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1. BACKGROUND

Due to the anticipated future power requirements of larger spacecraft,

the need to develop light-weight high-power do-to-dc conversion systems has

been established. In order to respond to this need, research into the development

of such light-weight high-power converters was begun for NASA Lewis Research Center

on July 1, 1977 in the Department of Electrical Engineering at Duke University.

Research has, been directed toward the development of a 10-kilowatt module,

which would then be paralleled with nine other such modules to provide regulated

outputs for up to a 100-kilowatt system. The original design goals called for

a system which would supply a regulated +500 V and -500 V with respect to the

neutral of a 3-wire do distribution system from an unregulated do source ranging

from 120 V to 240 V. However, with NASA Lewis Research Center agreement, in

recognition of the types of stresses that these initially selected target values

would place on the components of a do-to-dc converter such that many of the

required electrical components are simply unavailable in the types of ratings

necessary to sustain such design goals, the requirements for the

output voltage have been changed to +400 V and -400 V, while the acceptable

input voltage range has been modified to 110 V through 180 V. A design goal

which has remained unchanged throughout the course of this research is the

selection of 100 kilohertz as the converter switching frequency, serving to

effect significant reduction in the physical size and weight of the converter

by reducing the size and weight of the converter's energy storage elements.

The development toward a 10-kilowatt module has proceeded thus far in

two phases, each phase being so directed as to push the limits of present-day

technology. The first goal of constructing and testing a one-kilowatt two-

winding energy-storage converter has been completed, and work is continuing at

M,
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this power level in order to improve the converter performance through better

understanding of the phenomena associated with such a high-frequency high-power

converter. Alongside, and in primary focus at this time, is work on the second

phase consisting of the development of a 5.0-kilowatt module, consisting of

two 2.5-kilowatt submodules whose outputs are to be connected in series, each

5.0-kilowatt submodule forming one half of the eventual 10-kilowatt module.

This report, which covers the period of December 1, 1979 through May 31, 1980

is principa l ly concerned with tine progress as well as the problems associated

with the present 2.5-kilowatt converter, and with factors affecting the

development of future higher-power modules.

2. PERSONNEL

During the period covered by this report, the following personnel were

associated with the research project:

Faculty: Dr. Thomas G. Wilson, Principal Investigator; Dr. Harry A. Owen, Jr.,

Associate Investigator; and Dr. Rhett T. George, Jr., all part-time.

Graduate Research Assistants: Mr. Thomas H. Sloane, Mr. Paul M. Wilson, and

Mr. Ronald C. Wong, all one-half time. Mr. Sloane and Mr. Wilson are doctoral

candidates in Electrical Engineering, and Mr. Wong is a candidate for the M.S.

degree in Electrical Engineering.

3. DOCUMENTATION

(1) A paper entitled "Predicting Performance of Power Converters

Operating with Switching Frequencies in the Vicinity of 100 kHz," David

D. Bahler, Harry A. Owen, Jr., and Thomas G. Wilson, was published as a part

of the proceedings of the 1978 Power Electronics Specialists Conference,

PESC-78, IEEE Publication 78CH1337-5AES, pp. 148-157 (June 1978).
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(2) A paper entitled "Switching Transients in High-Frequency High-Power

Converters Using Power MOSFET's," Thomas H. Sloane, Harry A. Owen, Jr., and

Thomas G. Wilson, was published as a part of the proceedings of the 1979

Power Electronics Specialists Conferences, PESC-79, IEEE Publication 79CH1461-

3AES, pp. 244-255 (June 1979).

(3) A paper entitled "A DC Model for Power Switching Transistors Suitable

for Computer-Aided Design and Analysis," Paul M. Wilson, Rhett T. George, Jr.,

t	 Harry A. Owen, Jr., and Thomas G. Wilson, was published as a part of the

proceedings of the 1979 Power Electronics Specialists Conference, PESO-79,

IEEE Publication 79CH1461-3AES, pp. 428-436 (June 1979).

(4) A paper entitled "Modeling Switching-Time Effects in High-Frequency

Power Conditioning Networks," Harry A. Owen, Jr., Thomas H. Sloane, Ben H.

Rimer, and Thomas G. Wilson, was published in the proceedings of an International

Symposium sponsored by the European Space Agency and the University of Bologna,

SPACECAD 79, Bologna, Italy, 19-21 Sept. 1979, (ESA SP-146, Nov. 1979),

pp. 325-337.

(5) A paper entitled "Switching-Interval Modelling in Very High Frequency

High Power MOSFET Converters," Harry A. Owen, Jr., Thomas H. Sloane, Ben H.

Rimer, and Thomas G. Wilson, was prepared and presented at the Seventh National

Solid-State Power Conversion Conference, POWERCON 7, in March 1980 in San Diego,

Calif., and was published in the Proceedings of the Seventh National Solid-State

Power Conversion Conference,pp. G1-1 to G1-13 (March 1980).
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4. RESEARCH SUMMARY

4.1 Overview

During the period documented by this report, two advances in semiconductor

technology have enabled project personnel to operate light-weight do-to-dc

converters with 100-kilohertz switching frequencies at substantially higher

power levels than were previously possible with available power switching

transistors. In addition, the amount of power processed per power switching

transistor has also increased substantially. First, eight of the new Inter-

national Rectifier IRF350 HEXFET's with ratings of 11 A and 400 V were operated

in parallel to provide a converter output power of approximately 2000 W.

Second, a recently developed bipolar power switching transistor, the International

Rectifier HPT540, was operated in conjunction with a newly developed turn-off

snubber circuit to provide converter output power levels approaching 1000 W.

In parallel with these advances in power levels at the 100-kilohertz con-

version frequency, work continued on a study of the interrelationships between

mass, switching frequency, and efficiency. Converters were constructed for

operation at a maximum output power level of 200 W, and a comparison was made

for operation under similar input/output conditions for conversion frequencies

of 20 kilohertz and 100 kilohertz. The effects of nondissipa tive turn-off

snubber circuitry were also included in that study.

Finally, the computerized instrumentation system advanced to the point where

the measurement of pertinent converter operating conditions as well the recording

of converter waveforms can be routinely performed. This system has been operated

reliably at converter output power levels of up to 2000 W, and has proven to
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be of great assistance to project personnel involved with the operation of these

higher-power converters.

4.2 2.5-Kilowatt Converter Developments

422.1 Converter ,,without .Snubber Circuit

The approach being employed in the development of the 5-kW converter is

to use a circuit configuration involving two submodules, each capable of

supplying up to 2.5 kW of output power, which are to be incorporated into a

single 5-kW module. Figure 1 is a schematic of the 5-kW module which may be

viewed as two individual voltage-or-current step-up energy-storage converters

connected together with parallel inputs and series outputs. In this manner the

input voltage of each submodule corresponds to the input voltage design range

of 110 V to 180 V for the module, while the output voltage of each submodule

is 200 V, resulting in an output voltage of 400 V when the submodules•outputs

are added in series in the 5-kW module. Each of the power switches represented

by a single FET symbol in Fig. 1 is composed of a parallel configuration of

eight FET's as seen in Fig. 2 which is a complete schematic of a 2.5-kW sub-

module.

The resistors in series with each FET gate lead in Fig. 2 are present to

dampen out any high-frequency oscillations that may occur in parasitic resonant

circuits in the gate and drain circuits. A MOS clock driver, the DS0026, is

used as the gate drive with the four drivers in two packages paralleled to

provide enough power to drive the eight individual gate resistors and the

effective input capacitance of the eight FET's. Transistor inverter Q9 is

used so that if the pulse-width modulator inadvertently is disconnected or

undergoes a loss of power, the duty ratio becomes 0% rather than 100%.
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Fig. 1 5-kW module composed of two voltage-or-current step-up converters
with parallel inputs and series outputs.
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Fig. 2 2.5-kW submodule with drive circuitry and 8 parallel FET's as the

controlled switch.
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Major concerns in the design and implementation of the power stage are

the voltage stresses imposed on the FET's and the diode during the turning-on

and turning-off periods when a large di/dt exists in the circuit. Specifically,

during the turning-off of the FET's and during the diode turning-off transitions,

large spikes of voltage superimposed on the eventual blocking voltage are present.

