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Determination of the Time of Occurrence of

Gamma Flares at Different Points in Space

B. L. Noval..

/3*
1. One of the most interesting results of extra-

atmospheric astronomy of recent years is the discovery

of powerful flares of space electromagnetic radiation in

hard x-ray and gamma-ranges. One very important problem

of studying the sources of the flares is the determination

of their position in the heavens (localization). The most

effective method for solving the problem of localization is

to record the time at which the flare arrives or, which is

the same thing, the delay in the arrival of the flare at

different points in space. This recording is done by sen-

sors which are carried on the spacecraft (SC) at different

distances from each other. Thus the determination of the

celestial coordinates of the source reduces to statistical

processing of recordings of the flare obtained on different

SC.

The localization accuracy depends on the accuracy of

establishing the position of the SC in space and the accur-

acy of recording the time of occurrence of the flare by the

SC. As follows from I1], for real cases of finding the SC

in space the accuracy of determining their coordinates is

such that the error in the time of occurrence of the flare

can be reduced in every case to the time resolution of the

existing sensors. Taking this fact into account, and also

the fact that the flare has a finite duration, we must esta-

blish what we mean by the flare time of occurrence. Let us /4
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consider	 th	 Dpcess of recording the flare.	 Let us assume

the sequence rZ•	 =L i 1 2,•.,M	 represents the reading of the

sensor carried on the i-th SC and fixing the calculation (time

spectrum) with the resolution At	 With the very natural

and unlimited assumptions regarding the nature of the radiation

and the recording the sequencel n
U
^lmay be regarded as a

Poisson process with a certain var,.able, which is unknown

previously, with the intensity	 If we use identical

sensors, then the functions 
A	

for different values of i

differ only by the displacement of the arguments, and thus we

may speak of the function AH	 , having in mind all /^^^^^•^
Thus, the problem of determining the delay for the flare to

react-, 2 SC (we shall call them the zero one and the first one)

is reduced to finding the 	 , such that A l	 J
(i )	 l

If the time spectra	 1 n 	 S ^l
W)
 .	 coincide, then the prob-

lem of identifying them, and consequently determining 	 IC

would be trivial.	 However, such an agreement does not occur,

due to the discreet nature of the recording process and the

random nature of the radiation process.

The sensors which are designed to study the flares usually

carry special discharge equipment which establishes when the

threshold value has been reached in a certain period of time.

The signal "flare" is thus given. The arrival time of the flare

may be determined in principle, using this equipment. Let us

determine the error At in determining the delay when using
this equipment. We shall confine ourselves to examining only

the errors due to the discreet recording of the radiation, i.e.,

without considering statistical fluctuations. Using a linear

approximation in the estimation, we obtain 	 /5

TTY
O

or	
^^.	 (' ` 1 0 + ^o
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where N l JN o are the parameters determining the linear

approximation of the function h^ • ^ ; TO - value of the

argument of the function ^^.^ , corresponding to the beg-

inning of the interval in which therecording reaches the

threshold value on the zero SC; ST - difference in the
values of the arguments of the function M . ) , corresponding

to the beginning of the time intervals in which the record-

ingreaches the threshold value on the zero and the first

SC; ST  - quantity, determined by the logic of the dis-

charge equipment operation.

We sh Iuse K to designate the integer estimate of

the ratio Q*	 Using the formula obtained above (I) and
the characteristics of the equipment "SNEG-2M" [2], we con-

clude that K may reach 8. This is an impermissibly large

quantity. We therefore turn to the methods based on the

more complete use of the measurement information. We should

ncte that K - the integer estimate of the relationship Z ,

determined by (I), will be used below. 	 41t

M
2. Each of the ^'^	 ^'	 D^r^ .. Is 2j*a e )U is the

realization of the random quantity	 , distributed

according to the Poisson law with a cerL;ain parameter. It

is desirable for us to have the sequence of realizations

of normal random quantities with unit dispersions. These

sequences may be obtained by the following normalization /6

x .
Fri

Cy

This normalization is based ALL r.re estimate of	 for

the mean square deviations	 1(;^l	 For 	 we may give
the following interval with at, Given cont'l4nce coefficient
all

