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THE GEORGE WASHINGTON UNIVERSITY 
School of Engineering and Applied Science 

Institute for Management Science and Engineering 

1. Introduction 

STATISTICAL ASPECTS OF CARBON FIBER 
RISK ASSESSMENT MODELING 

by 

Donald Gross 
Douglas R. Miller 
Richard M. Soland 

This report deals with considerations of the statistical aspects 
of carbon fiber risk assessment modeling for fire accidents involving 
commercial aircraft. There are numerous advantages to using carbon 
fiber materials on aircraft; strength and weight reduction are two such 
examples. However, should an aircraft be involved in a fire accident, 
the possibility exists for a release of free carbon fibers to the atmo­
sphere with a potential effect of some of these fibers infiltrating 
and shorting out electrical and electronic "machinery". 

The ultimate goal of the entire carbon fiber risk assessment pro­
gram was to determine risk profiles for this phenomenon; that is, curves 
of potential damage values and their associated probabilities. Very 
comprehensive reviews of the factors affecting such profiles and of the 
entire risk assessment program itself are given by Huston (1979, 1980). 
The present study focuses on the statistical aspects influencing the 
development of the risk profiles. 

The next section of the report presents an overview of the sta­
tistical problems encountered in producing risk profiles and identifies 
the major sources of uncertainty. Sections 3, 4, and 5 treat each of 
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these major uncertainty sources in detail, namely section 3 deals with 

imprecise knowledge in establishing the model, Section 4 treats the 

problems associated with model parameter estimation and Section 5 con­

centrates on sampling errors in the MOnte Carlo simulation analysis 

and obtaining confidence bounds on the results. Finally, Section 6 

provides a general framework for building in and obtaining conserva­

tism in risk profile generation. 

2. Treatment of Errors and Uncertainty 

in CF Risk Analysis 

In assessing CF-related damage due to accidents of commercial 

aircraft, various uncertainties must be dealt with. The cost incurred 

from a CF incident will vary according to the circumstances surrounding 

the incident, and the resulting uncertainty in the cost incurred is 

therefore described by a risk profile. A similar risk profile is used 

to describe the uncertainty associated with the total cost incurred in 

a year from CF incidents. The goal of risk analysis is to determine 

these profiles which reflect the inherent randomness of actual physical 

phenomena. 

In the pursuit of estimating these risk profiles, additional 

uncertainties (potential sources of error) are encountered. These can 

be classified into three general categories: (1) imperfections in the 

mathematical model of the physical phenomena, (2) inexact specification 

of the numerical and quantitative aspects of the model, (3) statistical 

error from simulation sampling. A careful modeling effort and a sta­

tistically sound methodology can help to control these uncertainties, 

thereby preventing them from contributing to misleading conclusions 

about the risk profiles. In the CF analyses performed here, these 

factors have generally been controlled or else dealt with conservatively, 

resulting in conservative estimates of the risk profiles. 

We will now elaborate on each of the three sources of uncer­

t~inty just mentioned and on how they were dealt with in the CF risk 

analysis. 

- 2 -
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(1) Imperfeat model,. By its very nature, the mathematical model 

will be an approx~mate description of the physical phenomena. This re­

sults from imprecise knowledge of the phenomena, the need for tract­

ability, and factors tllat may have been overlooked. For example:. i'n the 

CF model considerable aggregation is necessary, but this is performed 

cautiously by using conservative numerical quantities for entire classes 

of equipment, buildings, aircraft, etc. Deterministic cost values were 

used instead of distributions of costs, but it can be shown that the 

"law of averages" implies minimal error propagation due to this modeling 

simplification. Many secondary economic effects (lost produc:tion, clean­

up, etc.) were included and their costs conservatively estimated; for 

example, the modeling approach of ORr allowed the entire gross domestic 

product of an area to be lost. In general, a modeling philos:ophy of 

"reasoned conseryatism" was followed. 

(2) Numer'iaal, inputs for the model,. The model of CF risk requires 

many numerical and other quantitative inputs; among these are accident 

rates, positions of vulnerable equipment, weather frequencies, air traffic 

projections, building transfer coefficients, failure probability distribu­

tions, etc. Most of these quantities must be estimated from data and then 

projected to the year 1993, which leads to only approximate values of 

these quantities for use in the model. A conservative approach was gener­

ally taken. For example, for factors such as CF release and building 

penetration, conservatively high values were used. For many other factors, 

sensitivity analyses showed that imprecise knowledge of their true values 

had minor effects on the final estimate of the risk profiles. One sensi­

tive parameter, however, is the equipment failure distribution. Equipment 

failure data and theoretical considerations showed that exponential fail­

ure laws were appropriate in many cases and conservative in others. 

Thus the use of exponential failure laws in the model leads to conserva­

tive results. Further, use of vulnerable 1979-vintage equipment results 

in conservative approximations to 1993 electronic equipment. 

(3) Simulation sampling error. The risk model is exercised by 

simulation. This is equivalent to drawing a statistical sample from a 

- 3 -
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population, and attributes of the population are then estimated from the 

sample. When the computer simulation sampling is done properly, it is 

possible to use modifications of classical statistical techniques to 

generate accurate bounds on the sampling error, which permits the estab­

lishment of confidence bounds on the risk profile. 

To summarize: by performing careful analyses it is possible to 

exert control over the effects of various sources of the added uncer­

tainty (or error) which can influence the estimate of the risk profiles. 

While the statistical aspects of model building and simulation interpre­

tation are not well developed enough to give precise conclusions on the 

total error in the final answers, it is possible to analyze the errors 

individually due to the separate sources and to control them. Figures 

2-1, 2-2, and 2-3 illustrate this process. The interaction of the many 

sources is a problem, but a fairly strong degree of confidencE! in the 

conservatism of the final conclusion arises from the conservative and 

statistically sound approaches taken to control the individual error 

sources. 

3. Treatment of Imprecise Knowledge 
in Hodel Conception 

Any model is an abstraction of and approximation to the real 

world. In constructing a nadel, often a trade-off is necessary be­

tween "realism" and tractability. Further, judgements are often re­

quired in making certain assumptions concerning how factors behave and 

relate. 

This section deals with two such examples, namely the use of 

deterministic values in place of random variables in order to gain model­

ing efficiency, and the choice of an appropriate probability distribu­

tion for representing equipment failure. 

- 4 -
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Figure 2-1.--Risk profile methodology. 
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3.1 Use of expected or deterministic values 
in place of random variables 
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The simulation analysis of CF damage and its cost is based to a 

large extent upon various averages, but the goal is to estimate (with 

. confidence) risk probabilities. This section focuses on the effect that 

variation of input data ~vhich are assumed constant can have on the sim­

ulation conclusions. 

Average values have bee~ used instead of random ones for repair 

and downtime costs in the current simulation modeling effort. Consider­

ing the categories and types of repair and disruption costs, it seems 

that each would tend to be quite variable. A coefficient of variation 

(a/~) equal to 2 or 3 would not be unreasonable for most of these costs. 

The question is: What is the effect of using variable costs in inputs 

instead of expected costs? 

The possible magnitude of such a change in the model can be seen 

for the variance of the national conditional risk profile by considering 

the following analysis of a much simpler problem. Let X equal the to­

tal economic loss or cost, given an accident at some particular airport. 

Roughly speaking, X equals the sum of a large number of individual 

costs Ll ,L2 ,L
3

, ..• ,LN , where N is random: 

N 
X;:: L Li 

i=l 

Now consider the distribution of X, in particular its mean and vari­

ance. Making the simplification for illustrative purposes that the Li's 

are independent and have common mean 

we have 

E [X] E[N]~L 

Var[X] E [X2] _ (E [X]) 2 

- 8 -
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Now consider 
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Y. I L.L.J -
i~j 1 J 

2 2 
(E[N]) llL 
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2 00 2 2 2 2 
E[N]E[L i ] + ~ «n -n) (E[L]) P(N=n) - (E[N]) llL 

n=O 

= E[N]E[L2] + (E[N
2

]-E[N]) (E[L])2 _ (E[N])211~ 

= E[N] 1 E[L
2

]_ (E[L])2] + (E[L])2 [E[N
2
]_(E[N])2] 

2 2 2 
E[N](OL) + llLON • 

Var[X] (3.1) 

N 
X' L E[L] = N E[L] = N~ , 

i=l 

which is analogous to computing risk by assuming the costs are fixed at 

their expected values; 

E[X'] = E[N]llL 

Var [X' ] 
2 2 

= (JNlJL 

From the accidental nature of the process generating the cost it is not 

unreasonable to assume that N has a Poisson distribution. Then 

Suppose the coefficient of variation of the cost distribution equals k, 

that is, . 

or 
0 L = kllL . 

Then 2 2 
Var[X] = (l+k )llNllL ' 

and hence 
Var[X] = (1+k2)Var[X'] . 

- 9 -
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Thus if the individual costs have coefficient of variation k, the true 

variation of risk is 1+k2 times the value obtained using expected costs. 

The above is not meant to be a precise analysis for the actual 

system under consideration. However, the two are close enough that the 

above analysis may roughly apply. Namely, if there is much variation in 

costs, it can have a pronounced effect on the variation of the total 

risk. It is not unreasonable to believe the costs could have a coeffi­

cient of variation equal to 2 or 3, and in this case the standard devia­

tion of X will be approximately 2.24 or 3.16, respectively, times as 

great as that of Xl • 

We have seen that in adding up a random number of randomly dis­

tributed costs, if the costs are assumed to be fixed and nonrandom, a 

term is ignored, and that this can be serious if is of the 

same order of magnitude as and If N is Poisson this 

is true. To get some idea of what the assumption of fixed costs would 

mean in that case, risk curves for two cases are plotted in Figure 3-1: 

one for fixed costs of $1 per failure and one for a distribution of costs 

for each failure, $0 and $2 being equally likely. A normal approxima­

tion to the Poisson is used. 

Note that, in a sense, the severity of the error by assuming 

fixed costs depends on how the graphs are used. There are two quantities 

that can be read off these graphs: tail probabilities and tail 

percentiles. 

Tail probabilities: Suppose one is interested in the probability 

of the damage exceeding $140. The correct answer is .0024, the incorrect 

answer is .000033, almost two orders of magnitude too optimistic--a 

rather bad error. 

Tail percentiles: Suppose one is interested in the 99.99th per-

centile. The correct answer is $153. The incorrect answer is $137--not 

a very great error. 

- 10 -
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Thus even though the correct variance is double the incorrect var­

iance, for certain purposes it may not be too serious a mistake. 

The reason we can obtain a good estimate of percentiles from the 

incorrect curve is that the slopes are steep. So the question arises: 

What happens when the slope of the curve based upon fixed costs is not 

steep? Such will only arise for a risk distribution with a heavy tail 

which implies a high coefficient of variation aN' ~ ; for illustrative 

purposes let's suppose aN'~ = 3. However, another factor now must be 

considered, namely, the magnitudes of and ~. Reconsider Equa-

tion (3.1), namely, 

Var [Xl 

If.we can assume the total cost incurred during a year equals the sum of 

many small costs (perhaps, on the average, 100 such costs), and further 

assume that they are roughly independently and identically distributed, 

then in (3.1) 

worst cast of 

~ = 100 and aN = 300. Furthermore, if we assume a 

aL'~ = 10 , then the summands of (3.1) satisfy 

Thus using fixed costs ignores approximately 10% of the variation. 

The tentative conclusion is this: If one can assume that the total 

cost is the sum of many small costs and the number of these small costs 

incurred is distributed with aN']JN > 1 , then one can get a fairly good 

estimate of the variance by using the average costs rather than the dis­

tribution of costs. We believe this could be made precise in a manner 

analogous to proofs of the central limit theorem for sums of indepen­

dent but not identically distributed random variables. However, the 

above possibilities hold only when the true mean costs are used. If 

these are not known exactly, another source of variation is introduced. 

- 12 -
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equipment failure 
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We examine a simple, but fairly general, stochastic model of the 

process by which a piece of electronic equipment (hereinafter called the 

"item") may fail to function properly because of exposure to carbon 

fibers (CF). The model assumes the item to be composed of n indepen­

dent subsystems or "circuits," each of which receives the same amount 

of exposure E to CF, thereby causing it to receive "shocks" or "hits" 

according to a Poisson stochastic process. Circuit j is assumed to 

fail after receiving r. 
J 

shocks, j=l, ..• ,n, and the item is assumed 

to fail when s circuits have failed; only the cases s=l and s=2 

are examined in detail. Also, we only examine closely the cases in 

which all r. are the same. 
J 

For the various cases considered we compute F(E) , the probability 

that the item fails due to the exposure E. The algebraic form of F(E) 

indicates the probability distr~bution of the exposure level at which 

the item fails; for certain combinations of the parameters n,s and rj 

this distribution is ei ther exponential or Erlang-r (for r > 1). For 

other combinations of the parameters the probability distribution is not 

one of the well-known types. 

For all cases considered we examine the asymptotic behavior of F(E) 

as E decreases to zero. It is found that F(E) is approximately equal 

to cEq for small values of E, where the constant c and the positive 

integer q depend on the particular case as well as the parameters. An 

exponential failure distribution yields q=l while an Erlang-r failure 

distribution yields q=r. 

Our conclusions are: (1) many different failure distributions 

arise from different choices of the model parameters; (2) examination 

of F(E) for small values of E is not a good guide for inferring the 

probability distribution of failure of the item. 

- 13 -
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3.2.1 The general model 

The model is based on the following assumptions. The item consists 

of n independent circuits, each subjected to an exposure E. Circuit 

j (j=l, ••• ,n) is characterized by the parameter a
J

, where l/a. 
J 

is 

the average amount of incremental exposure between consecutive shocks of 

circuit j. More precisely, we assume that for every value of E in 

the interval (0,00), the probability distribution of the number of shocks 

of circuit j 'during the period of time during which the exposure has 

accumulated to a value of E is the Poisson distribution given by 

p. (x.) 
J J 

e 
-a.E 

J 

In particular, 
-a.E 

p. (0) = e J 
J 

x. 
(a.E) J/x .: 

J J 
x. =0,1,2, ••. 

J 
(3.2) 

It is assumed that circuit j has failed due to the exposure E 

or more shocks, where r. 
J 

(assumed given) has one if it has received rj 

of the values 1,2, .•• Let F.(E) be the probability that circuit j 
J 

fails due to the exposure E. Then 

F (E) 
j 

= 
x.=r. 

J J 

-a E 
e j 

It is assumed that the item has failed due to the exposure E if 

s or more 'circuits have failed, where s (assumed given) has one of the 

values 1,2, .•. ,n. Let F(E) be the probability that the item fails 

due to the" exposure E. We will initially write expressions for F(E) 

for three fairly general cases and then analyze various cases in detail. 

For s=l we have 

1 - F(E) 

- 14 -
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IT 

j=l 

r -1 
j 

1: 
x.=O 

J 

e 
-a E 

j Xj 
(a.E) Ix.:. (3.3) 

J J 



For s=2 we have 

1-F(E) = Pr{O circuits failed} + Pr{l circuit failed} 

n n 
= II [l-F. (E) ] + I Fk (E) II [l-F

j 
(E)] 

j=l J k=l j;!k 

n r.-1 
-a.E r.-1 

J x. n 

I II L e J (a.E) J Ix.! - (n-1) II 
J
I 

k=l j!k x.=o J J j=l x.=o 
J J 

For general s we consider only the case in which 

a.=a for all j=l, ... ,n. Then 
J 

and 

and 

F. (E) 
J 

where 

r-1 
F. (E) 

J 
F,~ (E) 1 - L -aE x 

e (aE) Ix! , 
x=O 

1 - F(E) 

F(E) 

3.2.2 Case 1: r =1 for all j=l, .•. ,n 
j 

We first treat the situation in which s=l. 

1 - e 
-a E 

j Then, from (3.3), we find 

F(E) 

a 

1 
-naE 

- e 

1 n 

n 2 
.i=1 

a. 
J 

For 

T-419 

(3.4) 

-a.E 
J (a.E)x jl e 

J x. 
J 

r =r 
j 

and 

(3.5) 

(3.6) 

r =1 we have 
j 

(3.7) 

(3.8) 

is the average shock rate. Equation (3.7) shows that the probability 

distribution of failure is exponentiaZ. 

- 15 -
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We now examine the asymptotic behavior of F(E) as E decreases 

to zero. In general, for these asymptotic analyses, we will write 

F(E) - cEq to indicate that F(E) /E
q 

approaches the constant c as 

E decreases to zero. The method used will almost always be to replace 

terms of the form -kE 
e by the power series >':~=O(-kE)i/i! and then to 

collect coefficients of the various powers of E. Details will be 

omitted. The present case of the exponential distribution (s-l, all 

r.=l) is the easiest, and yields, from (3.7), J . 