Close attention to minimizing circuit path lengths results in minimal stray

circuit inductance in the drain and secondary circuits which reduces these in-

ductively produced voltage.. A different effect is produced by the effect of

stray circuit inductance between the FET source pins and the return path of the

gate drive. This inductance has the effect of causing a voltage that opposes

the gate drive voltage. This negative feedback decreases the effective amplitude

of the gate drive, increasing the transition times from the off-state to the

on-state and vice-versa, thus decreasing the di/dt and lowering the induced

voltage spike [1]. The stray circuit inductance that exists between the

power source and the input to the converter is bypassed by an electrolytic

filter capacitor connected to the circuit by a sandwich type of bus. At the

converter-circuit end of this bus, a small capacitor with low ESR and low ESL

is used to aid in reducing any remaining small induced voltages due to the

reactance arising from the length of the sandwich-type bus. A similar

arrangement is used for the output filter capacitor.

Typically, the stray circuit inductances in the primary and secondary loops

are much smaller in magnitude than the respective leakage inductances in the

primary and secondary of the energy-storage reactor. That is, the degree of

coupling between primary and secondary windings of the energy-storage reactor is

the dominant parameter in determining both the total primary loop and the total

secondary loop stray inductances. Using a winding technique which maximizes the
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coupling between the primary and secondary windings will decrease the total

stray inductance in both the primary and secondary loops,which for the same

di/dt during switching results in lowering voltage stresses on both the FET's

and the secondary diode.

A true bifilar-wound core has excellent coupling but this winding technique

may only be used in reactors with a 1:1 turn ratio. When a turn ratio other

than 1:1 is required, use of a semi-bifilar method as shown in Fig. 8 of the

November 30, 1979 Semiannual Status Report is required which results in poorer

coupling than use of a true bifilar winding method. Experience with the

reactor in the 1-kW module has shown that a 1:2 turn ratio, with its larger

leakage inductances compared to a 1:1 turn ratio, places lower total voltage

stress on the FET's. With the 1:2 turn ratio, a larger spike may exist, but

since the secondary voltage is halved when reflected to the primary side because

of the 1:2 turn ratio, the peak voltage stress on the FET's is less than with

the 1:1 turn-ratio reactor.

The turn ratio of 1:2 was used as a design parameter in the energy-storage

reactor design program DC20C which resulted in several possible designs presented

in Appendix A of the November 30, 1979, Semiannual Status Report. Of the possible

designs obtained in the computer run, those with more than a one-core stack were

discarded because of the desire to limit the number of magnetic energy-storage

elements in the 5-kW module to two. The design chosen to initially investigate

requires an Arnold Engineering A-127259 core wound with 11 turns on the primary

and 22 turns on the secondary. Other designs either did not have enough turns to

completely encircle the toroid, resulting in increased leakage inductance, or

the core would not stay in the continuous mmf mode over the entire operating

range. The core used has a relative permeability of 147, 'a cross-sectional area
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of 733 mm2 , and a mean magnetic path length of 25 cm. Two A-127 259

cores were purchased from Arnold Engineering and wound using different methods

and used in the converter. When the currents measured using these cores were

compared with the currents as predicted by the evaluation section of the program

DC2DC, large discrepancies were apparent. Subsequent experiments including a

reactance measurement at 400 Hz, measurement on a General -Radio bridge at

1000 Hz, and a di /dt measurement with a square -wave of voltage applied, all

verified that the relative permeability of the cores received from Arnold

Engineering was not 147 but approximately 50. Three and a half weeks after

these defective cores were first used, two replacement cores were received from

Arnold Engineering. When these cores were wound and placed in the converter,

the circuit operation was as predicted by the reactor design program DC2DC.

Use of a 1:2 turn ratio for the reactor does place increased voltage

stress on the secondary diode because of the doubling of the primary voltage

when reflected to the secondary. Two Motorola MR1386 600-V 20 -A diodes were

placed in series on separate heat sinks to achieve the necessary blocking

voltage. During operation at modest power levels it was observed that the

reverse voltage across the two diodes was not shared equally between them since

the diodes did not have identical reverse leakage currents and the junction and stray

circuit capacitances associated with the individual diodes were different. During the

switching intervals the diodes share the reverse voltage in inverse relation

to their junction and parallel circuit capacitances which have a low impedance

during the switching interval relative to the diode do resistance. However,

during the blocking interval the voltage is distributed across the diodes

according to their individual do blocking characteristics. In this instance

neither the transient nor the blocking voltages were being distributed equally.

yisTlrn..aw..e..^..x.,..^.,.aanm^,.tia w.r,^,..a'^.e 	 .•••i%'e"4'.^'iSipWM,.Sa,St^^:MM1F,2xe^uA!a,itv6
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To force equal sharing of these voltages an RC combination was added to the

diode with the larger blocking and transient voltages, as seen in Fig. 2.

The resistor is used to achieve sharing while the diodes are blocking and the

capacitor functions to compensate during the switching intervals.

Eight International Rectifier IRF350 devices rated at 400 V, 11 A, and

150 W are configured in a parallel combination to form the controlled power

switch. These eight FET's are mounted in a circular arrangement on a water-

cooled heat sink identical to the one used in the 1-kW module shown in Figs.

1 and 2 in the November 30, 1979 Semiannual Status Report. During operation

at power levels of 2 kW the copper plate on which the FET's are mounted remains

cool while the temperature of the top of the case of the FET's rises to an

estimated 65° C. At this case temperature the individual FET's can safely

dissipate 100 W as seen from Fig. 11 in the International Rectifier IRF350

data sheet. If all eight FET's are at the same case temperatur, and snare the

dissipated power equally, then the eight FET's in parallel ,may safely dissipate

800 W. As data presented in Table 1 indicates, at 2 kW of output power, 607 W

of power is dissipated in the various components that comprise the power stage.

Calculation of power loss in the output capacitor, in the output diodes, and in

the reactor results in approximately 75 W of loss which leaves the eight parallel

FET's to dissipate the remaining 532 W. Consequently, knowing that the power

is not distributed equally among the pf^rallel FET's and to allow some reasonable

margin, eight FET's are used to achieve an estimated 800 W of power handling

capability to dissipate the 532 W estimated to be lost in the controlled switch.

International Rectifier has generously supplied the research group with fourteen

IRF350 power FET's with maximum drain-to-source voltages ranging from 340 V

to 390 V, and it is eight of these that are presently used in the 2.5-kW suisnodule.

-A
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	 The submodule is located on a bench with a copper sheet located just under

the benchtop to which all instrumentation is attached through the use of low-

impedance copper strips. In this manner a good uniform ground is assured, pro-

1

	

	 viding a means of obtaining accurate measurements. Used as the input power

supply is a Hewlett-Packard Model 6477C, with an output rating of 0 V to 220 V

at 50 A. This unit initially was received in faulty condition;, necessitating

its return to Hewlett-Packard for repairs which took one month. Operation of

the converter has been obtalned in an open-loop mode with output power levels

of up to 2.2 kW momentarily and up to 2 kW for periods of 3 and 4 minutes,

Continuous operation at these power levels was prevented by an increase in

case temperature of individual FET's above 65° C to a level where individual

FET's may have been dissipating more power than allowed by the specifications

at the elevated case temperature. Table 1 presents data taken at the 2 kW

output power level.

