 'a^	

0
(6.22)

a61+1

033 = = a
(6.23)

86 1

where

axi

axi
0	 (x error contribution small) ( 6.24)

aXi
0.01225	 0 - 0.0065x/288.15) 4.2559 (1 + 6i)xi (6.25)

aXi

axi
a.oa6125 0 - 0.0065x/288.15) 4.2559x i 2 (6. 26)

a6i

For both the real world and the filter, a fourth-order Nystrom-Lear integrator was

used to integrate equation (6.7) to give x	 and	 x.	 In the real world equation
(6.8) gave	 6 as a function of time. 	 In the filter integrator, 6	 is taken as
a constant across the integration step. That is, for the forward filter
integrator

o-

24



t

i

y

f

80FM32

AT = 0.1

Integrate x f(x, x, d i) 61 constant

6i+1 = a 61

T=TtAT

For the backward integrator in the filter

AT = -0.1

6 1 = 61+11a

Integrate x = f(x, x, 61)	 61 constant

T=T+AT

Note that the backward integration of x = f(x, x, 6) is not "stable" and
thus is a good test of the smoothing equations. The reason for the instability
is that the downward fall of the sphere quickly reaches a "steady-state" condi-
tion, irrespective of the initial conditions. Because of computer roundoff error,
the backward integration of the fall will generally yield absurd initial
conditions.

From equation (6.9), the state noise covariance matrix is seen to be

o	 a	 o

S =	 0	 0	 0	 (6.27)

0	 0	 aJ(1-a2)

where
R

2
v6(1-a2 ) = 0.24475 51634 . 10-5	(6.28)

Because measurements of x are made, the measurement partials matrix is

P	 0	 0 0)	 (6.29)

The logistics of the computer program are not simple. They are outlined below.
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a Initialize: T = initial measurement time, xn+1/n, Cn+1/no etc.

Process measureme&, to give xxn/nr Cn/n-

Print To Xn/n, Cn/n , etc.

If last measurement go to b.

Compute to+1/n•

Integrate Xn/n ahead to give 2[n+1/n-

Propagate Cn/n ahead to give Cn+1/n•

Write tape of To xn/n, 2[n+1/n, Cn/n+ Cn+1/n, to+1/n-

T=T+AT.

GO to a.

b BACKSPACE TAPE.

Set CN_i+1/N = Cn/n and EN-i+1 /N = xn/n-

AT _ -AT.

c	 Read tape into: To XN-i/ N-it XN-i+1/N-ii CN-i/N-it CN-i+1/N-i, ON-i+1/N-i-

Go through smoothing equations to compute xN-i/Nr CN- i /N-

Print To xN_i/N, CN-i/N, etc.

If (T	 Tinitial) STOP.

BACKSPACE TAPE.

BACKSPACE TAPE.

GO TO c.

Figure 1 shows the actual scale factor, 6, and the Kalman filter solution for 	 r
S. The Kalman filter predicted standard deviation for the error in 6 was
about 0.0065, down from 0.035. Figure 2 shows the version 1 smoothing filter so-
lution for the scale factor, 6. Its standard deviation was about 0.0027, a fac-
tor of 2.4 better than the Kalman filter solution. Figure 3 shows a plot of
the Kalman filter velocity error versus time. Also shown on the plot is the
predicted 1c7 velocity error standard deviation, about 0.05 m/see. Figure 4
shows the version 1 smoothing plot of velocity error and its predicted standard
deviation of 0.016 m/sec, a factor of 3.1 improvement.
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The predicted standard deviation of the position error for the Kalman filter
was 0.043 meter, for the smoothing filter it was 0.020 meter - a factor of 2.2
improvement.

Version 3 of the smoothing filter equations was also run, and it showed very aim-
ilar results compared to version 1. This was a little surprising because version
3 is more highly linearized than version 1, and the equations of motion are
highly nonlinear, in addition to being unstable when integrated backward.

a

v

j

^k
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7.0 EXAMPLE 2

This example is for a highly simplified tracking version of a Space Shuttle
launch. The two-dimensional tracking geometry is shown in figure.

Y

xRI^

XR2

Figure 5.- Shuttle tracking geometry.

The values for the location of the radar stations will be

xR1 = -5000 meters

xR2 = 5000 meters

The actual biases adding to the radar measurements will be

BAp 1 = 12 meters, constant

BAE1 = 0.15 milliradian, constant

BAp2 = 12 meters, constant

BAE2 0.15 milliradian, constant

32



80FM32

The standard deviation of the actual random error adding to the measurements is

ogAp1 s QgAp2 : 9 metera

OgAE1 : agAE2 : 0.15 milliradian

The measurement bias errors are modeled in the Kalman filter as exponentially
correlated random variables with a time constant of 108 seconds. 	 Their stan-
dard deviations are

ogpl = o3p2 = 12 meters

A ogEI 2 OOE2 s 0.15 milliradian

The standard deviations of the random errors adding to the Kalman filter mea-
surements are taken to be

CTgp1 = Qgp2 = 9 maters

QgE1 ° QgE2 = 0.15 milliradian
t

IR	 ^^
They are the same as those used for the real world.