F(E) .., naE ; (3.9) 

i.e., F(E) is asymptotically linear in E. 

Now we treat the situation in which s=2. Direct substitution 

into (3.4) yields 

F(E) E[ n a E ] 1 - e-
na .L e j - (n-l) . 

J=l 
(3.10) 

This expression does not correspond to the cumulative distribution func­

tion (CDF) of any well-known probability distribution. Asymptotic anal­

ysis of (3.10) yields 

where c 

2 
F(E) - cE , (3.11) 

2 2 \' 2 
(n a - L.a.)/2 , so 

J J 
F(E) is asymptotically quadratic in E 

Specializing expressions (3.10) and (3.11) to the case a.=a for 
J 

all j leads to simpler expressions for F(E) and c, but the former 

still does not correspond to the CDF of any well-known distribution. 

- 16 -



3.2.3 Caae 2: r.=2 for all j=l, ••• ,n 
J 

-a E 

T-419 

Now Fj(E) = 1- e j (l+a
j

E) For the case s=l expression 

(3.3) leads to 

F(E) = 1 - e 
n 

-naE 
II (l+ajE). 

j=l 
(3.12) 

This is not the CDF of any well-known distribution, even if it is spe­

Asymptotic analysis of (3.12) cialized to the case a.=a for all j . 
J 

yields 

F(3) - cE
2 , (3.13) 

2 where c = (~.a.)/2 , so here again F(E) is asymptotically quadratic 

in E . 

F(E) 

J J 

For s=2 expression (3.4) leads to 

1 _ e-naE [ ~ 
k=l 

(l+a.E) - (n-l) 
J 

and asymptotic analysis of (3.14) yields 

F(E) 
4 

- cE , 
where 

2 2 
c = (~ aJ.ak) 14 

j<k 

~ (l+aJ.E)], (3.14) 
j=l 

(3.15) 

For the case a.=a for all j , the constant c simplifies to 
J 

4 
n(n-l)a 18 . 

3.2.4 Case 3: n=l 

In this case the item is treated as being composed of only one 

circuit. We now replace r. 
J 

by rand a. 
J 

by a, and must have 8=1. 

- 17 -
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Then expression (3.3) yields 

F(E) 
r-l 

~ 1 - t e-aE(aE)x/x! 
x=O 

= F *(E) • (3.16) 

Differentiation of (3.16) with respect to E yields the density function 

feE) = dF(E)/dE (3.17) 

which shows that the failure distribution is ErZang-r. Asymptotic analy­

sis of (3.16) is a bit more complicated in this case, but eventually 

yields 

F(E) - cEr , (3.18) 

where 
r 

c = a /r! Thus F(E) is asymptotically linear in E for r=l 

(the exponential case), quadratic in E for r=2, etc. 

3.2.5 Case 4: general s 

Expression (3.6) gives F(E) for the case r.=r and a.=a for 
J J 

all j , and this cannot be significantly simplified, even for r=l 

For the asymptotic analysis we note that s of the n circuits must 

fail in order to cause failure of the item, and each of the s failing 

circuits has F.(E) - arEr/r! . Thus 
] 

F(E) - cE
rs 

, (3.19) 
where 

(3.20) 

It is not difficult to see that expression (3.19) also holds when the 

a. are different; the constant c is then no longer given by (3.20), 
J 

but is instead more complex to express. What is important, of course, 

is that F(E) - cEq , where q = rs . 

- 18 -



3.2.6 Case 5: asymptotic results 
for the general case 
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For the asymptotic analysis the argument is still valid that s 

of the n :circuits must fail in order to cause failure of the item, 

r r 
and now we have F j (E) - a

j 
j E j / r j! • Asymptotically, therefore, it 

is not difficult to see that 

F(E) - cEq , (3.21) 

where c is a constant whose exact value is algebraically messy to write 

down and 

where the r. 
J 

s 
q = L r. 

p=l 

are ordered so that 

r. < r. < 
J 1 = J 2 = 

J p 

Expression (3.22) reduces to q=rs if the s smallest 

all equal to r. 

3.2.7 Case 6: 
for s=l 

limiting case 
and large n 

We consider only the case where r =r and a.=a 
j J 

(3.22) 

values are 

for all j • 

As discussed by Mann, et ale (1974), pp. 102-108, as n approaches 

infinity the limiting failure distribution is Weibull with shape para­

meter r. This has CDF 

F(E) = 
r 

1 _ e- cE 
(3.23) 

where c is a constant. For r=l the Weibull distribution is the same 

as the exponential. The asymptotic form of (3.23) is clearly 

r F(E) - cE . 

- 19 -
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3.2.8 Conclusions 

The failure model examined leads to different failure distributions 

when different chpices are made for the parameters n, s , rj ,and a j • 

For s=l and all rj=l we obtain the exponential distribution (Case 1). 

For n=l (so that s=l and r =r) we obtain the Er1ang-r distribution 
1 

(Case 3). For n large, s=d , and r.=r 
J 

and a.=a 
J 

for all j , the 

failure distribution is approximately Weibu11 with shape parameter r 

(Case 6). For the other combinations examined, the failure distribution 

is not one of the standard ones. For a particular piece of electronic 

equipment, examination of the circuitry and physical arrangement of the 

components may help to establish which combinations of the model parame­

ters are most appropriate (if indeed any of them are). 

Asymptotic analysis indicates that the failure probability F(E) 

behaves like cEq for very small values of E, where c is a constant 

and q is a positive integer. The exponential failure distribution is 

the only one for which q=l; for all other cases q:> 1. Both the 

Er1ang-r (Case 3) and Weibu11-r (Case 6) distributions yield q=r, but 

these are not the only failure distributions with q=r; for example, 

q=2 also arises (a) with s=2 and all r =1 
j 

(Case 1), (b) with s=l 

and all r =2 
j 

(Case 2), and (c) in the general Case 5 with 

s t r. 2. 
p=l J p 

Since the same asymptotic form of F(E) arises from a number of differ­

ent failure distributions, it is clearly inappropriate to infer the type 

of failure distribution from an examination of F(E) [or an estimate 
A 

F(E) _ of F(E)] for small values of E. 

- 20 -
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It is important to note that, except for the exponential (s=l 

and all r.=l), all the cases examined here lead to tailure distributions 
J 

with increasing hazard rate (IHR). The analyses and remarks of Section 

4.2 on testing for the exponential failure distribution are therefore 

appropriate. 

4. Treatment of Parameter Estimation 
'I 

A second major source of error in probability modeling is due to 

having to estimate parameters of probability distributions and in some 

case the probability distributions themselves. This section treats some 

estimation problems and the sensitivity of the risk analysis models to 

Some of the estimated values. 

4.1 Estimating the parameter of the 
exponential failure model 

For the exponential failure model used, in the GFRAP risk analysis 

it is necessary to know the value of the parameter E. Since the actual 

value of the parameter can never really be known, the usual procedure 

is to use an appropriate estimate obtained from test data. The estimate 

most commonly used is the maximum likelihood estimate; we develop that 

here. We will use a Bayesian approach to treat the case in which no 

failures have been observed. 

Suppose m+n identical pieces of equipment have been exposed to 

graphite fibers (or perhaps the same piece of equipment m+n times) 

and m of them rave failed at exposures El, .•• ,Em while the other n 

have survived exposures of Em+l, .•• ,Em+n' Either m or n could be 

zero. Based on the exponential failure model P = Pr(Item survives 

-(E/E) exposure E) = l-e , it is straightforward to show that the likeli-

hood of this sample result A is given by 

- 21 -



where 

[ 
m --1 -CEi/E)][tn+n -CEi/E)] 

~ CA) -. II E e II e 
i=l =m+1 

= E-m e-CE*/E) 

E* = ,m+n Ei is the total exposure. l>i=l The maximum likelihood 

T-419 

estimate of E , call it E , is the value of E which maximizes ceCA) 

it is easily found to be 

E =; E*/m. , , 
provided m > O. If m=O ,i.e., no failures have been observed, there 

is no maximum likelihood estimate for E; we turn therefore to the 

Bayesian approach. The Bayesian approach uses a prior distribution on 

E and combines it with the likelihood ~CA) via Bayes' theorem to ob­

tain a posterior distribution on E. The mean of the posterior distri­

bution is often taken as a point estimate of E. 

A convenient prior distribution to use is one that is a natural 

conjugate of the likelihood ~CA) , and in this case that is an inverted 

gamma-1 distribution [see Raiffa and Sch1aifer (1961), Chapter 10] of the 

form 

fCElm', E') 

where m' > 0 and E' > 1 are parameters and K' is a normalizing 

constant. The mean of this prior distribution exists if m' > 1 and 

is E'/Cm'-l) • When this prior distribution is combined with the 

~amp1e 1ike1ihooq OfCA) via Bayes' theorem, the posterior distribution 

is easily found to be inverted gamma-1 also, with parameters m" = m'~ 

and EI' = E'+E*. The posterior mean is thus (E*+E')/(m+m'-l). 

How should the prior parameters m' and E' be chosen? The 

~ollowing rationale is admittedly ad hoc, but it is rational and it 

leads to a reasonable and useful estimate of E. For m > 0 , a 

Bayesian analysis is not needed since we will use the maximum likelihood 

estimate E = E*/m , so we are only concerned with the case m=O. 

- 22 -
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For the case m=O the posterior mean is (E*+E')/(m'-l) • If 
one faiZure had been observed along with the total exposure of E*, 

A 

we would use the maximum likelihood estimate E = E*/l = E*. We will 

therefore choose the prior parameters m' and E' so that with m=l 

and the same total exposure E*, the posterior mean would have this same 

value E*. This yields (E*+E')/m' = E* ,or E' = E*(m'-l) • 

We will choose m' so that the standard deviation of the prior 

distribution is k times the prior mean. This requires m' > 2, and 

yields the equation 

[Var Elm', E')]·S - _ E' kE' 

(m'-I)(m'-2)·S (m'-l) 

When this is combined with the previous equation E' = E*(m'-l) , the 

posterior mean is found to be 

To indicate a good deal of prior uncertainty about the true value of 

E it is appropriate to chose k rather large. Even for k=2 the 

above expression yields a posterior mean of 1.8E*, and as k tends 

toward infinity m' tends toward 2, E' tends toward E*, and the 

posterior mean tends toward 2.0E*. It is suggested that this value 

be used as an appropriate estimate of E for the case of no failures; 

i.e., use E = 2E* if m=O. 

There is an alternate rationale for choosing m' and E' , 

again ad hoe, that leads to the same prior parameters (m' = 2 and 

E' = E*) and hence the same value of the posterior mean, 2E*. One 

may imagine the value E* as having been chosen as the maximum total 

exposure for the experimental testing because it was felt that this 

much total exposure would yield at least one failure. From the rela­

tions m'" -1 = (m-l)+m and E" = E' +E* one can interpret the prior 

information implied by the choice of m' and E' as being equi"iTalent 

to having observed (m'-l) failures caused by a total exposure of E' • 
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The choice of E* as hypothesized just above then suggests the choices 

(m'-l) = land E' = E* • 

Finally, let us note that if no failures have been observed and 

a conservative estimate of E is desired, then E = E* is appropriate 

since this is equivalent to conservatively assuming that one failure 

has occurred. 

4.2 Testing for an exponential failure 
distribution 

We were given failure data for equipment exposed to carbon fibers. 
·1 I' 

Twenty-one separate experiments were conducted using different electrical 

components and/or different lengths of types of fibers. Each experiment 

was replicated several times (the number varied between 3 and 11). The 

equipment, fiber, and performer of these experiments are summarized in 

Table 4-1. 

Using the data, we wish to test the hypothesis that an exponential 

distribution is a reasonable failure model for electrical equipment ex­

posed to graphite fibers, i.e., that the probability p of failure is 

related to the exposure x by the functional relationship p = F(x) 

1 - exp(-Ax) , for some A, where l/A = mean exposure to failure. 

The exponential distribution is used widely in reliability studies, 

and consequently there is a considerable body of literature concerned 

with estimation and testing related to the exponential distribution. A 

good discussion is found in the book by Mann, Schafer, and Singpurwalla 

(1974), Ch. 7. 

4.2.1 The Kolmogorov-Smirnov­
Lilliefors test 

Many test are based on the empirical cumulative distribution 

function. The most widely used of these appears to be the modification 

of the Kolmogorov-Smirnov test due to Lilliefors (K-S-L). We now 

describe it. 
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TABLE 4-1 

FAILURE DATA: 21 TESTS OF EQUIPMENT 

I. Avionic~ termip.al blocks 7.5 rom AS BRL 

2. Dynaco amplifier 7 rom Mike Vogel 

3. Dynaco 7 rom Mike Vogel 

4. Dynaco 3.5 rom Vogel 

5. Dynaco 15 rom Vogel 

6. Dynaco 15 rom Harvey 

7. Dynaco 3.5 rom Mike Harvey 

8. Dynaco 7 rom Mike Harvey 

9. Dynaco 1 rom GY70 Phillips 

10. LSI-II computer 4.5 rom BRL 

II. LS1-ll computer 7 rom BRL 

12. 19" TV 8 rom HMS BRL 

13. 19" TV 8 nun T300 sized BRL 

14. 19" TV 8 rom T300 unsized BRL 

15. Transponder 10 rom GY70 Bionetics 

16. Transponder 3 rom GY70 Bionetics 

17. Sunbeam toaster 7 nun T300 Bionetics 

18. Sunbeam toaster 3 rom GY70 Bionetics 

19. Heritage House 12 rom T300 Bionetics 

20. Heritage House 7 rom T300 Bionetics 

2I. Sunbeam toaster 12 rom T300 Bionetics 
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Suppose we test n items. For each item, note the exposure level 

xi at which it fails. (Note: all items must be exposed until they 

fail; the results described here are not valid if items are withdrawn 

before they fail.) Thus we get n failure values: x
l

,x
2

, ••• ,x
n

' 

The empirical distribution function is 

11 (x) 
n 

= 
1 
n x (number of failure values ~ x) 

(see Figure 4-1). This function is an unbiased estimate of the underly-
I' 

ing CDF, F;i.e., E(F (x)) = F(x) , for all x. 
n 

(It has mathemati-

cal properties which enable one to use it in test statistics and to 

make statements about the possible inference errors of such procedures, 

e.g., probability of false rejection of a true hypothesis.) 

The usual procedure is to look at the maximum deviation between 

Fn arid the hypothesized CDF Fa' However, we are not hypothesizing a 

single distribution, but an entire family, the exponential family 

y 

1.0 -------------------------------------------------- Y 
A 

F (x) 
n 

.5 

a4-----*----x------~~x----~X~--~X~--~X~-~--~J~E~}~~---- x 

failure values 

Figure 4-1.--The empiricaZ cumuZative distribution function. 

{F :\ ;Ii' A (x) = 1 -
-AX A}. In this case estimate the e , any we 

A 

/ I~=l Xi) meter A from the data (for the exponential A = n , 

then look at the maximum deviation between the empirical CDF F 
n 

- 26 -

para-

and 

and 



T-4l9 

the exponential CDF F~, with estimated parameter ~,i.e., we look at 

" 
d = sup IF n (x) - F~ (x) I ' 

O;ix<;oo . 

If d is large, we reject the hypothesis of exponentiality. If d is 

small, we accept it. The critical values depend on n and on a, the 

desired probability of false rejection. They are given by Lilliefors 

(1969). For example, if n=6 and we desire only a 5% chance of falsely 

rejecting the hypothesis of exponentiality we should reject if 

sup 
x 

" I F n (x) - F~ (x) I > .406. 

We have applied the K-S-L test for exponentiality to four of the data 

sets obtained from NASA Langley. They are graphed in Figures 4-2 through 

4-5. On all four, the hypothesized (best-fitting) exponential CDF is 

plotted, and then upper and lower bounds are given, based on that expo­

nential CDF ± the critical value (.406, in the case of 6 observations). 

If the empirical CDF falls in this region, we accept the hypothesis of 

exponentiality. Otherwise we reject it. Note: for set #1 (Figure 4-2), 

we just barely reject exponentiality at the a= 5% level (Le., we would 

expect such a deviation to occur due to chance alone to be an event with 

probability <.05); for set #2, we accept exponentiality, even though the 

best fitting Erlang has shape parameter 2 or 3; for set #15 (Figure 4-4), 

the data is highly significant: reject exponentiality; for set #16 we 

accept, but just barely, even though Erlang-4 is the best fitting. In 

selecting the data sets to analyze, we picked the ones which seemed to 

deviate the most from being exponential. The results do not constitute 

an overwhelming rejection of exponentiality. Among 21 sets of data, 

~ll drawn from exponential populations, it would not be surprising to 

find 2, say, which are significant at the 5% level. 