Table 1. Data for the 2.5-kW Converter Without Snubber

Input voltage 75 V Output voltage 152 V

Input current 34.8 A Output current 13.2 A

Input power 2608 W Outp.. power 2001 W

Duty ratio 0.5 Load 11.25 Q

Efficiency 77%

Figures 3, 4 and 5 are oscillograms taken under the operating conditions

given in Table 1. Figure 3 shows two cycles of total source current along with

drain-to-source voltage, while Fig. 4 is an expanded view of the turning-on
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Fig. 3 Vertical: sum of eight source currents (upper), 40 A/div.; drain-
to source voltage (lower), 100 V/div. Horizontal,: 1 microsecond/div.
Output power of 2 M

Fig. 4 Turning-on as expanded from Fig. 3, same vertical scale factors as
Fig. 3. Horizontal: 200 nanoseconds/div.

Fig. 5 Turning-off as expanded from Fig. 3, same vertical scale factors
as Fig. 3. Horizontal: 200 nanoseconds/div.
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waveforms and Fig. 5 an expanded view of the turning-off waveforms. The peak

source current is seen to be approximately 80 A, which is much less than the

200-ampere capability of eight IRF350's in parallel. This emphasizes that

the number of FET's needed is based on the amount of power each FET may

safely dissipate, and not on their maximum current handling capability.

Examination of Figs 3, 4 and 5 reveals that substantial power loss occurs

only during the turning-off interval. This is best seen in Fig. 5 where large

positive values of current and voltage occur simultaneously. This qualitative

deduction is verified by a study of a representative power waveform generated

using the Biomation Waveform Recorder and the computer program BIOVI as shown

in Fig. 21 in section 4.5.2 of this report.

+ V=
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Fig. 6 Same as Fig. 2 with turn-off snubber circuitry added with 
CSNUB3' 
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and RSNUB-66 1L,



..A

- 14

4.2.2 Converter with Turn-off Snubber

To decrease the power dissipated in the FET's which will lower the operating

temperature allowing longer operating periods and higher output power, a dissipative

turn-off snubber was designed and added to the circuit as shown in Fig. 6. A

description of the basic operation of the snubber begins with the capacitor

CSNUB discharged through the resistor RSNUB 
during the on-time of the FET's.

When gate drive is removed from the FET's, primary current which has been

flowing through the FET's is partially diverted through the snubber diode into

the snubber capacitor. Eventually the snubber capacitor voltage rises sufficiently

so that the primary voltage reflected to the secondary causes the forward

biasing of the secondary diodes and reactor current flow shifts from the primary

to the secondary as required to maintain a continuous core mmf. The data pre-

sented in Table 2 corresponds to the operation with the turn-off snubber at an

output power level of approximately 2 kW.

Table 2. Data for the 2.5-kW Converter with Turn-off Snubber

Input Voltage 73.1 V Output Voltage 150.5 V

Input Current 34.7 A Output Current 13.0 A

Input Power	 2536 W	 Output Power	 1961 W

Duty Ratio	 0.5	 Load	 11.25

Efficiency 77%

Figure 7 is an oscillogram of two switching cycles while Fig. 8 is an

expanded picture of the turning-on interval and Fig. 9 an expanded picture of

the turning-off interval. As can be seen in Figs. 7 and 9 during the turning-

off interval after the source current has reached zero, the drain-to-source

^f—^- ^u4.SC fle'-.^	 •^,^—".RMn.LL.sw.v»ws^woM.cViGl;wra...'u....+,.wa^Yel2fl/XAYA^tIJSMIR+veicMCdaY:aan.,twY.»e.iw't...w. ....... r, «.-. 	_,.:, ... ^ ^.,._..__...; 	 .a.., ». ..,
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Fig. 7 Same waveform variables and scale factors as Fig. 3; snubber used
as shown in Fig. 6.

Fig. 8 Same waveform variables and scale factors as Fig. 4; snubber used
as shown in Fig. 6.

Fig. 9 Same waveform variables and scale factors as Fig. 5; snubber used
as shown in Fig. 6.
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voltage undergoes a large transient and eventual ringing upwards to produce

the maximum voltage stress. It is this voltage overshoot which is present with

or without the snubber and the absolute maximum drain-to-source voltage rating

of 340 V for the particular IRF350's in use that limits the output power toy

2 kW. At the 2-kW level the presence of the snubber had little effect on

the efficiency, but a significant portion of the turning-off power loss was

moved from the FET's to the snubber resistor allowing cooler operation of the

FET's. Longer converter operating times of 15 minutes were possible, as con-

trasted to the 2 to 3 minutes maximum operating time without the snubber.

Higher output power levels can be achieved by using the IRF350's specified with

a maximum drain-to-source voltage of 400 V, and these FET's will be used as

further experience is gained in the operation and performance of the 2.5-kW

submodule.

4.3 Continuation of Study of Reactov Mass Versus Switching Frequency

An initial study of the variation of the magnetic reactor mass (core mass

plus copper mass) with respect to different switching frequencies was carried

out in the previous research period and the results reported in Section 4.4

of the November 30, 1979 Semiannual Status Report. In that study, a computer-

aided approach based on commercially available powder permalloy cores was made

to design magnetic reactors for switching frequencies from 10 kHz up to 100 kHz.

It showed, for example, that the mass of the reactor can be reduced by approximately

seventy percent if the switching frequency is increased from 20 kHz to 100 kHz.

However, the benefit gained by the reduction in mass is compromised by the in-

crease in switching loss associated with the higher switching frequency. As a

result, a preliminary trade-off study of power loss versus mass has been

initiated in the present reporting period.
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To study the trade-off between the increase in power loss and the reduction

in mass, two magnetic reactors were designed for operation, respectively, in a

20-kHz and a 100-kHz switching environment. The two magnetic reactors were

designed for constant-frequency operation in a voltage-or-current step-up (buck-

boost) converter with an input voltage range of 60 V to 120 V, an output voltage

of 125 V, and a maximum output power of 200 W. Both of these magnetic reactors

have a one-to-one primary-to-secondary turn ratio, and they were each wound

bifilar to reduce the leakage inductance in the individual windings. Table 3

gives detail"ed information on the two magnetic reactors. As shown from the

table, the mass of the magnetic reactor designed for switching at 100 kHz is

0.335 kg smaller than that of the magnetic reactor designed for switching at 20 kHz.

TABLE 3. Specification of the Two-winding Voltage-or-current Step-up

Converter for Comparison of the Power Loss at Different

Switching Frequencies.

20-kHz
	

100-kHz

Magnetic Core	 2-core stack of
	

2-core stack of

Magnetics 55108
	

Magnetics 55584

Turn Ratio	 1:1
	

1:1

Number of Turns	
24

in the Primary

Mass of Reactor
(Copper and	 0.4535 kg

Core Mass)

Input Voltage Range

Output Voltage

Maximum Output Power

14

0.1185 kg

60 V to 120 V

125 V

200 W
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Using the magnetic reactor designed for switching at 20 kHz, three Inter-

national Rectifier IRF330 HEXFET's individually rated at 400 V and 8 A peak current,

a Motorola MR1386 600-V diode rated at 20 A, and two high-voltage capacitors,

a dc-isolated two-winding voltage-or-current step-up converter was built and

various data were collected for the input voltage range of 60 V to 120 V. Then

the magnetic reactor designed for a switching frequency of 20 kHz was replaced

by the magnetic reactor designed for switching at 100 kHz, and the rest of the

converter was left unchanged. Data were collected for the converter operated

at 100 kHz over an identical range of operating conditions for which data had

been collected for the 20-kHz converter. Table 4 displays the data for comparison

of the power loss at the two different switching frequencies.

