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1.0 SUMM..~RY 

As part of the ~Jiet Clean Snort-Haul Experimental Engine (QCSEE) Program 
sponsored by the NA~\-Lewis Research Center. the General Electric Company con
ducted a series of aC~Jstic tests on au Under-the-Wing (UTW) engine suitable 
for use on an aircraft tr.rith pO'"wered lift capability. These tests evaluated 
the fully suppressed noise levels in both forward and reverse thrust modes of 
operation and provided a means to evaluate selected component suppression 
effectiveness. 

System noise levels. using a contract specified calculation procedure, 
indicate that the in-flight noise level on a 152 m (500 ft) sideline at take
off· and approach are 97.2 and 95.7 Epr~B. respectively. cocpared to a goal of 
95.0 EPHdB. In reverse thrust, the mmdmum level of thrust achieved was 27% 
(relative to takeoff thrus~) and, at this level. the aircraft system D9ise 
level was 106.4 EPNdB. 

Baseline noise levels W2re higher than predicted by 4 to 5 P~d5 in the 
high frequency, broad band noise region. The high throat ~2ch number inlet 
with wall tre&~ent (hybrid inlet) demonstrated 14 to 15 PEdB suppression 
of inlet radiated noise at 0.19 throat Mach number. Suppression of aft radi
ated noise on the engine was within 2 PEdB of predicted; a~ suppression of 
up to 2 dB was demonstrated in the high frequencies by the treated OGV's. 



.-

2.0 INTRODUCTION 

the General Electric Company is currently engaged in the Quiet Clean 
Short-Haul Experimental Engine (QCSEE) program under Contact R~S3-l8021 to 
the FA~~-Lewis Research Center. An Under-the-Wing (UTW) expericental engine 
was designed and built under ~he program to develop and demonstrate technol
ogy applicable to engines for future commercial short-haul turbofan aircraft. 
The initial buildup of the urw engine and boilerplate nacelle was tested at 
the General Electric Company's Peebles Test Operation from September 2, 1916 
to Dec~ber 11, 1916. Initial tests included mechanical and systems checkout 
along with fan performance characteristics over a range of blade settings in
cluding reverse thrust operation. Failure of an exhaust nozzle support ring 
and subsequent ingestion of a fan nozzle flap resulted in a pr~ature conclu
sion of testing before any acoustic data could be acquired. A second buildup 
of the UTW engine - this time with g composite nacelle - was tested during 
the period from Septemher 2, 1971 to July 21, 1978. Acoustic data were 
acquired on this second buildup and are reported in this volume. 

This volU$e of the UTW propulsion system test report inc luGes the results 
of the analysis of internal and far-field acoustic measurements and the com
parison of the fully suppressed noise levels to the noise goals for a four
engine. 66,6S1-kg (147,OOo-lb)~ uJMi-p~ered aircraft~ Detailed acoustic data 
used in the analyses of this vol={! may be found in a separate volume, Appen
dix B, ~llich is limited in distribution to the General Electric Company and 
Gove~ent agencies only. 

2 
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3.0 TEST Cm~lGURATlONS 

The qcSEE UT~ composite nacelle engine was tested on pad IV-D (the prime 
acouetic test site) at the General Electric Company's Peebles Test Operation 
near Peebles, Ohio. Acoustic tests were conducted over a period of tu_~ from 
OCtober 5, 1977 to July 21, 1978. 

Many low noise design features were incorporated into this engine includ
ing source noise reduction techniques and sound absorbing material (References 
1 through 4). Table I lists the acoustic design parameters and Fi~~re 1 is a 
schematic of the engine which points out the acoustic features. The engine 
had a low pressure ratio, low tip speed fan with wide rotor-oGV spacing, and a 
vane/blade ratio optimized to reduce second harmonic tone generation. Treat
ment was installed on the inlet, fan frame, and fan exhaust dcct walls. The 
OGV'swere treated on the pressure side for bigh frequency broadband ~~pres
sioo, a:rui ::m acoustic splitter was used in the fan exhaust. Core suppression 
was acldeved with a "stacked" suppressor which consisted of thin single-degree
of-freed~ (SDOF) treatment for high frequency turbine noise suppression and 
deep low fr~uency panels for low frequency combustor noise suppression. At 
~off, inlet suppression was achieved pr~rily with an accelerating high 
Mach ~er inlet. 

MOre details of the acoustic design procedure. philosopby, and component 
test ~ogr~ are ~&ilable in References 1. 2. 3, and 4. 

Five engine configJrations ~~re tested. An O\'erview of the five is pre
sented in Tahle II which indicates the general setup of each. 

A Jfhotograph of the basel ine engine is sbown in Figure 2 with a cross 
section in Figure 3. nle inlet was a hardwall bellmouth and the fan exhaust 
walls tiere taped as shovn in Figure 4 to give an acoustically hardwall surface. 
Fan frame wall treatment, compressor inlet treatment, and vane pressure sur
face treatment were present on the baseline configuration. This baseline con
figuration ~as tested twice during the program. Initially, it was tested with 
8 gravel so~nd field and then later (including a removal and re-installation 
on the stand) with a concrete sound field. The engine configuration was iden
tical in both cases. Table III presents the specific 3coustic data points and 
corresponding engine operating parameters for the baseline engine tests. 

An evaluation of the effect of the vane treatment was conducted en the 
configuration shOh"n in Figure 5. This configuration differs from the baseline 
on-1y in that the acoustically treated surfaces of the vanes were covered with 
metallic tape to render them acoustically hardwall. Approximately 0.67 m2 
(1.2 ft2) of vane treatment were taped. Data points for the taped vane cou
figuration are tabulated in Table IV. 

A schesatic of the fully suppressed configuration is show~ in Figure 6. 
Treatment included the inlet wall, fan frame. fan exhaust wall. splitter, and 
core walls. In addition, a hybrid inlet employed on an inlet flow accelera
tion effect at takeoff to achieve suppression was used. A photograph of the 

3 
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Table I. Acoustic Design Parameters. 

e 41.2 m/sec (80 knots) Aircraft Speed 

• 61 m (2vO it) Altitude 

• Takeoff Condition~ 

NUmber of Fan Blades 

Fan Diameter 

Fan Pressure Ratio 

Fan rpm 

Fan Ii P Speed 

Number of OGV' s 

Fan Weight Flow (Corrected) 

Inlet Mach Nusber (Throat) 

Botor ~~ Spacing 

Fan Exhaust Area 

Core Exhaust Area 

Gross Thrust (SLS t~installed) 

Blade Passing Frequency 

Core Exhaust Flow 

Fan Exhaust Velocity 

Core Exhaust Velocity 

Bypass Ratio 

Inlet Treatment Length/Fan 
Diameter 

Vane/Blade Ratio 

18 

180.4 em (71 in.) 

1.27 

3089 (3244 at 100%) 

289.6 a/sec (950 ftlsec) 

33 (32 .. pylon) 

405.5 kg/sec (894 Ibm/sec) 

0.79 

1.5 Rotor Tip Aerodynamic Cnords 

1.615 m2 (2504 in.Z) 

0.348 m2 (540 in. 2) 

81.39 kN (18,300 Ibf) 

927 Hz 

31.3 kg/sec (69.1 Ibe/se~) 

197.8 m/sec (649 ft/sec) 

238.9 m/sec (784 ft/sec) 

12.1 

0.14 

1.83 
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Frame 'treatment 
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~L' - 1.5 Chord 

Rotor Stator Spacing 

18 Variable Pitch Blades 
290 m/soe (950 ft/sdc) Tip Speed 
1.27 Fan Prcaaure Ratio 

-I m (40 inch) Long 
AcouBtic Splitter 

Stacked Treatment f~r 
Low Frequenci Combustor 
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Turbine Suppression 

"'" Variable Depth 
Variable Porosity 
Wall Treatment 
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Table II. qcSEE UTW Acoustic Test Configurations. 

• All configurations have fan frame wall treatment 
and compressor wall treatment 

Vane Fan Wall Acoustic 
Configuration Inlet ~ Treatment Treatment Splitter 

Baseline Hardwall/ Yes Taped No 

Bellmouth 

Vane Treatment Hardwall/ Taped Taped No 

Effect Be I lmouth I Fully Suppressed Hybrid Yes Yes Yes 

Splitter Hybrid Yes Yes No 
Treatment Effect 

Core Treatment Hyhrid Yes Yes Yes 
Effect 

5 

~ 

Core 
Treatment 

Hardwall 

Hardwall 

Yes 

Yes 

Hardwall 





~~-" 

co 
Sound Separation Probe 

• Wall Kultte Locations 

OGV Treatment 

Figure 3. UTW Baseline Configuration. 
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o Table III. Baseline (Frame-Treated) Acoustic Data Points. 

M 
ae 

OUllt tQ 
!adLngs 

I 
1 
I 
I 
I 
I 
I 
1 
I 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
J 
J 
) 

3 
3 
I, 

I, 

16 
10 
If, 
I~ 
16 

I 
! 
I 
\ 
) 

i 
7 
I 
I 
l 
I 
I 
1 
\ 
5 
~ 
7 
B 
9 
~ 
1 
1-
) 

~ 
5 
~ 
7 
II 
9 
0 
I 
7. 
3 
~ 
) 

~ 
7 
B 
'/ 
0 
I 
3 
I, , 
6 
7 

Comments'" Date 

nl)('kRfountf Nolt1o 10-'-77 
250 Count" (;oro Cowl Cooling 10-~-77 

500 Count. Core Cowl Cooling 10-5-77 
1000 COUlng Core Cowl CoollnR 10-)-77 
Idl0 10-'-17 

10-'-77 
10-'-17 
10-,../7 
10-5-77 

1000 Counts Core Cowl Cooling 10-6-77 
10-6-77 
10-6-77 
10-6-77 
10-6-77 
10-6-17 
10-6-77 
10-6-71 

Rep •• t (\2) 10-6-77 
10-6-77 
10-6-77 
10-6-77 

Rep •• t (21) 10-6-77 
10-6-77 

1000 Co""t. Core Cowl r.ool1nR 10-7-77 
10-7-77 
10-7-77 
10-1-77 

Abort 
10-7-77 
10-7-77 
10-1-17 
10-7-77 
10-7-7/ 
10-7-77 

Idlu 10-7-11 
Irll. 10-7-77 

10-1-77 
10-7-77 
10-7-77 
10-7-77 
10-7-77 
7-16-78 
7-16-73 
7-16-78 
7-16-78 
7-16-78 >--." ....... ~~ ..... ,,--,-..... --.-....... ~--

*RcadinSR 1 to 41 - gravel eurface 
He"dlngR 163 to J61 - concr.te surfAc. 

