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ABSTRACT

paper gave solutions for the mean time rates of change of

4_i'

orbital elements of satellite atoms in an exosphere influenced by solar

radiation pressure. Each element was assumed to behave independently. Here

the instantaneous rates of change for three elements (e, st, and ¢	 m + 2) are

integrated simultaneously for the case of the inclination i = 0. The results

(a) confirm the validity of using mean rates when the orbits are tightly bound

to the planet and (b) serve as examples to be reproduced by the complicated

numerical solutions required for arbitrary inclination.	 Strongly bound

hydrogen atoms escaping from Earth due to radiation pressure do not seem a

likely cause of the geotail extending in the anti-sun direction. 	 Instead,

radiation pressure will cause those particles" orbits to deteriorate into the

Earth's atmosphere.	 Whether loosely bound H atoms are plentiful enough to

create the geotaii depends on thair source function versus r; that question is

beyond the scope of this paper.
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INTRODUCTION

In an earlier paper (Chamberlain, 1979, hereinafter referred to as "Paper

I") we developed equations for the mean rates of change of the orbital

elements of satellite particles -n a planetary exosphere that is subjected to

solar radiation pressure. The results showed a surprising tendency for the

perigees of direct orbits to lock into stable positions westward of the planet

as seen from the surf (and eastward for retrograde orbits). 	 These stable

positions of perigee are also close to the positions where perigee is most

rapidly lowered, vacating the orbits (Paper I, Fig. 4).

It would thus appear that satellite orbits should be efficiently depleted

in time scales of the order of [Paper I, Eq. (17)]

To = (u/a)1/2/f

= 1:055 x 106/(a/RF)1/'sec,

where u = GME , f is the acceleration due to radiation pressure, and the

orbital notation is conventional and follows that of Paper I. To pursue this

matter further, we have investigated the simultaneous solution of the elements

0 s (longitude of perigee from the sun), a (eccentricity) and 2s (longitude

from the sun of the ascending node). In these solutions we set the inclina-

tion i = 0. For the last two elements we will use mean values. The mean rate

of change of the semi-major axis vanishes: <da/dt> = 0. 	 And the time of

perigee passage, T, offers special problems that make it desirable to adopt

its mean value.
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INSTANTANEOUS AND MEAN RATE EQUATIONS

The equations for perturbed elements are given in terms of the external

force components by Burns (1976), Burns et al. (1979), and in Paper I. 	 In
E

Paper I, by the way, the value of de/dt is incomplete, since it was derived by

holding a = const., in anticipation of averaging over the orbit. In reality a

varies over a perturbed orbit (only its mean time derivative vanishes) and the

correct Eq. (10) of Paper I is

de/dt = [a(1 - e2 )/u] 1/2 [ - fT (1 - e2 )/e(1 + 3 cos v)

+ f  sin v + fT (1 + e cos v)/e].
	

(2)

The error does not affect the derived mean value, Sde/dt>, or any other

— results of Paper I.

To integrate these rate equations, the force components must be expressed

in terms of the particle's position in space [Paper 1, Eqs. (2), (6), and

(7)]. The instantaneous equations are then, for the semi-major axis,

da/dt	 2f[a3 /o(1 - e2 )]1/2 [cos ns sin (w + v)

s
+ si ► l Qs cos (w + v) cos i + e sin Q s cos w cos i

+ e cos 2s sin w],	 (3)

for the eccentricity,

,.
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f[a(1 - e2 )/u]
1/2

 { - [(1	 e2 )/e(1 + e cos w)] [cos n s sin (w + v)

+ sin 925 cos (w + v) cos i] - sin v [cos as cos ( w + v)

- sin as sin (w + v) cos	 + [(1 + e cos v)/e1 x

cos a
s sin(w + v) 

+ sin as cos (w + v) cos i]?,	 (4)

ngitude of the ascending node,

dns /dt = - f[a(1 - e2 )/Ij] 1/2 sin as sin (w + v)/(1 + e cos v), (5)

for the inclination,

di/dt - - f [a(1	 e 2 ).; u] 1/2 sin as sin i cos (w + v)/

(1 + e cos v),	 (6)

for the argument of perigee,

dw/dt + cos i	 das /dt w f	 [a(1 - e2)/ue2]1;2
x

[cos Q	 cos (w + v) cos v - sin ns sin	 (w + v) cos i cos v

+ cos 0s sin (w + v) sin	 v	 (2 + e cos v)/(1+ e cos v)