TABLE 4._ Comparison of Power Loss at Different Switching Frequencies

Switching at 20 kHz

Input Input Output Power Efficiency
Voltage (V)	 Power (W) Power (W) Loss	 (W) W

60 216 200 16 93

80 220 200 20 91

100 220 200 20 91

120 221 200 21 90

Switching at 100 kHz

Input Input Output Power Efficiency
Voltage (V)	 Power (W) Power (W) Loss	 (W) W

60 253 200 53 79

80 255 200 55 78

100 256 200 56 78

120 262 200 62 76

M.
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The converter switching at 100 kHz obviously has higher power loss than its

counterpart switching at 20 kHz. This higher power loss can be attributed to

higher core loss and higher switching loss from the semiconductor devices. The

experimentally observed switching waveforms indicate that there is substantial

turning-off loss which is the principal contribution to the highe r power loss

associated with the converter switching at 100 kHz. Figure 10 shows the turning-

off waveform of the drain currents of two of the three IRF330's and the common

drain-to-source voltage for the converter switching at 100 kHz at an input voltage

of 100 V. To obtain an estimate of the turning-off power loss, these waveforms

were then approximated by piecewise-linear waveforms as shown in Fig. 11.

The energy loss per transistor associated with each turning-off process

can be estimated by finding the time integral of the vDS iD product using Fig. 11,

and this is found to be 1.38x10 -4 joules. As a result, the total turning-off loss

Fig. 10 Turning-off waveforms for two
of the three paralleled
IRF 330'x. Vertical Scales
are i DI (upper), 5 A/div; iD2

(middle), 5 A/div; vDS(lower),

100 V/div. Horiz. Scale is
100 ns/div.

Fig. 11 Piecewise-linear approximation
of the waveforms in Fig. 10
with only one drain current.
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for three transistors switching at 20 kHz would be

1.38 x 10 -4 x 20 x 10 3 x 3= 8.28 W

The total turning-off loss for three transistors switching at 100 kHz would

then be

1.38 x 10 -4 x 100 x 10 3 x 3= 41.4 W

Recall from Table 4 that the total power loss for the converter switching

at 100 kHz at an input voltage of 100 V was 56 W, thus a turning-off loss of

41.4 W accounts for 74% of the total power loss in the circuit. To reduce

this turning-off loss, an LC nondissipative snubber was designed [2 1,, and

implemented for the converter switching at 100 kHz. Figure 12 shows the circuit

diagram of the converter with the nondissipative snubber.

The addition of the snubber to the circuit increases the mass of the 100-kHz

converter by 0.0985 kg, so that the total mass of the magnetic reactor for switching

at 100 kHz and the snubber ciruit is 0.217 kg, and compared to the mass of the

magnetic reactor for switching at 20 kHz, it is 0.236 kg lighter. Table 5 shows

the data obtained from the converter switching at 100 kHz with the snubber circuit.

Fig. 12 Voltage-or-current step-up converter with an LC nondissipative snubber.
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TABLE 5. Power Loss for the Converter Switching at 100 kHz with

the Snubber Circuit.

Input Input Output Power Efficiery;y

Voltage (V) Power (W) Power (W) Loss	 (W)' M

60 235 200 35 85

80 232 200 32 86

100 238 200 38 84

120 242 200 42 83

With the nondissipative snubber, the efficiency of the converter

switching at 100 kHz is definitely improved. Compared to the 20-kHz converter,

the 100-kHz converter without the snubber circuit has a reduction of 0.335 kg

in mass but an increase of 35 W to 41 W in power loss over the range of

operating condition. Compared to the 20-kHz converter, the 100-kHz converter

with the snubber circuit has a reduction of 0.236 kg in mass but an increase of

12 W to 21 W in power loss. In the next research period, a nondissipative

snubber will be implemented in a higher-power converter such as a rAW unit to

study the trade-off of power loss versus mass in a higher output power environment.

At this moment, the mass of the snubber (0.0985 kg) is very close to the mass of

the magnetic reactor designed for switching at 100 kHz (0.1185 kg), thus negating

some of the mass reduction gained over the magnetic reactor designed for switching

at 20 kHz. It is expected that at higher power levels the mass of the snubber

circuit will decrease to a fraction of the mass of the energy-storage magnetic

reactor, and the power loss versus mass trade-off ratio should improve substantially.

a,
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4.4 Bipolar Junction Power Transistor Investigations

4.4.1 Investigation of Motorola Power Darlingtons

During the current reporting period, three different bipolar junction power

switching -transistors were investigated as potential candidates for the controlled

power switch of the converter. These transistors were the Motorola MJ10016 Power

Darlington, the Motorola MJ10023 Power Darlington, and the International Rectifier

HPT540 Power Transistor. Quantities sufficient for research ,,,rposes of each of

these devices were made available free of charge to project personnel by the

respective manufacturers.

As reported in the Fifth Semiannual Status Report (November 30, 1979), the

Motorola MJ10016 Power Darlington had come to the attention of project personnel as

a transistor with a large reverse bias safe operating area (RBSOA), fairly fast

switching times (inductive crossover time 0.36 µsec typical), and the added advantage

of ,reduced base-drive requirements. Almost simultaneously upon the arrival of the

sample MJ10016's, Motorola announced a new type of power Darlington, the MJ10023. The

MJ10023 is a single-chip version of the MJ10016, which was constructed with a separate

silicon chip for each transistor in the Darlington configuration, the MJ10023 purportedly

possessing faster switching times than the MJ10016, but with lowered current and voltage

ratings.For ,reference, some major characteristics of the two devices are given.in  Table 6.

TABLE 6. Major Characteristics of the MJ10016 and MJ10023 Transistors

CHARACTERISTIC	 MJ10016	 MJ10023

VCEO(SUS)	
500 V	 400 V

I C - continuous	 50 A	 40 A

I C - peak	 75 A	 60 A

Power Diss. at 
TCASE= 

25°C	 250 W	 250 W

Current Fall timie	 1.0 µs (max)	 0.9 µs (max)

hFE,MIN	
50 at I C = 10 A	 50 at I C	10 A

Case Construction	 modified T03	 modified T03

_... __ -	 . L_ __.mod..	 6.
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Although the peak current and sustaining voltage ratings of these two devices

would be sufficient to operate the 1-kilowatt converter under full-load conditions,

the heat generation from switching, coupled with probable entry into reverse-bias

second breakdown at high current levels, necessitates the paralleling of more than

one device in order to achieve high output power from the converter. However, when

two or more of either of the power Darlingtons were paralleled, severe oscillations

in the collector and emitter currents of the paralleled transistors resulted. This

oscillatory phenomenon is depicted by the smeared emitter current trace in Fig. 13,

where two of the emitter currents of four paralleled MJ10016's are shown in the

lower trace. Similar oscillations were found to occur during continuous conduction

when two or more MJ10023's were paralleled.

Although the exact mechanism by which the oscillations are produced has not

been found, the oscillatory phenomenon appears to be related to the rate of rise

of base current, di g/dt. The oscillations can be diminished in amplitude or even

completely eliminated by decreasing di g/dt at turn-on. Thus, in order to

Fig. 13 Oscillatory phenomenon associated with paralleled Darlington
transistors. Vertical: Collector-tc-emitter voltage (upper),
100 V/div; Two emitter currents (lower), 2 A/div. with ac-
coupled current probe.
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operate the converter without collector current oscillations, one possibility

tried was to add ferrite beads with inductances on the order of 1.0 PH to the

emitter of each paralleled transistor. The purpose of the ferrite beads was

simply to slow down the rate of rise of base current at turn-on. This technique

completely eliminated the oscillations when up to four MJ10023's were paralleled,

and limited the oscillations to a portion of the duty cycle range when four

MJ10016 ' s were paralleled.