.-
peNI.R XNI. XNlI 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
,~ .S 1605 11020 
9\. , 2969 12424 
91. 2 2970 13000 
90.9 2963 12992 
90.9 2962 12930 
0 0 0 
97.0 3143 I?' S 
97.1 )144 12~11 
94.5 30,8 12072 
94.3 3056 129" 
94.1, 30)ij 12945 
94.5 3019 12Y(,4 
~1,.4 30j3 I ?92' 
96.9 3131 1296j 
96.2 3112 12981 
60.6 2606 12290 
80.6 2608 1<298 
80.6 1608 12295 
84.3 2n8 12294 
0 0 0 
87.2 2769 12440 
63.6 2019 12571 
95.4 3099 Ill57 

95.0 3067 12375 
94.9 3067 12357 
91 •• 9 3066 12906 
96.8 3126 12986 
89.8 2901 12091 
79.9 2579 12399 
~,. 5 1793 11198 
S~ .6 1794 11358 
19.9 2~78 12324 
69.0 2099 12739 
9$. J 307' 1)028 
97.0 3133 D070 
97.0 3133 13049 
92. S 301,5 12880 
94. ) 3099 12954 
8$.0 2791 12~64 
aO.2 2632 121.87 
91,.2 309' I )()(Il -

,u~"'10 tn. 2 
fNltlN 

RorDEO II Ib 

- - - 0 0 

- - . 0 0 
- - - 0 0 - - - 0 0 
4.9 \, 518 235' - -.,.' 1.608 2493 73805 16592 

-'.4 1. 580 2449 73818 16595 
-5.4 1.546 2399 73Hl 16526 
-5.4 I. 517 2352 73551 16535 - - - 0 0 
-5.1 1.625 2519 77688 17465 
-4.8 1.'56 2412 77608 17447 
-~.O 1.613 2501 74895 16837 
-4.8 \. 582 24~3 7960~ 17359 
-5.2 1. 5~0 21,18 77>68 17438 
·'.1 \.H9 2H5 78)20 17652 
-4. ! \,I,H ~2~9 17679 17463 
-4.6 1. $59 241/ 76096 17107 
·5.3 1.561 2419 78030 17553 
-4.1 I. 684 2610 5663) 12732 
-3.9 1.886 2923 55705 12523 
-4.0 1.891 2931 55100 12387 
-2.5. 1.877 2910 56613 12727 - - - 0 0 
-3.1 2.003 3105 - -
-1.0 \, 893 2934 56279 12652 
-6.9 1.61! 2504 79561 178H6 

+0.4 1.875 2906 56541 127'.1 
1.0 1.681 2605 H040 12823 

-4.6 I. ~61 2420 76140 11117 
-S.O 1.558 2415 78204 17581 
-5.1 1.550 '2403 69917 15718 
-4.6 h51,a 2400 57827 13000 

·'.9 I. S58 21·1 ~ 28340 6371 
-'.2 I.C87 29B 28M2 6431, 
-5. , I. 890 2929 56319 12~61 

-'.0 I. 680 2914 68S96 1$421 
-,. J t. 904 29'1 - . 
-5.0 1.890 2930 73$91 16544 
-5. J 1.733 21,66 7$758 17031 
-3.1 I. 536 2381 68285 153H 
-3.2 1.515 2380 69373 15100 
-3.1 1.5H 2380 57440 12913 
-3.1 I. 535 2360 - -
-3.2 I. '36 2361 71679 16114 

"<",,,,"·,~\~,,,,,, .• ·'~'t'~;t 

J'rQbo 
XMl1 ImmerBicmtl 

I 
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Table III. Baseline (Fram®-Treated) Acoustic Data Points. (Continued) 

ACQUIt ic Al8 FNRIN 
~ •• d\I\R' COmrtlttnt 1* Dato PCNLR XNL XIIN ROPDEG .2 In. 2 II Ib Xltll -
168 Deeel/Aceel 7-16-78 - - - -3.2 I. 536 2381 - -
169 7-1~-73 94.' 3100 III $6 -4.6 \.535 2380 - -
110 7-16-16 89.6 2939 U626 -4.6 1.~J7 2)6) M030 14846 
171 7-16-10 79.6 361a U/.H -4.L 1.536 2JA2 ~3161 \l9S1 
172 7-16-78 79.6 2613 12501 -4.9 1. 535 2379 54299 12207 
173 7~16-78 84.9 2705 12740 -5.0 t. 535 2380 61999 13938 
171. 1-16-76 90.0 29>3 12917 -'.0 1. 535 2380 70322 15809 
115 7'1~' 78 9l. , 3031, DUo -5.0 1.536 2381 74H2 16697 
176 7-16-78 94.3 3095 13225 -5.1 1. 536 2381 77359 17391 
177 Accel 7-16-78 - - - -5.1 1.536 2361 - -
178 Abort 7-16-76 - - - - - - - -
179 7-16-76 94.3 3094 13220 -1 •• 9 1. 536 2381 77661 17459 
180 7-17-78 n.3 3027 13054 -5.1) 1.484 2300 - -
181 7-17-76 92.5 303) !J222 -;.0 1.484 2300 - -
182 7-17-711 90.0 295) 1312(, -~.O 1.484 2300 ~ -lal 1-17-76 92. ) j027 130% -5.2 1. $95 2473 73431 16508 
164 7-17-78 94.5 3099 13265 -4.8 1. ~95 2473 76084 175~4 
16~ 1-17-76 90.1 29~5 la962 -S.O 1.595 2/.72 71283 16025 
IQ6 Olroctlon81 Array 1"17-76 9' •• 2 30B2 12466 4.4 1.661 2574 5',30U 12209 
18/ D! r" t 1 "nal Array 7-11-76 94.6 3091 ulna -~.O I. $36 2382 766H IllaO 
188 7-17-76 94.4 3082 12356 5.0 1.535 2380 n294 11901 
189 7-17-70 94.4 3082 12638 0.0 1.5)5 2380 62729 14102 
190 7-17-78 91 .. 4 3082 12a~2 -2.0 l.'lS 2379 68280 15),0 
I'll 7-17-78 94. , 308~ 13007 -4.1 I. '3$ 2180 7J943 16623 
192 7-17-78 91 •• 4 .1082 13162 -6.0 I. 536 2381 77524 1142U 
193 1-17-73 94.4 3081 InR7 -7.1 1.536 2381 1946\ 11868 
19', 1-17-73 91 •• 4 3oa2 11315 ~7 .0 1.536 2381 OOl6b lP022 
19) 7-\7-13 92 .2 3006 In(>9 -7.8 I. ~3b 2381 7Un6 17586 
196 7-17-7a 90.0 2917 11143 -7.9 I.H6 2181 7H69 16993 
197 7-17-78 8$.1 2776 12943 -7.9 I. ~3~ 2381 69566 15639 
198 7-17-7U 80.3 2620 12667 -6.1 I. ~3~ 2380 6147.1 13806 
199 7-17-78 69.4 2916 12249 3.3 1.677 2909 46Q59 10604 
200 7-17-76 91,.6 30B~ 124~4 1.5 1.(,9S 2627 56510 12704 
201 7-17-78 9S.0 3097 : 1.2419 0.3 \.871 2910 56021 12594 

--_ .. _--------------- ,----

tltConc::rotf! SUrf4CQ 

Probe 
lrameraion. 
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Table III. Baseline (Frame-Treated) Acoustic Data Points. (Concluded) 

Aeou.t Ie A18 FNP.IN Probe 
ROAd Ina. CUfMlttnt .* Dftto PCNLR xm. XNII ROPD~a m2 In. 2 N Ib XHII I"",orolon_ 

202 7-17-78 91,.8 3089 12926 -3.3 1. 594 2470 71923 16169 
203 7-17-78 92.4 3014 12841 -3.3 1.594 2471 69343 15589 
204 7-17-76 09.9 2932 12/16 -3.3 1.591, 2470 - -
20S 7-17-73 90.4 291,8 1~810 -3.6 1.486 2303 - -
206 7-17-78 92.5 3018 12991 -3.6 1.466 2303 - -
201 7-17-76 94.1 3084 \Jill -3.6 1.1,05 2302 - -
203 OCV Probo 7-17-78 94.6 JOSl 1301,0 -S.O I. ~23 2361 - - 15 
209 7-17-78 90.3 2949 13172 -7.8 1. ~79 2447 - -

I 210 7-17-78 92.0 3004 13300 -7.S 1.579 241.7 - -
211 7-17-78 Ql.1 3007 13358 -8.0 1.484 2300 - -
212 90~ 1-17-76 90.0 291,0 DIS) -8.0 1.484 2300 - -
213 7-17-78 9J.7 3059 134/.5 -S.I 1.484 2300 - -
214 Fan Nozr.le Probe 7-1 ;-78 tIO.~ 3007 126S0 0.0 \.64S 2"0 57747 12902 U 
HS Cor~ I'robe 7-17-711 90.7 3006 12694 0.0 \.659 2572 58109 13066 2 
216 Core Probe 7-17-76 90.7 3006 12629 0.0 \. 880 2914 55265 12424 2 
217 Core Probe 7-17-78 85.0 2818 12366 0.0 1.880 2915 48294 108S? 2 
218 Core Probe 7-17-78 80.1 2656 12234 0.0 1.879 2913 43682 9820 4 
219 Cora Probn 7-17-78 ,.., ~'" "''' -0.1 1.879 2912 2:'J81 4964 7 
220 Cor. Frob. Aceol/Oocol 7-17-78 .. .., .. - - - . - 1 
221 Cor~ Probe 7-17-78 80.4 2665 12322 -0.2 1.759 2726 47565 10693 2 
222 OGV Probe 7-17-78 87.8 2908 12607 -0.3 1.661 2574 56995 12813 15 
nJ Core Probe 7-17- 78 80.1 2643 123\9 -0.1 1.629 2525 46982 10562 4 
22ft. ron No .. l. I'rob. 7-17"76 93.7 lOV6 Ill$4 ·'.0 1.~3/ 2362 74~)O 166~2 I' 
225 Car. Prob~ 7-17-78 93.8 3102 13188 -5.0 1.535 2380 - - 4 

~-
------- -~ --~ 

"'Concrote Surface 
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• Wall Kulite Locations 

Hardwall Bellmouth Inlet :k 
Sound Separation Probes 

Taped Vanes 

~ Taped Fan Exhaust 

Hardwall Core 

Figure 5, Treated Vane Evaluation Configuration • 
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Acoustic 
R~adinsa Comment 8~ 

145 Fan Nozzle Probe 
146 OGY Probe 
11,7 oey Probe 
148 Fan No~zle Probe 
149 Idle 
l~O 
1 ~1 
152 
15) 
154 
ns Doeel/Accel 
156 
IS! 
I ~6 
l~9 
160 
HI 
162 

I...--

~Concrot.o S\lrfaco 

,. . 

Table IV. Taped Vane Acoustic Data Points. 

A18 

Date PCNLR i:tlL XNII ROPDEG m2 

7-16-78 94.1 3094 13165 -5.0 1.535 
7-16-78 94.2 3096 13250 -5.0 1.535 
7-1.6-78 94.2 3093 12453 ~4.3 1.646 

7-16-78 94.2 3097 12425 +4.3 1.648 
7-16-78 54.5 1793 11099 4.8 1.625 
7-16-79 80.1 '"1.06 .. -'.0 1. 535 
7-11i-70 6).0 2777 120aS -4.7 1.5" 
7-16-78 90.0 2950 13154 -4.9 1.~35 

7-16-78 92.5 3040 13279 -4.9 1.535 
7-16-78 91 •• 6 3106 (326) -5.0 1.537 

1-16-78 .. - .. -5.0 1.5)7 

7-16-18 94.4 3094 12928 -3.3 1.535 
7-16-76 94.4 3095 13117 -4.3 1.~42 

7n16~7fl 94.5 309~ 13114 -4.9 1. '35 
7-16-78 94.4 3094 13375 -8 1 1. ~35 
7-16-78 94.$ 3094 12560 0.2 1.877 

7~16~78 94.5 3091, 1249b 1.7 1.694 
7-16-78 94,1, 3094 12369 4.3 1.659 

", 

• ,#' .... ~" ".,,,, ," .~" .. 'r""""" ,.~ . "."."." ,r""""~ ~ .. ~~, ,v .... ~ .. , •• ,,'~,~ .. ", ..... ,.". , .• "'.,.""",,"_' .... ~ .~~ .. 

FNRIN Probe 
tn. 2 N lb l....,roion. 

2380 74227 16687 6 
2380 - - 6 

2554 - - 6 
2554 .. - 6 
2519 - -
2380 - -
2330 .. .. 
2380 .. -
2380 .. .. 
2352 76394 17174 
2392 .. -
2360 69751 15682 
2390 73778 165[16 
2100 14098 16658 
2360 78920 17142 
2909 56048 12600 
2626 55532 12484 
2572 149215 11064 
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• Wall Kulite Locations 

--""-~ .... ~- .. -----~!----.. 

Variable Depth 
Inlat Tt:e1.ltment 

Separation'Probes 

V8~13blo Dopth Treated 
Fan Duct and Nozzle Flap 

Figure 6. Fully Suppressed Configuration • 

Turbine and 
Combustor Treatment 
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1r.nJ fully suppressed engine on the test stand is shown in Figure 7. The specific data points acquired are t~hulated in Table V. This fully suppressed configuration was tested in both forward and reverse thrust modes of operation • 

Evaluation of the core suppressor stacked treatment was conducted on the configuration shown schematically in Figure 8. Only the stacked treatment in the core was removed and replaced with hardwall panels. Acoustic data points are tabulated in Table VI. 