To give some idea of how difficult it would be to distinguish 

between an exponential distribution and an Erlang-2, we generated a sample 

of size 10 on an HP-25 calculator and then normalized the values so the 

sample mean was 1. The plot of the exponential CDF, the Erlang-2 CDF, 
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and the empirical CDF drawn from the exponential are given in Figure 4-6. 

Note that for such a small sample, neither distribution is an obvious 

choice. 

One property of the K-S tests is that they have very low power. 

"Power" is defined as the probability of rejecting the hypothesis when 

it is false. If the true distribution is Erlang-2, we estimate that the 
I-

chance of rejecting the hypothesis of exponentiality, using a sample of 

size 10 and ex = .05 , would be .20 or less. 

4.2.2 The cumulative total-time-on-test 
statistic 

The low power of the K-S-L test motivates the search for a more 

powerful test, i.e., one that is more likely to reject the hypothesis of 

exponentiality when it is false. One way to increase power is to con­

~truct a specialized test which is especially good at rejecting exponen­

tiality when a certain class of alternatives is true and to demonstrate 

that this restricted class of alternatives includes all possibilities: 

roughly speaking, it is equivalent to saying that you have a better 

chance of making the right decision if there are fewer alternatives from 

which to choose. 

For the failure distributions under consideration it is reasonable 

to assume nondecreasing hazard rate (IHR). Let F be the CDF of a 

random variable and f its density, then rex) = f{x)/{l-F{x)) is the 

hazard rate. It follows that p{x~ X~ x+dx I x~ X} ::: r{x)dx. The dis­

tribution is IHR if r is nondecreasing. If r is constant, then we 

have an exponential distribution, which is considered a boundary case of 

IHR. IHR is a reasonable assumption for the distribution of failure 

probabilities as a function of exposure; it is equivalent to saying: if 

two components (#l and #2) have survived exposure levels e l and e Z ' 

respectively, el < e2 ' then the next increment of exposure, ~e, is 

more likely to cause failure to #Z than #1' i.e., r{el)~e < r{e2)~e 

for el < e
Z 

• 
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Thus we are in a situation of testing the hypothesis of exponen­

tiality versus the a,lterna,tive 0:1; IHR. The most power.i;ul tes.t (we know 

of) for this situation is. discussed by Barlow (1968). It is actually a 

test for exponential vs. increasing hazard rate average (IHRA), A test 

which is virtually as powerful is a test based on the time-an-test sta­

tistic. This test has other desirable features, such as applicability 

to censored samples and a nice statistical distribution theory which 

makes it appear more attractive. It is described in detal by Barlow, 

Bartholomew, Bremner and Brunk (1972), Secion 6.2. We apply this test 

to data set #16 (plotted in Figure 4-5), the transponder exposed to 3 mm 

fibers to GY 70 (Bionetics data). The 10 normalized failure times 

(exposures) are 

.36, .56, .58, .85, 1.05, 1.06, 1.09, 1.26, 1.42, 1.78. 

A test statistic is computed as follows: let X i:n be the ith ordered 

failure value, let Di :n = (n-i+l) (Xi : n- Xi - l : n) be the time (exposure) 

on test accumulated between the (i-l)st and the ith failure values. This 

test uses the fact that 

1 
= 2' i 1 j 

under the assumption of exponentiality, while under the assumption of IHR, 

D > D > D3 >. •• > D l:n = 2:n :n = n:n st st st st 

Thus under exponentiality the D 's will tend to have 0 slope as a i:n 

function of i; under IHR the slope is negative. Thus this becomes a 

regression problem of testing for zero slope vs. negative slope. The 

appropriate statistic is 

-1 
n 

-1 n 
V - n I (i-l)D "+1 / n I D n 

i=l n-1 :n 
i=l i:n 

-1 n-l i J -1 n 
= n i~l j~l Dj : n / n I D 

i=l i:n 

- cumulative-to tal-time-on-tes t statistic. 
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We reject exponentiality for large values of V 
n 

Critical values of 

V are given by Barlow et (l,~t (1972), page 269; for n"'10 they are as 
n 

follows: 

~ .10 .05 .025 .0lD .005 

critical value 5.619 5.927 6.189 6.487 6.683 . 
For data set 1116 we get the following: 

i 
i X D Tn(Xi : n) = r D. 1:n i:n j=l J:n 

1 .36 3.60 3.60 

2 .56 1. 80 5.40 

3 .58 .16 5.56 

4 .85 1.89 7.45 

5 1.05 1. 20 . 8.65 

6 1.06 .05 8.70 

7 1.09 .12 8.82 

8 1. 26 .51 9.33 

9 1.42 .36 9.69 

10 1. 78 .36 10.05 

67.20 

n-l 
V = l. Tn (Xi :n ) / T (X ) = 67.20/10.05 = 6.72 n i=l n n:n 

This corresponds to significance at approximately a:;:; .005. Thus 

we reject exponentiality in favor of IHR. (We accepted it using K-S-L.) 

Thus using this criterion (the cumulative-total-time-on-test statistic) 

we have observed a deviation from exponentiality which would occur by 

chance with probability .005. Note that in the K-S-L, the maximum devia­

tion hit the lower edge of a 95% two-sided region; this lower boundary 

would be an approximate boundary for an a = 10% level one-sided test. 

Thus the K-S-L criterion says such a deviation will occur approximately 

10% of the time purely by chance. The extra sensitivity of the 
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cumulative-total-time-on-test statistic is due to the fact that it is 

tailor-made for testing the situation in which we are interested, while 

the K-S is applicable to a broader range of situations and thus should 

not be expected to compete favorably with special tests in special 

situations. 

We applied the cumulative-total-time-on-test statistic to all 21 

sets of data. The results are tabulated in Table 4-2. Considering each 

experiment separately, there are four cases where exponentiality can be 

rejected and three questionable cases. Exponentiality is a plausible 

hypothesis for the remaining cases. 

These conclusions are based on considering each test separately. 

Exponentia1ity was rejected when the test statistic took an improbable 

value (in the 1% extreme tail). However, in 21 trials the chance of an 

even of probability .01 occurring at least once is 1 - (.99)21 = .19 

Thus all 21 populations could have exponential and yet there would be a 

.19 chance of rejecting exponentiality for at least one of the 21. Thus 

to be rigorous and be sure that the chance of making such an inference 

error is .05, say, or less, we must reject at the .00244 level of 

significance (since 1 - (.00244)21 = .05). In this case exponen-

tiality is rejected for only two cases. 

It is possible to construct a joint test of exponentiality using 

£ 
the time-on-test statistic. Note that Vn = u

l 
+ u2 + ... + u

n
_

1 
' 

where u 's are independent uniform [0,1] random variables, under the 
·i 

assumption of exponentiality. This fact allows us to construct a test 

for exponentiality of all 21 sets: 

all are exponential; 

all are IHR, with at least one being 
strictly IHR (i.e., not exponential). 

Suppose the ith data set consists of n
i 

observations; let V be 
ni,i 
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TABLE 4-2 

TESTING FOR EXPONENTIAL VS. IHR USING CUMULATIVE-
TOTAL-TIME-ON-TEST STATISTIC 

Number Value of Expected Level of Test II Observe Statistic Value Significance Conclusion 
Given HO 

1 6 3.86 2.5 .015 ? 

2 11 7.11 5.0 .01 Reject -+-

3 5 3.13 2.0 .025 ? 

4 6 1.90 2.5 .80 Accept 

5 5 1.44 2.0 .81 Accept 

6 4 1.58 1.5 .44 Accept 

7 4 1.02 1.5 .79 Accept 

8 4 1."95 1.5 .22 Accept 

9 4 1.88 1.5 .25 Accept 

10 5 2.88 2.0 .07 ? 

11 10 5.36 4.5 .17 Accept 

12 5 1.09 2.0 .92 Accept 

13 4 1.71 1.5 .36 Accept 

14 3 .90 1.0 .58 Accept 

15 8 5.70 3.5 .002 Reject -+-

16 10 6.72 4.5 .005 Reject -+-

17 10 8.38 4.5 - .000008 Reject -+-

18 10 3.94 4.5 .73 Accept 

19 10 4.39 4.5 .55 Accep"t 

20 10 4.32 4.5 .58 Accept 

21 10 2.88 4.5 .98 Accept 
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the cumulative-total-time-on-test statistic for the ith data set. Then 

v = 

is an aggregate statistic, which if HO is true is. the sum o£ 

21 r (ni-l) independent uniform [0,1] random variables and consequently 
i=l 

approximately Normal with easily calculated mean and variance, from 

which critical values can be computed. 

In light of data set #17 (see Table 4-2), it is obvious that HO 

all exponential must be rejected. Considering #17 an outlier or an 

anomaly, we threw it out and tested the hypothesis HO : all exponential 

for the remaining 20 data sets. The test statistic 

21 
v = L 63.75 • 

i=l 
i"'17 

If H i hi ' b i f N 1 (110 110) dis-o s true, t s 1S an 0 servat on rom a orma 2 ' 12 

tribution; its level of significance thus equals .002 and HO is firmly 

rejected. 

Barlow (1968) has computed the power curve of the cumulative-total­

time-on-test statistic when the true distribution is Gamma with shape 

parameters between 1 and S for an a = .OS-level test based on n = 10 

observations; see Figure 4-7. Thus, for example, if the true distribution 

is Erlang-S,' the test will reject exponentiality with probability ~. 0.69 • 

The cumulative-total-time-on-test statistic can be applied to data 

with censoring. If items are exposed to graphite fibers, but do not fail, 

they are eventually withdrawn from test. The withdrawal exposure level 

is noted and the data thus take the form of failure exposure levels and 

withdrawal exposure levels. The K-S-L approach has no provision for 
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Shape Parameter of True Gamma Distribution 

f.i g14'e 4-?-.-PoweY' curve foY' test of eo:ponentiaZ vs. Gamma based 
onaumuZative-totaZ-time-on-test statistic. 

handling these types of data. Fortunately, the cumulative-total-time­

on-test approach handles these types of data easily; it is just a matter 

of redefinin h Di ,the total-time-on-test between the (i-l)st and ith 
e :n 

failure levels to accommodate withdrawals in this interval. And instead 

of computing v ,we compute 
n 

Vk ' where 

- 39 -
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failures. In view of this it is very important to make the distinction 

between failure times. and times of withdrawal from testing of nonfailed 

items .• 

4.2.3 Conclusions 

There are good tests. for exponential vs. IHR, but it is hard to 

distinguish between them with small samples. This results in the hy­

pothesis of exponentiality appearing plausible in many instances. Since 

to accept exponentiality when the distribution is IHR is a conservative 

error, exponentiality should be used as the failure distribution except 

in cases where knowledge of the vulnerabilities of the box allow a more 

detailed model which results in another failure distribution such as 

an Erlang. 

One unexpected feature of the data is that in data sets #15 and 

#16, the case with length 10 rom deviated more from exponentiality than 

the case with length 3 rom. However, this can be explained by the ran­

domness inherent in the small samples. 

For simulation inputs, what is really needed is some upper confi­

dence bounds on the failure distribution CDF or some method of handling 

an estimated distribution. 

Incorrectly assuming an exponential failure distribution when the 

distribution is actually IHR (e. g., Erlang-n with n> 1 ) is conservative 

in the left-hand tail but optimistic in the right-hand tail. That is, 

the exponential distribution with equal mean exposure to failure gives a 

higher probability of failure for low exposure levels and a lower prob­

ability of failure for high exposure levels. This is illustrated in 

Figure 4-8, which compares the failure probabilities for exponential, 

Erlang-2, and Erlang-4 distributions with the same mean value (equal to 

1 here). Note that the exponential distribution gives conservative 

results for all exposures less than about 1.2 times the mean exposure 

to ~ailure, at which point the failure probability is already very high--
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equal to about 0.7. Thus, for the small exposure levels to which actual 

. elecq:c;mi.c. equipment W111 nQrmally be subjected after a CF indident, th.e 

use o~ an exponential failure model produces significantly conservative 

results. 

4.3 Confidence regions for IHR failure 
distribution 

In this risk study it is crucial to know the relationship between 

exposure level and failure probability for an electrical component. 

Since this failure probability distribution is estimated from data, there 

is uncertainty involved and confidence regions should be used.. In this 

case an upper confidence bound on the failure probabilities is needed. 

Typically, there is a small chance of failure at the exposure levels we 

expect to encounter, thus we are primarily concerned with estimating 

(with confidence) the left tail of the failure distribution. 

To illustrate this problem, we consider some failure data col­

lected by Westinghouse for a 7.5 KV insulator pin exposed to 5 millimeter 

fibers. Fifteen tests were performed. The failure data are presented 

in Figure 4-9 in the form of an empirical distribution function of fail­

ure probability versus exposure. In accidental releases we expect to see 

5 3 exposure levels up to 10 fiber sec/m ; consequently, we are concerned 

with the extreme left tail in Figure 4-9. 

We would like to estimate failure probabilities of this component 

for exposures in the neighborhood of 105. There are two classical ways 

to do this (See Sections 5.2 and 5.3): we can get point estimates based 

on Binomial probabilities. The fact that 0 of 15 components failed at 

an exposure level of 105 leads to a 95% confidence statement: "Prob~ 

ability of component failure at exposure level of 105 fiber sec/m3 is 

less than .181." The other method is to compute a Kolmogorov-Smirnov 

simultaneous 95% confidence region: "F(e) < Fu(e) = F
15

(e) + .304," 
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where F(e) equals the probability of failure at exposure level e and 

'" F
1S

(e) equals the estimate of this probability ~rom 15 observed failures • 

..... 
(The boundary ru of this upper confidence region is plotted in Figure 

4-9.) The Ko1mogorov-Smirnov gives a 95% confidence statement: "Prob-

S 3 
ability of component failure at exposure level 10 fiber sec/m is less 

than • 304. " 

Clearly, we would like to get more precise estimates. This is 

possible. It can be done by exploiting a physical property of the fail­

ure process, namely, that it has an increasing hazard rate (IHR). This 

fact was discussed in the context of testing for exponential failure 

laws in Section 4.2. 

Let F be the failure distribution and f its density. Define 

h(e) f(e)/(l-F(e» and e H(e) = lu h(t)dt = -log(l-F(e». The func-

tion h is the hazard rate and H is the cumulative hazard or log sur­

vival function. If the distribution is IHR, then h is monotone nonde-
A 

creasing and H is convex. Let F be the K-S upper bound. 
u 

If we 

assume an IHR failure distribution, then a 95% confidence region for F 

will consist of all IHR distributions bounded by F 
u 

It turns out that 

there exists a maximal IHR distribution 

bounded by 
A 

F 
u 

Let if = -log(l-F ) 
u u 

A 

F among all distributions u,IHR 
A 

and H be the greatest con-u,IHR 

vex minor ant of H 
u 

(plotted Figure 4-10, then F = u,IHR 
A 

1 - exp (-H ). If F' 
u,IHR 

A 95% confidence region 

data of Figure 4-9. 

is IHR and 
A 

F < F u,IHR 

F' < F ,then F' < FA 
= U = u,IHR 

is indicated in Figure 4-11 for the 
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Note that Figure 4-11 is a much more accurate region, especially 

in the left tail. This accuracy was gained by assuming a more restricted 

model, namely, an JHR failure distribution. For the previously consid-

ered exposure level of 105 1;iber sec/rn3, w~ are 95% confident that the 

probability of failure is less than .0048. This is great improvement 

over the other estimates. 

4.4 Sensitivity of the model to estimated 
parameters and distributions 

We have written a special simulation program designed to provide 

fast and economical sensitivity analyses of the risk profiles obtained 

as output of the GFRAP risk analysis. Moreover, this program follows a 

modified simulation approach which. yields statistically valid confi­

dence bounds on the risk profiles obtained. The program requires as in­

put the probability distributions of damage per accident at each of the 

major airports being considered, and we used analytic approximations to 

the empirical damage dis.tributions reported by Arthur D. Little, Inc. 

(ADL) in Ka1e1kar, et aL. (1979). We have performed an extensive series 

of sensitivity runs of the program, and of an additional computer prog­

ram written to provide partial analytic results when the analytic ap­

proximations just mentioned take the form of Lognormal distributions. 

This section describes the simulation program, details our efforts to 

analytically approximate the different airport damage distributions, and 

finally presents the results of the sensitivity runs. 

4.4.1. The simulation program 

For ease in handling simulation error (to be discussed in Section 

5.1) we recommend the following procedure for the simulation: 

Step 1: 

Step 2: 

Generate by Monte Carlo methods the number of accidents 
in a year. 

Determine by Monte Carlo methods at which airport each 
of the accidents generated in Step 1 occurs. 