4.4.2 Paralleling of Bipolar Power Transistors

The aforementioned paralleling of power Darlingtons was accomplished as

described below. Because the on-resistance of BJT's possesses a negative

temperature coefficient, extreme caution must be taken to avoid overheating any

single bipolar transistor and creating the possibility of thermal runaway. The

Motorola power Darlingtons were pa^ ileied as follows: out of the sample of

transistors available, the ones with the most closely matched DC characteristics

were initially selected for paralleling. This was normally sufficient to insure

good current sharing. The individual emitter currents (as opposed to collector

currents due to the common collector connection of the water -cooled heat sink)

were then examined with the converter running to determine 411, in fact one transistor

was being stressed much more heavily than the others. Because the particular

inductances of the ferrite beads varied slightly from bQad to bead, any major

imbalance in the emitter currents at this point during the switching intervals

could usually be corrected by the selection of the proper bead. Thus, once a

group of transistors had been matched with respect to their DC characteristics,

the process of paralleling became a task of matching the proper transistor with

the proper ferrite bead.
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The converter was run using both a set of four paralleled MJ10016's and a

set of four paralleled MJ10023's at output powers in excess of 500 W and with

efficiencies in excess of 85%. Data for each run using the two types .c power

Darlingtons is shown in Table 7.

TABLE 7. Converter Operation with Motorola Darlingtons

Transistor Type:	 MJ10016	 MJ10023

V I	90 V	 71 V

I I	7A	 9A

P I	630 W	 640 W

VO	255 V	 172 V

1 	 2.1 A	 3.2 A

PO	540 W	 545 W

Efficiency	 86%	 85.1

The data shown in Table 7 is not meant to represent identical operating

conditions. The two runs were made on separate occasions and it is only coincidental

that the output and input powers are similar. In addition, the MJ10023 does turn

out to be a faster transistor, with correspondingly higher efficiencies than the

MJ10016 when utilized under identical operating conditions.

Research involving the use of the Motorola Darlingtons has not been

completed. The oscillatory phenomenon observed in conjunction with the use of

these transistors in parallel is yet to be understood, and the best possible means

to circumvent this oscillatory phenomenon has yet to be devised. In fact, research

on these Motorola Darlingtons was only temporarily set aside due to the arrival

of the International Rectifier HPT540, which at the time seemed a more promising

candidate for the controlled power switch.
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4.4.3 Alternative to Paralleling

While many types of objections might be raised to the current method of

paralleling power transistors, one in particular stands out from the experimental

viewpoint. Because the behavior of the switching characteristic may be changed

by a slight change in the emitter lead inductance, the insertion of a current probe

into the emitter lead of a power transistor will alter its current sharing in

relation to an unprobed transistor. At higher output powers and correspondingly

larger di/dt's, this may lead to failure of unprobed transistors. An alternative

which depends far less on individual transistor characteristics involves alternately

switching paralleled power transistors. For example, if two transistors are to

be paralleled, and the energy storage elements have been designed for 100 kHz,

each transistor is alternately switched at an effective rate of 50 kHz, as shown

in Figure 14. This might become particularly useful when large capacity devices

(such as the HPT540) are utilized which can handle large currents, but the 50%

reduction in duty cycle for alternate switching will help reduce the possibility

of thermal complications prevalent with BJT's switching at 100 kHz.

Fig. 14 Illustration of alternate switching scheme. i LP refers to total

primary inductor current composed of the sum of i ll and i C2 , the

collector currents of two paralleled transistors. Base currents
iBl and i B2 are shown to illustrate the necessary drive conditions.
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4.4.4 The International Rectifier HPT540

In early March, International Rectifier, Inc. announced the production of

new high-power switching transistors, the HPT540 and HPT545. The research project

here at Duke University was provided with two samples of the HPT540, courtesy of

International Rectifier. For reference, some major characteristics of this device

are shown in Table 8.

TABLE 8. Major Characteristics of the HPT540

VCEO(SUS)	
400 V

I C - continuous
	

50 V

I C - peak
	

75 A

Power Diss. at 
TCASE	

25°
	

300 W

Current Fall time
	 <0.2us@IC=50A

hFE,MIN
	

8@IC=50A

Case Construction
	

Similar to JEDEC TO-208AD (TO-83)

Although the current and voltage ratings of this device are identical to

those of the MJ10016, the HPT540 posesses superior switching speeds, and the

stud-type case affords lower thermal resistance both junction-to-case and

case-to-sink.

4.4.5 RC Snubbers for use with Power BJT's

One problem that still restricts the use of power BJT's in the present

1-kilowatt converter is the presence of reverse-bias second breakdown. The

paralleling of devices avoids second breakdown by reducing the peak current

flowing through each individual transistor, but this is wasteful of available

current carrying ability. One area which has received some attention during

the current reporting period has been the development of suitable turn-off

snubber circuitry for use with bipolar transistors. In particular, work with
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Fig. 15 Illustration of simple dissipative turn-off snubber circuit
(entire converter shown for clarity) originally used in conjunction
with the International Rectifier HPT540.

dissipative RC snubbers has been started in an effort to shape the turn-off

trajectory to stay out of the high-voltage high-current portion of the vCE-iC

plane where repetitive switching may bring on reverse-bias second breakdown.

A point to be noted is that manufacturers normally specify both forward and

reverse safe operating areas under single-pulse testing. Thus, there is usually

no good way of knowing what the secondary breakdown limits will be under 100 kHz

repetitive switching unless the device is exercised to destruction.

The initial snubber circuit tried was the simple RC snubber shown in Fig. 15

used in conjunction with the HPT540. This circuit was found to sufficiently

shape the turn-off trajectory, but it has at least one distinct disadvantage.

Because the energy stored in the snubber capacitor during the off-time of the

power switch is routed through the collector at turn-on, the turn-on current

stress is increased in the power switch. The circuit shown in Fig. 16 contains

an alternative to this type of RC snubber. The entire base drive, converter, and

RC snubber have been shown for reference purposes. The operation of this actively-

switched snubber circuit is as follows: Transistors Q1 and Q2 are turned on and
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During TON : Q1, Q2, and Q3 are ON	 Lz^

During T
OFF : Q4 and Q5 are ON

Fig. 16 Circuit diagram for actively switched snubber, base drive, and
converter.

off at the same time. As with the simple RC snubber, capacitor Cl, through diode

Dl, helps limit the rate of rise of collector-emitter voltage at turn-off. In

addition, diode D2 was added to insure that the drain-to-source voltage of Q2 is

clamped to the capacitor voltage, V C1 . During the off-time, Cl is essentially

charged to the input voltage plus the output voltage reflected through the trans-

former turn ratio. When Ql and Q2 are turned on, Cl is discharged through R1, Q2,

and the base-emitter junction of Ql. This circuit holds two distinct advantages over

the simple RC snubber shown in Fig. 15. First of all, the energy stored in the

snubber capacitor is not routed to the collector of the power switch. This

avoids the increased current stress at turn-on mentioned earlier. Secondly,

neglecting stray inductances, the base current initially supplied at
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(a)
	

(b)

Fig. 17 Collector current (vertical) vs. collector-to-emitter voltage
(horizontal) switching trajectories for converter operation both
with and without the actively-switched snubber at P O = 300W. Scale

factors are collector current, 2 A/div, and collector-to-emitter
voltage, 50 V/div. (a) operation without snubber (b) operation with
actively-switched snubber.

turn-on is V Cl /R1, thus rapidly turning on the transistor. Thus, the need for a

separate high-voltage high-resistance base drive to provide a current source at

turn-on is eliminated by utilizing the stored energy of the snubber. In essence,

the actively-switched snubber improves the turn-on trajectory as well as shaping

the turn-off trajectory, as shown in Figs. 17(a) and (b) which show switching

trajectories under approximately identical converter operating conditions for the

HPT540 switching both with and without the actively-switched snubber. An invention

disclosure is currently being prepared for submission to NASA concerning the

possible patentability of this actively-switched snubber.
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4.4.6 High Power Operation with the HPT540

t
Combi-ning the actively-switched snubber with many of the techniques developed

i
for high power operation using power field-effect transistors and documented in

the Fifth Semiannual Status Report (November 30, 1979), an output power of nearly
i

one kilowatt was obtained using one HPT540 as the main power switch. Specifically,

the techniques employed include the use of a one-to-two transformer turn ratio, a

series pair of 600-V diodes, and a water-cooled heat sink specifically designed

to accomodate up to two HPT540 transistors. With this combination, the BJT-switched 	 t1

converter was operated at approximately 930 W output for 12 minutes. Transistor

collector waveforms for full-cycle switching, turn-on, turn-off, and i C vs vCE
i
r	 are shown in Figs. 16(a) through (d), respectively. Data for this run is shown

si
below in Table 9.