The true, real-world trajectory is generated by the following equations.

xT , i+ 1 a xT i + xT i AT + xTi AT2/2 +'xTi AT3/6 (7.1)

 L

YT,i+1 2 YTi + YTi AT + YTi AT2/2 + "' i  AT3/6 (7.2)

xT,i+1 2 xTi + xTi AT + xTi AT2/2 (7.3)

YT,i+1 = YTi + YTi AT + ,YTi AT2/2 (7.4)

xT,i+1 = xTi +,xTi AT (7.5)

yT,+1 = YTi +.YTi AT (7.6)

L
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^xT,i+1 : .xTi = 0.1 m/3ec 3 , constant	 (7.7)

0
YT,i+1 = YTi = 0.01 m/sec 3 , constant	 (7.8)

Initial values are, at T s 0,

xT = -1.E6 meters

xT -0

XT =0

#00 = 0.1 m/sec 3 , constant

YT = 100 000 meters

YT =0

YT =0

YT = 0.01 m/see3, constant

AT, the measurement sample interval, is

AT 0.1 second

At T = 300 seconds, xT = 30 m/see 2 = 36, YT = 3 m/sect. At this time
xT and yT are set to zero because the maximum Shuttle acceleration is
about 3 g's at staging.

At T = 300 seconds, the true state is

xT = -.55E6 meter

xT = 4500 m/sec

so
xT = 30 m/see 2 , reset to 0

YT	 145 000 meters

YT = 450 m/see

YT = 3 m/see 2 , reset to 0

34



Tracking is terminated at T a 600 seconds. At this time,

XT a 1.25E6 meters a 675 n o mi.

xT a 9000 m/sea
to
XT a 30 m/3e02

YT a 325 000 meters x 175.5 no mi.

yT : 900 m/see

YT = 3 m/3002

The state vector dynamics for the Kalman filter are given by

Xi+ 1 = xi + xi AT + xi bp2/2

Y+i Yi + Yi fir # yi hT2/2

xi+1 = xi + xi dT

yi+1 = Yi + Yi of

Xi+ 1 2 aaxxi + %X41 ' aax nax,i

of	 00	 2
Yi+l 2 aayYi + ay 1 say %Y,i

2
BP1,i+1 = aB pl Bp1,i +' QBP1 41 - aBP1 %P1,i

BE1,i+1 = aBE1 BE1,i + QBE1 1	 a
2
BE1 nBE1,i

35
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Bp2,i+1 : agp2 Bp2,1 + aBp2 V1 - aep2 nBp2,i	 (7.17)

BE2,i+1 s aBE2 SE2,i + aBE2 1 - aBEe r1BE2,i	 (7.18)

where the ni are zero-mean, unit-variance, tioewise-uncorrelated random
variables. The terms containing the ni are the Kalman filter state noise
terms. Note that in integrating the state ahead, the best estimate or ni is
zero. The "a" values above are given by

aax = exp(-AT/Tax) Tax a 40 seconds (7.19)

aay 2 exp(-AT/Tay) Tay s 40 seconds (7.20)

aBp 1 = exp(-AT/TBp1) TBp1 : 108 seconds (7.21)

aBE1 x exp (-AT/TBE1 ) TBE1 = 108 seconds (7.22)

agp2 = exp(-AT/THp2) TBp2 : 108 seconds (7 23)

aBE2 = exp (-AT/TBE2) TBE2 : 108 seconds ('r.24)

It is seen that the dynamical equations are linear. That is, the state vector,
xi, is propagated ahead by

xi+1 2 Oi+1/i:Xi	 (7.25)

where the state transition matrix 01+1/1 is given on the next page and its
inverse on the page aftor that. Note the large number of zero elements in

hw i and Oi+1/i• This is typical and may be used to speed the matrix
arithmetic. *	 I
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l 1 0 AT 0 tT2/2 0 0 0 0 0