The final configuration tested was fully suppressed with wall treatment only - no splitter - in the fan bypass duct, shown schematically in Fig-<.1re 9. This configuration was tested at the acoustic data points listed in Table VII. 
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Table V. Fully Suppreosed Acoustic Data Points. 

Acoustic ! 
AlB FNIUN 

Read ings Comments'" Date I'CNLR XNL XNH ROPDEG 11\2 In.2 N lb 

42 nUCKsrollnd N(>i"u 1-3-73 0 0 0 - - - - -
43 500 Counts Core Cowl Cooling 1-3-78 0 0 0 - - - -
44 Idle 1-3-78 60.1 1683 10687 5.2 1.613 2500 24843 5585 

1,$ 1-3-78 79.6 2409 12111 -4.8 1.526 2366 58005 13040 

46 1-3-76 79.7 2497 12126 -4.7 1.527 2367 59055 13276 

47 1-3-78 89.6 280; 12506 -4.7 1.530 2371 74379 16721 

4t1 1-3-78 94.6 2962 12814 -4.6 1.530 2372 79832 17947 

49 1-)-78 9~.5 3023 12666 -4.6 I.S30 2372 60864 18179 

50 1-)-76 96.6 3022 12886 -4.7 1.489 2308 62110 18459 

5\ 1-3-78 96.7 3023 12001 3.7 1.859 2882 53460 12020 

52 1-4-76 96.4 3023 12001 I, .3 1. 736 2694 53979 12135 

~1 1-4-76 94.7 2971 11963 3.4 1.740 2697 - -
Idle 1-/,-16 60.3 \1\94 - 6.0 1.346 2089 - -

54 1-4-78 91 •• 4 2963 11966 4.3 1. 645 2~)0 536Bl 12068 

55 1-4-78 91.9 2872 11974 3.3 1.862 2886 $3601 12050 

S6 1-4-78 90.7 2837 11983 3.3 1. 738 2694 53265 11979 

~7 1-4-10 91.8 2870 1199$ 3.2 1.661 2685 53525 12033 

50 1-4- 78 69.4 2801 11997 1.3 1.861 2BUS 53303 12001 

59 1-/,-78 88.0 27% 11963 1.2 I. 71,0 2696 ~l~61 \204\ 

60 Aboftud - lligh Wind. 1-4-78 - - - - - -
61 Fan OGV/Nazzle Probe 3-10-78 94.6 3016 12157 5.2 1.646 2555 54566 12267 

62 Fan OGV/Nozzle Probe 3-10-78 96.5 3077 12256 3.2 1.862 2886 54793 12318 

63 (;ore Cowl Coollng 3-10-78 O· 0 0 0 - - 0 0 

(;4 IlAtkv,r1lUlI<' NO/H" 3-10-18 0 0 0 - - - . 0 0 

65 Idlo 4-3-,a 54.3 ) 7114 11567 -).0 1.61~ 250. 261,76 59)~ 

66 4-3-78 92.2 3028 13243 -S.O \.567 2460 74899 \6838 

67 4-3-7~ 97.2 3168 13467 -5.0 1.586 2459 76976 17305 

68 4-3-18 95.1 Jl23 13393 -5.0 1.587 2460 7S976 17080 

69 Aceei/Deeel 4-3-78 - - - -5.0 1.587 2460 -
70 '.-3-78 92.4 3027 13267 -5.0 1.553 2408 74735 16801 

71 4-3-78 96.5 316S 13470 -5.0 1. 551 21,05 77702 17468 

72 4-)-18 9~. 3 3126 131,38 ~5.0 I. 552 2406 77110 17335 

7:1 4-4-18 75.8 21.86 12412 -5.0 1.529 2370 50461 11)44 

74 4-4-18 96.0 3150 13448 -S.O 1. !i'lO 2371 77919 17517 

75 4-4-78 91 •• 8 3110 13415 -5.0 1. 530 2371 711,08 17402 

76 4-4-78 91.7 3009 13225 -5.0 1.530 2371 74441 16735 

71 4-4-78 89.8 2947 13076 -5.0 1.530 2371 71768 16134 

76 ~OO G\'!\lnt~ Core Cowl Cooling 4-1.-78 0 0 0 - - - 0 0 

79 lIa"kRrolllld N,,! .. ~ 4-1,·18 0 Q 0 - - - 0 0 

80 4-4-78 96.3 3122 1J436 -~.O 1. 1,09 2308 791711 17800 

81 4-1,-76 96.5 3129 13499 -5.0 1.419 2199 - -
62 4-4-76 91.8 3011 132Z9 -5.0 1.421 2203 74232 16688 

--

*(;ruvd SlIdace 

" '.~ ,~,. ,.,/,," .... '""',' ..... ~ ." .............. W! • 

Probe 
XMl1 11llt1leroionl 

-
---
0.607 
0.739 
0.821 
0.839 
0.822 
0.6\9 
0.613 --
0.590 
0.623 
0.609 
0.626 
0.629 
0.614 

0.593 ( 

- 3 
0 
0 
0.354 
0.773 
0.1l31 
0.809 

0.765 
0.618 
0.805 
0.~49 

0.808 
0.797 
0.747 
0.717 
0 

" 0.769 
0.731 
0.698 



.... 
IS> 

Table V. Fully Suppressed Acoustic Data Points. (Continued) 

A<ou~t. it 
lIoad i nllo (:OI1\l1I~l\t OW 

83 
84 
a~ 
86 
87 
88 
09 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
101. 
IO~ 
106 
107 
108 
109 
110 
III 
112 
113 
114 
11~ 
Il(, 
117 
118 
119 
120 
121 
122 
123 
124 
la 
1'.(, 
121 

IIne"ground NolHo 

Rellerse ThnBt 

Accel/Decel 
Baekgro\lnd Notae 
500 Counl8 eoru Cowl Coolina 
1<110 
UnekRrollnd NOi>lO 

Core Cowl Cool1ng 
Ul\clq~ro\lnd NoiA('~ 

Dn\kRrO\1nd No1t:Hl 
5UI) CountK Core Cowl Cool1ng 

l\CrHVl"] Sur{.1cc 

tll~~i\~I~ F1nun," 67 

Dnto 

4-4-78 
4-7-78 
4-7-76 
4-7-78 
4-7-76 
4-7-78 
4-1-73 
4-'-18 
4-7-78 
4-7-78 
4-1··78 
4-b-78 
4-8-78 
'.-8-78 
4-8"78 
4-8-78 
4-8-78 
'.-8-78 
4-8-78 
4-8-18 
4-8-78 
1.,·S-78 
1.-ll-78 
'.-8-78 
4-8-78 
4-6-78 
4-s-n 
4-8-76 
4-6-78 
4-8-78 
4-16-78 
1.-16,,78 
4-16-78 
4-16-16 
""lb-78 
4-1(.-78 
4-16-78 
4-16-78 
4-16-16 
4-16-78 
4-16-78 
4-16"78 
4-16-78 
4-11-76 
4-11-76 

relll,1I XNt. XNII 

92.0 3011 13242 
0 0 0 
51,.6 1782 11594 
57.8 111119 11183 
61. 3 2002 11989 
66.9 2185 12309 
63.9 2084 12114 
67.1 21M U:IH 
61.1 1991 11913 

- - -
0 0 0 
0 0 0 
55.5 1792 11531 
0 0 0 
94.0 3013 13271 
89.1 2856 12991 
86.8 2782 1284 • 
90.9 2914 13118 
80.0 2S64 1250) 
96.4 3090 13353 
90.8 2910 13063 
66.9 278t, 12809 
96.6 309~ IH99 
90.8 2909 13180 
86.8 2781 12900 
86.8 2781 12863 
90.S 2909 13220 
92.3 2959 13334 
0 a 0 
0 0 0 
0 0 0 
0 0 0 
57.2 1840 11309 
9C>.O 3066 12948 
96.0 )066 12983 
9~.O 30:'6 12936 
91.1 2930 126ij6 . 
87.0 2799 12531 
79.8 2567 12287 
76.1 JOll9 1297:).· 
9).0 lO~3 I~R~4 

91.9 2952 126,,;' 
90.9 2918 12687 
9L.1 30111 12957 
9Ul 'lim Im~ 

-

A18 FNR,N 
1I0PIl&O Cl2 In. 2 " lb 

I :310 
--

-~.O 1.49 74681 16769 
-5.0 -

·95.t' l~lar~I\'" -1 \1,19 -2567 
-9).0 FIAf" -1261.6 -261.3 
-9~.0 Flnre -14263 -3211 
-9~.0 Flare -16970 -3815 
-95.0 Flare -15476 -3468 
=~5.() nate ~16Y91 -3621 
-95.0 Flare -14074 '3164 
-95.0 flare - -
-9~.0 - - - -

-8.0 1.619 2510 - -
-8.0 1.619 2HU 29959 6735 
-8.0 - . - -
-8.0 I. ~26 236~ 81376 18294 
-8.0 1.526 2l6S 75944 17073 
-8.0 1.526 236$ 72039 16195 
.. 0.0 1.526 236$ 7821,0 lH89 
-6.0 1.526 2365 60198 lH31 
-8.0 1. 58\ 2451 79712 17920 
-8.0 1.581 2451 76634 17228 
"8.0 1. 581 2451 71647 16107 
-8.0 I. ~I.O 2400 .. -
-0.0 1.548 2400 79530 17879 
-8.0 1. 548 2400 7)562 16542 
-8.0 1.484 2300 72951 16400 
-8.0 1.4B4 2300 80197 18029 
-s.U 1. 41F. 2300 - -
-8.0 1. 484 2300 - -
-8.0 1.484 2300 - -
-3.3 1. 1.84 2300 - -
-3.3 1.484 2300 - -
-~.3 I. 612 2499 - -
-3.3 t. 612 2499 .. .. 
-3.3 I. ~22 2'160 77168 17348 
.. 1.3 , • ~~2 2)60 7~918 17061 
-3.3 1.522 2360 ?lOS) 1)geO 
-3.3 1.522 2360 64711 14501 
-3.3 1.522 2360 55127 12393 
-).3 1.b4~ 2)50 11,881 16834 
-1.3 1.64S 2HO 14227 16667 
-3.3 1.645 2550 70202 151H2 
-3.3 \. 58 2450 71132 15991 
-3.3 t. ," 24'0 1639U 171H 
-).) I. ~~ ~I.~Q 74~Q3 III?I.? 

Probe 
lOIl1 l .... oralon. 

0.731 

------. ------
0.853 
0.753 
0.7H 

-
0.615 
0.906 
0.793 
0.725 
" 
0.838 i 

0.735 
0.708 I 

0.790 
-------
0.764 
0.71.8 
O.b9~ 
O.bB 
O.HO 
0.184 
0.170 
0.718 
0.701 
0.761 
Q.71.3 I --
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Tablo V. Fully Suppressed Acoustic Data Pointe. (Conc1l.,ded) 

Acou 
Rr.d 

--i1fii-
129 
130 
131 
132 
I)) lJ4( 13> 
136 
131 
138 
I :I'J ( 
140 
I lei 
1/,2 \ 
143 
1101. 

Co .... ent.* 

~"'-------' 

~('v(!rtw 

"IonlHl 

Uil('lq~roun't No!"", 
~.dlity On 
Idle 

1'1\<01 1 Ity Off 
foci lity On 
1.11 p 

Apprn,lmnt.l, BO% 
Approximatel, 92% 
1<11 " 

"'(:rl\\,c 1 Sur r net! 

Oato 
~~....;-

4-17-76 
4-17-78 
4-11-78 
4-11-78 
4-J 1 .. 16 
4-11-70 
4-17-78 
4-21-78 
4-21-78 
4-21-78 
4-21-78 
4-21-76 
4-27-73 
4-27-78 
4-21- 16 
4q 27-1S 
4-27-78 

PCNI.R XNL XNII nOPI>KG ---94.7 3036 12900 -3.3 
96.2 3086 13002 -3.3 
90.7 2909 12730 -3.3 
90.9 2913 12758 -3.3 
96.2 JOU) 13021 -3.3 
94.8 3040 13007 -3.3 
'6.2 1613 11400 -3.3 
0 0 0 -100 
0 0 0 -100 
56.8 1806 11227 -100 
82.4 2625 12435 -100 
0 0 0 
0 0 0 
57.6 IIJ74 10870 -5.1 
60.3 2$97 11941 +3.3 
92.11 2996 120~0 +3.3 
53.7 1736 10960 +3.3 

"C,"'" Pruhe and Ono l'M-F1~ld Mlcrophono at 110· on n 47.2 m (155 ft) orc. 