- 47 -



Step 3: 

Step 4: 

Step 5: 

For each accident, determine the cost. 

Total the cost of all the accidents for the year. 

Repeat the above four steps n times (yielding a 

sample size of n years). 

T-419 

Step 6A: Compute the empirical national annual risk profile. 

directly for the sample of n years from the Step 4 

values. 

Step 6B: Compute the empirical national conditional (given 

one accident) risk profile directly for the sample 

of n years' worth of accidents from the Step 3 

values. 

We have followed this procedure in our specialized simulation program, 

and will now give the essential details of that program, referring 
, 

appropriately to the steps above. 

In Step 1 we assume that the number of accidents in a year is a 

random variable following a Poisson distribution; thus only the mean ~ 

of that distribution is required as an input quantity. While the assump­

tion of a Poisson distribution seems to be generally accepted, and there 

are some theoretical bases for it, other discrete distributions or a more 

complex relationship could be accommodated by the program without signif­

icant alteration. For example, the mean ~ of the Poisson distribution 

could be treated as a random variable following a specified probability 

distribution. 

In Step 2 it is assumed that each accident occurs at or in the 

vicinity of one of a given number, say N , of airports. 
a 

Each of these 

is characterized by a probability, say Pi for airport i, that an 

accidents occurring at one of the N 
a 

airports in fact occurs at airport 

i. That is, Pi = Prob(accident occurs at airport i I it occurs at one 

of the N airports). These probabilities pertain to every simulated 
a 

accident, regardless of the airports at which other simulated accidents 

occur; i.e., the various accidents are treated independently with respect 
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to where they occur. The numerical values of the Pi (i=l, ••• ,Na ) are 

based on historical data (and possibly on future projections as well) 

pertaining to the weather conditions and numbers of operations. at the 

various airports. 

Step 3 is the critical one and must be dependent on the simulation 

model used to generate the random costs of accidents that take place at 

each of the N airports.. Such a model must be rather complex in order a 

to account for various types and locations of accidents, CF dispersion 

under local weather conditions, local types and quantities of housing and 

industry, etc. Indeed, the development of such a model is one of the most 

significant aspects of the GFRAP, and both ADL and ORI have expended 

considerable effort to this end. Our specialized simulation program 

therefore requires the inclusion of subroutines that generate random 

values of accident cost that are solely dependent on the airport con­

cerned. For the sake of future reference, let Fdi denote the CDF of 

the damage (cost) per accident at airport i , i=l, ••• ,N • 
a 

To test our 

simulation program and to obtain sensitivity results we had to make some 

specific choices for the Fdi • What we did is described below in 

Section 4.4.2. 

Steps 4 and 5 are self-explanatory and require no comment. Steps 

6A and 6B are carried out by constructing, in each case, an aggregated 

relative frequency distribution and then converting this to the aggre­

gated complementary cumulative relative frequency distribution that con­

stitutes the empirical risk profile. The number and size of the cells 

u~ed to ~onstruct the aggregated distributions are specified as input to 

the progrqm. It would not be practical, for large sample sizes, to save 

all the observed values because of their number and the computational 

cost of Qrdering then (there are n observed values that enter into 

Step 6A and approximately n~ observed values that enter into Step 6B). 

The first four moments of the empirical distributions are computed from 

the actual observed values. 
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The only information that has been available about airport dam­

age distributions is that contained in Table 10-1 of Kalelkar, et al. 

(1979). Recent results of both ADL and ORI indicate that more accurate 

and current damage distributions have associated with them significantly 

smaller damage values. As such results were not available when our pro­

gram was developed and When our sensitivity runs were made, and are still 

not readily available, we based our work on the empirical damage distri­

butions presented in ADL's Table 10-1. The distributions given there for 

26 different airports are based on 300 values each generated by the ADL 

damage simulation model. 

For each of the 26 distributions, ADL's Table 10-1 provides the 

mean, the standard deviation, the minimum and maximum observed values, 

and the following percentiles: 5th, 10th, 25th, 50th, 75th, 90th, and 

95th. All the minima are zero, as are many of the 25th percentiles. 

Using the given percentiles, we plotted all 26 distributions on log-log 

paper in the form of risk profiles (complementary CDF's). One of these, 

that for Washington, D.C.'s National Airport, is shown in Figure 4-12. 

The right-hand portion of the curve is shown as a dotted line to empha­

size the fact that this portion is heavily dependent upon the maximum 

value observed and said maximum might vary significantly among samples 

of size 300. (We associated with the maximum value a risk probability 

of 1/30.0'.1 

We considered using piecewise-linear approximations to the observed 

distributions in Step 3 of our simulation program, but decided against it 

for two reasons. First, and most important, this would not provide us 

with a convenient mechanism for performing sensitivity analyses through 

controlled changes in the damage distributions used in Step 3. Second, 

the smooth, form of the curve in Figure 4-12 ( and of the ones for other 

airports) suggests that a piecewise log-log or log-linear approximation 

might be more appropriate. We therefore concentrated on analytic ap­

proximations to the observed damage distributions. 

- 50 -



d -+ 

10
2 

103 104 105. 10
6 10

7 

1 ~["!~f~~~,j~~~~~~~tlf~~~~~rv~~~riJjj\tEfJr~s~~b~~:I~-~f, 
..... , ...... 1., .... ,., .. I' ... ' .". , .••... ! ,I " ,. ..' I" II' . , .: ., •• Ii, 't: .. ,~ 

:: ~i~-;t1rH-~i88~j+(~Ji:i:,~H-~~[') Jl:rr~~i~:ThT+ .,: ;:~f;;~ ']0~+ H£;~1-!t ~~:=-~i~+ -H~;:H :[j 
_ ',' , .. 1.1." ":'1' ·1 "'1 , I'" i .. : .I .. l :"':.' I ' .• ! .. ' I·!.l "':';"1,' .'.!.' ' .. Ii' I I' .: , . i ! , ' : I , ! 
2 r:.-:-~->-- .. .l...~ --·L.l.-·-'---"'-I~"·~I8J-;'-· -<--- .. -~C· ~".-r- --- .---, -' ..... ' ... - . ---~ -,-~~--- •• -. _._,_J._ -~-.• - -----.. -·--.----.-11] ., ... ';"l"" , ... \'1" I . .' '.' " ...... · .. ·1· ." I I ,. I ' .. , .. , .' . ,. "","'" , ... I . , I I I I : I ; • J I • • • I' .. I " .' I, •• j ,I I II'" • I i I· . 'I ' I' , .." . . 'I' . , . I" : I ' . . , ,~ ,I • : • . I .' I' " I' 

I : I : . .: ~ ': .' . . : '", : ;, I ' ' : .' : I ~ . i ' : i . I' ' •. l .: • I:;, :: ~ I: I :'!, I : ; , , . . : ' ! j ; • 'I '. I 'I !,:.! f .: ! • i ': 1'1 'J, : I • ; •. , . • i . . : I '--~':-. H"7+. ::-\--1. ·:-1'7·:I~.Il-ILI-;--;-;7~~~:-;:-i-:-i:1 ~ i~-I:~7·1-:!'-i ;'.! :r : I :---~ -:-1"': : ::',;-';!:.:. ~~. ;!, : ;. 1"'1 ~ ~-:-'; ". .: .;. ;.; "c-r:- ."; :·1 i +-, ."-;~: .. _.1,'" ; ... i"j:';" -".-.! -1",:'-1': ., '0ld"'" "J' ..... ·c"· I., .• to .,., .. ,. '''W'' " .. ' I. ' .... 1 .. ••. "":' ! "';'. I .. ,. ' .. , . I.. ,. i ., I.. ,.. I'" '1 .... 1 .. ', .. I ..• 1
"

,.1 .'·1 "1""" "," 1"1 : I . • 1"'1:: 1·1 .. I , I' i··' .: I .... I I·.,· I 'I' .'. : ,·.1 1· .. , 1 ·1 
I I'·! ,1 .. 11 01 :', ;,,:.: ".!.: ,.:', ',I,I:;i l :'l,I".llol I:' I,:;!: 'i"~·';·· .. "',', ,t.,.,,; 'I i ~; ~ 1'1 I~, . 'I \.; .i ," ,.j I. 1,10 I--._~ _____ ·_.,_L .1_.. I· ,. __ l!....:. _1 ..... ,.:._._ ... _'-'-.. __ ... ~ .... _.'-~_ ... -';_j .. >-__ ~ __ •.. _. ,_ •• _. ____ , •• ~ ... _ ... __ ••• _._.,_ .. __ • .. ,_l I:! ,I_r; 

I. . 1. 1 .,., !'ill I II:fl' ~"'" •• 1 III!, ,"1.' . I '., ~'H 
. ;: f~-~::"':·~+-1=F~:1--:F-F: .. ~~"F;-~:~:=~j-: :-~1~'F-~t~4;4:"!=FFt:..::-::;- ~-.: -- .7'::': .. : :.::~;:r+ r:~~- := .. ~:~ ··~:i·- -:T -:'::~:~;~~~i::.::.:_"q=·- :~~~=:=::·;~.-·~=t~P=·FH 

I ~- -"-'-'-,"-: L",, __ ._L..j •• _____ '-'-__ ~ .. G_. t'7','-' - .-~---, .-- '···1---1--,· .. I.~.-.-.,. --.• - ..... , ---'--'-~'-"r j"--' ~_ •. __ l. ..• " .L.,._ .... 4·~-1 
_, ~ t . I •• ', • I I .! f I ~, '.'1,' . "1';'1. ' . I . I . : I • " f ! .,. . I : I: I I I. : ··t I : I, l f iii ":-'~'."--4~t~:rt~TI-:-r!:-i~rr-:-:I-·-~:1~VC-'1-:·TJ¥!~:~/ .. ·:·:- :-:"-':-'l~TH'{'--~;--':--; i-, ·-·:··i"(!··rr-'-·-:-;--~--":-i-'-:-r-=rn+1 
~~ .... ____ ..:.J __ -,--- ,-,·:t-··---lli' --I---I:I-"~-~--" ... -'-.. --... , .. -I.I--~----r· - .... -........ +.-- .. ,---------~. -'---'-r-n t " 1 .. ·1 .. ·· .. ,: .. :! i··

L
I 
.... ' .• ' i I: . I'. 'j,'.::. :'. ',' :1.1·:~F. 1,-: .!:.!'. I I • '1' ',. '1 I "\"j :. II • j , I I . . I I ! 

I · • ""1"·1 "1 • '1:: 1 U· .. ,. .. . I .' I .. ,'.. ", ,- -•• , 'l' . I " .1 1 I • , •. ,' •• ,., L' " ., I • , • 1 • , .. , . t' '''' .... .. .. ''1'''' .~ ...• I' " •. " •.• ,. "I I, 1 ... ,. ,.,.,. ,., 
4 -Q) --"-+---'--'-- -f-' 'r .. -_. '....,- ----.. -~ .. -.- ----.- -~ - -r:--:- ----,.- . -1-'.---- .------.--~---... ,...., ... :.:1 I.: ; •• '.-:1 I' I .• I:' I .•• ! .. !',"'. 1 i . I .: t. !. I.j j ••. ! •. j iIi .... I' : , j" • t· '. I ':.' : . I I I ' : r;co l--r"tt.Jh"'-"~"'" .: ",'" I·~------··,;-f: .... ,--I·--'+-'-Mt~·, ",,' ... 1"1"1..1-, ·----:!--:1 'f'c ... ·-1 .. -'·-.-1·.·. ~ __ " ___ ''''-'''''_' __ ''ci .•. '' '1" .·1.---. -.. ' ... ' :.'. 1-- -'. : .. , .:n:s ':. ··:":...lil:~:i 111·1:1: ... ~I .•. : .• t1:t1.; .. 1.!, ... ' '~'II I::' .1,· 4'" I,t:- -'1 ~';t·l· ,,!.I! . ;; ~ ! : I,;J 

3E.:.·~-~~1:0JiLl·.Jjl·M·: LI~t',I:.L.:.:.:-=:ij*-:'7:L :j~:J:.::11:l::.~1-::.11·~rl!-J<·' i 1:j·L,f~:F:1U:~i~.t.~·:',;~F;-I~--~L~J-.'L~li·~~.;.:~ '-,:-- ~\1'~1! t· __ .: __ ~.r?-- ·,;.·:'·:J;::-!:'Tr"I·..lj· 
,..., .... " .... ,. . I '1' '. 'I ........ ,,,,... " .. ' •.••.• 1"'1 ..... ". , ". '. .' , ,., . I • ' I 
~,·'· .... ··L·· ' .' ... ~I' "''''j'''' "'I'f"""I""""~' ...... ,';, ..... "1 "'1 . I· " .1' , '..1 ....... !. I ':,' .. ,.~ : ...... j " .. 1.'.'; f.<" "I.: .:'" ."\'.,' '.; ::'.1' ".: .. , l·~·:. ,I~.: .• '.! .:!!'; ., I .. : .• • .. j ! ", 

2 """- ~~'-"1'-.-'''''~ .r,c.#- c_:--_ . - ·-,.-I-·~---'··'-:·.o--.-t-·-.... -... ~·,.-!-· ... -,-.... ---.~-... ,. '----:-r-:' ---~. 
i· ..... ',,';:::Lj, .: .... lp.,.I·:·;:·I· .;.·~!·!t"'.',·I.:·;::: .:j,','li.:.I II .,·': I: ,';,' ,I.,.f·' . ::~ ;. ,'1.1",; .1,: ;"." ~ i . I:' ..•. ; : 

b
OI- .... ,., .. ' ··1 .. ·1···'1·1··.· .. ,· .. ,· .. 1··"·,,··1, .... ' .• ,',,., ... ,. , .. , ... ,., , .. ,.,1.1 .. 1, .... I .. , ,I • , ".' I,I~, 

.• . ...... ~.... '" ...,.' . l, •• 4 _ I. I... '" I .' .... , : ,I I " J •• • • ~ ., j '., •• 1 ," I :'.'" J I • • I . . I ,.' . I' .. , I • t· •• I' f I 
J.J._ --12 .. ~_c_; ;~--~- ...,:--I~+ . ··1.",1,· .... ~ ,.,,:- .-:--.~-~.I--·!~ .. :--',-I ~ ·1·---·-+_-+--·~ .. 1·_-~-1··-:·-· :.'11. __ ~--·-t-·;· , .. -'''1·.1-·-.. M' ~~ ...... , .•...• "··'1 ... .t •. ,. 1""1""':""'1" ,,! t •• '"TT"T":i ••. , 'I ••••••• , •• ,1 •• 1 '·"l· .. I·I· I l j'-:\ . • I 'I 

. .1." .:. ,,, ..•. 1 '·lli·..t.,·' I i·'·', ,I:: .. ,.I··I:·'I"·1··':'···'8",··J·,··',··, ,'.... j .. i . I,· · .. ·1: ,. ':.1 I .:,: ·d "I' · ·1 , 'j... • " I. '. ,':. i I·. I l 
.;, "Jq:'~I.~.,: .• I'II'!·I':":i" f'! ~'II";'!'::"" :"I!l:,! l'· .. ,I,.III,' "1' . '1"1 :.; '1. '1:: :' .I.,,!. ·'·t I .... ! I, t," : .! ;: t ,,,t ii, 
I, .: .... : .. , ... ;J '''''.; J' '.·.,·,.,,;l: ... ·;',' I'.,;.""·.·~" .. I::·I"·· .. '·L··' "i'l 'j"'" .·I" .. ,I·",.·I·:··!I I"'. " !! ,····"·J·II· 1/100 ~- I .! ..... ....-.'1· -1'-+- ... " . "'-'--']- -.. -:·fr-··--f-·,-;-~f":·"·i-·r,...f-,--:·,.-t--:----T-. -~--. "i-·-~-;-;;·t .: i --.. ----~.-:---.-+-'-._:_!-.:.~-~--·r-·'-:·J·--· ~-'-;.j.;··I·:i-.·j..L·-'---- .-.. L..~.:j.-~-.t:;L~tl- .. j .. ~~.".:"'" _~.,..~ __ J., ' I·-~'--~"--·'··:' t~J._L_~ ' ... -=\~ul---,-· .. ~·~ .. -.:.;...J-+·-t·1 
~~·~~-~~~H~::+~f·+ i·~-:-:-~·~4 .. ! 10.;. f.~~ L,.~~!~'·~·T~-~_l __ "::~·~-·-:-:':'·";~·7-F-·t-:-;-- -~t~ !-.~~ t-.~. t~_~.~_ .. : .. ; < :.- --- --~.u-;:-~-·-~}--!-~i!1 
7L,;-,-:_'+n--f-~----:-""---- .! ·...,...,..-$.-·-·:-,-:-t·r ..... .,.,-'--:----J·--~h-; .... - ..... , .. : .. , .. .1 __ '-'--_' .• -- .~ .. ~L --,-' u . -." -__ f_'-·.-__ -;-u +------l-'-·.-I·t·1 
'. ',; ":":{,,,' ·1:·"1 ;.I..:·~I'.':·r·"· ,:I·m·.·!· .. ,· .. "~:'f' :. ·:,1"·' , 1,. i··I·· :·L! ., I '·1 ·Ll .;! . :'~" i:'~' . 
:h~~' ~< .. : I.:·.!.:.GUJ;: ·I~.: I::: l':Jl.": i:,' :' .. :l~IIll_~l~I~:..ctT.l=J=Trl·J 1-=-~-=;~=~~r~r-:·:-rl·!~Jr· J.=cfr.-'[:~·.·-)..~~.:~-L..;~I-L~J, 
j-: '.'~ : ..... :I.I.t"rr:.:. :·::I·;';~:':I.'.· ' •. t:·"~·:··if .. I.·-·.:::- :.:.: ..• 1'·.1;"':1 '.,. i··1 ,I' '.".1 ' . , .• i. t ,·. l2..:.""j-··I-j"·,· "'I'" ·r-'l-·f",,,,,·t.;.t'l;·:j"'·'··"I··"'·'·.t. .I .... , •••.. t.,.,l., 'I '····'1 ···~··jl 1.\, ""'Jl1 

A. ! I ~~. -:T:~i l';~;-~~~':- . h,'.:;::.f. I, ;=~ :.;!'.~. :; 'I;~I ~I~~r+; ~~I"'+-Iril ;.~ i ~ ,.~. :~~.:-~~:--:~.~ .. i-!.~:--I·~, .. !:.~·:'t-;-:·:-;---l-:--T;"i···-:-··f~i:---M-i" . -:- -- --<-:-. ..! .. ~ -- :;':':"j--:--7"' ,-~-! 