+ sin as cos	 (w + v) cos i	 sin v(2 + e cos v)/(1 + e cos	 v)],	 (7)

^&'j
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and finally (Burns, 1976) for the rate of change of the time of perigee

passage,

4	

dT/dt - M (T	 t)[a/u(1 - e2 )] 1/2 a sin v - [a 2 (1 - e2 )/ue][cos v -

2e/0 + e cos v)11[ - cos sts cos (w + v) + sin 0s sin (w + v) cos i]

+ f 13(T - t)[a/u(1 - e 2 )] 1/2 (1 + e cos v)

+[a2 (1 - e2 )/ie][sin v(2 + e cos v)/(1 + e cos v)]1 x

[cos Sts sin (w + v) + sin sts cos ( w + v) cos i ].	 (8)

In these equations v is the true anomaly and Sts is related to Q (the longitude

of the node measured from the vernal equinox) by Sts = St - X, where

a = n s (t • t o ) and n s is the mean solar motion about Oe planet.

In all these equations we need v(t) to carry out the integrations. This

functional relationship comes from Kepler's equation,

M=np (t- T ) - e -e sine	 (9)

where M is the mean anomaly, E the eccentric anomaly, n  the mean motion of

the particle, and where

tan ( v / 2 ) = [(1 + e )/(1 - e)] 1/2 tan (e/2).	 (10)
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Kepler's equation may be solved by Newton-Raphson iteration to find

v(t) when T(t) is known, T(t) is found in turn from Eq. (8) if v(t) is

known. Thus (8), (9), and (10) have to be solved as a simultaneous set.

s
An additional complication is that t - T itself appears in the integrand

of Eq. (8). From the law of areas, dv/at = N/r 2 , we have

t(v) - T = [a3 [1 - e2 ] 3 /u] 1/2o fvdv/(1 + e cos v)2

[a
3
0 - e2 ) 3 /u] 1/2 1 - e sin v/( 1 - e2 )(1 + e cos v)

+ 2(1 - e2 ) -3/2tan -1 [(1 - e) 1/2 (1 + e) -1/2 tan v/2]1	 (11)

To avoid the simultaneous solution of Eqs. (8) [with (11)3, (9), and

(10), we average Eq. (8) over a cycle and then use <T(t)> in lieu of T(t) in

- solving Kepler's equation. For i = 0 the force terms in the rate equations

[Paper I, Eqs. (2), (6), and (7)3 simplify to sin (^ s + v) and cos (^s + v),
where ^ s is the longitude of perigee from the sun. The mean rate for T is

tdT/dt> =(3a 2 f cos ^ s/2ue)[1 + 2e2

+ 2(1 
Tre 

2 
e of2n F(v)dv],	 (12)

where

F(v) _ sin v tan -1
,
 {[(1 

-
0 /0 + e0 1/2

/2 tan v/21	 (13)

(1 + e cos v)2
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For small e, Eq• (12) is comparable to

<d^s/dt>/np = (3a2f cos Os/ 2ue )( 1 - e2)1/2,	 (14)

where np is the mean rate of motion of a particle about the planet

(n p = 21/P = PI /2- /a3/2 ). That Eqs. (12) and (14) must agree in the limit of

e + 0 follows from the consideration that the actual angular rate of particle

motion, dv/dt, is equivalent to e4 sAT and to the mean particle rate, np , as

the orbit approaches circularity.

The integral of Eq. (13) may be evaluated by Gaussian integration and

then represented as a power series in e. This procedure gives

<dT/dt> = (3 a 
2 
f cos ^ s/2ue)(1 + 2e2

+ 4(1 - e2 ) e(0.968 + 7.30e - 40.482 e2

+ 79.0617 e3 - 43.6806 e4 )].	 (15)

Figure 1 illustrates the accuracy of this polynomial representation of F(v).