Al8 FNRIN 
m2 In. 2 N Ib 

1.546 2400 74B2 16760 
1.548 2400 76687 17240 
1.548 2400 69021 15518 
1.484 2300 - -1.484 2JOO 71891 17512 
).484 2300 - -1.811 2900 - -Flared 0 0 

Flared 0 0 
Flared -11361 -2554 
,'111.:0<1 -21120 . -I, 748 

0 0 
0 0 

1.875 2906 - -1.675 2906 - -1.875 2906 - -1.815 2906 - -

Probe 
XliII Immoralon. f.....--._--
0.137 
0.749 
0.68S -0.742 

I 
1 
1 



N ..... 

8 Wall Kulite Locationu 

------_ .. ---- -

Figura 8. Configuration for Core Suppressor Evaluation. 
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Table VI. Fully Suppressed/Hard-Core Acoustic Data Points. 

r ....... -- --~" .. ,....-.---. 
Acoustic 
R~ndinr,M Comments* Date 

A16 FNRIN Probe 
PCHLR XNL XIIH ROPDEC ",2 in. 2 II Ib XMll Immersions 

226 Idle 7-19-78 -50.4 16H 11002 ~0.4 1.817 2910 168$2 4238 0,)13 
227 7-19-78 79.9 262S 122S7 -0.1 1.879 2913 46422 10436 0.552 
226 7-19-78 8$.1 2796 12416 ~O.1 I. 879 2912 50510 11355 0.587 
22') 7-19-78 89.9 ~9$4 12~80 -0.1 1.879 2912 SHII 12/" 2 0.626 
230 Accel/Dcoel 7-19-78 - - - -0.1 1.879 2912 - - -231 7-19-78 79.7 2621 12228 0.1 I. 750 2712 44656 10039 0.527 
232 7-19-78 19.7 2623 12264 -0.3 1.628 ~S23 45599 10251 0.5n 
233 7-19-71\ 88.8 2918 12593 -0.1 1.6(,0 2S73 5S856 125S7 0.603 
234 Inlet Prob~ 7-19-78 89.0 2918 12593 0 1.660 2573 ~~856 125~7 0.603 6 
23S 7-19-76 91.1\ 3018 12367 3.2 1.878 2911 47663 107n 0.563 
230 7-19-70 94.0 3093 12S46 1.8 1.693 2625 53726 12078 0.592 
2:17 7-19-78 94.1 3093 12608 0.2 1.879 2913 54807 12321 0.()25 
218 7-19-7b 8a.9 2922 12468 0.0 1.660 2574 53263 11974 0.581 
2 3~ 7-19-76 91 •• 3 30a9 12948 -3.3 1. 537 2383 69116 15538 0.682 
21H) 7-19-78 94.1 30S6 IJI4~ -5.1 1. S3a 2384 73133 1041 0.73' 
241 Inlot Probe 7-19-78 'II, .1 3066 131 /.5 -~.I 1.538 2384 73133 16441 0.735 6 
21,2 7-19-78 92.6 303S DOH -5.2 l.H7 2383 70&56 15884 0.700 
243 7-19-78 90.0 2950 12897 -!:t.l \. 537 2383 67008 IS064 0.666 
2/,4 7-19-78 85.2 2796 12703 ... ~.O I. 537 2383 61332 13788 0.619 
21,S 7-19-78 79.9 2625 12~21 ~:;.1 \.ns 2384 54184 12181 0.5~9 
246 Accrl/Oecel 7-19-78 - - - -5.1 1.538 2384 - - -
1.,1 1-19-7(1 '14.1 3089 13399 -8.0 I. 539 238S 77110 l73n O.77S 
~I,II Arlny ~f)' 7-19-711 92.1 )(l56 1320A "~h3 1.~37 2383 73996 16bH 0.717 
249 Arr.y 6n' 7~1'1-76 92.1 3()5~ 132H .~;. ) \.537 2382 72613 Ibn4 0.721 
2S0 Army SU' 7-19-78 92.1 3055 13275 -S.3 I. 537 2382 72613 16324 0.721 
2S I Array 100' 7-19-78 92.1 305, 13275 -5.3 1. 537 2382 72613 16324 0.721 
2;2 ArrllY 110' 7-19-78 92 .1 3055 13275 -5.3 I. 537 2382 72613 16374 0.721 
2S) """/lY I ?()' 7-19-70 92.1 305S 1327~ -~. ) \. '37 2362 72613 1(,321, 0.721 
2';4 Array 120' 7-19-78 89.1, 2965 12661 0.0 l. 537 2550 72613 16324 0.721 
25S Array 110' 7-19-78 89.4 296S 12661 0.0 l. 537 25S0 72613 16324 0.721 
256 Array 100' 7-19-78 
2',7 Arrlly 80' 7-19-78 
2 ~8 Arr.y 60' 7-19-76 

89.4 296S 12661 0.0 1.537 2SS0 72613 1()324 0.721 
69.4 296S 12661 0.0 I.B7 2S50 72()13 16324 0.721 
89.1, 2965 12661 0.0 l. 537 2550 72613 16324 0.721 

2S9 Arr.,y SO· 7-19-18 89.4 2965 12()()1 0.0 I. 537 2550 72613 16324 0.721 
2hO t:t')f.t' I'rohu 7-19-78 89.1, 2965 12M I 0.0 1.537 ~550 72613 16324 0.721 2 
2bl oav I'r"~~ 7-19-7~ 89.4 2965 12616 0.0 I.S37 2~50 721)\ 3 16324 0.721 6 
262 Fan No~.le Probe 7-19-76 89.4 2964 12620 0.0 \. 537 2550 7261l 16324 0,721 6 
263 Corr Proh(' 7-19-78 
2b4 r.llr~ Pr;,b~ 7-19-78 

89.9 2987 12631, 0.1 \.879 2912 52894 11891 0.616 2 
8~.O 2827 12418 0.1 1.B80 2914 471,67 10671 0.566 2 

-
.C')I\~rQt~ S\lrf"cc 
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Table VI. Fully Suppressed/Hard-Core Acoustic Data Points. (Concluded) 

--
~COUDt Ie AlB FNRIN Probe 
1I.4d!n8° Comm~nt ,* Date PCNLR XNL XNH ROPDEG .. 2 In.2 N Ib XMII llmler.lona 

265 Core Probe 7-19-78 80.0 2657 12268 0.1 1.879 2913 43032 9674 0.522 4 
Zf>b Cor~ .Prob~ 7-19-78 54.1 1799 11347 -0.2 1.877 2910 216)4 41>68 0.343 2 
'.67 Core Probe Accel/Doc.1 7-19-78 - - - -0.2 1.877 2910 - - -
266 Cou .'robo 7-19-78 79.9 2656 12352 -0.3 1.157 2724 46150 10375 0.534 2 
269 Core Probe 7-19-78 79.9 265(, 12357 0.1 1.628 2524 46166 10379 0.521 4 
270 Core Probe 7-19-78 93.1 3094 13189 -4.0 1. 537 2362 71541 .160113 0.713 4 
271 OGV Prob" 7-20-76 93.1 3094 13189 -4.8 1. 537 2382 71541 16083 0.713 6 

I 272 Fan No"zle Probe 7-20-78 93.2 3093 13212 -4.6 1.537 2382 71541 16083 0.711 6 
273 lIndercowl Cooling 7-20-78 0 0 0 - - - 0 0 0 

I 
271, BlIckground Noine 7-20-78 0 0 0 - - - 0 0 0 

-
~ConcrQto Surfnto 

~ 
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• Wall Kulite Locations 
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Figure 9. Splittor Effect Configuration. 
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Table VII. Fully Suppressed/No Splitter Acoustic Data Points. 

". 
Acoust ic 

Al8 FNRtN Probe Readings Comments· Date PCNLR XNL XNH ROPDEC 1102 In. 2 UllR N Ib XMII laaer.ionl 

274 Background N~I". 7-20-78 0 0 0 - - - - - - -27$ 7-20-78 53.9 1792 11344 0.0 1.875 2907 '14 21970 4939 0.346 276 7-21-78 79.7 2650 12340 0.2 1.877 291(1 724 1,4424 9987 0.536 ~77 7-21-70 8; .1 2630 a516 0.1 I.U77 2910 764 49$21. 11134 0.'83 va 7-21'70 90.1 2996 12710 0.0 1.877 2909 798 '44" 12233 0.627 219 7-21-78 80.0 2611 12355 0.0 I. 742 2700 - - - -280 7-21-76 80.0 2671 12386 0.0 1.626 2521 702 45119 10278 0.512 281 7-21-78 89.2 2951, 12125 0.1 1.650 2557 779 HI,20 12459 0.602 ,li2 7-21-78 91.9 3060 :2456 3.3 1.871 2900 283 7-21-78 79.8 2652 12675 -S.I I. 535 2379 7H 54784 12316 O.HO 284 7-21-76 84.9 2818 12917 -S •. I 1.535 2379 798 61764 13885 0.627 2K5 

I 
7-21-78 90.4 2996 IJI64 -5.1 I. ", lJ79 84' 69713 1)672 0.701 2116 7-21-711 92.7 3074 13298 -$ .1 1.5H 2360 860 72880 16364 0.729 281 1-21-78 93.4 3097 13320 -5.0 1.535 2380 858 73071 16427 0.726 28M :nrw Proho 7-21.-78 93.2 3094 13332 -5.1 1. 535 2380 868 73102 16434 0.746 15 289 O,col/Acce1 1-21-78 - - - -5.1 1. '35 2380 - - - -2911 7-21-18 93.0 llOO 13158 -5.0 I. 535 2380 - - - -291 7-21-78 92.3 3063 131,70 -7.9 1.535 2~80 8,H 74534 16756 0.768 292 Core Probe Idle 7-21-76 48.3 1603 10911 0 1.871 2900 - - - - 2 293 Core Probe 7-21-78 80.1 2657 12300 0.3 1.871 2900 - - - - 4 294 Corl! Probe 7-21-7B, 85.0 2819 12490 0.1 1.871 2900 - - - - 2 295 Cor .. Prllbo 7-21-18 90.11 2905 12651 0 1.871 2900 - - - - 2 296 F.n No .. le Probe 7-21-18 93.3 3093 IjlBI, -5.0 1.535 2380 - - - - 15 297 OOV Probe 7-21-78 89.0 2944 IlS70 0.0 1.659 2H2 764 '2649 11836 0.582 IS 298 FOil NOHI. Proh. 7-21-18 89.0 2944 12510 0.0 I. (~9 2512 - - - - 6 - -~~ 

.Concreto Surrnr.o 
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4.0 ACOUSTIC INSTRUMENTATION 

4.1 DA~ ACQUISITION 

Acoustic data were acquired on this engine using a vari~ty ~f acoustic 

instrumentation including far-field microphones, a directio~al acoustic array, 

in-duct wal1-mounted Kulites, and in-duct sound separation probe3. 

4.1.1 Far-Field Instrumentation 

The far-field data acqu1s1t10n system is presented schematically in Fig

ure 10. Initial testing (through acoustic Reading 144) was conducted over a 

gravel surface. This surface consisted of a leveled semicircle of approxi

mately 76 m (~50 ft) radius ~th a crushed rock surface composed of rock sizes 

of approxieately 2.5 to 5 CD (1 to 3 in.) diameter. Far-field microphones 

were located at acoustic angles of 10 0 through 1600 in 10° increments on a 

45.7 m (150 ft) arc centered near the fan rotor plane. Standard microphone 

height over the gravel surface was 12.2 m (40 ft). This hei~ht was selected 

. in the early 1970's to s~ulate ground reflection patterns for the flight 

case, experienced ~th a 1.22 m (4 ft) microphoP2 height. To aid in estab

lishing the free-field corrections over the gravel surface, four microphones 

were located 1.22 m (4 ft) off the ground at acoustic angles of 60, 100, 110, 

and 120· during portions of the testing. A photograph of the gravel sound 

field snd 12.2 m (40 ft) to~ers is sho~ in Figure 11. 