/c8, ~J7=tJ-~~ljd~)t'f~IT}rlliJJirr:J:fEt1Rf~~~M]~I'=;~~lE~IU:~I~:fL~t~·I~j~:H-:!~~~f.:J:~}~:F:[:il~~r~·i~EHt~:~~<·::~~;··:'.:~J+~~~~r.tl.il 
::"I'::! :'1"',"1.1"" ':'''FiT .;::1::· .... (1:7\.:::,:.·1 ···,,1 .. ,: .... : ..... \. :,"." ,':', '., .... : .,' .' I :.j.,. !.,: ".1",.' 'I 

;~,-.-.-·~~~:+,~~i::.·:~·:4~i-··~ :':: j:::·.~~~~.~i~~141·:+f+.~-!+.i .. J' .·~-i .. J~~ ·!·1~.;·.-. -:1-:--+-;~:~·:~·;·-!-:':"'!-~-: ~ : -.-' '~~-.:--i'---~ r-'-n-; 
I " """"f "~'!' ;.,: !·I···,' .. : .... 1 .. L'''I''''~'I''L''l' "'l'" ,j .. ! ..•..• ;, 1'1 ·I·'.j I. , I' , .' t,,·. '1'1·,·"" " : .. , •. , t I" .·.1 •••• " • '11 '0' " " ,. l'I"'j ',. J .," '1., '. I." I I I " • , ••• 1 •• • '··1 .1,. '1 • t . 1 '., I 1 I , I ............. , ..... , .. 111 .. : ..... , ... ",',." .... , ........ 'c,;",,," 1,1· "1 ... 1.' •. '.' ., I .. , •. , .'.1 ... ,,,' ,.,.. , ... ' .. , ...... I' i~·:·:J·~~.. . _ .•. L~-~-·r·· -.~- ~l:·: .::1- .~- :... "~-'-. --,-- ~ ... ~!-. ". - .-.. ··:·,-·I·~·I.t-t-:· ", ... '" ~ .... '-':-'1--1- ".+ .. -I- ,---1-- ' ..... -1 .... -:_-,·- .. ·,··1· "'1 .• , ••.• -:-:-;1: .............. " "1.'· .) •• , ..•. I.If:.I .• I ... ! ... , " .. 11",.1 1 t·ll 1!~1"""'" 'I ","1 I I '1'" c' I,· ,,' ·t· I '., ... '1 t ••• ,. 

I :'::"':: .:\.1';1·::.1'1 :IL:LL~" :., jl. ",'.1 ~.1 , : : ,'::'; <! -:.,: .'!': .. :~i: ::,: 1:':·1' ,; .. j: !'! ,I :;~ II":I!:"~ .. I, }:.II:::·j '; ,1.,"1 ; : : ". ;' I ., ··1 ~!'. ',i: "1,"'-:-: 1·;·li .. l 'I : .. ~ .. I, ; ,; : ~ . ,i"1 ',' fiJI 
• .' •. " ". ""1 I" .1" ,. •• • " , .,.. I. • 

L/1000 .. !I:, .. ,· .. ,I .. ·!····· .. ·· .... !j. '1'''' ·:,,!.,··I·:.'·'··,,:,·,' ! .. , .. !I.,,: ... I ' ..•.•• , .. ·1.";'1" d .. 1·1· ,I .. ; ".' I", !· ... ·I , ; .... , ... , I" 
_L ~_. _ ..J....4,i..,;.~ ~._t_ .. _... 1 -..;.l~~ .. _-,I_ '"--.,_ .... '_J.--l_ .... -,O 

FigUI'e 4-12. --Washington NationaZ Aizrport risk profi Ze. 

;,,'. ':) 
0i/~~ 

" 1,1 

'( 
~ 
I-' 
\0 



T-419 

Examination of the 26 empirical distributions in Table 10-1 of 

Kale1kar et aZ. (1979) shows them to be considerably skewed to the right; 

the coefficients of variation range from 1.33 to 3.40 and the ratios of 

mean to median range from 1.32 to 133. We therefore considered several 

families of distributions which possess the characteristics of skewness 

to right and nonnegativity (of the associated random variable). Such 

families include the Weibull, Gamma, Pareto, and Lognormal families [see 

Mann et aZ. (1974)]. Our choice of families to examine was partly in­

fluenced by the manner in which we decided to fit the empirical distri­

butions and verify the adequacy of the fit. We wanted to determine the 

two parameters of the theoretical distribution from the mean and standard 

deviation of the empirical one, and then to compare the two risk profiles. 

This is difficult to do with the Weibull and Gamma distributions for the 

following reasons: In the case of the Weibull distribution one cannot 

find directly the two parameters as closed-form functions of the empirical 

mean and standard deviation; a nonlinear equation involving the Gamma 

function must be solved. In the case of the Gamma distribution one cannot 

obtain the cnF in closed form so calculation of the theoretical risk pro­

file is extremely difficult. 

Both the Lognormal and Pareto distributions fit our computational 

requirements, and examination of the 26 corresponding Lognormal risk 

profiles showed many of them to fit the empirical risk profiles reason­

ably well. The Pareto distribution was tried for several cases but did 

not fit quite as well as the Lognormal. 

For the purposes of testing the simulation program we therefore 

decided to use Lognormal distributions with means and variances equal to 

those of the- empirical distributions. Figures 4-13 through 4-21 show a 

representative selection of the corresponding risk profiles--the ADL 

empirical ones and the Lognormal ones used to fit them. 

We did not close the door on attempts to fit the empirical distri­

butions; as a next step we examined the possibility of fitting the empir­

ical distributions by mixtures of Lognormal distributions. That is, 
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A 

instead Q~ approximating the empirical CDF Fdi for airport i by a 

Lognor~al CDF F~i' we approximated it by the convex combination at 

Lognormal CDF's 

Ii 

jIl q'j.j f ~ij 

where each F~ij is a Lognormal CDF, each is a small positive 

integer such as 2 or 3 (or even 1), the qij are positive, and Lj qij = 

1. A difficulty with this approach is the lack of a clear criterion to 

use in choosing Ii' the qij , and the F~ij. Even with a clear 

criterion, the computational effort would be considerable. There is no 

doubt, however, that decidedly better fits could be obtained this way. 

Figures 4-22(a) and 4-22(b) show fits to the Philadelphia airport risk 

profile by a single Lognormal and by a mixture of two Lognormals, re­

spectively; the parameters in the case of the mixture were found heu­

ristically. The improved fit is readily apparent. Figures 4-23(a) and 

4-23(b) show similar fits to the Los Angeles airport risk profile. 

An interesting result is the following: Let F be the national 

conditional (given one accident) CDF whose corresponding risk profile is 

estimated in Step 6B of the specialized simulation program. If each CDF 

Fdi is assumed to be Lognormal, say F~, then 

so that F 

assumed to 

so that F 

is a mixture of 

be the mixture of 

F 

F 

N 
a 
I 

i=l 

Lognorma1s. 

Lognorma1s' 

N Ii a 

P.F n. , 
1. )1,1. 

If instead 

Lj qijFUj 

I I P.q .. F9,i. 
i=1 j=1 1. 1.J J 

is again a mixture of Lognorma1s. 
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each Fdi is 
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Ftgure 4-22(a).--Philadelphia risk profile. 
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Because the empirical distributions given in Table 10-1 of 

Kalelka~, et aZ. (1979) were known to be outdated, we decided against 

any further attempt to f;it them with analytical distributions. We 

decided to use 26 Lognortl1al distributions, with the ~ame means and vari­

ances as those of the empirical distributions as the basis of our sen­

sitivity analyses. We did, however, investigate the effect of replacing 

the Lognormal distributions by mixtures of Lognormal distributions. 

Exactly what was done will be detailed below, but the results may be 

summarized by the statement that replacing the Lognormal distributions 

by mixtures of Lognormal distributions had a negligible effect on the 

national conditional and annual risk profiles obtained, even though the 

mixture of Lognormals yields a better fit of the individual airport dam­

age distributions. 

4.4.3 The sensitivity analyses 

Following the ADL analyses we used N = 26 a 
and used for the 

the values given in the last column of Table C-4 of Kalelkar et aZ. 

(1979). For our base case we chose the 26 Lognormal distributions to 

have means and standard deviations equal to those of the empirical dis­

tributions generated by ADL, and we set ~ = 2.6. This parameter ~ 

is the expected number of accidents in a year, and the value of 2.6 cor­

responds to the agreed-upon projection for 1993. 

Because of the assumption of Lognormal distributions of damage 

per accident at the various airports, the national conditional risk 

profile (given one accident) is the complementary cumulative distribu­

tion function (CDF) of a mixture of Lognormal CDF's. That is, 

where FR, • 
. l. 

is. the Lognormal CDF of damage per accident at airport 

and R, = (I-f) is the national conditional risk profile (given one 

accident). It is thus possible to compute the values of the risk 
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profile R exactly with the aid of a table or computer program that pro­

vides CDF values of the standa,rd normal diattibution. (This. is not true 

for the annual risk profile, however.) A separate computer program was 

therefore written to compute R this- way, and it was used in adddition 

to check the corresponding risk profiles generated by the Monte Carlo 

simulation program (which generates both risk profiles). 

The annual risk profiles for various sensitivity runs were gen­

erated by the simulation program; in each case the year 1993 was simu­

lated 4000 times. 

We performed three separate types of sensitivity analyses. In 

the first, we varied the means of the Lognormal distributions of damage 

per accident at the various airports and kept the standard deviations 

the same. In the second, we varied the standard deviations of the Log­

normal distributions of damage per accident at the various airports and 

kept the means the same. In both cases all 26 means or standard devia­

tions were changed by the same percentage. In the third type of sensi­

tivity analysis we varied ~, the mean number of accidents in a year. 

This third type of sensitivity analysis affects the annual risk profile 

but not the national conditional risk profile (given one accident), 

whereas the first two types affect both risk profiles. 

The results are shown in Figures 4-24 through 4-28. Figures 

4-24 and 4-25 show the national conditional risk profiles R for various 

changes in the means (Figure 4-24) and standard deviations (Figure 4-25) 

of the distributions of damage per accident at each airport. Each risk 

profile is identified by the ratio of the value of the parameter (mean 

or standard deviation) to its value in the base case. Tables 4-3 and 

4-5 show numerically some of the results shown graphically in Figures 

4-24 and 4-25; no exact values are given since they are not likely to be 

truly meaningful, but instead ratios are given to indicate the effects 

of the change in means or standard deviations of the distributions of 

damage per accident at each airport. Tables 4-4 and 4-6 show the ratios 

of the means and standard deviations of the national conditional risk 
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Figupe 4-24- --NationaZ conditionaZ T'isk pT'ofiZe R with changes in the means of 
the aiT'poT't damage distT'ibutions (26 aiT'poT'ts). 
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Figure 4-25. --National, conditional, roisk proofi l,e R with changes in the atandaX'd 
deviations of the airoporot damage distributions (26 airports). 
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Figupe 4-26.--AnnuaZ risk profile s' with changes in the means of 
the airport damage distributions (26 airports). 
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TABLE 4-3 

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK PROFILE R TO 
CHANGES IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 
(1) the values obtained when the means 
are changed to (2) the corresponding 
values for the base case. The ratio of 
airport damage distribution mean to 
that of the base case is rand d is 
a numerical damage value. 

-
(a) Damage Val.ue d 

P{Damage > d} r = 0.5 r = 1.5 r = 2.0 r = 3.0 

3 x 10-1 .31 1.87 2.69 4.06 

1 x 10-1 .45 1.53 2.07 2.98' 

3 x 10-2 .52 1. 30 1.60 2.06 

1 x 10-2 .62 1.21 1. 39 1.63 

3 x 10-3 .75 1.13 1.20 1.31 

1 x 10-3 .84 1.07 1.10 1.12 

3 x 10-4 1.00 1.06 1.06 .88 

1 x 10-4 1.04 .91 .81 .69 

3 x 10-5 1. 20 .83 .72 .60 

(b) P{Damage > d} 
Damage Value d r = 0.5 r = 1.5 r = 2.0 r = 3.0 

.03 x 106 .50 1. 36 1.53 1.65 

.1 x 106 .42 1. 65 2.21 2.81 

.3 x 106 .42 1. 76 2.76 4.33 

1 x 106 .46 1.53 2.21 4.00 

3 x 106 .65 1.30 1.50 1.95 

10 x 106 1.07 .79 .48 .23 
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TABLE 4.-4 

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK DISTRIBUTION TO 
CHANGES IN THE 11EANS OF THE AIRPORT DAMAGE DISTRIBUTIONS 

Ratio r 

.33 

.50 

.67 

1.5 

2.0 

3.0 

KEY: All entries in the table are ratios of 
(1) the values obtained when the means 
are changed to (2) the corresponding 
values for the base case. The ratio of 
airport damage distribution mean to 
that of the base case is r. 

Mean of the National Standard Deviation of the 
Conditional Risk National Conditional Risk 

Distribution Distribution 

.33 .97 

.50 .98 

.67 .98 

1.50 1.04 

2.00 1.09 

3.00 1.23 
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TABLE 4-5 

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK PROFILE 
R TO CHANGES IN THE STANDARD DEVIATIONS OF THE 

AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 
(1) the values obtained when the stan­
dard deviations are changed to (2) the 
corresponding values for the base case. 
The ratio of airport damage distribution 
standard deviation to that of the base 
cas e is rand d is a numerical dam­
age value. 

(aJ Damage VaZue d 
P{Damage > d} r = 0.5 r = 2.0 r = 5.0 

3 x 10-1 1.23 .60 .35 

1 x 10-1 .92 .84 .65 

3 x 10-2 .79 1.06 1.04 

1 x 10-2 .72 1.33 1.56 

3 x 10-3 .60 1.49 2.02 

1 x 10-3 .52 1.64 2.59 

3 x 10-4 .47 1.87 3.41 

1 x 10-4 .41 2.03 4.14 

3 x 10-5 .38 2.38 5.48 

(bJ P{Damage > d} 
Damage Value d r = 0.5 r = 2.0 r = 5.0 

.03 x 106 1.27 .76 .55 

.1 x 106 1.30 .74 .54 

.3 x 106 .86 .85 .68 

1 x 106 .51 1.34 1.34 

3 x 106 .21 2.13 2.99 

10 x 106 .03 3.86 8.48 

- 76 -

r = 10.0 

.19 

.44 

.89 

1.44 

2.23 

3.12 

4.53 

6.04 

8.33 

r = 10.0 

.41 

.40 

.54 

1.19 

2.99 

10.98 
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TABLE 4'-6 

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK DISTRIBUTION 
TO CHANGES IN THE STANDARD DEVIATIONS 

Ratio r 

0.5 

2.0 

5.0 

10.0 

OF THE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 
(1) the values obtained when the stan­
dard deviations are changed to (2) the 
corresponding values for the base case. 
The ratio of airport damage distribution 
standard deviation to that of the base 
case is r. 