TABLE 9. Data for 1 Kilowatt Converter Utilizing HPT540 and Actively Switched

Snubber.

V I 69 V VO 202 V

I I 17.7 A 1 4.6 A

P I 1220 W PO 930 W

Duty Ratio .64 Load 46.9 o

Efficiency 76%

Note from Table 9 that 290 watts is being lost, which is believed to be

primarily associated with the transistor and snubber circuitry. The snubber will

dissipate 1/2 CV 2f watts, where C = Cl, V = V C1 , and f is the switching frequency.

For VC1 = 170 V and C = 0.02 uF, as was the case, the snubber accounts for 29 watts

of the total loss. Therefore, allowing for losses in the magnetic core and in

the diode, a conservative estimate for the power loss in the transistor is in the

range of 230 to 250 watts. However, at TCASE = 62.5°C, the specified power
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(c)	 (d)

Fig. 18 Collector current i C and collector-to-emiter voltage v CE waveforms for

converter operation with HPT540 at P O=930 W. (a) Full-cycle switching

with vertical scales: i C (upper), 20 A/div; vCE (lower), 100 V/div.

Horizontal scale is 2.O Ms/div. (b) and (c) Turning-on and turning-off
intervals, respectively, with same waveforms and vertical scales as
(a), but with hor--fzontal scale 200 ns/div. (d) i C vs. vCE with iC

(vertical), 4 A/div; vCE (horizontal), 50 V/div.

dissipation capability of the HPT540 drops to 225 W. The actual case temperature

was not known exactly during the operation of the converter, but it was estimated

to be at least 60°C. The point here is that operation under the conditions shown

in Table 9 was either at or slightly above the limits specified for the HPT540

by the manufacturer, and thus higher operating powers or very long operation times

were simply not attempted.
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4.5 Instrumentation and Measurement System

4.5.1 Test benches and ground plane

The November 30, 1979 Semiannual Status Report discussed in some detail

the need for establishing a well-defined ground plane for all converter circuit

measurements. It also described the techniques employed in constructing such

a ground. During the present reporting period the grounding system has been

used extensively and has proved to be extremely effective in eliminating stray

coupling effects up to the highest converter power levels so far attained.

In order to avoid the not insignificant delays in changing the experimental

setup from measurements using a converter with power FET's as the active

switching devices to one with BJT's, which require quite different base drives

and a different heat sink arrangement, a second test-bench was fabricated.

In this way, one converter can be worked on and readied while data is

being taken on the other. The basic system and approach to grounding remain

the same although certain refinements have been incorporated. The two test

stations have a common ground and measurements may be made at either station

under control of the PDP•-11/03 computer.

4.5.2 Computer-aided measurement and analysis of converter operating data.

The instrumentation for the high-power converters has been designed from

the outset to incorporate features to aid in data recording and reduction, and

to enhance the safety of the personnel. Programmable computer control was

selected for the instrumentation system to provide for the greatest flexibility.

For interconnections, the IEEE-488 instrument bus standard was chosen. Selection

of appropriate instruments and connection to a computer then followed.

The original plan called for integration of the instrumentation system

with the Digital Equipment Corporation (DEC) PDP-11/45 computer located in the

. _,.z•
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Department of Electrical Engineering Minicomputer Laboratory. Shortly afterward,

a DEC LSI-11 microcomputer became available on loan to the research project and

the instrumentation plan was shifted to this computer system which could be

located dir=ectly in the research laboratory. A good deal of experience with

the use of the IEEE 488 instrument bus was gained with this setup using the

IEEE 488 bus-compatible instruments acquired for this work. The present instru-

mentation system is centered around a DEC PDP-11/03 laboratory computer system

which was contributed by the Digital Equipment Corporation for use in the program

of instruction and research in power electronics at Duke University. The computer

has other ports for connecting the Biomation 8100 digitizing data recorder and

ancillary computer equipment such as a line printer and graphics terminal.

The philosophy of the instrumentation design has not changed, but the

implementation is evolutionary with changes and refinements. Two Hewlett-

Packard 3438-A digital multimeters, one replacing an HP 3437-A system voltmeter,

are used with computer-controlled relays so that one multimeter measures alternately

the input voltage and current while the other measures the output voltage and

current. Current readings are taken across 50-mV ammeter shunts while voltage

measurements are made directly. The auto-ranging feature of the digital multimeters

is employed. The computer program reads each meter, records that reading or the

average of a selected number of consecutive readings, and then sets the relays

for the next measurement. The program computes input power, output power,

efficiency, and power dissipated in the converter. Raw and computed data

may be viewed on a video display, preserved on a hard copy by printer, and stored

on a magnetic computer storage disk.

One of the major challenges in the instrumentation has been the reduction

of electromagnetic interference (EMI) to a level where digital instrument

operation and proper IEEE bus data transmission are unaffected. The voltage

-4
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and current switching waveforms presented in the section on converter operation

illustrate the high rates of change . in voltage and current during the turning-

on and turning-off intervals which account for a considerable amount of power

extending through the spectrum up to several hundred megahertz.

At the outset, the EMI from the converter caused malfunctioning of the

digital meters at power levels of one hundred to two hundred watts. At levels

a little over two hundred watts, the EMI affected the signals on the IEEE bus,

causing the relay unit to malfunction and occasionally causing failure of the

computer. The computer malfunction was generally one of two kinds, a false

interrupt, or an invalid operation address. The computer malfunctions seemed

to result from EMI entering via the IEEE bus. While there is a reasonable chance

that radiated EMI may be significant, the direct-wire connections from converter

to digital meters to IEEE-bus were viewed as the prime source of interference

difficulties.

As described in connection with the discussion of Figs. 30 and 31 of the

November 30, 1979 Semiannual Status Report, the signal lines first were singly

filtered with a balanced pi-section low-pass LC filter housed in a shielded and

well-grounded box. With this arrangement, satisfactory operation to nearly four

hundred watts was obtained, but malfunctions occured above this level. Cascade

filtering was then employed with two pi sections in separate housings, one close

to the converter, the other near the instrumentation. The signal lines were

changed from twisted pair to shielded pair and the grounding system was enlarged.

The present measurement system has operated satisfactorily at power levels to two

kilowatts with no difficulties having been encountered. It appears that this

filtering technique will control the EMI, allowing proper instrument functioning

at 5 and 10 kilowatts. The system will be carefully monitored, however, as it

is used with higher-power converters.
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In addition to the recording of data and the controlling of certain converter

functions by the computer through the IEEE 488 bus system, the POP-11/03 computer

also is being used in conjunction with the Biomation 8100 digital transient

recorder. Two major objectives of this work are: (1) to assist in the identifi-

cation and quantification of losses throughout the converter under investigation,

and (2) to record wide-band waveforms in a form which will permit a variety of

analyses to be made on converter performance. An especially useful capability

of such a facility, which has not yet been implemented, would be the analysis

of waveforms acquired just before a converter failure by using the Biomation

pretrigger mode of waveform acquisition. 'The basic system is now in regular

use using an interactive program. Some of the features of the system are

illustrated in the remainder of this section.

Waveforms of drain current and drain-to-source voltage in the 2.5-kW converter

module using HEXFET transistors are used to illustrate the use of the program.

The program is constructed to produce documentation on the line printer during

the progress of the program to simplify laboratory record keeping. The output

shown in Fig. 19 occurs after the program user has entered interactively the

Biomation 8100 setup data and two digitized waveforms have been retrieved.

