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ABSTRACT

Projections of the world's petroleum supply

point to acute shortages by the end of this
century which could impair air transportation.
Syntheti^ fuels will undoubtedly be needed to

relieve this shortage. One form of synthesized

fuel will be liquid methane, which can be man-
ufactured from any of the hydrocarbon sources

such as coal, shale, biomass, and organic waste.
Because there are so many potential sources of
this fuel, including natural and synthetic

sources, it should be considered as a petroleum
replacement. In this paper a simple cycle ana-

lysis is carried out for a turboprop engine

flying at Mach 0.8 and 10,688 meters (35,000 ft.)
alti^ude. Cycle performance comparisons are

rendered for four cases in which the turbine
cooling air is cooled or not cooled by the

methane fuel. The a^vantages and disadvantages

of involving the fuel in the turbine cooling
system are discussed. Methane combustion char-
acteristics are appreciably different from Jet A
and will require different combustor designs.
Although a number of similar difficult technical

problems exist, a highly fuel efficient turbo-
prop engine burning methane appears to be
feasible.
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THE FUTURE QF FUELS FOR AIRCRAFT TRANSPORTATION
is very uncertain. Some estimates suggest

that petroleum reserves may run out sometime
around the turn of the century. What year

or even decade this will happen cannot be
estimated. Many factors Including pricing
will establish exactly when petroleum becomes

unavailable. Synthetic fuels will be in±ro-
duced into the fuels market tang before the
depletion date. It isn't absolutely clear
which synthetic will replace petroleum for
aviation use, although fuels from syncrude

most closely resemble the properties and
handling characteristics of petroleum. a
paper at this conference by Robert 0. Witcofski
(1)* concludes that synthetic kerosene appears

to be the most logical synthetic fuel to
replace petroleum-type aviation fuels. Not-

withstanding, methane remains a viable cand-
idate for an important role in aircraft trans-
portation. There are so many potential sources
of this fuel, including natural and synthetic
possibilities (2), that its availability

through an existing network of pipelines

looks promis?ng. It is one hydrocarbon fuel
that can be produced from a renewable resource;
namely, biomass.

Cryogenic-fueled aircraft have been
studied many times over the past twenty years.

Most of the studies have been devoted to
supersonic flight with both hydrogen and

methane considered as fuel sources. These
cryogenic fuels affe^^ the potential of higher
heating values than Jet A and an attractive

heat sink capability (3, 4, 5). For example,
in reference (6) the turbine cooling capa-

bility of methane was evaluated in several
simple analytical cooling models fora Mach
3 aircraft. The heat sink capability of
the fuel cooled the compressor bleed air in
a heat exchanger before admitting it into the
cooling passages of the stator and rotor blade
rows. Another option that was analyzed was
direct cooling of the blades by the fuel.
However, it was recognized that direct fuel

cooling poses many difficult practical problems,
the most critical being leakage of the fuel

coolant in the rotors. Direct fuel cooling
of blades also poses problems of thermal

stresses due to extreme temperature gradients

*Numbers in parentheses designate
References at end of paper.
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promoted by the cryogenic fuel coolant. As
was pointed out in reference (5), an insul-
ating material may be necessary in the con-

struction of the first stage stator blades
to reduce the internal thermal gradient.

The author of reference (1) concluded that
fuel cooling of the compressor bleed air

would yield greater potential for turbine
cooling than improvements in cooling design
or cooling method alone.

To illustrate some of the advantages of
methane in a turbine engine, we have elected

to use a turboprop engine as a model for
the cycle analysis instead of a turbofan.
There has been a resurgent interest in the

turboprop due to advances in high speed pro-
peller design. As aiscussed in reference (8),
propulsive efficiency at subsonic speeds may

be increasRd on the order :.f 20% above that
of a turbofan engine. It will be assumed
that the turboprop engine cruises at Mach 0.8.