0 1 0 AT 0 AT2/2 0 0 0 0

0 0 1 0 AT 0 0 0 0 0

0 0 0 1 0 AT 0 0 0 0

0 0 0 0 aax 0 0 0 0 0

0 0 0 0 0 aax 0 0 0 0

0 0 0 0 0 0 aBP 1 0 0 0

0 0 0 0 0 0 0 aBE 1 0 0

0 0 0 0 0 0 0 0 aBP2 0

0

L

0 0 0

1

0 0 0 0 0 aBE2

v

1"	
;	 41

1	 ^
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FF-

-1
^W/1

1	 AT2
1 0 -AT 0 -- 0 0 0 0 0

aax	 2

0 1 0 -AT 0
1	 &T2
-- 0 0 0 0
aay	 2

0 0 1 0 -AT/aax 0 0 0 0 0

0 0 0 1 0 -AT/aay 0 0 0 0

0 0 0 0 1/aax 0 0 0 0 0

0 0 0 0 0 1/aay 0 0 0 0

0 0 0 0 0 0 1/aBP1 0 0 0

0 0 0 0 0 0 0 1/aBE1 0 0

0 0 0 0 0 0 0 0 1/aHP2 0

0 0 0 0 0 0 0 0 0 1/aBE2
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The range measurement from station 1 is given by

P I =	 V(x - xR,) 2 + Y2 	+Bpi (7.26)

And the elevation angle measurement from station 1 is

E 1 = arctan -=--- + BB1 (7.27)
x-xR1

k
The partial derivatives are

apt	 x - xR1
(7.28)

ax	 V(x - xR,)	 + y

ap,	 y 
(7.29) 

ay	 (x - xR,)2 + Y2
C

ap,
=	 1 (7.30)

a$p1

r 3E 1 	Y
(7.31)

ax	 (x - xR1 )2 + y2

BE,	 x - xR1 
(7-32)

By	 (x - x1j,) 2 + Y2

BE,
=	 1 (7.33)

asE,

Similar equations apply to	 p2	 and	 E2.

And finally, the state noise covariance matrix is given on the next page.
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0 0 0 0 0 0 0 0 0	 0

0 0 0 0 0 0 0 0 0	 0

0 0 0 0 0 0 0 0 0	 0

0 0 0 0 0 0 0 0 0	 0

0 0 0 0 v8X (1 aax) 0 0 0 0	 0

0 0 0 0 0 cya ,(1-aay) 0 0 0	 0

0 0 0 0 0 0 QBp l (1-agp 1) 0 0	 0

0 0 0 0 0 0 0 QBE 1(1-aBE 1) 0	 0

0 0 0 0 0 0 0 0 aBp2(1-agp2)0

0 0 0 0 0 0 0 0 0 QBE2(1-aBE2)

s

8
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^.	 Figure 6 shows the magnitude of the velocity error vector versus time for the
Kalman ( forward) filter. Figure 7 shows the same thing for the smoothing fil-
ter. Note that staging occurred at 300 seconds. The smoothing filter results
are much better (about 3 or 4 times better) than the Kalman filter results.
Figures 8 and 9 show the velocity errors across staging in finer detail. Again
it is seen that the smoothing filter results are superior to those of the
Kalman filter. The smoothing filter has a such lower maximum error and a
shorter transient time across staging. Also note how smooth the curve is for
the smoothing filter in figure 9. The amothing filter is aptly named because
its output appears to be very "smooth" compared to the Kalman filter.

Figures 10 and 11 show the Kalman filter and smoothing filter solutions for the
x component of acceleration across staging. x is seen to go from 39 to zero
at staging. Again it is seen that the smoothing filter solution is very smooth
and improved over that of the Kalman filter.

The smoothing filter did not improve the position errors by much, maybe 5 per-
cent. Also the radar bias errors in this example were not well determined by
either the Kalman filter or the smoothing filter.

µ
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8.0 MATRIX INVERSION ALGORITHMS

The smoothing equations require efficient matrix inversion algorithms. Your
algorithms are presented here.a These algorithms are very fast and :require a
minimum of storage. The matrix to be inverted is Ho an N by N matrix. If
H : HT the inversion requires about N3/2 additions and multiplications. If
H A HT then the inversion requires about N 3 multiplications and additions.
Note that multiplication of two N by N matrices requires about 03 multi-	 i
plications and additions. Note that the algorithms were written for clarity
and may be speeded up even .wre by revised programing.

t

aThese algorithms were obtained from William M. Lear, "Kalman Filtering
Techniques", NASA/JSC Internal Note 78-FM-25, April 1978•
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t 8.1 FORTRAN ALGORITHM FOR H : H- 1 WHERE H s HT

DIMENSION H(NON)

H(1,1) s 1./H(1,1)

IF (N. EQ. 1) RETURN

NMI x N-1

D^ 5 Jul, NMI

D^ 1 Ix1, J

H(I,J+1) m 0.