Subsequent testing was conducted after the acoustic arena had been paved 

with concrete. Microphones were located at engine centerline height 3.96 m 

(13 ft) above the concrete and 1.27 cm (0.5 in.) above the concrete at acous

tic angles of 20 to 1600 in 100 increments. Figure 12 shows the concrete 

sound fi(~ld used for the ~:SEE test program. Microphone stands were located 

on a 46.5 m (152.4 ft) arc, centered on the fan rotor plane. A photograph 

of the microphone system and support stands for the concrete field is shown 

in Figure 13. 

Other far-field acoustic instrumentation included a Directional Acoustic 

Array, as sho~~ in Figure 14. Details of the directional characteristics of 

the Array can be fOh-nd in Reference 5. The Array was positioned on a 30 m 

(100 ft) arc at acoustic angles of 50, 60, 80, 100, 110, and 120°. While at 

each angle, it was aimed at seven different positions on the engine including 

the inlet, fan bypass exhaust nozzle, and core nozzle. Post run analysis then 

determined the relative contribution from each aiming point on the engine at 

each of the six far-field acoustic angles. 

A schematic of the far-field- acoustic data acquls1tlon system used is 

shown on Figure 15. The system is used for obtaining data from 50 Hz through 

the 20 ~~z 1/3-octave center frequency band. Microphone types utilized for 

far-field data acquisition are the Bruel and Kjaer (B&K) 4133 and 4134 1.27 cm 

(0.5 in.) condenser microphones. The 4134 microphones, oriented for 90° inci

dence, were utilized for ground plane measurements and 4133 microphones, orien-

26 
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Figure 10. Sound Field Acoustic Instrumentation. 
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Fi~ure 15. Acoustic Microphone Data Acquisition System. 
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ted for 0° incidence, were utilized fOL centerline height measurements. All 

microphone systems utilized the B&K 2615 cathode follower and B&K 2801 power 

supply with the son output option to provide a flat reaponse through the 20 kHz 

region of interEst. 

All data were recorded using two Sangareo Sabre IV FM tape systems opera

ted in IRIG intermediate band mode at a tape speed of 76 em per second (30 

ips). The overall frequency response of the acquisition and reduction system 

was determined for each channel by recording a pi~~ noise signal through the 

cathode follower ~ith playback and processing through the data reduction sys

tem. these corrections were then included in the data processing to account 

for flatness deviations in system response. 

During ~esting. on-line quick-look 1/3-octave data were obtained using 

a General Radio 1921 spectrum analyzer and plots obtained .ith an X-Y plotter. 

Normalization of the tape amplifiers and a selecter switch permitted obtaining 

absolute level spectra (without system corrections) of any of the far field 

microphones. 

4.1.2 In-Duct Kulites 

Internal acoustic instrumentation for these tests consisted of Kulites 

flush~Qunted en the flowpath walls and probe-mounted Ku1ites which could be 

immersed into the flow. All in-duct instrumentation is tabulated in Table 

VIII. A schematic of the Kulite data acquisition system is given in Figure 16. 

The probes used in the fan duct tad either two or three flush~~unted 

Kulite sensors on them. A three-element probe is shown in the insert in Fig

ur~ 16. !be probe used in the core nozzle had two elements and was water

cooled to permit immersion in the hot exhaust. These multiple-element probes. 

as reported previously in Reference 6. are known as sound separation probeS 

and permit discrimination between broad band sound and turbulence in duct 

probe measurements. All probes ~~re traversible radially to provide data 

across the duct. 

4.2 DAtA P~DUCTION 

Off-line reduction of the recorded data was performed using an automated 

l/3-octave reduction system, shown schematically on Figure 17. The recorded 

data were played back on a CEC 3700B, 28-track system, with electronics capa

ble of reproducing L~IG wide band Groups I and II and intermediate band data. 

All It3-octave analyses were performed using a General Radio 1921 1/3-octave 

analyzer. A normal integrat ion t:-i1.t;' of 32 seconds was used to provide ade

quate sampling of the low frequency portion of the data signal. The data fre

quency range for the QCSEE UTW test series was 50 Hz through 20 kHz. Each 

data channel is passed through an interface to a GEPAC 30 computer, where data 

are corrected for frequency response of the acquisition and reduction system 

and for :::icrophone head response. A "quick-look" display of r~sults is pro

vided by ceans of a Terminet 300 console with data transferred and stored 
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Table VIII. In-Duct Acoustic Instrumentation. 

Engine 

Item Station Angle* 

Inlet Throat Probe (3-element SSp) 115.0 120 

------- Inlet Wall Kulite 106.6 270 

Inlet Wall Kulite 122.8 270 

Inlet Wall Kulite 136.4 210 

Inlet Wall Kulite 157.0 280 

Fan Face Probe (Z-ele2ent SSp) 154.8 180 

Fan Frame Wall Kulite 188.5 no 

OGV Exit Probe (3-element SSp) 204.5 282 

Fan Exhaust Wall Kulite 204.1 112 

Fan Exhaust Wall Kulite 
213.0 I 110 

Fan Exhaust Wall Kulite 230.0 no 
Fan Exhaust Wall Kulite 242.0 110 

F~~ Nozzle Probe (3-element SSp) 267.4 90 

Core Nozzle Probe (2-element ~ter-cooled SSp) 2.~. 7-' 270 

*aft looking forward 

':>~ 
~-. 
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Figure 17. General Electric Company Acoustic Data Reduction System. 
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in the Honeywell 6000 system by a direct timesharing link. Processing in the 
6000 system is perfo~ed ~ith the Full-Scale Data Reduction (FSD~) program, 
Where calcul~tions are performed correcting data for atmospheric attenuation 
in ~ccordance tiith Reference 7 with all data output corrected to 298 K 
(77· F), 70% relative humidity, acoustic standard day. Additional calcula
tions, including data scaling, extrapolations, perceived noise level (PNL). 
overall sound pressure level (OASPL), and sound power level (FWL) also are 
performed. As an option. the output of FSDR is written to digital magnetic 
tape for subsequent data plotting with Calcomp p!~tter routines. 

Other data reduction techniques were also used. Constant bandwidth nar
row band spectra were reduced on the Federal Scientific li~6. Complex time 
series analysis such as cross correlation. coherence functions, and probabil
ity density were processed through the General Radio/Time Data System. a com
puter based system incorporating analysis techniques in both the time and 
frequency domains. 
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5.0 FORWARD THRUST ACOUSTIC RESULTS 

The bulk of the testing on the UTW composite nacelle was devoted to mea
suring and evaluating forward thrust noi~e levels. Approximately 275 acoustic 
data points ~ere taken on four confi8ur.ations. Reporting on these data will be 
accomplished by investigating the inlet-radiated and exhaust-radiated noise 
and then evaluating the engine system noise levels and ho~ these levels com
pare to the noise goals of the QCSEE program. 

5.1 INLET-RADIATED tiOrSE 

Analysis of the inlet-radiated noise is divided into t~ main categories 
basic source noise levels and the suppression achieved with the hybrid inlet. 

5.1.1 Baseline Noise Levels 

The inlet for the baseline configuration was a p~rdwall cylindrical bell
mouth as shawn in Figures 2 and 3, and the fan ~laust duct walls were rendered 
hardwall with metallic tape over the treatment. There was frame treatment be
r~een the rotor and the OGV's plus treatment on the pressure side of the vanes. 

A.q part of the engine design procedure, detailed estimates of the far
field noise were made at select angles. 'Ihese est~ates utilized model data 
~ere @v~ilable and ~pirical correlations from General Electric experience 
on other engines. Figure 18 compa~es predicted constituents. their total. 
and eeasured spectra at 60· on a 46.5 m (152.4 ft) arc at takeoff thrust. 
Several different combinations of speed, blade angle. and fan bypass nozzle 
area give representative measured results. In Lne low frequencies below 250 
Hz. there is good agreement; however, at higher frequencies, the measured 
levels are consistently higher than predicted. Measured P~L'S are 3.4 to 4.5 
PNdB higher than predicted. Higher-than-predicted noise levels are evident in 
the 1/3-octave bands which contain the fan BPF (1000 Hz), its second harmonic 
(2000 Hz), and the fan third harmonic (2500 Hz). In an effort to understand 
~nether higher-than-predicted tones or fan broadband noise caused the P~L to 
be higher than predicted, a study was made by arbitrarily reducing the BPF and 
its harmonics by 5 dB in various combinations. The study indicated that a 5 
dB reduction on the BPF reduced th~ PfJL by 0.5 PRdB. Individual reductions of 
5 dB on the band containing the second V~ third harmonic lowered the P~L by 
only 0.2 PNdB. Reducing all three bands by 5 dB lowered the PNL by 1.2 PNdB. 
It appears that while higher-than-predicted fan tones can contribute up to 1.2 
PNdB of the 3.4 to 4.5 PNdB increase over predicred, the remaining increase 
must be due to fan broadband noise above 250 Hz. 

At approach, measured levels- are also higher than predicted over the en
tire frequency spectr~ as shown in Figure 19, and range from 1.1 to 2.7 PNdB 
higher. l~te the variations in fan speeds, blade angles, ar~ fan bypass noz
zle area tr~t could be used to give approach thrust. 
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A study s~ilar to that performed at takeoff was completed for approach conditions. Fi~~ dB reductions on the BPF 5 second. and third harmonic individually reduced the PNL by 0.2. 0.2, and 0.3 PNdB respectively. A 5 dB reduction simultaneously on all three bands reduced the PNL by 0.7 PNdB. This indicates that higher-than-predicted tone levels do contribute to the PNL increase observed; however, there must also be a contribution from broadband noise. 

Rarro~~and spectra for takeoff and approach are shown in Figure 20. These spectra indicate that 1/3-octave bands above 3150 Hz are controlled by broadband noise even though fan tones are present in the narrow bands. For exaaple, examine the tone at 3720 Hz in the approach spectra. This tone would fall in the 4000 Hz 1/3-octave band. The tone level is 82 dB and the broadband level from 3560 to 4450 Hz averages 73 dB. Converting the broadband noise to 1/3-octave band level [10 Log(445O-3560)/20] adds 16.5 dB to the broadband level raising it to 89.5 dB which is 7 dB higher than the tone. Thus, the fan tones above 3150 Hz do not contribute significantly to the 1/3-octave band level. 

The reason for these higher-than-predicted baseline levels is not completely understood at this time. As will be shown later, exhaust radiated baseline noise at 1200 is also higher ~ban predicted. To determine whether the exhaust radiated noise could be controlling or contributing significantly at 60·, directional array data were analyzed. Only approach data Yere available for the baseline at 600 and these relative noise levels are shown in Figure 21 for 1000 to 4000 Hz. Noise coming from the inlet is clearly dominant except at 1250 Hz Where the exhaust constituent is dOb~ only 3 dB. 

As a further aid in understanding the inlet-radiated noise measured at the far field 60e microphone. a probability density analysis was performed on the fan BPF and fan second harmonic tones. Figure 22 indicates that these signals at takeoff ~~d approach have a random-amplitude probability distribution. This implies that a random mechanism such as rotor-turbulencegenerated noise may be the source of the inlet-radiated fan BPY and second harmonic tones on the baseline UTW engine. Such a result is not unexpected for a static outdoor engine test • 

One of the potential advantages of a variable pitch fan was thought. to be the capability of minimizing fan noise at constant thrust, as was demonstrated in Reference 8, by continuously optimizing blade incidence angle and leading over the fan speed range. Data at approach thrust are presented in Figure 23 for several fan bypass nozzle areas. Ph~ is nearly constant with blade angle, with a slight trend toward lower noise at the more closed blade angles. The BPF shows a lot of scatter which is not surprising with a rotorturbulence-generated noise source, and there is a trend for lower BPF noise at more closed blade angles. The 5000 Hz sound pressure level (SPL) ~ich is representative of high frequency broadband noise is also relatively flat with blade angle. Tnese data from several fan nozzle areas indicate little or no effect of fan blade stagger angle on inlet-,adiated noise. 
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From an engine and acoustic system standpoint, the most desirable combi
nation of blade angle; fan speed, and fan bypass nozzle area is higa fan speed, 
open nozzle area~ and ciosed down blade to achieve thrust. The high fan speed 
provides for quick respcnse--from approach to takeoff thrust in the event of a 
wave-off or missed approach. Large fan bypass nozzle area decreases the ex
haust velocity and hence the jet/flap interaction noise. From the data in 
Figur~ 23, there is no apparent acoustic penalty for operating with high fan 
speed, open nozzle, and closed blade. 