Mean of the National Standard Deviation of the 
Conditional Risk National Conditional Risk 

Distribution Distribution 

1.0 .55 

1.0 1.95 

1.0 4.84 

1.0 9.68 
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p:rQfile R to those oJ; the base case when the indicated changes are 

lllB;de in the means (Table 4-4) or s.tandard deviations (Table 4-6) of the 

individual airport damage distributions. 

Figures 4-26 and 4-27 are comparable to Figures 4-24 and 4-25, 

respectively, but are for the annual risk profile, call it S, instead. 

Tables 4-7 through 4-10 show the results numerically, and are comparable 

to Tables 4-3 through 4-6, respectively. 

Figure 4-28 shows the changes in the annual risk profile S as 

~ changes; note that increasing values of ~ produce increasingly 

conservative annual risk profiles as defined later. Table 4-11 shows 

numerically some of the results shown graphically in Figure 4-2 ; again, 

only ratios are given. Table 4-12 shows the ratios of the means and 

standard deviations of the annual risk profile S to those of the base 

case when the indicated changes are made in ~. 

4.4.4 Investigation of the effect of 
approximating the airport 
damage distributions by 
lognormal distributions 

As indicated above, the empirical individual airport damage dis­

tributions are better fit by mixtures of Lognormal distributions than 

by a single Lognormal distribution. We wished to see whether using such 

better approximations to the airport damage distributions would signifi­

cantly alter the results of the sensitivity analyses. It was not prac­

tical to carry out the process of fitting all 26 empirical distributions 

by mixtures of Lognormal distributions, so we decided to proceed differ­

ently. We assumed, in effect, that there are only 13 airports, all of 

whose damage distributions can be fit by mixtures of two Lognormal dis­

tributions. This yields 26 Lognormal distributions in all, which we 

took to be the ones utilized for the base case described above in Sec­

tion 4.4.3. That base case becomes, in terms of the 13 fictitious air­

ports, the most exact representation available, in that each of the 
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TABLE 4-,7 

SENSITIVITY OF THE ANNUAL RISK PROFILE S TO CHANGES 
IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 
(1) the values obtained when the means 
are changed to (2) the corresponding 
values for the base case. The ratio of 
airport damage distribution mean to 
that of the base case is rand d is 

, a numerical damage value. 

(aJ Damage VaZue d 
P{Damage > d} r = 0.5 r = 1.5 r = 2.0 

3 x 10-1 
.38 1. 75 2.52 

1 x 10-1 .46 1.54 2.03 

3 x 10-2 
.59 1.35 1. 76 

1 x 10-2 .69 1.22 1.53 

3 x 10-3 .79 1.08 1.26 

1 x 10-3 .99 1.06 1.15 

(bJ P{Damage > d} 
Damage Value d r = 0.5 r = 1.5 r = 2.0 

.03 x 106 
.76 1.10 1.13 

.1 x 106 
.52 1.17 1.26 

.3 x 106 .41 1.53 1.97 

1 x 106 .34 2.11' 3.32 

3 x 106 .54 1.46 3.34 
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r = 3.0 

3.87 

2.89 

2.45 

1.89 

1.48 

1.27 

r = 3.0 

1.13 

1.38 

2.56 

5.92 

7.80 
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TABLE 4-8 

SENSITIVITY OF THE ANNUAL RISK DISTRIBUTION TO CHANGES 

IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 

(1) the values obtained when the means 

are changed to (2) the corresponding 

values for the base case. The ratio of 
airport damage' distribution mean to 

that of the base case is r. 

Mean of the Annual Standard Deviation 

Ratio r Risk Distribution of the Annual Risk 
Distribution 

.33 .33 .92 

.50 .50 .93 

.67 .67 .95 

1.5 1.50 1.10 

2.0 2.00 1.22 

3.0 3.00 1.53 
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TABLE 4-9 

SENSITIVITY OF TIlE ANNUAL RISK PROFILE S TO 
CHANGES IN TIlE STANDARD DEVIATIONS OF 

THE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 
(1) the values obtained when the stan­
dard deviations are changed to (2) the 
corresponding values for the base case. 
The ratio of airport damage distribution 
standard deviation to that of the base 
case is rand d is a numerical dam­
age va1ue~ 

(aJ Damage VaZue d 
P{Damage > d} r = 0.5 r = 2.0 r = 5.0 r = 10.0 

3 x 10-1 
1.02 .71 .47 .~4 

1 x 10-1 
.89 .95 .78 .62 

3 x 10-2 
.81 1.17 1.17 1.10 

1 x 10-2 
.72 1. 31 1.52 1.71 

3 x 10-3 .62 1.58 2.05 2.58 

1 x 10-3 
.54 2.00 4.06 6.00 

(bJ P{Damage > d} 
Damage Value d r = 0.5 r = 2.0 r = 5.0 r = 10.0 

.03 x 106 1.10 .95 .74 .61 

.1 x 106 1.16 .81 .61 .50 

.3 x 106 1.03 .76 .59 .47 

1 x 106 .85 1.12 1.00 .85 

3 x 106 .18 2.00 2.47 2.62 
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TABLE 4-10 

SENSITIVITY OF THE ANNUAL RISK DISTRIBUTION TO 
CHANGES IN THE STANDARD DEVIATIONS OF 

THE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries in the table are ratios of 
(1) the values obtained when the stan­
dard deviations are changed to (2) the 
corresponding values for the base case. 
The ratio of airport damage distribution 
standard deviation to that of the base 
case is r. 

Mean of the Annual Standard Deviation 
Ratio r Risk Distribution of the Annual Risk 

Distribution 

0.5 1.0 .61 

2.0 1.0 1.87 

5.0 1.0 4.58 

10.0 1.0 9.14 
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TABLE 4-11 

SENSITIVITY OF THE ANNUAL RISK PROFILE S TO CHANGES 
IN THE EXPECTED NUMBER OF ACCIDENTS IN A YEAR 

KEY: All entries in the table are ratios of 
(1) the values obtained when the ex­
pected number of accidents in a year is 
changed to (2) the corresponding values 
for the base case. The ratio of the 
expected number of accidents to that of 
the base case is rand d is a numer­
ical damage value. 

(aJ Damage VaZue d 
P{Damage > d} r = 0.50 r = 0.67 r = 1.5 

3 x 10-1 
.39 .61 1.51 

1 x 10-1 
.53 .67 1.36 

3 x 10-2 
.59 .73 1.29 

1 x 10-2 
.62 .74 1.23 

3 x 10-3 
.61 .76 1.19 

1 x 10-3 .68 .81 1.25 

(bJ P{Damage > d} 
Damage Value d r = 0.50 r = 0.67 r = 1.5 

.03 x 106 
.69 .82 1.11 

.1 x 106 
.54 .70 1.23 

.3 x 106 
.45 .61 1.52 

1 x 106 
.40 .55 1.69 

3 x 106 .28 .49 1.62 
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r = 2.0 

2.12 

1.83 

1.67 

1.52 

1.48 

1.47 

r = 2.0 

1.20 

1.38 

1.97 

2.85 

2.75 
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TABLE 4-12 

SENSITIVITY OF THE ANNUAL RISK DISTRIBUTION TO CHANGES 
IN THE EXPECTED NUMBER OF ACCIDENTS IN A YEAR 

KEY: All entries in the table are ratios of 
(1) the values obtained when the ex­
pected number of accidents in a year is 
changed to (2) the corresponding values 
for the base case. The ratio of the 
expected number of accidents to tha"t of 
the base case is r. 

Mean of the Annual Standard Deviation 
Ratio r Risk Distribution of the Annual Risk 

Distribution 

0.50 .50 .71 

0.67 .67 .82 

1.5 1. 50 1.22 

2.0 2.00 1.41 
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13 damage distributions is represented by a mixture of two Lognormal 

distributions. 

We then approximated each of the 13 damage distributions by a 

single Lognormal distribution. To do this we first randomly combined 

the 26 Lognormal distributions to obtain 13 pairs. For each such pair 

we found the first two moments of the mixed distribution (with mixing 

probabilities proportional to the appropriate Pi)' and then approxi-

mated the mixed distribution by a single Lognormal distribution with 

the given first two moments. This yielded Lognormal approximations for 

the damage distributions at the 13 fictitious airports. 

Using the 13 Lognormal distributions we exercised the two computer 

programs discussed above for the base case and also for all of the sensi­

tivity analysis runs previously described for the case of 26 airports. 

The results are shown in Figures 4-29 through 4-33, which corre­

spond to figures 4-24 through 4-28, respectively. Not only do they cor­

respond, but in each of the five cases the two sets of curves are al­

most carbon copies. That is, with respect to the scenario of 13 air­

ports, approximations of the 13 airport damage distributions by (a) 

Lognormal distributions and by (b) mixtures of two Lognormal distribu­

tions produce almost exactly the same results. This certainly lends 

credibility to the validity of the sensitivity analysis results obtained 

for the scenario of 26 airports. Those results will now be discussed. 

4.4.5 Discussion of the results 
of the sensitivity 
analyses 

This discussion is divided into three parts, corresponding to 

changes in (a) the means of the airport damage distributions, (b) the 

standard deviations of the airport damage distributions, and (c) the 

expected number of accidents in a year. It is based on Tables 4-3 

through 4-12. 
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Tables 4-4 and 4-8 show that when the means of all the airport 

damage dist~ibutions are changed in the same proportion, then the means 

of the national conditional and annual damage distributions are changed 

in that same proportion but the standard deviations of these two distri­

butions are changed to a much smaller degree. The standard deviation 

of the annual damage distribution is changed somewhat more than that of 

the national conditional damage distribution. With respect to the two 

risk profiles, Tables 4-3 and 4-:7 can be summarized by stating that the 

damage value (for a given exceedence probability) and the exceedence 

probability (for a given damage value) are both changed in roughly the 

same proportion as the change in the means of the airport damage dis­

istributions. 

Tables 4-6 and 4-10 show that when the standard deviations of all 

the airport damage distributions are changed in the same proportion, 

then the means of the two damage distributions are unchanged, whereas 

both their standard deviations are changed in almost (but slightly less 

than) that same proportion. With regard to the two risk profiles, 

Tables 4-5 and 4-9 indicate that, in general, the damage value (for a 

given exceedence probability) and the exceedence probability (for a 

given damage value) are both changed in somewhat less than the same 

proportion as the change in the standard deviations of the airport 

damage distributions. 

A change in ~, the expected number of accidents in a year, has 

no effect, of course, on the national conditonal damage distribution, 

but Table 4-12 shows that it changes the mean of the annual damage dis­

tribution in the same proportion and the standard deviation of this 

distribution in a smaller proportion ( the square root of the previous 

one). Table 4-11 shows that the effect on the annual risk profile is 

roughly proportional to the change in ~. 

In overall summary, then, our sensitivity analyses show that 

changes in the means or standard deviations of the airport damage dis­

tributions or in the expected number of accidents in a year produce 

- 91 -



T-419 

roughly proportional changes in the national conditional and annual risk 

proeiles. Since changes in these risk profiles of less than a factor of 

5 are probably not deemed very significant, it seems fair to say that 

the risk profiles are not overly sensitive to the changes that were 

investigated. 

5. Simulation Model Design and Treatment 
of Sampling Error 

The third major source of error in the risk analysis modeling 

stems from sampling error in exercising the simulation. Providing the 

simulation is done properly, statistical techniques are available to 

treat this type of error. 

5.1 Simulation model design 

One current simulation model generates, by Monte Carlo simulation, 

a conditional (given an accident) risk profile for each airport. Denot-

ing the CDF generated for airport i by and letting Pi 

represent the conditional probability that an accident occurs at airport 

i , given that it happens at some airport in the U.S., then the condi­

tional (given an accident somewhere in the United States) risk profile, 

denoted by I_F(l) (x) , is obtained from 

Even assuming that exact confidence bounds could be found for the 

(1) 
F.. (x), and that the p 's were exact and not estimated, it would 
1. i 

still remain a most difficult (if at all possible) task to obtain exact 

confidence bounds on F(l)(x) • 

Further 7 to get the unconditional national annual risk profile, 

the F(l)(x) are convolved as follows: 

- 92 -



T-4l9 

F(x) :::; pea) + P(l)F(l)(x) + P(2)F(2)(x) + .... 

where F(n) (x) is the n-fold convolution of F(l)(x) with itself and 

P(i) is the probability of ~ accidents in a year. Even assuming the 

PCi) are exact and that confidence pounds could somehow de determined 

for F(l)(x) , the convolution procedure makes it very difficult to ob­

tain confidence bounds on F(x) (especially if exact bounds are desired). 

In order to take advantage of the available statistical theory 

for calculating valid confidence bounds, it is necess.ary to modify 

the Monte Carlo simulation procedure sketched above. As indicated, two 

major problems which prevent the use of valid statistical procedures 

in the above modeling design are (1) probabilistic mixing of individ-

ual airport conditional (on one accident) risk profiles to get a national 

conditional risk profile, and (2) convolving the national conditional 

risk profile to obtain the unconditional national risk profile. The mix­

ing an~ convolving of CDFs (or complementary CDFs such as the risk pro­

files) invalidate the available statistical theory. 

To get around these problems, we suggest the modified simulation 

procedure of Section 4.4.1, which we repeat here: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Generate by Monte Carlo methods the number of accidents 
in a year. 

Determine bv Monte Carlo methods at which airport each 
of the accidents generated in Step 1 occurs. 

For each accident, determine the cost. 

Total the cost of all the accidents for the year. 

Repeat the above four steps n times (yielding a 
sample size of n years). 

Step 6A: Compute the empirical national annual risk profile 
directly for the sample of n years from the Step 
4 values. 
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Step 6B: Compute the empirical national conditional (given one 
accident) riak profile directly for the sample of n 
yeat;'s.' worth of accidents from the Step 3 values. 

In this way, the statistical theory discussed in the following 

sections can be applied to both the national conditional risk profile 

and the unconditional national annual risk profile. This may result in 

larger sample sizes than presently being used, but the advantage is that 

the sample sizes required for the amount of confidence and precision 

desired can be computed in advance. The following sections illustrate 

these computational procedures. 

5.2 Pointwise confidence bounds 

The following methodology allows for confidence bound statements 

at a single point only. 

5.2.1 Binomial bounds on the risk 
for a single value 

If it is desired to obtain bounds on the risk for a particular 

value xO ' then the binomial distribution can be used to obtain well-

accepted approximate bounds. Assuming the number of independent simu­

lation runs, n, is large enough for the normal approximation to the 

binomial ([nF(xO)] and n[l-F(xO)] should be ~ 5), approximate 

100(1-0)% confidence bound are 

Note that the band width of the bound gets smaller for large Xo ' 

which is the property we desire; but this confidence statement is good 

at a single point xo only, and not for all xo simultaneously. 

If the normal approximation to the binomial is not adequate (which 

is probably the case for the sample sizes anticipated and the small tail 

probability of interest) then either the Poisson approximation to the 
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binomial or the exact binomial itself must be used. For example, sup-

pose r ya1ues greate~ than xo are observed in the sample of size n . 
Then, we desire to find the largest value of p for a binomial distribu-

tion such that P(X~r n,p) ~ Ci. , where X is a binomial random vari-

able with parameters n and p , and 1-~ is the confidence level de-

" sired. Denoting this ya1ue by p, a one sided 100(1-0.)% confidence 

interval estimate of R(x
O

) is (O,p). As an illustration, let us 

assume that in n simulation runs no values greater than xo are ob-

served. Then r=O and 

P(X~O n,p) P(X=O I n,p) " n = (l-p) 
hence, 

p = 

For values of r>O numerical search procedures would be necessary to 

find p. 

5.2.2 Nonparametric tolerance 
limits 

The prediction approach using tolerance limits as described here 

is also distribution-free. Let 
(n) 

••• , X 
n 

be the order 

statistics from a sample of n observations from the distribution with 

CDF F(x). The problem is to predict the (n+1) st· observation, Xn+1' 

which occurs in the future. Intervals of the form 

X(r) < X < Xes) 
n n+1 n 

are used [see Aitchison and Dunsmore (1975)]. There are two measures of 

precision: mean coverage and guaranteed coverage (tolerance limit) 

intervals. 
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5.2.2.1 Mean coverage; Considering that 

P Ix<r) "' X < Xes) I . n ntl n 
s-r 

~ n+l' 

T-4l9 

is :l;ollows that "on the average" (hence the name mean coverage) the in-

terval (X(r) 
n ' 

X(s) 
n 

will cover the next observation with a proportion 

(s-r)/(n+l) of the instances when the procedure is repeated. Note that 

P(Xn+l > x~n) = l/(n+l). Care must be taken in applying this procedure; 

for example, one possible misinterpretation would be to look at the data, 

note that X(300) = $9M and then conclude that 
300 P(Xn+l > $9M) = 1/301 • 

The problem is that 

p(X "' x(n») n+l n 

The left-hand side equals P(xn+l<m) = F(m) and is not distribution~ 

free. 