D^ 1 Kul, J

1	 H(I,J+1) = H(I,J +1) - H(J+ 1,K)*H(I,K)

D^ 2 K=1, J

2	 H(J+1,J+1) a H(J+1,J+1) + H(J+1,K)#H(K,J+1)

H(J+l t J+1) = 1./H(J+1,J+I)

D^ 3 I=1, J

3	 H(J+1,I)	 H(I,J+1)#H(J+1tJ+l)

D^ 4 Ia1, J

D^ 4 K=I, J

H(I,K) = H ( I,K) + H(I,J+1)*H(J+I,K)

4	 H(K,I)	 H(I,K)

D¢ 5 I=1, J

5	 H(I,J+1) = H(J+1,I)

RETURN

END
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8.2 FORTRAN ALGORITHM FOR G s H-1 WHERE H s HT

DIMENSION G(N,N), H(N,N)

0(1 9 1) a 1. /H(1,1)

IF (N. EQ. 1) RETURN

NM9 = N-1

D^ 5 Jx1, NM1

D¢ 1 I,1, J

G(I,J+i) = 0.

0 1 K=1, J

1	 G(I,J+1) = G (I,J+1) - H(J+ 1,K)§G(I,K)

G(J+1,J+1) = H ( J+1,J+1)

P^ 2 K=1, J

2	 G( J^:1,J+1) = G(J+1,J+1) + H (J+1,K)OG (K,J+1)

G(J+1,J+1) = 1./G(J+1,J+1)

DO a I_1, J

3	 G(J+',T) = G(I,J+1)*G(J+1,J+1)

D^ 4 I=1, J

D^ 4 K=I, J

G(I,K) = G ( I,K,) + 0 ( 1,.J+1)*G ( J+1,K)

4	 G(K,I)	 G(I,K)

0 5 I-1, J

5	 G(I,J+ 1) = G(J+1,I)

RETURN

END
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8.3 FORTRAN ALGORITHM FOR	 H = H- 1	WHERE	 H i HT

DIMENSION F(N-1), H(N,N)

H(1,1)	 =	 1./H(1,1)

IF (N. EQ. 1) RETURN

NMI = N-1

DO 5 J=1, NMI

Do 1 I=1, J

F(I)	 = 0.

Do 1 K_1, J

1 F(I) = F(I) - H(I,K)*H(K,J+1)

DO 2 K=1, J

2 H(J+1,J+1) = H(J+1,J+1) + H(J+1,K)*F(K)

H(J+1,J+1)	 =	 1./H(J+1,J+1)

DO 3	 I=1, J

H(I,J+1)	 = F(I,`*H(J+10J+1)

F(7)	 = 0.

DO 3 K=1, J

3 F(I)	 = F(I)	 - H°.1+1,K)*H(K,I)

DO 4 I=1, J

Do 4 K=1 0 J

4 H(I,K) = H(I,K) + H(I,J+1)*F(K)

DO 5 1=1, J

5 H(J+1,I)	 = H(J+1,J+1)*F(I)

RETURN

END
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8.4 FORTRAN ALGORITHM FOR G s H-1 WHERE H A HT

DIMENSION G(N,N), H(N,N)

G(1,1) = 1./H(1,1)

IF (N. EQ. 1) RETURN

NM1 = N-1

Dm 5 J=1, NM1

D^ 1 I=1, J

G(I,N) = 0.

D^ 1 K=1, J

1	 G(I,N) = G ( I,N) - G(I,K ) *H(K,J+1)

G(J+1 0 J+1) = H(J+1,J+1)

4 2 K=_l, J

2	 G(J+1,J+1) = G(J+1 0 J+1) + H(J+1,K)OG(K,N)

G(J+1,J+1) = 1./G(J+1,J+1)

D^ 3 I_1, J

G(I,J+1) = G(J+1,J+1)*G(I,N)

G(N,I) = 0.

D^ 3 K=l, J

3	 G(N,I) = G(N,I) - H ( J+1,K)OG(K,I)

D^ 4 I=1 1 J

D^4K=1, J

4	 G(I,K) = G(I,K) + G(I,J+I)*G(N,K)

4 5 I_1, J

5	 G(J+1,I) = G(J+1,J+1)*G(N,I)

F

a
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9.0 CONCLUDING REMARKS

It has been seen that the smoothing filter can considerably improve accuracy
over that of a Kalman filter. Factors of improvement for velocity errors of up
to three or four times have been seen here when position measurements were being
processed.

Three versions of the smoothing equations have been presented. Of the three,
version 1 is theoretically the most accurate but requires the most computer
time. If the equations of motion are linear, that is, if

Ki+1 2 O i+1li Xi

then all three versions should give identical results except for computer
roundoff error.

The state estimation equations for the smoothing filter appear to be quite sta-
ble. In example 1, the backward integration of the equations of motion was un-
stable but, in the presence of the smoothing equations, became stable. Example
2 showed that the smoothing filter output was indeed quite smooth when compared
to the noisy Kalman filter estimates.
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