Figcre 24 presents the variations in noise with thrust for several blade 
angles and for fan nozzle areas near takeoff setting. PNL and the 5000 Hz SPL 
show very little change with respect to blade angle. At the higher thrusts, it 
appears that the more open nozzle area data are slightly higher by I to 2 dB. 
The aPF SPL shows a lot of scatter but no significant trends with regard to 
blade angle or nozzle area. 

The baseline data presented here for the QCSEE UTW variable pitch fan 
have indicated no optimum blade angle for minimum noise over the range of 
blade angles tested. Fan source mechanisms are many and varied for a static 
fan test. For example, one of the major noise sources is knovn statically to 
be the interaction of the rotor with inlet turbulence. This source appears 
to be made up of both a dipole SO'lrce and a quadrupole source; one of "''bieh 
varies ~ith blade loading and one independent of loading. If, for this fan 
design, the dipole, rotor-turbulence interaction source controls, then no 
change "'~th blade angle would be expected to occur. In flight, however, the 
ingested turbulence is no longer affected by the contraction ratio of the 
static inlet and this rotor-turbulence interaction noise is reduced. In the 
flight case then, the effect of blade angle may be important. 

5.1.2 Inlet Suppression 

The UTW composite nacelle inlet acoustic design was based upon scale-model 
tests in the General Electric Company anechoic Lhamber (Reference 9). Suppres
sion objectives for the inlet, which is shown schematically in Figure 25, were 
12.8 PNdB at takeoff vith a 0.79 throat }~ch number and 6.3 F~dB at approach. 
More details of the inlet design and suppression objectives are available in 
Reference 1. Basically, the design was a hybrid inlet which relied on high 
throat ~~ch number suppression at takeoff and utilized single-degree of-freedom 
wall treatment for approach and reverse thrust suppression. 

Variation in PNL as a function of inlet throat Mach number is presented 
in Figure 26 for acoustic angles of 50 and 60 0

• Data are shom! from different 
blade angles and indicate that there is very litth variation with blade angle. 
Baseline levels are from a hardwall cylindrical inlet with a bellmouth and 
have a low iulet throat Mach number. For comparison purposes, these baseline 
data are plotted at ~~ equivalent Y~ch number which the same engine setting 
would give with the high Mach number inlet. Suppressed data at both angles 
tend to flatten out at throat !1ach numbers of 0.75 and higher. The anticipa
ted variation in suppressed inlet PNL with throat Mach number is based on the 
model tests as shown at 60°. 
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Design Frequencies 
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2 2500 Hz 1600 Hz 

3 1600 Hz lOCO Hz 

FiEare 25. Inlet Schematic and Design Details. 
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Analysis of directional array data at a throat Mach number of 0.73 indi
cated that exhaust radiated fan noise was a major contributor to the forward 
quadrant noise levels in the frequency range of 1250 to 4000 Hz (operating 
frequency range of the directional array). Figure 27 indicates the relative 
SPL's from various ai2ing points on the engine at an acoustic angle of 60·. 
For the frequen~ies shown, exhaust radiated noise from the last three a~ing 
points is a major noise source at 60°. On a spectral basis in Figure 28, cor
recting the noise levels at 60· to inlet radiated noise only results in the 
revised SPL spectrua and suppression spectrum shown Which' results in 2 PNdB 
more suppression. This is in agreement with the scale-modeL inlet radiated 
curve superimposed on the data in Figure 26. 7 lis scale-model curve indicates 
that the inlet suppression is 14 to 15 PNdB at 0.79 throat Mach number - well 
above the goal of 12.8 PNdB. Earlier tests of a similar inlet on the QCSEE 
OTW engine, as reported in Reference 10, produced inlet suppression of 14 PNdB 
at 0.79 throat P~ch number. 

As ~ntioned earlier, one of the unique features of a variable pitch fan 
is its capability to hold constant approach thrust at a variety of blade angle 
and nozzle combinations. A desirable combination is high fan speed (to reduce 
engine response t~ in the event of a wave off) and open fan nozzle (for low
ered jet velocity and therefore jet/flap noise). This desirable ~ombination 
was tested along with several other combinations, as shown in Figure 29. Here 
the fully suppressed p~~ is nearly constant with blade angle. At the closed 
blade angles and high fan speeds, inlet suppression is about 4.0 dB. It was 
anticipated that 6.3 PNdB inlet suppression would be achieved with the snoy 
treatment of the hybrid inlet at the low inlet Mach numbers associated with 
approach. ~~ile the design (on which acoustic predictions were based) called 
for a treated inlet length to fan diameter ratio (LID) of 0.74. the inlet 
actually had a treated LIn of 0.67, as noted in Figure 25. On a linear basis, 
the suppression would be less by 0.6 PNdB; therefore. the estimated suppres
sion for this inlet is 5.7 PNdB compared to 4.0 measured at the approach 
points with closed blade angle. 

It is apparent in Figure 29 that a slightly higher level of PNL suppres
sion of about 6 PNdB could be achieved at blade angles that were opened sev
eral degrees from the closed blade angles associated with the high fan speed, 
low nozzle area point discussed above. Predicted suppression levels were 
not calculated for this condition. 

Figure 30 compares inlet su?pression spectra observed with the wall
treated high throat Mach number (hybrid) inlet at approach thrust. Data are 
present~d for three exhaust configurations. In the low freqcency region from 
315 to 630 Hz, suppression is increased by the presence of the stacked treat
ment in the core, indicating tha~ these frequencies are exhaust-radiated core 
noise controlled. and not inlet-radiated faL 1oise. Above 1000 Hz, the sup
pression spactra are generally independent of ~haust configuration indica
ting that these frequencies are inlet radiated. The directional array results 
shc~ in Figure 31 confirm that the approach SPL's at 2000 to 4000 Hz are inlet 
radiated. At 1250 and 1600 Hz, there appears to be some contribution fro~ the 
exhaust quadrant. At these lower irequencies, core noise may be the contribu
tor; because, for the configuration on which thes~ array results were measured. 
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the core was hardwall. The exhaust radiated noise had only a small effect on 
the fo~ard radiated noise levels. PNL calculations made with the e~laust 
radiated components removed from the 800, 1000, and 1250 Hz band only increased 
suppression by 0.2 PNdB. 

5.2 EXEAUST-PJUlIATED NOISE 

The UTW engine. as shown schematically in Figure I, incorporated many low 
noise features in the fan and core exhaust to lower exhaust-radiated noise. 
Baseline levels of the fan will be compared with pretest predictions and the 
performance of the low noise features will be discussed in the following sec
tions. 

5.2.1 Baseline Noise Levels 

Prior to testing the UTW engine. estUnates were made of the individual 
exhaust-radiated co~ponents for static tests at takeoff and approach. ~
p~riso~s of the preaicted and measured baseline spectra are presented ir. Fig
ures 32 and 33 at takeoff and approach, respectively. At low frequencies. 
the system noise level. composed primarily of jet noise, is either as pre
dicted or lower. At higher frequencies, hon~ver. the measured spectra are 
consistently higher than predicted resulting in the measured Ph~ being 2.6 to 
5.5 PHdR higher than predicted. As was the case for the inlet-radiated spec
tra, the 1/3-octave bands include both fan tones and broadband noise. As 
indicated in the narrow band spectra of Figure 34, these tones control the 
1/3-octave bands of 1000. 2000, &nd contribute significantly to 2500 Hz. At 
frequencies above 3CQQ Hz, the fan tones do not contribute significantly to 
the 1/3-oct&ve band level. To determine if higher-than-predicted tone con-
tent heavily influenced the PNL t s 9 a study ~as conducted which reduced the 
1000. 2000, and 2500 Hz l/3-octave bands by 5 dB. Such a reduction on these 
bands containing the first three fan tones, reduced the PNL by 0.6 PNdB at 
both takeoff and approach. This indicates that higher-than-predicted fan 
broadband noise accounts for the higher-than-predicted exhaust radiated base
line noise levels. In Figures 35 and 36, at takeoff and approach, respectively, 
the directional a~ray indicates that the high frequency broadband noise reaching 
the far-field microphone at lZO° on a 30.48 m (100 ft) arc is exhaust-radiated 
with the fan bypass nozzle being the main source. In Figure 36 at 1000 Hz, 
which contains the fan BPF, there appears to be a strong contribution from 
Aiming Point 4 ~~ere the fan duct attaches to the fan frame. This could indi
cate a leakage path; however, this high level is not observed at other angles 
and other speeds. 

Results from a probability density analysis of the fan BPF and second 
har.eonic tones are presented in Figure 37. These signals in the aft quadrant 
have a random amplit~~e probability distribution (as they did in the inlet) 
~tich implies that a random mechanism, such as rotor-turbulence generated 
noise, may be the do~inant source mechanism. 

At approach thrust, the inlet-radiated noise showed very little variation 
with blade angle. Figure 38 shows the variation in aft quadrant noise with 
blade angle. Tnere is a slight tendency for the BPF to decrease as the blades 
are closed; however, the high frequency SPL's and the PNL's are essentially 
invariant with blade angle over the range tested. 
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Due ~o the limited blade angle variation at takeoff thrust, noise levels 
were plotted as a function of thrust for fan bypass nozzle areas near takeoff. 
the data. shown in Figure 39. indicated no significant variation in noise with 
blade liIlgle. As with the inlet-radiated tone noise, it appears that a fan 
source mechanism such as the dipole. rotor-turbulence interaction is control
ling and thus no change with blade angle would be expected to occur. Under a 
turbulence-free environment such as in flight, the effect of blade angle could 
be ~rtant as a means of minimizing tone noise. Rotor turbulence generally 
works on tones; however, recent studies have indicated that high frequency 
broad band noise can also be attributed to rotor turbulence noise. This would 
mean that in-flight conditions could improve high frequency broad band noise. 

the exhaust-radiated fan noise ~~ich controls the spectra above 800 Hz, 
was predicted based upon General Electric Coapany experience with fixed pitch 
"fans (Reference 3). It appears that the fixed-pitch fan data base cannot be 
used to reliably predict a variable-pitch fan design. Variances such as fa~ 
solidity. blade number. and perhaps the vane-fr2me itself are possible causes 
of discreparcy. Additional investi~ations are in order to determine the exact 
cause of our divergence. !he QCSEe urw er~ine does provide an excellent data 
base on whicn future variable-pitch designs and noise estimates can be made. 

5.2.2 Exhaust Suppression 

5.2.2.1 EngineTreatment 

Exhaust-radi&ted noise on the QCSEE U!W engine consists of fan noise 
(both tones and broad band). lo~ frequency combustor noise, low frequency jet 
noise, and high frequency turbine noise. In order to meet the chzllenging 
noise goais of the QCSEE program. suppression for the fan. com~ustor. arA tur
bine was incorporated into the design of the UTw composite nacelle. 

Schematics showing the exhaust treatments for the fan bypass duct and" 
the core are presented in Figures 40 and 41, respectively. Included in the 
fan treatment are fan frame treatment betweeen the rotor and ~V. vane treat
sen~ on the pressure surface. fan bypass duct wall treatment, ar~ an acoustic 
splitter. Tne core incorporates a "stacked" treatment to attenuate both the 

- low frequency combustor noise and the high frequency turbine noise. 

Variation of the aft quadrant Ph~fS with engine thrust is SbOb~ in Figure 
-42. Fully suppressed l~vels relative to the baseline (frame treated) configu
ration are lower by 6 to 8 PNdB. These data are for blade angles and opera
ting lines representative of takeoff conditions. There appears to be no sig
nificant variation present due to either blade angle or fan bypass nozzle 
area over the range presented. On a spectral basis, Figure 43 compares spec
tra from baseline and fully suppressed configurations at takeoff thrust over 
a range of blade angles ar~ fan bypass nozzle areas. The average suppression 
frOl2 these data is cOOlpared with predicted values in Figure 44. f.ote that 
these measured and predicted suppv:ession spectra are for the engil'.e system 
as tested - not for an ir.di ... iciual cocponent. On a PIlL ba::is. the average 
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{0.0625 in.} (0.040 in.) 