5.2.2.2 Guaranteed coverage (tolerance limits): In this case two 

values, q and y, are specified, where y is the probability of cov­

erage and I-a is the guarantee or confidence. The desired interval 

satisfies 

pIF(X~S» - F(X~r» = yl = I-a. 

Thus we are 100(1-a)% confident that 100y% of the population will 

fall in (x(r), x(s». The probability 

pIF(X~S» - F(X~r» = yl 
is distribution-free and can be expressed in terms of an incomplete beta 

function. See Aitchison and Dunsmore (1975), David (1970), and Walpole 

and Myers (1978). 
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for R(xO) , for a 
fixed Xo 

T-4l9 

Using a normal approximation to the binomial, the half-width of 

such a sonfidence region will be 

to achieve 100(1-a)% confidence. In the tails this will be approxi­

.mately za VR(XO) In. If we are looking at Xo which corresponds to a 

tail probability of 10~d and wish to be 100(1-a)% confident that our 

estimation error is also less than 10-d, then we must approximately 

satisfy 

For example, if we want to be 99% confident when the tail probability is 

of the order of 10-4 , then n satisfies or 

2.326/~ = 10-
2 

, which implies In = 232.6 ; and hence n = 54,103 = 
4 5.4x10 • In general, to make 100(1-a)% confidence statements about 

when it is of the order of 
. -d 

10 , one needs 2 d 
n = Z 10 a obser-

vations, for fixed xO. If it turns out that nR,(x
O

) is likely to be 

less than five--so that the normal approximation might not be valid-­

then the exact binomial distribution would have to be used, necessitating 

a numerical search procedure to find n. 
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5.2.4 Mean coverage prediction 
intervals 

If a sample of size n is drawn and 

(1) (2) X . X 
n ' n ' 

... , 

are the order statistics, then the prediction interval 

has mean coverage of the (n+1)$t observation equal to 

T-419 

(s-r)/(n+1) • 

An interval of the form (0 in) 
, n has mean coverage equal to n/(n+1) • 

Thus, in order to get mean coverage of 1 - 10-d ,approximately 10d 

observations are required. Hence for a probability of 10-
4 

for the 

next observation exceeding the largest of the n samples, n must 

be 104 . 

The interpretation of mean coverage is that if this procedure is 

used many times the resulting intervals (one for each repetition of the 

procedure) will cover the (n+l)st observation a proportion of times 

equal to the mean coverage or, equivalently, will not cover it a propor­

tion equal to one minus the mean coverage. 

5.2.5 Guaranteed coverage prediction 
(tolerance) intervals 

We are interested in distribution-free prediction intervals of 

the form (0, xes)) which satisfy 
n 

for a specified coverage value y and guarantee probability I-a 

(this is a one-sided version of the type discussed in Section 5.2.2.2. 

Here F(X(s)) has a beta distribution with parameters s-l and n-s 
n 

with density 
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fX(S)(U) 

n 

=; n! us- l (l_u)n-s • 
(s-l)! (n-s)! 

It is asymptotically normal with mean s/(n+l) and variance 

T-4l9 

2 
s(n-s+l)/I(n+l) (n+2)] • If sin ~ p , i.e., is the pth sample 

fractile, then. F(X~s» is asymptotically normal (p, [p(l-p)]/n) • 

Consider the case of using as a guaranteed coverage 

prediction interval; then 

and 

n 1 - (l-Y) = 1-0. 

n = log(a) 
log(y) • 

The sample sizes required to achieve preassigned values of I-a and y 

are given in Table 5-1. 

TABLE 5-1 

SAMPLE SIZES FOR A ONE-SIDED TOLERANCE LIMIT 

y 
I-a .99 .995 .999 .9995 .9999 

.95 299 .598 2994 5990 29956 

.99 458 919 4603 9208 46049 

.995 527 1057 5296 10594 52980 

.999 687 1378 6904 13812 69074 

Thus, using this procedure, if we wish to deal with tail probabilities 

of 10-4 (or coverage of .9999) with 99% guarantee, we need 46,000 

observations. Tables similar to Table 5-1 may be found in Walpole and 

Myers (1978), page 550. 
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A misuse of the above procedure that is tempting but not correct 

is the following. Suppose a particular break-off point such as $10M 

annual cost is of interest. Take a sample of size n and note the 

smallest order statisti.c that is greater than lOX, ca,I1ing it xes) . 
n 

Using this, compute P{F(X~s» £, YO! for some desired YO ' and obtain 

a guarantee probability l-~O' Then, make the statement that (O,$lOM) 

has a 100(1-q)% guarantee of coverage of 100yO%' The above is not 

justified; it is called data snooping. 

5.3 Simultaneous confidence bounds 

The following methodology allows for simultaneous confidence 

bound statements over the entire risk profile. 

5.3.1 Ko1mogorov-Smirnov (K-S) 
type confidence bounds 

The K-S statistic gives the maximum deviation between an empirical 

and a true CDF and is denoted by D , so that 
n 

Dn sup I Fn(X) - F(x) I 
x 

Durbin (1973), Hoel, Port, and Stone (1971); Dixon and Massey (1969); 

and Breiman (1973) include discussions of this statistic, both for test­

ing HO: F = FO and for constructing simulataneous confidence bounds on 

the unknown F. Dixon and Massey (1969) refer to the K-S statistic as 

ad-statistic. Lilliefors (1969) treats the case of testing HO: F = 

exponential using a modified K-S statistic where the mean of the hypoth­

sized exponential is estimated from the sample. 

Confidence bounds using D 
n 

can easily be obtained by noting that 

(5.1) 
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where da/2(n) is tabulated and depends on the level of confidence de­

sired (l-cu and the sample size (n). Rewriting 5.1 we have 

or 

yielding as the lower and upper confidence bound curves l-F (x) ± 
n 

Denoting the risk profile 
A 

A 

l-;F (x) 
n 

confidence bounds of Rn(X) ± da/ 2(n) . 

by 
A 

R (x) , we have 
n 

One problem is that the upper confidence bound approaches a con-
A 

stant value for small values of Rn(~) since da/ 2(n) is a fixed con-
A 

stant added to the empirical value R (x) • 
n 

would look like that shown in :Figure 5-1. 

'- , 
"­

"-

'-

\. 
\. , 

, 

\. 
\. 

" " A "-

R (x)-d /2(n)~ 
n a '-

Damage 

....... 
........... 

A plot of the K-S bound 

-- - -
x 

Figure 5-1.--K-S bounds. 

It should be pointed out that the type of statement we can make 

from such bounds is the following: 
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"With confidence 100 (1-0.) % , the probability of damage exceeding 
A 

lies between [l-'n Cxotl ± do./ 2 (n) for alZ values X " o . 

This is an extremely powerful statistical statement. 

5.3.2 Upper K-S bounds for the risk profile R(x) • 

We would generally be interested in only one-sided confidence 

bounds, namely, the upper bound on the risk profile. Since sample sizes 

are large, the asymptotic theory can be used--in which case the one­

sided critical values when using the K-S statistic are as shown in 

" Table 5-2. Thus, for example, P {R(x) - R (x) < 1. 52/ Iri} ~ .99 • and 
n = 

to deal with tail probabilities of the order of 10-4 with 99% confidence 

requires a sample satisfying 

or n = 2.3 x 10
8 

• 

TABLE 5-2 

SAMPLE SIZES FOR UPPER K-S 
CONFIDENCE BOUNDS 

Confidence Level Half-Width 

.95 1. 22/ Irl 

.99 1. 52/ Irl 

.995 1.63/ Iri 

.999 1. 86/ Irl 

.9995 1.95/ Iri 

.9999 2.15/ Iri 

Some other sample sizes required to obtain various confidence levels in 

probabilities of certain orders are given in Table 5-3. 
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TABLE 5-3 

SAMPLE SIZES FOR VARIOUS TAIL PROBABILITIES AND CONFIDENCES 

Tail Probability of Interest 
Confidence 10-2 10-3 10-4 10-5 

.95 1.5xI04 1.5xI06 1.5xI0
8 1. 5xIOlO 

.99 2.3xl04 2.3xI06 2.3xl0
8 2.3xl0

10 

.995 2.7xI04 2.7xl06 2.7 xlO
8 2.7xI010 

.999 3.5xI04 3.5xI06 3.5xlO8 3.5xlO
lO 

.9995 . 4 3.8xIO 3.8xlO6 3.8xI08 3.8xI010 

.9999 4.6xl04 4.6Xl06 4.6xl08 4.6XlOlO 

Roughly speaking, to be able to make confidence statements about prob­

abilities of the order of lO-d, the width of the band must also be of 

that order, 10-d. To achieve a one-sided K-S bound of half-width 

10-d requires approximately 102d observations. 

5.3.3 Modified Kolmogorov­
Smirnov confidence 
regions 

One problem with K-S bounds is that for very small values of 

risk, the term d (n) 
Ct 

overwhelms R (x) • 
n 

It seems desirable to ob-

tain confidence bounds such that d (n) decreases with increasing x 
CL 

so that one obtains a picture such as that shown in Figure 5-2. There 

are some generalizations of the K-S statistic which might help in this 

egard. The Anderson-Darling (A-D) statistic can have the property of 

the bounds coming "in" at large (and small) values of x but these 

bounds are only approximate. Discussion of the A-D statistic may be 

found in Anderson and Darling (1952), and Durbin (1973). Another 

- 103 -



T-4l9 

generalization of K-S, called the generalized D+ statistic, has the 

bounds partially coming in at the ends--a sort of situation between 

K-S and the approximate A-D [see, for example, Dempster (1959) and 

Dwass (1959)]. 

, , 
" 

" 

A 

R (x) 
n 

....... ........ 

"""",-~ ..... - --
Damage 

Pi'gU1'e 5- 2. --Desired bounds. 

x 

In this section we investigate a method of constructing a simul­

taneous confidence region which is narrower in the right tail. This 

enables one to be more confident in the right--tail probabilities at the 

expense of less confidence in the central and left-tail probabilities. 

Let R(·) be the cumulative risk function: R(x) = P{risk exceeds 

x}. Let F(x) = 1 - R(x) be the CDF of the risk; R is estimated by 

the empirical risk function 

accidents (or n years). 

A 

R , based on a simulated sample of 
n 

n 

It is desired to estimate R with a confidence region based upon 

" R , or equivalently 
n 

F with a confidence region based on F 
n 

Be-

cause we are primarily interested in the right tail, we would like a 

region which is narrower in the tail. A very desirable region would be 
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A A 

R < R + f3R , n n 
(5.2) 

where 13"> O. If 13 = 9 , we are one order of magnitude wide. Unfor-

tunately it is impossible to get a region of the form (5.2). Suppose 

x(n) 
n 

is the largest of the n simulated values, then R (x) = 0 
n 

for 

X(n) b x > ; ut 
n 

p{R(X(n) = O} < 1 
n 

and if R is continuous p{R(X(n) = 
n 

O} = 0 • 
A A 

Thus P{R(x) < R (x) + f3R (x) for all x} = 0 • 
n n 

However, it is possible to construct a confidence region of the 

form 
A A 

R < R + f3R + a , 
n n 

(5.3) 

where typically we might choose = 10-2, 10-3, or 10-4 and 1+13 

110,10,1:100; i.e., ~, 1, or l~ orders of magnitude. The equivalent 

region for F = 1 - R would be 

Thus 

= 

P{R(X) < Rn(X) + f3Rn(x) + a, for all x} = P{Fn(X) < l!f3 F(x) + nn . 
(5.4) 

By the standard distribution-free argument, (5.4) is independent of F 

so for computation we can let F(x) = x , the uniform [0,1] distribu­

tion. Let U (0) be the empirical distribution function of uniform 
n 

order statistics, then 

P{R < Rn + f3Rn + a} = p{Un (x) l!S x + ~:~, for all x} 

p{Un (x) < bx + a, for all x} 

p (a,b) , 
n 

(5.5) 

where b = 1/(1+13) and a = (a+f3)/(l+f3). The probability (5.5) can 

be calculated. Explicit formulae for it are given in Durbin (1973). 
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It is possible to find the sample size n which achieves 

for various combinations of a, B, y, e.g., y=.Ol, .05 ; 1+13 = 1iO, 

10, lfOO; a=10- 2
, 10-3, 10-4 • This enables one to take a large 

enough simulated sample to achieve any desired precision in a simulta­

neous confidence region. 

To illustrate the usefulness of the above modified K-S region, 

we consider an example. Figure 5-3 shows a typical simulated risk pro­

file. If this is based on a sample of 500 observations, then th(~ usual 

K-S 95% confidence region is 

R < R + 1.22 
/500 

A 

= R + .05456 . 

A 

This region is shown in Figure 5-3. The modified region R < 2R + d 

can be computed using a formula for p (a,b) 
n 

from Durbin (1973): 

p (a,b) = a+b-1 
n bn 

n 

1 
j=[na+1] ( )

{ )j ( o)n-j-1 
~ (~ - a a+b-; 

Numerical methods can be used to solve the equation 

P500 (a,.5) = .95 . 

The solution is a = .50375. This gives a modified K-S 95% confidence 

region 

A 

R < 2R + .0075 

This region is also included in Figure 5-3. Note that it gives much 

greater precision in the right tail. This is achieved at the sacrifice 

of precision in the right tail. 

It should be noted that the tail of an empirical CDF behaves like 

a Poisson process and consequently the properties of these modified K-S 

regions can be approximated by properties of Poisson processes; see 

Dwass (1974) and Pyke (1959). 
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5.4 ,G.omparison of procedures 

The K-S procedure gives the greatest flexibility because it pro­

vides simultaneous bounds, but this is paid for with a huge sample size 

requirement. The modified K-S procedure reduces this price somewhat. 

If a single cut-off value Xo can be fixed, for which a confi­

dence region on R(x
O

) is useful, this can be obtained using the 

binomial distribution, with considerably fewer oDservations than the 

K-S. However, it can be done only for a single point. 

If a desired mean coverage probability or coverage-guarantee 

pair can be predetermined, then the prediction interval approach may be 

used. However, data snooping is not allowed. 

A comparison of sample sizes required to achieve a precision of 

10-4 with 99% confidence is given in Table 5-4. (Note that Mean Cover­

age statements do not involve confidence.) 

6. Conservative Risk Profiles 

Engineering design has long used "safety factors" to ensure the 

adequacy and the safety of physical and electronic systems. This may 

be looked at as a heuristic, but operationally viable, way to deal with 

the uncertainty of the environment in which a given system will operate. 

Not having sufficient knowledge about the environment to design for it 

precisely, one takes a "conservative" approach in using safety factors 

to design for extreme conditions that might arise. One can then say 

that if there is an "error" in the design, then it is surely an "error 

on the conservative side." 

It seems desirable to follow a similar principle of conservatism 

in generating and reporting results of the GFRAP. Assuming that the 

G~RAP will ultimately report the risks associated with the use of CF in 

commerical aircraft to be "small," the results of the risk analysis will 

be more readily accepted if it can be stated that they overestimate the 
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TABLE 5-4 

REQUIRED SAMPLE SIZES FOR 99% CONFIDENCE 

STATEMENTS WITH 10~4 PRECISION 

-Ko1mogorov-Smirnov 

R < R + 10-4 
n 

R < i + 10-2 
n 

n = 2.3 x 10
8 

4 
n = 2.3 x 10 

-Modified Ko1mogorov-Smirnov (Poisson approximation) 

R < 2R + 10-4 
n 

-Mean Coverage 

P{next observation> X[L]} 
n 

-Guaranteed Coverage 

4 
n = 4.6 x 10 

n 

n = 

4 5 .4 x 10 

4 
n = 4.6 x 10 

T-419 

true risks. It should be stated that it is not really possible to pre­

sent the "true risks" because of modeling limitations, data inadequacies, 

and limited financial resources. 

The results of the risk analysis are summarized in two risk pro­

files, the national annual risk profile and the national conditional 

(given one accident) risk profile. We therefore use the following 

concept of conservatism for risk profiles. If two risk profiles do 

not cross, it is justifiable to say that the one above and to the 

right of the other is more conservative (or pessimistic, or represents 
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a greater amount of risk). Figure 4-25 (in Section 4.4.3) illustrates 

such a case. The risk profile for r = 2 is above and to the right of 

that for r = 1. That the former is more pessimistic folllows from the 

following two observations: (1) For every damage value d, the pro­

file for r = 2 shows a higher probability of exceeding d than does 

the profile for r = 1. (2) For every probability p, the profile for 

r = 2 shows a higher value d such that Prob{damage > d} = p than does 

the profile for r = 1 • 

Thus if we present GFRAP results in the form of risk profiles 

which are known to be above and to the right of the "true" unknown risk 

profiles, we present results which are conservative. This section is 

concerned with methods by which such conservative risk profiles may be 

obtained. Section 6.1 formalizes the above concept of two risk profiles 

which do not cross through the concept of stochastic dominance. Section 

6.2 shows how this concept can be used operationally in the GFru\P in 

order to obtain conservative results, and Section 6.3 summarizes and 

interprets the preceding developments. Several theorems are stated in 

Section 6.2 without proof in order to conserve space. 