-- C(CL)• . < i1 +
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whose magnitude depends on the numb C W [3]. Therefore

a study of the difference h 
w	

tii	 may be replaced by

.'he study of	 '^	 n41

rc(i1  CC^^ n4^
d	 a	 ^

Using theL'Hopitalrule, we obtain

(0
C (Clk

i m	 ---

as	 2

This result	 ws the validity of using, asb
an estimate for4tT 

CL)
However, to decrease the scatter

for finite values JZ 9	 we first smooth the estimate

taking 5 points for the smoothing. Thus we obtain the se-

quence hlJ

Yt

wh.:re

_ .^ il^f 
t 

2, 
rn^:^ + 3 ti t 

2 rice

, 

t 
t'd'i	d	 ,i 1	 d z}

at

M-2)/^^5

Forming these 9,7auences. we shall look for the minimum

._ :L 	 (o)	 2.

s	 S }K	 ZKI	 .<s=i	 ^	 ^
The minimum of this expression may be written with respect

to the index i	 The value, which represents the minimum

will be designated by 8'
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Summation in (2) is performed with respect to the index

S from I to m, where m equals I(-X , ; K - the integer estimate

Qt	 determined by the expression (I).

nt
Let us examine the accuracy of identifying the spectra,

i.e. finding	 done in accordance with (I). It is clear

that when there are no random fluctuations the accuracy would

be determined by the quantity at . Actually when finding

It we replace the solutioi: if the continuous problem having
the form	 ty

2,

t*

i
by the solution of the discreet problem

2 ( % Z
  1 (5,A ) tt --.> !'r't qIS=j	 , .	 _	 A

for funr.t i ons `^1 	 2C' ) such that there is a r for
whic42 (t^ 	 Under the assumption that At is
small with respece' to the time for a ldrge change in ILN
and	 the error of this replacement is At . 	 /8

Below we shall estimate the accuracy of identification

taking into account the fluctuations. Since there is no

important a priori information regarding the function /^ C•^

the estimates will be a posteriori.

3. The first method of accuracy estimation. In accord-

ante with the given normalization, we will calculate each

of the.,, •_	 by the Palization of a normally distri-

buted anaom^quu&n :^Ity	 ^ C with unit dispers n. Therefore,

:^S is the realization of the  random quantity, having

a rion-central \ - square distribution with m agrees of

freedom and a certain non-central parameter^%)a

5



Using the normal approximation for the non-central

- square distribution, . e formulate the confidence inter-
m+y

Val for 	 In view of the approximation .m:?
2,'V j)

is a normal quantity with parameters of zero and

If we use 
I., 

to designate the quantile ofrde 	 2

of the normal distribution (_i.e.	 C	 =	 for the
normal quanti ty } with parameters of wvvu a,nd one), then

L • —^11^^TY•^
P - ^^	 7

z(m
+Ine

`-^d 

and

l
Here J_ CL is 	 uuii,.Ldence coefficient.

It is apparent that r ^

L in +4y.
^	 d	 d

Thus w e obtain the relatioship for the confidence values of

the parameter

04 .	 +Y14+M40ZY- It -2, 2
and the expression for the upper ,, 	 and lower

confidence boundaries.

t-

a ?+

At first glance it would appear that the expression

under the root sign in (3) may be negative and consequently

real confidence boundaries may not exist.

We shall show that by considering the probable meaning

of the quantities included in this expression and making

certain natural assumptions, we can 	 avoid this situation.

Let us consider the solution of the problem

6



-Vj+m -CCO 2 1 t2y4) -} v`n	 (4)b
under the condition I )j4

The quantity 	 C(qk)EUM+211VVJ)^etermines, with the
selection of the corresponding C(&) , the minimum possible

value of the random quantity having the non-central distri-

bution k, - square with the non-central parameter ^a .