In this example, the waveforms correspond to drain-to-source voltage and

drain current. Run and waveform captions, date and time, sample interval, probe

attenuation or current sensitivity, input range, offset and type of coupling

are enters by the user and are stored in memory. If the user chooses to

save the waveform permanently, the setup data also are saved on disk with the

waveform samples.

The program output of Fig. 20 was obtained from the array print feature. In

this example, the first 500 nanoseconds of the waveforms stored in arrays 1 and 2

are printed along with the time corresponding to the sample interval set up for the
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BIOMATION RUN CAPTION*# 8-HEXFET CONV# 2KW RUN 3

DATES 04-JUN-80
TIME209143113

SAMPLE INTERVALS 19000E-08 SEC.
CHANNEL ASVDS
PROBE ATTEN. RATIO= 100
INPUT RANGE= 2.00 V
OFFSET = -0.80
DC-COUPLER

BIOMATION FUN CAPTIONS 8-HEXFET CONV. 2KW RUN 3

DATES 04- JUN-80
TIME/09244100

SAMPLE INTERVAL*$ 1.000E-08 SEC,
CHANNEL B 1 Ire
CURRENT PROBE SENS, = 40 A/V
INPUT RANGE _ 2,00 V
OFFSET = 0.00
DC-COUPLED

Fig. l g Output from the program BIOV1 documenting the retrieval of
waveforms of drain-to-source voltage and drain current with
identifying names VDS and ID, respectively.

Biomation 8100. The print feature is useful for getting the offset value to be

removed from an ac-coupled signal such as obtained from a current probe.

To obtain the value of offset introduced into the drain-to-source voltav

by the Biomation 8100, a calibration rur is made with the voltage probe short-

circuited. After removing the offsets introduced by ac coupling and by the

Biomation 8100, the waveforms of current and voltage may be multiplied to obtain

an estimate of the instantaneous power dissipated in the transistors. The

waveform display feature of the program is illustrated in Fig. 21 using an

oscilloscope-type grid for the plot background.



SAMPLE INTERVAL = 1 " 000E-88 SECONDS,
START TIME	 0^000E-01 SECONDS^
STOP TIME = 5,000E-07 SECONVS^
TOTAL RECORD LENGTH = 1.001G-05 SECONDS,

Fig. 20 Output from the program 8IOV1 using the array print
obtain the values of the raw data obtained from the
8700 over the first 500 nanoseCoDdS

TIME
#"QOOOE-0t
1^000AE-WB
2^OOOOE_08
3.00#0E-08
4"0000E-0@
5^0000E-08
6^OOOOE-0B
7^0000E-08
8^0000E-Q8
9"0000E-08
1.0000E-07
I^1QOOE-07
1^2QQ0E-07
1^13000E-07
1.40OQE-07
1^50OOE-07
1.68#OE-07
1^7000E-07
1^8000E-O7
1.9000E-O7
2.0OOOE-07
2.1000E-07
2"2000E-07
2^30O0E-O7
2^40OOE-07
2^500WE-07
2^6000E-07
2^70OOE-O7
2^G00AE-87
2.9#O0E-O7
3^OOOAE-07
3.1Q00E-07
3^20OOE~07
3,30O0E-A7
3^4000E-07
3.5OOQE-87
3^6000E-07
3^7A0#E-07
3^80O0E-g7
3,90OOE-07
4°OOOOE-Q7
4^1000E-07
4,20OOE-O7
4.3000E-07
4^4A00E-07
4^5AO0E-07
4.60O0E-O7
4^7OOOE-A7
4,8A00E-07
4^9000E-O7
5^O000E-07

DATA (1,J)
-3^9062Ef01
-3"9062E+01
-3.9062Ef01
-3^9063Ef01
-3"75OOEf01
-3^5937Ef01
-3^4375Ef01
-3^2812Ef01
-2^8125Ef01
-2"6562Ef01
-3115000Ef01
-2^5000Ef01
-2^5000Ef01
-2^5000Ef01
-2"6562Ef01
-2.8125Ef01
-2,9687Ef01
-3"1258Ef01
-3^4375Ef01
-3^5937Ef01
-3.7500Ef01
-3.9062Ef01
-3^9062Ef01
-4^3750Ef01
-5.1562Ef01
-6.3500Ef01
-7.5000Ef01
-8.7500Ef01
-1^0000Ef02
-1^0781Ef02
-1.1406Ef02
-1^2500Ef02
-1.3125Ef02
-1^3750Ef02
-1.3906Ef02
-1.4219E4-02
-1"4375Ef02
-1^4531Ef02
-1^4688Ef03
-1.4688Ef02
-1~4844Ef02
-1~5000Ef02
-1.5000Ef02
-195156E4-02
-1.5156Ef02
-1.5156Ef02
-1^5156Ef02
-1^5313Ef82
-1^5313Ef02
-1^5313Ef02
-1,5469Ef03

DATA (3vJ)
~3^9375Ef01
-3.9375Ef01
-3°9375Ef01
-3~8750Ef01
-3^8750Ef01
-3.8750Ef01
-3,Q750Ef01
-3"8750Ef01
-3,8750Ef01
-3.8750E+01
-3.8750Ef01
-3^8750Ef01
-3"8750Ef01
-3,8750Ef01
-3.8750Ef01
-3°9375Ef01
-3^9375Ef01
-3^9375Ef01
-3^9375Ef01
-3^9375Ef01
-3^9375Ef01
-3^9375Ef01
-3^8750Ef01
-3^8750Ef01
-3^8125Ef01
-3°7500Ef01
-3.6250Ef01
-3.5625Ef01
-3^5000Ef01
-343135Ef01
-3^0625Ef01
-3.O0O0Ef01
-2.8125Ef01
-2^5625Ef01
-2^3125Ef01
-2^3500Gf01
~2.0OQ0Ef01
-1^8125Ef'<1
-1^5625Ef01
-1^3125Ef01
-1.3125Ef01
-1,0000Ef01
-8^1250Ef00
-5.6250E4,00
-5^Og00Ef00
-3,1250Ef00
-6°2500E-01

1.875OEfQO
4^3750Ef00
5.O0OOEfO6
7^500AEf0O

V	 = DATA / l J\DS	 DATA( 1,J)/

i	 /= D^T^2 J\D	 `'/

option to
8iD0ation
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The program permits the user to choose one of six programmed oscilloscope

grids or to construct a custom grid. The waveforms displayed are the drain-

to-source voltage, the total drain current and the product of the two waveforms

for an eight-HEXFET converter run wit,';. an output power of approximately 2 kW in

Fig. 21. The calibration data which documents the display are shown in Fig. 22.
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Fig. 21 Waveforms of total drain current i D , drain-to-source voltage vDS

and transistor power loss p Q plotted by the program BIOV1. Vertical

deflection factors: i D , total, 20 A/div.; v DS , 100 V/div.; p Q,

2000 W/div. Horizontal time scale: 1 microsecond/div.
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DATE: 04-JUN-80
TIMES 16:00:14

SAMPLE INTERVAL= 1.000E-08 SEC.
START TIME= 0.000E-01 SEC.
STOP TIME= 1.000E-05 SEC^,
TOTAL RECORD LENGTH= 1.000E-05 SEC.
FOR Y-AXIS VARIABLE NO, 1
VERTICAL DEFLECTION FACTOR= 1.000E+02 UNITS/MAJ. DIV.
VERTICAL OFFSET= 0.000E-01 UNITS

DATE: 04-JUN-80
TIMES 16:00*014

SAMPLE INTERVAL= 1.000E-08
START TIME= 0.000E-01 SEC.
STOP TIME= 1.000E-05 SEC.
TOTAL RECORD LENGTH= 1.0001
FOR Y-AXIS VARIABLE N0, 2
VERTICAL DEFLECTION FACTOR=
VERTICAL OFFSET= 0.000E-01

SEC.

E-05 SEC.