The integrals to obtain the mean rates may be found from the tables of

Gradshteyn and Ryzhik (1965, Sect. 2.55). They are of the form

1 (n) = f
zn dv 9(v)/( 1 + e cos v) n ,	 (16)

9	 0

and the identity

19(n	 1) - e 19 (n) cos v = 19 (n)	 (17)

is occasionally useful.

bzd^ 	--
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SOLUI`ION AND CONCLUSION

With i = 0 and <da/dt> = 0 and with <T(t)> used to solve Kepler`s

equation for v(t), we can readily integrate Eqs. (5), (6), and (7) simultan-

eously. The results are shown in Figure 2 along with solutions for the mean

rates obtained from the equations of Paper I.

The similarity between mean and instantaneous solutions confirms the

validity of using the mean rates of change when the orbits are tightly bound

to the planet. In paper I [Eq. (18)] the criterion for using means rates was

specified as

To = 2.086 x 10 2 /(a/RE )2 >> 1.	 (18)

In the present case, Eq. (1) gives T o	4.7 x 105 sec = 5.5 days, and we

have To/p = 8.3, so that the criterion is crudely satisfied.

The eccentricity for a particle collision with the-planet is

e 
col 1= 1 - I/(a/R E ).	 (19)

From Figure 2 this condition is met at ecol l ` 0.8 at the end of '5 orbits or

about 3.3 days, which (as expected) is the order of T o . The decay of eccen-

tricity shown in Figure 2 is a clear illustration of the orbital instabilit

first noted in Paper I; The longitude of perigee (for a direct orbit) moves

asymptotically towards 90°, which is the region where perigee is most rapidly

lowered (see Fig. 3). The combined effect is to rapidly vacate orbits in the

ecliptic plane (or in any other orbit whose plane contains the Earth-Sun

line).
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Figures 3, 4, 5, 6, and 7 show sample calculations for loosely bound

orbits. In the extreme case of a/R E » 1, radiation pressure can remove bound

orbits within a fraction of an orbit, but in intermediate cases (a/R E- 10) the

atoms may be either removed or forced into collision with the planet as the

eccentricity is increased. Further, the escaping orbits show no overwhelming

preference for exit in the anti-sun direction. The existence of a geotail,

observed in Ly a, may be due to charge exchange of loosely bound or escaping

atoms with magnetospheric, high-energy protons, followed by a radiation-

pressure impulse.	 However, securely bound atoms (i.e., ones that are only

slightly perturbed during one revolution) could not be perturbed sufficiently

to cause the observed anti-solar asymmetry to the geocorona.
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FIGURES

Fig. 1. Polynomial representation of the integral of Eq. (13). The solid

curve is

[2(1	 e2 )e/n) I 2 F(v)dv
0

and the dashed curve gives [4(l - e2 )e/v)(0.968 + 7.30 e

- 40.482e 2 + 79.0617e3_ 43.6806 e4).

Fig. 2. Comparison of the instantaneous elements, e , ^s ( = sts + w ), and ns

(dotted curves) with their mean values averaged over an orbit (solid

lines) for satellite N atoms in Earth orbit. The initial elements are

a - 5RE ,i - 0, e = 0.1, ¢s= 0, and Sts = 450.

Fig. 3. Orbits of an N atom at a/Re = 5. Note that the perigee, initially in

the sunward direction, moves to ^s W 90 4 by -the fifth orbit.	 On the

sixth orbit, where e > 0.8, the particles will crash into the planet.

Fia. 4. y Progression of the eccentricity for orbits at a = 10 and 15 Earth-

radii.	 The initial values are e o = 0.5.	 These values are actual

eccentricities for continuous radiation pressure, the mean elements would

be a poor approximation. Quantum accelerations, at mean thrust intervals

of 435 sec., produce some dispersion about the continuum acceleration.

Fig. 5. Progression of the perigee longitude from the sun, 0 s , for orbits at

a = 10 and 15 Earth- radii. See legend to Fig. 4.
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Fig. 6. Orbit of an H atom about Earth with a/R. e = 10, obtained from the

perturbed elements, The progression of a and # s are given in Figs. 4 and

5. This particle collides with the planet on its second orbit. V it

missed collision it would escape, but not in the anti-sun direction and

not contributing to a geotail of luminescent H.

Fig. 7. Orbit of an H atom about Earth with a/R e = 15 0 obtained from the

perturbed elements. The progression of a and ¢ s are given in Figs. 4 and

S. This particle escapes on its first orbit, in a direction that does

not contribute to a geotail of luminescent H.
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