The solution of problem (4) is zero at 2 C^p^^ rn 3. Usually
in applications of the theory there are not more than 4

probabilities C W and therefore the solution is zero

for any reasonable number of measurements.

Thus, the minimum value of the random quantity having

a non-central	 - square distribution with m degrees of

freedom for an unknown 	 is determined by the expres-

sion 1't'1	 and
Mo. ^^^^ Zm

It is apparent that i

'f'''^
ham' -- jZ	 ( 5 )2	 d

then the expression under the root sign in (4) is not

negative.

It follows from (5) that

IYL
	F2V 	 ZCC^^" -' Yd

If i	 Fz,,'— c (a) JO 	 c7)

then the inequality is satisfied for all Id everywhere.

The inequality (7) leads to the condition

/1C

(6)
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M > s cU)
and, again considering the probable meaning of C (CJ^) , we

obtain

Ir	
C8)

If it is not necessary to satisfy the condition (7), then,

considering that the solution of the problem

2 Udt)V^^
to

equals the minus /^` , we reach the condition 

(9)

Thus, if "I iM for an arbitrary d or if 03 ^ t at h'l )Z
then there are real confidence boundaries c*a! ^^	 We shall

assume that any of these unlimited conditions are satisfied.

Using the confidence intervals formulated, we obtain

an estimate of the accuracy for determjna 	 For this

purpose we use the system of intervals	 .• =	 ^-^^, p{ 

	

4 U^ +^,^ ^` and examine Or 	 where those	
S

are included for which the following condition is satisfied

	

C	 (10)

	

C 
S	

c^

The estimate of Ai will be determined by the condition that

It	 belongs to the set J

u. The second method of estimating the accuracy. To

improve the estimate of accuracy of identification, it is

necessary to consider the stochastic dependence of the quan-

tities	
b 

for different values of	 , for which it is nec-

essary to know the concurrent distribution of the quantities.



For this purpose we obtain the e ression for the character-

istic function of quadratic form x ̂
 VT tit X where
	 is

normal with	 i`4 4"i+ A,	 4xi

x'= ^	 (11)

`^ - unit matrix).

The density function of the quantity Y, is determined

by the expression T t'^_^} -X
—^2hus we obtain

the following for the characteriltic functio^
'
n
77
 of the random

quantity	 and

,^t _̂ r ^'^...Se^x^ ^^.itR)ex—^(x— )fix ^^^^ (la_)^^^^	 P
where i is imaginary unity.

I;, is apparent that the integrand equals

P

Let us transform it to the form

(X+U5Y`l(x+U) +v
for [J	 W V we obtain the relationships

1

`I'	
^ E- s

2 U= M
f T

UT 
U 

+Y —M
M t4

Thus we have

After transformation to the form (11) we may readily see

(13)

112
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that the integrand in (12) represents the product of the

distribution density of the normal quantity with the math-

	

ematical expectation minus	 and the covariational matrix

W601 and 	 . Thus
1 Ylf 1

T(t)=1E-ZJAj ^e r c 2 _Ep
or

Using expression (14) we may readily find the first

two moments of the random quantity 4
4 =	 '(0) = $ R + T A ,

L
a j 	 (r1 r	 + 4 ^y 0 2 

^1 +	 (15)
L 1 ll	 `J	 ^^	 1	 J

tZ S R x ^R ^- S R 
Z+	

^2. ,

where ass are the diagonal elements of the matrix A

Thus

	

(n^'° ^ ^'^ ^' (.^ ^ a T T Z to L-. Q ^.cU

Let us set

E

E	 ^ j+K ZtK	 xM4 K^

!13
where	 ,	 ,II is the dimensionality matrix X11 X M , such that

its element G^ ^^,-^ L equals unity at ^^rn and the re-

j

10



L rh$-% 

( OLI^̂)
	 (,,i)1l

♦ 
-fir2_ + 	 Qty I

SX1

^,T (F1^ -Fly,^^+
{

maining elements equal zero.

r
Thensatisfies the conditions (11) and	 25iX

The difference ^j and Z* *i. "he quadratic form i- ir(P,^ A^>

On the other hanu,a ands 	 in view of the assump-

tions made have il non-c entral i^ - square distribution.