2.000E+01 UNITS/MAJ. DIV.
UNITS

DATE: 04-JUN-80
TIME: 16:00:14

SAMPLE INTERVAL= 1.000E-08 SEC,
START TIME= 0.000E-01 SEC.
STOP TIME= 1.000E-05 SEC:.
TOTAL RECORD LENGTH= 1.000E•-05 SEC,
FOR Y-AXIS VARIABLE NO. 3
VERTICAL DEFLECTION FACTOR= 2, OOOE+03 UNITS/MAJ, DIV.
VERTICAL OFFSET= -8.000E-03 UNIT,

Fig. 22 Output froin the program BIOV1 which documents the waveforms plotted
by the program in Fig. 21.

A final illustration of some of the program capabilities makes use of,,the

computed averages feature. The user enters the array on which the averaging

procedures are to be performed and is queried on the method of entering the

start and stop times over which the averaging is to take place. The start

and stop times may be entered at the keyboard or by means of a lighted cursor
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on the graphic terminal. If the waveform to be processed has been displayed,

the cursor method provides a convenient means of choosing the start and stop

times for separating the various time intervals of interest during a switching

cycle. Performing the averaging on the instantaneous power data stored in

array 3 and displayed as the bottom waveform in the previous illustration,

estimates of the average power over the turning-on, on-time, and turning-off

intervals are obtained by noting the value of the average of the sum of the samples

for these three cases as shown in Fig. 23.

The sources of error in the data processing procedures in the program are

essentially the same as those in the use of regular instruments. The resolution

of the Biomation 8100 is 1 part in 256, To begin to approach this resolution

in practice requires adjustment of the input range (attenuation) and offset of

the Biomation 8100 to obtain the maximum excursion over the digitizer-range.

Use of the shorted-voltage-probe data obtained immediately before or after

taking the drain-to-source voltage provides an excellent estimate of the offset

to be removed from that waveform. To obtain the offset for an ac-coupled current

probe, one must choose carefully a point on the current waveform known from

circuit behavior to be zero. Using the array print feature of the program, that

section of the waveform may be printed out to obtain the value of the Biomation

8100 data at the chosen point which is then subtracted from the entire array

as the offset. As an aside, whenever a current probe is operated near its

maximum rated value, the waveform may display a droop or sag, making it impossible

to obtain a good estimate of the instantaneous power product. The current waveform

should be inspected carefully and another probe with higher current rating or

a wide-bandwidth current shunt should be used if the droop effect is noted. To

obtain the current waveform in Figure 21, the combination of a 40:1 current trans-
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SUMS AND AVERAGES FOR ARRAY DATA (3,J)

START TIME = 1.333E-08 SEC,
STOP TIME= 6 ^ 800E-07 SEC.
AVERAGING INTERVAL = 1 ^ 000E-05 SEC,
N8. OF SAMPLES USED = 1001
MINIMUM VALUE OF N SAMPLES = O.0000E-01
MAXIMUM VALUE OF N SAMPLES = 1^1424Ef03
SUM OF N SAMPLES = 3^1866Ef04
AVERAGE OF N SAMPLES = 	 P.4 v turning-on loss
SUM OF SQUARES OF N SAMPLES = 2,4499Ef07
AVERAGE OF SQUARES OF N SAMPLES = 3^4475Ef04
TOTAL RMS OVER N SAMPLES = 1^5644EfO2
SUM OF SQUARES OF AC COMPONENT OVER N SAMPLES = 2^2538Ef07
AVERAGE OF SQUARES OF AC COMPONENT OVER N SAMPLES = 2,2516Ef04
RMS OF AC COMPONENT OVER N SAMPLES = 1^5005Ef02

Ir

SUMS AND AVERAGES FOR ARRAY DATA (3,J)

START TIME = 6 ^ 880E~07 SEC,
STOP TIME= 5 ^ 813E-06 SEC,
AVERAGING INTERVAL = 1 ^ 000E-05 SEC,
NO, OF SAMPLES USED = 1001
MINIMUM VALUE OF N SAMPLES —140207Ef03
MAXIMUM VALUE OF N SAMPLES = 1^3963Ef03
SUM OF H SAMPLES = 9.8039Ef04
AVERAGE OF N SAMPLES = 	 PO' on-time loss
SUM OF SQUARES OF N SAMPLES = 3^623QEf07	 `

AVERAGE OF SQUARES OF N SAMPLES = 3,6202Ef04
TOTAL RMS OVER N SAMPLES = 1^9027Ef02
SUM OF SQUARES OF AC COMPONENT OVER N SAMPLES = 2.1964Ef07
AVERAGE OF SQUARES OF AC COMPONENT OVER N SAMPLES = 2^1943E+04
RMS OF AC COMPONENT OVER N SAMPLES = 1,4813Ef02

SUMS AND AVERAGES FOR ARRAY DATA (3,J)

START TIME =* 5.813E-06 SEC,
STOP TIME= 6 ^ 547E-06 SEC*
AVERAGING INTERVAL = 1 ^ 000E-05 SEC.
NO ^ OF SAMPLES USED = 1001
MINIMUM VALUE OF N SAMPLES = 2^2053E+02
MAXIMUM VALUE OF N SAMPLES = 8^9491Ef03
SUM OF N SAMPLES = 2^2878Ef05
AVERAGE OF M SAMPLES = 	 PO, turning-off loss
SUM OF SQUARES OF N SAMPLES = 1,3396Ef09	 `
AVERAGE OF SQUARES OF M SAMPLES = 1^3382Ef06
TOTAL RMS OVER N SAMPLES = 1,1568Ef03
SUM OF SQUARES OF AC COMPONENT OVER N SAMPLES = 1,2388Ef09
AVERAGE OF SQUARES OF AC COMPONENT OVER N SAMPLES = 1~2376Ef06
RMS OF AC COMPONENT OVER N SAMPLES = 1^1125Ef03

Fig. '43 Output of tthe program BIOVl illustrating use Of the computed averages
option to obtain an estimate of the transistor loss during the turning-
on, on-time and turning-off intervals.
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former constructed using a powder perma11oy core and a 10-A current probe was

used. The sag effect is illustrated in the off-time portion of the waveform.

Upon receipt of a 100-A current probe currently on order, this measurement

problem should be eliminated.

5. FUTURE WORK

During the next reporting period, several approaches will be taken towards

the development of a light-weight dc-to-dc'converter operating at an output power

of 5.0 kilowatts and with a conversion frequency of 100 kilohertz. First and

foremost, the present 2.5-kilowatt design utilizing power HEXFET's will be

upgraded to the point where full output power can be reliably obtained over a

wide range of input voltage. In parallel with this effort, a second 2.5-

kilowatt unit will be constructed, and the task of connecting the two converters

for series output will be undertaken. An important portion of this last effort

will lie in the design of a suitable drive scheme for the two halves of the 5.0-

kilowatt module. In addition, because the bipolar junction transistor remains

a viable candidate for the controlled power switch in a high-frequency high-

power do-to-dc converter, a converter employing BJT's will be constructed with

an output power of 2.5 kilowatts as the target goal, allowing comparisons for

operation with both BJT's and FET's at that power level.

Work will continue on a study of the interrelationships between switching

frequency, mass, and efficiency, particularly at higher output power levels. The

effects of snubber circuitry at these increased power levels will also be included

in this comparison. Attention will be given to the optimization of the energy-

storage reactor with respect to mass and efficiency, and the use of ferrites at

100 kilohertz will be examined. Finally, with the computer-controlled instrumentation

ex+.uawmp^ryC	 -u'
. 	 ,'lih6GYiw.»wwaurlb^i^www.u.ucram..r+.,wWe,^,w ..	 :.rmrr.s!w.r«..^_.._
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system on-line and fully operational at high power levels, the waveform re-

cording portion of this system and the analysis software will be used to in-

vestigate the feasibility of determining power losses in the various components

of the test converters.
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