6.1 Stochastic dominance 

Stochastic dominance is a concept which has become very important 

in the area of decision making under uncertainty, but it also has useful 

application here to risk profiles. The following definitions and proper­

ties may be found in Whitemore and Findlay (1978) unless noted otherwise. 

We adopt the notation that F = l-F for any CDF F. 

The.basic definition of first degree stochastic dominance is the 

following: Let F and G be CDF' s. Now F ~ G (F "stochastically 

dominates" G) if and only if F(x) 2: G(x) for all real values x. 

This says that F S} G if and only if the risk profile corresponding to 

the CDF F lies above (or at least not below) and to the right (or at 

least not to the left) of that corresponding to G; i.e., the risk 
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profile corresponding to F is conservative relative to that correspond­

ing to G. 

Another notation for indicating first degree stochastic dominance 

is in terms of random variables having the indicated CDF's. Let X and 

Y be random variables with respective CDF's F and G. One writes 

X 2:1 Y if and only if F s; G • 

A useful result is the foillowing: Let Ul be the set of nonde-

creasing functions on the real line. Then F s; G if and only if 

JudF ~ JudG for all functions u in U
l 

for which these integrals 

exist. 

Suppose G represents one of the two "true" risk profiles that 

are desired among the final outputs of the GFRAP risk analysis. Not 

being able to determine G, as indicated above, we want to report a 

risk profile F such that F st G 
> The general idea is to replace all 

estimated and projected quantities and probability distributions which 

enter the simulation model by "conservative" ones. The next section 

provides details. 

6.2 Obtaining conservative risk 
profiles 

We deal first with the national annual risk profile and relate it 

to the national conditional (given one accident) risk profile. Denote 

these by Hand F, respectively, and define the following random 

variables~ 

Xi = the damage done by the ith accident that occurs 
during the year, i=1,2, •.. 

S the total damage done by all accidents that occur 
during the year; 

Z the number of accidents that occur during the 
year. 
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Then s has CDF H, each has CDF F , the are mutually inde-

pendent, and 

z 
s = I Xi' 

i=O 

where Xo is a random variable which is identically zero. 

Let the CDF of the discrete random variable Z be G, and con­

sider what happens if G is replaced by G*, where G* is the CDF of 

another discrete nonnegative random variable, say Z*, such that 

G* s>t G . ; l..e., Z* ~1 Z. Let 

Z* 
S* = I Xi 

i=O 

and let H* be the CDF of S*. Theorem 6.1 then states that H* s~ H 

so that a conservative risk profile is obtained by replacing the CDF of 

Z by a CDF wh:1!ch is stochastically greater. 

Theorem 6.1: If G* s>t G h , t en st H* > H , or equivalently, S* ~1 S • 

We have assumed that Z has a Poisson distribution with mean ~. 

The next theorem states that increasing the value of ~ yields a CDF of 

G* for z* such that G* s~ G • 

Theorem 6.2: Suppose Z and z* both have Poisson distributions with 

respective means ~ and ~*. Then z* ~1 Z ,i.e., G* s~ G , if and 

only if ~* ~ ~ . 

Theorems 6.1 and 6.2 together indicate that the use of a mean 

number of accidents per year greater than the true mean will yield a 

conservative risk profile. 
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Now suppose that the COF F corresponding to the national condi­

tional risk profile is replaced by a COF F# such that F# ~ F • 

-::# 
Clearly this will lead to a conservative risk profile, say H • For-

mally, let X~ (i=1,2, ... ) be mutually independent random variables 

with COF F#. Now define 

S II 
z 

Xl! L 
i=O 1 

and let H# be the COF of S II • 

Theorem 6.3: If F# st F , then H# sJ H , or equivalently, Sit > S • > =1 

For the GFRAP, the national conditional risk profile is the 

weighted average of the single-accident risk profiles at the N differ­
a 

ent airports. Using the notation of Section 4.4.1, we have 

F(x) = 

or equivalently, F = L.P.P
d 
.• 

111 

N 
a 

L 
i=l 

p.Fd·(x) , 
1 1 

If some of the Fdi are replaced by 

COF's which dominate them it is clear that a conservative national condi­

tional risk profile is obtained. Formally, we have Theorem 6.4. 

Theorem 6.4: If F~d ~t Fid for i=l, ... ,Na , and Fit - Y.iPiF~d ' 

then FII 2 F . 

In Theorem 6.4 the values are held fixed. If they are al-

lowed to vary, some must decrease while others increase since their sum 

remains equal to one. It is intuitive that if the P.'s which increase 
1 

correspond to COF's which dominate the COF's corresponding to the P.'s 
1 
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which decrease, then a conservative national condit~onal risk profile is 

obtained. This is now formalized. L t N {I 2 - N} and let 1+,-1 e ~" ••• , a 

be disjoint subsets of N. Define a new set of probability values 

i EN, such that 

Now let 

Theorem 6. 5: If 

and j £ I , then 

II 
Pi 

/I 
Pi 

/I 
Pi 

> Pi ' 

< Pi ' 

= Pi 

if 

if 

+ i £ 1 , 

iEI 

otherwise. 

we obtain: 

Fid ~t F 
jd 

F" ~t F . 

for every pair (i,j) such that . 1+ 1£ 

Now we step back and concentrate on the CDF Fid of the damge 

per accident at airport j. We will show how to obtain a conservative 

estimate of its corresponding risk profile Fid . We first drop the 

subscript i, for convenience, and to indicate that the analysis applies 

at each airport. 

Consider the random variable X, defined to be the damage done by 

an arbitrary accident at a particular airport; it has CDF F
d

• This X 

is the sum of the costs due to the failure of various electronic and elec­

trical components and systems. We number all the components and systems 

which could be affected by an accident from I to M (a large finite num­

ber), and define the random variables 

y. = I if component or system j fails, 
J 

o otherwise 

C. = the cost incurred if y. = 1 . 
J J 
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We assume the C
j 

to be mutually independent and independent of 

the Y .• Now we write the damage X as 
J 

M 
X = L CJ.Yj • 

j=l 

From this expression it is clear that replacing the cnF of any cost C. 
J 

by a cnF that dominates it will lead to a risk profile that is conserva-

tive relative to F
d

• Formally, let X* = LC~Y •• 
J J J 

Then we have: 

Theorem 6.6: Cj ~l Cj for all j=l, ••• ,M implies X* ~l X . 

We clearly have an analogous result if the Y. 
J 

are replaced by y* 
j 

such that Y~ >1 Y .• Note that this means we replace the failure prob­
J = J 

ability of component j by a value at least as large. Now let X* = 

L. c. Y-: • 
J J J 

Theorem 6.7: Yj ~l Yj for all j=l, ... ,M implies X* ~l X • 

Now we will concentrate on conditions which imply Y-: >1 Y. 
J = J 

for all j. According to the exponential failure model the probability 

distribution of Y. is specified by Pr(Y. = 1) = 1 - exp(-W.) , 
J J J 

where the random variable W. is defined by 
J 

W. = T.E./"E. , 
J J J J 

and E. 
J 

is the mean exposure to failure of component j , E. 
J 

is the 

outside exposure applicable to component j , and T. 
J 

is the overall 

transfer coefficient (or transfer function) applicable to component j 

in its individual environment. Here T. , E. , and E. are all treated 
J J J 

as (independent) random variables; E. 
J 

is indeed a random variable, and 
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T. and E. are treated as such because of a lack of sufficiently pre-
J J 

cise information to specify their values exactly. Note that use of the 

exponential failure model is itself a conservative assumption for the 

GFRAP (refer to Section 4.2.3). 

The next theorem follows from the result given in Section 6.1. 

Theorem 6.8: Specify y* by 
j 

Hj< ?~l Wj implies Yj 2:,1 Yj • 

Pr(Y* = 1) 
j 

= 1 - eXP(-Wj) • Then 

Now we concentrate on Let W* = T*E*/E* • 
j j j j 

Since Tj , Tj , 

E
j 

, Ej , E
j 

, and Ej are all positive random variables one obtains: 

Theol'~m 6.9: If T1: >1 T. , 
J = J 

E* > E
j j =1 

and W1! >1 W. 
J = J 

and so 

to The last thing we wish to do here is relate the exposure E
j 

certain characteristics of the accident that produces this exposure. It 

is clearly reasonable to assume that, with other factors (such as wind 

direction and velocity, aircraft type, duration of the burn, etc.) held 

constant, 

E = KF F.Q f ; 
j r 1. c 

that is, is directly proportional to (K is the proportionality E. 
J 

constant) the product of Q
cf

' the quantity of CF composite on the 

aircraft, F. , the fraction of the CF composite carried that is involved 
1. 

in the fire, and F ,the fraction of the CF burned that is released. 
r 

Treating Qcf' Fi ' and F as random variables, and defining E* 
r j 

the exposure obtained in place of E. 
J 

when Qcf ' Fi ' and F 
r 

are 

as 

replaced by Q* F* and F*, respectively, we obtain the following: cf' i' r 
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for all j=l, ••• ,M. 

6.3 Summary 

F~ ~l Fr implies 

T-4l9 

E~ > E. 
J J 

We have tried in this section to give some precision to the notion 

of a "conservative risk analysis" through the concepts of stochastic 

dominance and conservative risk profiles. In essence, we have shown that 

replacing the probability distributions used in the GFRAP risk simulation 

model by probability distributions which stochastically dominate thenl 

will lead to a conservative risk analysis. Given that modeling limita­

tions, data inadequacies, etc. prevent us from determining the "true risk 

profiles," we think it appropriate to report risk profiles that can be 

stated to be conservative relative to the "true" ones. 

In more concrete terms, for example, if the mean number of acci­

dents per year ~ is projected to be, say, 2.6, but it is recognized 

that this p,rojection may be in error, then an appronriatelv determined 

higher value, e.g., 3.0, should be used instead in order to produce a 

cOl1servative national annual risk profile. It would be appropriate to 

state that it is confidently believed that the true value of ~ does not 

exceed 3.0. 

The situation is somewhat different when it is desired to replace 

a random variable by a specific numerical value. For example, consider 

the case of F ,the fraction of the CF burned that is released. It is 
r 

known that F varies from accident to accident and should be treated 
r 

as a random variable. But suppose that the experimental evidence pres­

ently available indicates that values of Fr above 0.01 are extremely 

improbable. It is then acceptable, and conservative, to use F = 
r 

0.01 , stating that it is sufficiently confidently believed that F 
r 

will not exceed 0.01 that such possibilt~y has been deleted from the 

JUodelillg effort. 

- 117 -



T-419 

REFERENCES 

AITCHISON, J. and I. R. DUNSMORE (1975). StatistiaaZ Prediation AnaZysis.' 

Cambridge University Press, Cambridge, England. 

ANDERSON, T. W. and D. A. DARLING (1952). Asymptotic theory of certain 

goodness of fit criteria based on stochastic processes. Ann. Math. 

Statist. 23, 193-212. 

BARLOW, R. E. (1968). Likelihood ratio tests for restricted families 

of probability distributions, Ann. Math. Statist. 39, 547-560. 

BARLOW, R.E., D. J. BARTHOLOMEW, J. M. BREMNER, and H. D. BRUNK (1972). 

Statistical Inferenoe Under Order Restriotions. John Wiley and 

Sons, Inc., New York. 

BREIMAN, L. (1973). Statistios: With a View Toward Applioation. 

Houghton-Mifflin, Boston, Massachusetts. 

DAVID, H. A. (1970). Order Statistios. John Wiley and Sons, Inc., 

New York. 

DEMPSTER, A. P. (1959). Generalized D+ statistics. Ann. Math. 
n 

Statist. 30, 593-597. 

DIXON, W. J. and F. J. MASSEY (1969). Introduotion to StatistioaZ 

Analysis (3rd ed.). McGraw-Hill, Hightstown, New Jersey. 

DURBIN, J. (1973). Distribution Theory for Tests Based on the Sample 

Di~tribution Funotion. SIAM, Philadelphia. 

DWASS, M. (1959). The distribution of a generalized 

~nn. Math. Statist. 30, 1024-1028. 

D+ statistic. 
n 

DWASS, M. (1974). Poisson process and distribution-free statistics, 

Adv. Appl. Probe 6, 359-375. 

- 118 -



T-419 

HOEL, P. B., S. C. PORT, and C. J. STONE (1971). Introduction to Sta­

tistical Theory. Houghton-Mifflin, Boston, Massachusetts. 

HUSTON, R. J. (ed.) (1979). Carbon Fiber Risk Analysis. NASA CP-2074. 

(Proceedings of an industry-government briefing held at Langley 

Research Center, Hampton, Virginia, October 31 - November 1, 1978.) 

HUSTON, R. J. (ed.) (1980). Assessment of Carbon Fiber Electrical Ef­

fects. NASA CP-2119. (Proceedings of an industry/government 

briefing ha1d at Langley Research Center, Hampton, Virginia, 

December 4-5, 1979.) 

KALELKAR, A. S., J. FIKSEL, P. P. K. RAJ, and D. B. ROSENFIELD (1979). 

An assessment of the risks presented by the use of carbon fiber 

composites in commercial aviation, NASA Contractor Report 158989. 

LILLIEFORS, H. W. (1969). On the Ko1mogorov-Smirnov test for the 

exponential distribution with mean unknown, .r. Amer. Statist. 

Assoc. 62~ 399-402. 

MANN, N. R., R. E. SCHAFER, and N. D. SINGPURWALLA (1974). Methods 

for Statistical Analysis of Reliability and Life Data. John Wiley 

and Sons, Inc., New York. 

PYKE, R. (1959). The supremum and infimum of the Poisson process, 

Ann. Math. Statist. 30~ 568-576. 

RAIFFA, H. and R. SCHLAIFER (1961). Applied Statistical Decision Theory~ 

Graduate School of Business Administration, Harvard University. 

WALPOLE, R. E. and R. H. MYERS (1978). Probability and Statistics for 

Engineers and Scientists (2nd ed.). Macmillan, New York. 

WHITEMORE, G. A. and M. C. FINDLAY (eds.) (1978). Stochastic Dominance. 

D. C. Heath and Co., Lexington, Massachusetts. 

- 119 -



1. Report No. 2. Government Accession No. 
NASA CR-159318 

4. Title and Subtitle 

STATISTICAL ASPECTS OF CARBON FIBER RISK ASSESSMENT 
MODELING 

7. Authorls) 

3. Recipient's Catalog No. 

5. Report Date 
July 1980 

6. Performing Organization Code 

8. Performing Organization Report No. 

Donald Gross, Douglas R. Miller and Richard M. Soland 
1----------------------------1 10. Work Unit No. 

9. Performing Organization Name and Address 
The George Washington University 
School of Engineering and Applied Science 
Institute for Management Science and Engineering 

11. Contract or Grant No. 
NSG-1556 

~-W-a-s-h-i-ng~t-o-n~,-D-C--20-0-5-2----------------~11Ty~~ReportmdP~i~COv~~ 
12. Sponsoring Agency Name and Address Contractor Report 

National Aeronautics and Space Administration 
Washington, DC 20546 

15. Supplementary Notes 
Langley Technical Monitor: Wolf E1ber 
Langley Program Manager: Robert J. Huston 

16. Abstract 

14. Sponsoring Agency Code 

This study deals with the probabilistic and statistical aspects of the carbon 
fiber risk assessment modeling of fire accidents involving commercial aircraft. 
Three major sources of uncertainty in the modeling effort are first identified. 
These are: (1) imprecise knowledge in establishing the model, (2) parameter 
estimation, and (3) r~onte Carlo sampling error. All three sources of uncertainty 
are treated in detail, and statistical procedures are utilized and/or developed 
to control them wherever possible. 

17. Key Words (Suggested by Authorls)) 
Ca rbon fi be r 

18. Distribution Statement 

Risk analysis - Risk profile 
Operations research 
Statistical analysis 
Parameter estimation Sampling error 

19. Security Oassif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

Unclassified - Unlimited 

Subject Category 24 

21. No. of Pages 22. Price-
127 A07 

N-30S For sale by the National Technical Information Service, Springfield, Virginia 22161 



End of Document 