Section 4 1.27 em (0.5 in.) 11.5'% 0.198 CI!I 0.2032 em 2500 Hz 
(0.078 in.) (&.080 in.) 

Section 5 2.54 em (l in.) 15.5% 0.1589 = 0.1016 em 1600Hz 
(0.0625 in.) (0.040 in.) 

Figure 40. Composite Saoelle Fan Exhaust Duct Treatment. 
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r 
t 
): 

·UWW~~~Jn~ 
3.5 Hz 500 Hz 630-1600 Hz 

315 Hz 500 Hz 400 Hz r---- V - V --..... _-, 

rmTTTTTT~T' --
Combustor Turbine 

Inner Wall Outer Wall Both Walls 

Tuning Frequency, Hz 315 400 500 315 500 630 - 1600 3150 

Neck Length, em 6.99 5.72 4.45 6.99 4.45 3.56-2.54 0.08128 
Faceplate Thick, (in.) (2.75) (2.25) (1.75) (2.75) (1. 75) (1.4)-(1.0) (0.032) 

.. 
·;avity Depth, em 10.2 8.89 7.62 7.62 4.32 4.06- 0.51 1.905 

(in.) (4.0) (3.5) (3.0) (J.O) &5.08 (1.6)-(0.2) (0.750) 
(1.7) 
&(2) 

Porosity 10% 10% 10% 71. 7% 77. 10i; 

Treatcent Length, em 20.32 20.32 20.32 20.32 15.24 20.32 60.96 . (in.) (8.0) (8.0) (8.0) (8.0) &5.08 (8.0) (24.0) 
(6.0) 

&(2.0) 

Hole Diameter, em 1.52 1.52 1.52 1.52 1.52 1.52 0.1575 
(in.) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.062) 

Figure 41. Core E~~aust Treatment. 
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Figure 42~ Exhaust Radiated p~~ Variation with Thrust. 
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Figure 43. E~~aust P~diated Baseline and Fully Suppressed 
Spectra at Takeoff. 
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a2Bsured ~ suppression is 7.1 PNaB compared to a predicted 9.2 PNdB. 
pression of the BPF ~nd its secor A harmonic were less than anticipated 
th1~'ia t~e pr~-y reagon for not meeting the predicted suppression. 

Sup
and 

Directional array data at near takeoff thrust are presented in Figure 45. 
At 1000, l2S0, and 1600 Hz, there is a significant contribution from the core 
region. This is not surprising since, for the directional array study, the 
engine was fully suppressed except for the core which was hardwall. At higher 
frequencies, the noise is radiated from the fan exhaust. 

Approach baseline and fully suppressed spectra are presented in Figure 
46. Suppression is evident at lov frequencies near SOO Hz, ~nich is combustor 
noise, and at the higher frequencies associated with fan noise. The average 
suppression spectra from these data is compared to predicted in Figure 47. 
The average PNL suppression is 7.S PNdB compared with a predicted value of 
9.6 PNdB. 

As did the takeoff directional array data, the fully suppre-sed/hardwall 
core config-~ration at approach in Figure 48 indicates a strong contribution 
of core noise at all frequencies. Tne 2500 and 3150 Hz bands indicated that 
inlet-radiated noise is contributing to the far field 1200 levels. At 4000 Hz, 
the noise is all exhaust-radiated. 

Due to the high bypass ratio and fan diameter of the QCSEE uLW, engine. 
the fan bypass duct height was very large, on the order of 0.51 m (20 in.). 
The desired level of fan exhaust suppression required the use of an acoustic 
splitter in this large duct. Tois splitter was removable and the ~~aust sup
pression with the splitter removed is shown in Figure 49 for takeoff and ap
proach. !he measured suppression spectra for the splitter-out case are in 
goc1 agreement ~th predicted for wall-treatment-only, except at 2000 Hz and 
the high frequencies near 6300 Hz. As a result. the mea~ured PNL suppression 
is about 1 to 1.5 PNdB less than predicted. These results indicate that the 
use of the acoustic splitter in the fan bypass duct increased suppression by 
about 4 PNdB. 

In-duct instrumentation in the fan bypass duct consisted of flush-mounted 
wall Kulites and radially traversible sound separation probes. Figures 50 and 
Sl show the axial decay of the fan BPF and fan second harmonic for approach 
and takeoff, re;pectively. At approach, the loss down the duct is on the order 
of about 10 dB on the tones. At takeoff. the fully suppressed configurations 
show some scatter but generally also give about 10 dB tone suppression. Narrow 
band spectra at takeoff in Figure 52 indicate that the BPF tone decreases down 
the duct; however. there is still a tone remaining. The second harmonic has 
been generally suppressed to the broadba~d by Station 242. Higher fan harmon-' 
les still remain even at Station 242. Similar spectral results are evident at 
approach in Fi5Jre 53. Fan second ha~onic tone suppression is evident to the 
broaaoand floor While higher fan harmonics are still visible in the spectra. 
Note that there is an identifiable tone at 7600 Hz which is the BPF of the 
core compressor first stage. 
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Sound separation probe data were acquired at approach for several radial 
imaersions at two stations - the OGV tcailing edge and the fan bypass nozzle 
flap trailing edge. Results are presented in Figure 54 and show that the 
narrow band tone PWL transmission losses were 21 and 15 dB. reSF~ctively. at 
the fan BPF and fan second har.uonic. 

5.2.2.2 Vane Suppression 

One of the advanced technology items in the QCSEE program vas the incorpo
ration of treatment on the pr~ssure surface of the outlet guide vane.s (OCV'S). 
Although no r&Odel testing was conducted. it was felt that this treatment would 
demonstrate high frequency broad band suppression that could be useful on en
gines with marginal suppression designs. Acoustic design parameters are as 
follows: 

• Pressure side only treated with SDOr treatment 

• Facesheet thickness - 1.27 mm (0.05 in.) 

• 10% porosity 

• Hole diameter - 1.52 mm (0.06 in.) 

• Cavity depth - 6.35 to 12.7 mm (0.25 to 0.5 in.) 

• Treated length to duct height (L/H) - 0.33 

• Tuning frequency - 4000 Hz 

• Treated area per vane - 203 cm2 (31.5 in.l) 

The treated LIn for the vane vas based on the axial treated length of the 
vane divided by two times tIle average circumferential spacing be~een the vanes. 

As discussed e~l'lier in Section 3.0, vane treatment was eva!uated by 
taping thp. OGV's with a metal duct tape to simulate a hardwall vane. This 
was done with the rest of the engine in a baseline configuration. Vane treat
ment suppression spectra for 110. 120. and 1306 are shown in Figure 55. These 
curves are an average suppression based on 10 pairs of treated and untreated 
vane data points covering a range of fan speeds, biade angle, and fan bypass 
nozzle areas. Suppression of nearly 2 dB ~as achieved with the vane treatment 
in the frequency region of 5 to 10 kHz. Not only is suppression evident in the 
aft quadrant, but it is also present in the inlet quadrant as shown in Figure 
56 which presents suppression directivity at l/J-octave band frequencies of 4000 
to 8000 Hz. 

5.2.2.3 Core Noise 

The core suppresser shown schematically in Figure 41 was designed (Refer
ence 2) to suppress both high frequency turbine noise and low frequency com
bustor noise. Since both of these components are marginal in terms of con
tribution to the total ~1W system noise (Reference I), it was recognized early 
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to measure the unsup-in the program that it would be extremely difficult 
pressed and suppressed levels of these components. 
ment of the core sup~ression has been compounded by 
crease of about 5 dB ~~ich results in aft fan noise 
pletely mask the high frequency turbine noise. 

Th~. difficulty in measure
the fan source noise in
levels high enough to com-

Spectral comparisons with a hardwall core and the treated core suppressor 
are shown in Figure 57. The comparisons are made at a large fan bypass nozzle 
area to keep jet noise low. Lew frequency suppression is evident in the fre
quencies were coabustor noise is expected to occur, i.e •• 315 to 630 Hz. The 
resulting suppressions which are evident in the far field are shown in Figure 
58 and compared to the predicted conbustor suppression spectra. Broad band 
suppression in the band containing the fan BPF was determined by fairing out 
the IFF in the l/3-octave band spectra. This cc=pariscn reflects the measure
ment difficultip.s associated with noise masked by other sources, rather than 
poor performance of the core suppressor. Additional testing to isolate the 
core neise and core noise suppression is needed and should be considered in 
future tests of the UTW engine. 

An interesti~~ observation can be Eade with regard to the low frequency 
stacked txeatment. as shov~ in Figure 59. Suppression is evident at all an
gles indicating that low frequency combustion noise is present ~~en in the 
fo~rd quadrant. 

5.2.3 UTol Radid Modes 

Measurements of radial mode content were made for an untreated (haTawall) 
duct configuration at t~ planes of the exhaust duct. using the OGV exit probe 
at Station 204.5 and the fan nozzle probe at Station 267.4, as shown in Fig
ures 3 and 40. Data were taken at takeoff and approach conditions. 

A radial GOdal measurement consists of the determination of the spatial 
variation of the c02plex acoustic pressure profile across the duct, ehich is 
then expanded into characteristic duct modes. For the exhaust duct. it is 
ass~ed that the modal expansion can be made in terms of the modes of a rec
tangular duct. This approximation will be true for high radius ratio annular 
ducts in the presence of low spinning mode orders. The complex acoustic pres
s~re profile is obtained by computing the cross spectrum of the traversing 
probe signal with a wal1~unt~d reference microphone lo~~ted close to the 
traverse plane. The data were reduced at the pure tone frequencies, where 
coherence between the traversing probe and the wall Kulite was sufficiently 
high to provide validity to the measurement. Figures 60 to 63 are plots of 
tbe modal content in terms of relative mode magnitudes for 50 Hz bandwidth 
~-row bands which contain energy from pure tone generation by the source. The 
modal participation. in almost all cases, is noted to be rich in higher order 
mode content, a condition which should be advantageous to treatment suppres
sion. The ~~al participation could be used to predict sUPFression for any 
given configuration of tregtment panels. lnis procedure has the potential of 
increasing suppression well above that of curre~t design techniques. 
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5.3 lIDISE DnmcrIVITY Cor.f"PARISONS 

PNL directivity comparisons for the five engine configurations are presen

ted in Figures 64 and 65 for takeoff and approach thrust, respectiv~ly. These 

comparisons are on a 61 m (200 ft) sideiine and indicate that the peak angle -

both suppressed and unsuppressed - is in the aft quadrant near 110°. 

Comparisons are made for two different builds of the QCSEE UTW over two 

different sound field surfaces and are for data that have been corrected to 

standard day conditions (298 K [17° Fl and 70% relative humidHy) but not to 

free-field conditions. 

In the aft quadrant, the fully suppressed no-splitter configuration is 

about 1 PNdB higher than the fully ,suppressed/hard core configuration at both 

takeoff and approach. 

5.4 SYSTEM N~ISE LEVELS 

The noise objectives for the UTW engine are depicted schematically in 

F1~re 66. They are based upon the total system noise levels that eould be 

heard by an observer on a 152.4 m (500 ft) sideline. At takeoff and approach, 

the noise levels include not only the engine noise (less static jet noise) 

but also the jet/flap noise associated with the interaction of the exhaust 

gases with the powere~-lift flap syst~. Specific aircraft operating require

gents are given in Table IX. 

At takeoff, the noise goal is a maximum of 95 EPNdB. At approach, with 

the engines developing 65% of takeoff thrust. the goal is also 95 EPNdB. 

since the engine noise levels are to be measured during static testing, 

a procedure for determining in-flight lwise levels from static data bas been 

established as part of the contract. This procedure establishes the follow

ing (See Appendix A of Reference 3): 

1. Jet/flap noise calculation procedure 

2. Extrapolation procedures including air attenuation and extra 

ground attenuation 

3. Doppler shift correction 

4. Dynamic effect correction 

5. Size correction 

6. In-flight cleanup and upwash angle correction 

7. lfumber of engine correction 

8. Relative velocity correction for je~/flap noise 
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Table IX. UTW Engine and Aircraft Flight Characteristics 
for Acoustic Calculations. 