Therefore L ^T;-Z P) equal l^l _^ 	 , and

according to (15), equals	 , J

Let us assume

We shall assume that a normal approximation is valid for

the difference of the quadratic forms included in the denomina-

tor. Then expression (16) represents the realization of the

normal random quantity with zero mathematical expectation and

unit dispersion.

Since	 is not known, we make an estimate for Arm^' ^^^ }~^1

We may readily obtain the following from (15)

1.'r oj 	 6PT J-A
'	 (	 2

And we ubel 	
_'^^,^ 	 S^^ ^ --thy ) as the estimate for

We shall assume that replacement in (15)
does not disturb the normal approximation.

A4	
70

TLet us :,et	 , 	 1 ^.A^ ^ l
 

^Y) ~$t' ^A^^A^^) ` ► 	 (a -A; ))Z

ULing the statistics fa(^^ , we follow the procedure for on-

timating the accuracy, based on verifying the statistical

11



pothesis yd r.4 '	 To solve the problem of verifying

pis hypothesis, it is sufficient to use the results of the

st valid non-biased criteria for unilateral alternatives /14

r the exponential sets I31. Our problem is a very partic-

.ar case of this more general problem. Using these results,

obtain the following procedure.

Let us assume	 is the quantile of order i^	 of the
i

rural distribution;	 - error of the secor. ,i kind;	 — t
_ 1)4t	 as in the previous section. t
,en, if

t n or o sponding interval Tj is included in the union

^^ ) It	 ppis apparent that only those values ofS ^.
for Aicn the f, corresponding to them are included in
TO must be verified.

The error 4 ,% is determined the same way as was dune

i n the previous section, by the condition of belonging to
the set , '̂ -1	 We should note that both the set P"
and the set 

344 
may be comprised of non-intersecting seg-

ments. This case may be interpreted as the existence of sev-

eral solutions of the problem for determining 't

5. Computational algorithms and computer programs were

formulated using the procedures given above.

In formulating the algorithms, we considered the possible

singularities having the form of measurement information,

particularly the occurrence of inc , .rect measurements. Mea-

sures making it possible to process this information were

taken into account in the algorithm.

12



The programs were used to process the results of Earth-

based tests of the "SNEG-2M" equipment. This equipment they

used for the Soviet-French experiment on studying the flareF /15

of gamma radiation in space [2]. The total number of measure-

ments M by the equipment equalled 1024. This was sufficient

for the use of the approximations employed in the procedures

mentioned.. The measurement information was obtained by using

a flare model.

We shall give the results of processing the measurement

information. The minimum value of % was obtained when the

indexes in the first and zero time spectra coincided. This

pointed to the fact that in this case the signal "flare"

was processed very accurately.

When estimating the accuracy by the first method, the

confidence level was assumed to equal 0.9. This moderate

value was selected due to the large rigidity of the solution

rule. The use of the procedure given in this method resulted
r^

in 9 intervals of J 	 , for which the condition (10) was

satisfied. The set^^	 ^^J^	 was the interval of
the quantity B 4^ , and the possible deviations from the
most probable solution were determined by the quantities

4Z =^ and Q,—o at,
This accuracy of determining C was inadequate and there-

fore the second method of accuracy estimation was used. Based

on the same considerations as in the use of the first method,

the error of the second type was chosen to equal 0.1. The

application of this procedure resulted in^the formation of

two mixed intervals	 and the set 
2̂^- U ,S - the interval

of the quantity 3ot	 The possible aeviations from the
most probable solution,& %Z&i) Ail: Af .

13
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