Flight Conditions Takeoff Landing 

Aircraft Speed, m/sec (knots) 41 (80) 41 (80) 

Flap Angle. degrees 30 60 

Climb or Glide Angle, degrees 12.5 6 

Angle of Attack, degrees 6 2 

Upwasb Angle. degrees 15 11 

Installed Net Thrust, percent 100 65 
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9. FUselage shielding' 
10. PNL to EPHL calculation 
11. Dirt/grass ground absorption correction 

Th~se calculatior.s are performed on the peak forward and peak aft angles. 
Using the contract procedure specified above, the takeoff noise level for an aircraft powered by four qcSE& UTw composite nacelle engines would be 97.2 EP~~ on a 152 m (500 ft) sideline. Table X presents the forward and aft quadrant swnmaries for this system. It is evident that exhaust-radiated noise of 99 PNdB is a major contributor to the total system noise level. This results from the higher-than-predicted high frequency fan broad band noise levels libich were measured on the U1'W engine. 

At approach, the total system noise level is 95.7 EPNdB - just 0.7 EPNdS over the goal of 95.0 EPNdB. Table Xl shows that the suppressed engine noise is the dominant noise source in both quadrants and that any reduction to the noise goa~ must include fan noise source reduction and/or suP?ression. 
The noise goals for the QCSEE program were very challenging, representing & noise reduction step of about 10 EPNdB below current wide-body aircraft. UTW noise levels ~re within 2.2 EPRdB of these goals and, thus, still represent a major reduction in noise. 
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Table X. Takeoff Systea Noise. 

• 90.8% corrected fan speed. PoaR 

• 0.79 throat Kach nU!l!ber, XMII 

e 1.58 m2 (2451 in.2) fan exhaust nozzle area, A1S 

• -S.O Fan blade angle" RDPDEG 

• 152 m (500. ft) sideline 

• 61 m {200 ft} altitude 

CD Fully sUi'pressed (Reading 10.3) 

Jfm:imum Noise 

Forward ~uadrant Aft Quadrant i 
I 

Engine Jet/Flap Engine Jet/Flap I 
I 

Pm.. 91.1 94.6 99.0. 90.0. I 
Total System PIn. 91.0 99.9 

Total System EPNL 91.2 
_ .... _- - - _ .. _-

ICC 
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Table XI. Approach System Noise. 

• 94.4% corrected fan speed, PCNLR 

0 1.65 m2 (2550 in. 2) fan exhaust nozzle area, A18 

0 +4.3 fan blade angle, ROPDEG 

0 152 m (500 ft) sideline 

0 61m (200 ft) altitude 

• Fully suppressed (Reading 54) 

Maximum Noise 

Forward Quadrant Aft Quadrant 
, 
, Engine Jet/Flap Engine Jet/Flap 

Pm. 96.7 89.8 95.6 82.7 

Total System P~n. 97.9 96.0 

Total System EPh~ 95.7 
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6.0 Rh-vERSE TF~UST ACOUSTIC RESULTS 

Reverse thrust testing of the fully suppressed UTw composite nacelle 

engine wa~ ~onducted at two fan pitch blade angles. The blade angles were 

-95 and -100 0
• For these tests, the fan bypass nozzle flaps .:ere opened to 

a flare position as shown in Figure 67 to provide an inlet for the reversed 

fan bypass flow. 

6.1 FAR-FIELD DATA 

Far-field PNL's are shown in Figure 68 for the peak acoustic angle of 

70°. The PNL's are plotted versus reverse thrust level which i~ expressed 

as a percent of takeoff thrust. Although the reverse thrust goal of 35% was 

not reached due to engine temperature limitations, acoustic data were taken 

up to 27% of takeoff thrust. PNL's taken at -95° fan pitch blade angle are 

generally higber than those taken at -100°, a result that was anticipated from 

the model tests reported in Reference 9. 

Figure 69 is a PNL directivity plot at 21% reverse thrust. The sp~ctral 

distribu~ion at 60° and 70° is sho~~ in Figure 70. The fan BPF is evident at 

800 Hz but no tones are seen at higher frequencies as confirmed by the 20 Hz 

narrow-band spectra presented in Figure 71. 

6.2 SYSTEM NOISE LEVELS 

The noise goal for the U1W engine in rev~rse thrust is a peak ncise level 

of 100 PNdB or less on a 152 m (500 ft) sideline with the engine generating a 

reverse thrust level which is 35% of takeoff thrust. Since the UTW engine 

achieved a maximum of 27% reverse thrust, system noise numbers will De pre

sented at this thrust level and not at 35%. The peak PNL occurred at 70° and 

was 103.3 PtldB for the single engine tested at the General Electric Peebles 

Test Operation. In order to convert this to a system noise level representa

tive of a QCSEE-powered STOL aircraft, adjustments as specified in Appendix A 

of Reference 3 were made. They are tabulated below: 

Eng~ne size· 1.1 PNdB 

Number of engines 6.0 PNdB 

Fuselage shielding -3.0 PNdB 

Dirt/grass ground -1.0 PNdB 

Total correction +3.1 PNdB 

With this correction, a short-haul aircraft system with four QCSEE's 

would achieve a maximum level of 106.4 p:~ on a 152 m (500 ft) sideline ~~en 

operating at a reverse thrust which is 21% of takeoff thrust. An alternative 

to this would be the case where it is strictly necessary to meet the 100 PNdB 

goal. This stringent noise goal could be achieved at a reverse thrust level 

which is 18% of takeoff thrust. 
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7.0 CONCLUSIONS 

Because of the very challenging noise goals established for the QCSEE program, several unique noise-reduction concepts and source noise reduction features have been developed and demonstrated. The most difficult aspect of the QCSEi noise goal was to achieve simultaneous success with the prediction and suppression of several major noise componenta. Simultaneous success was necessary since all of these sources were contributors to the suppressed engine noise levels and. therefore, missing even one of the component levels jeopardized aChievement of the noise goals. 

7.1 CORCLUSIONS 

108 

• UTW takeoff system noise levels were within 2.2 EPNdB of the goal. 

• U'lW approach system noise levels were within 0.7 EPNdB of the goal. 

G Baseline unsuppressed levels on the UTW engine were higher than anticipated but the program has provided a large data base (both aerodynamically and acoustically) for understanding and predicting variable pitch fan noise. 

• The hybrid inlet achieved 14 to 15 PNdB of inlet suppression at 0.79 throat Mach number. At approach, the wall treatment provided 
4 to 6 PNdB suppression. 

• Aft fan suppression of up to 2 dB was demonstrated for the treated vanes. !his is a significant amount of suppression for a very saall amount of treatment area. 

• Aft suppression for the static engine was within about 2 Pr~B of predicted. 

• The suppression capability of the "stacked" core suppressor was not completely evaluated due to masking by other noise sources; however, suppression at the design frequencies was demonstrated for a flightworthy combustor noise suppressor design. 

• P~verse thrust nosie levels of the variable pitch UTW fan were higher than predicted; however, the data base will provide for more accurate prediction and understanding of variable pitch fan noise in reverse thrust. 
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APPENDIX 

FREE-FIELD CALCULATIONS 

The baseline (frame treated) configuration of the QCSEE U'lV composite nacelle engine was tested acoustically over two sound field surfaces - gravel and concrete. Each surface has different ground-reflection characteristics which might be considered in any correction of the data to free-field conditions. This appendix compares the free-field results from both surfaces. and documents the procedure used to correct the data over each type of surface. 
Free-field corrections for the gravel sound field with 12.2 a (40 ft) microphones were established earlier on tests of the QCSEE 01'W engine (Refelrence 10). The corrections for each l/3-octave band are listed in Table A-I and are added to the far field measured 8PL's. 
TWo sets of micropbones were used to acquire the data over the concrete surface. Ground microphones were 1.27 om (0.5 in.) above the concrete and engine centerline height microphones were 4 m (13 ft) above the concrete. SPL data were corrected to free field using the following equation: 
SPLFF - Ac(8PLc - 6.0) + AC/L(SPlc/L - 3.0) 

where 

~ 

Ac/L 

- weighting factor for ground microphone 

- weighting factor for centerline microphones 
SPLc/L = centerline microphone SPL 

SPLFF' ... free field SFL 

SPLc - ground microphone SPL 

~eighting factors for each 1/3-octave band are given below: 
Band ~ - Ac/L 

50 to 1000 liz 1.00 0.00 1250 0.83 0.17 1600 0.67 0.33 2000 0.50 0.50 2500 0.33 0.67 3150 0.17 0.83 4000 to 10,000 0.00 1.00 
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Table A-I. Ground Reflection Corrections. 
12.2 m (40 ft) High Microphone. 

• Corrections are t.~ be added 
to measured spectra 

Frequency Correction 
(Hz) (dB) 

50 +3.0 
63 , +5.1 
80 +2.3 

luO -1.4 
125 '" -3.1 
160 -o.S 
200 +2.7 
250 -2.6 
315 +1.3 
400 -1.4 
500 -0.9 
630 -0.3 
800 -0.7 

lOGO -0.6 
1250 -0.7 
1600 -0.6 
2000 -0.7 
2500 -0.4 
3150 -0.6 
4000 -0.6 
5000 -0.5 
6300 -0.6 
8000 -o.S 

10000 -0.6 

, 
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The philosophy behind this composite free-field spectr~ is based on the 

asslRDption that the ground mic~ophone provides pressure doubling (6 dB) over 

the low frequencies Qhile the centerline microphone provides power doubling' 

(3 dB) in the high frequencies. For the frequencies in bet~een, an arithmetic 

weighting is used to provide the free-field levels. 

Free-field spectra at three angles for the gravel aDd concrete sound field 

surfaces are compared in Figures 72 and 73 at takeoff and approach, respectively. 

Engine operating parameters ~ere matched as close as possible and the data sep

arately corrected to free field using the procedures discussed above. There is 

excellent agreement between the tw~ free-field spectra at each angle. On a PNL 

basis, the differences are less than 0.5 PNdB. There are some slight differ

ences in the very lo~ frequencies which are probably a result of slight shifts 

in the ground reflection nulls and reinforcements over the gravel. A more de

tailed recalculation of the ground corrections would probably collapse the low 

frequency data better; however, the impact on PNL would be minimal. 

rne comparisons in Figures 72 and 73 represent a site calibration for the 

qcSEE UTW engine tests and the excellent results Unply that data from the two 

surfaces can be compared with reasonable accuracy When such comparisons are 

made on a free-field basis. 
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e Baseline (Frruae T-rell.ted) 
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• Free Field 

• Takeoff Thrust 
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Figure 72. Comparison of Free Field G:-avel and Concrete 
Data at Takeoff. 
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SYtA.BOL OR 
ABBREVIA'l'IOOS 

At/L 

Ac 

ALF 

Al8 

BPF 

D or Dz' 

EFNL 

Fl\,"RIl~ 

L 

Lr 

&.8P1. 

PCIU 

PCRT 

PHI. 

PWL 

ROPDEG 

SP1. 

SPLciL 

SPLFF 

SPLc 

U'I'W 

1mB 

XliI. 

XMll 

NOMEtlCLA TIJRE 

DEFINITION UNITS 

Centerline microphone weighting factor 

Ground microphone weighting factor 

Aft looking forward 

Fan bypass nozzle area m2 (in. 2) 

Blade passing frequency Hz 

Fan diameter m eft) 

Effective perceived noise level EPNdB 

Installed thrust N (lb) 

Inlet length m eft) 

Treated length m (ft) 

Overall sound pressure level re: 0.0002 dynes/cm2 dB 

Percent corrected fan speed re: 3244 rpm 

Percent reverse thrust re: takeoff thrust 

Perceived noise level PNdB 

Sound power level re: 10-13 watts dB 

Fan blade angle degrees 

Sound pressure level re: 0.0002 dynes/cm2 dB 

Centerline microphone SPL dB 

Free-Held SPL dB 

Ground microphone SPL dB 

Under-the-Wing engine 

Compressor speed rpm 

r'an speed rpm 

Inlet throat Mach number 
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