Using a simple cycle analysis, comparisons

of the engine performance will be rendered
for cases in which the compressor bleed air
used in turbine cooling is cooled or not

cooled by the methane fuel. In addition to
turbine cooling heat transfer, mention will

be made of a few ancillary topics aertaining
to the use of methane as an aircraft fuel.

SOURCES OF SYNTHETIC METHANE GAS

Methane can be produced synthetically
from several sources including coal, shale,

tar sands, organic wastes and plant biomass.
The technical feasibility of making methane
from these sources has been under investigation
for a long time. Process research and pilot
plant activity have been vigorously pursued

under both private and governmental sponsor-
ship. Although commercialization of these
processes hasn't yet been achieved, with
proper incentives and favorable markets, they

could become active sources of methane for
domestic and commercial users. There is
optimism that a large supply of methane can
be made available from synthetic sources (2).

A comprehensive discussion of the viability
of such a commercial methane-producing industry 	
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some comments pertaining to the availability

of each of the major synthetic sources of 	
3gaseous methane is appropriate. The anticipated

magnitude of these sources give indications



of their availability for transportation fuels.
It must be recognized that these basic hydro- 	 -
carbon sources are in competition as feedstock

for all types of synthetic fuels 1n the over-
all energy market. Undoubtedly, priorities
will have to be established to meet the demand
for the various forms of synthetic fuels

derived from these feedstocks.
COAL - Generally, it is recognized that

coal is the most abundant feedstock for syn-
thetic fuel production (9). One of the pre-
vailing uncertainties about coal as a feed-
stock is how the sulfur content affects the

conversion process. Another major uncertainty
regarding coal is the national capacity to

mine it. In the last two decades, the mining
industry has suffered losses in manpower and

very little has been done to upgrade the

technical equipment used in mining. If coal
is available in sufficient abundance, con-
version plants can be operated to convert it
to methane. NASA-sponsored studies on alterante
fuels have reported that two known commercial

processes, HYGAS and CO 2 Acceptor, appear
attractive for the production of methane from
coal (10). In the HYGAS process, heated coal
particles react with hydrogen-rich gas in a
high pressure (67 atm), high temperature

(1100 K) reactor vessel, About half of the
methane is produced directly in this reactor;
the other half comes from methanation of the
remaining effluents of the reactor. In the

CO2 Acceptor process, steam and coal particles

are reacted in the main gasifier. Much of heat

supplied comes from a reaction of dolomite
and CO	 About 37% of the methane is made in
the ga^ifier; the remainder by methanation of
effluents from the gasifier. Both the HYGAS
and CO Acceptor processes are more efficient
than t^le process for making liquid fuels from

coal (1). The HYGAS process exhibits the best
conversion efficier-y (63%). In the liquifi-

cation process, approximately 11% of the gaseous
methane production would be neede as an energy
source. Preliminary cost estimates indicate

that liquid methane from these processes will

cost about eight to nine dollars per gigajoule,

which is about the same as is estimated for
coal-derived Synjet, which ranges in cost from
six and a half to nine dollars per gigajoule. 	
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SHALE - Sh;le or shale oil has been looked
on as a source of synthetic oil. Pilot plants



_ ^	 w^

have been operated to extract the hydrocarbon,
"kerogen",from the shale and to make it into
a synthetic crude oil as feedstock fora re-
finery. This synthetic crude oil can be gas-

ified. It is also possible to gasify directly
the kerogen in the shale, but relatively 1lttle
has been done to develop the latter process.
A principal problem with shale conversion is

its impac* on the environment. The mining
operation and ensuing land reclamation is a

formidable environmental concern. In the
process of extracting the kerogen from the
shale, the actual volume of the rock residue

increases signifirantly creating a surplus
disposal as well as a reclamation problem.

BIOMASS - In the mid 70's the first
author participated in a systems study on the
feasibility of deriving hydrocarbon fuels
from biomass and organic waste reported in

reference (11). For biomass, a promising
source in the continental United States appeared

to be silvaculture (tree farming), with slash
pine the most favored species. Approximately,

the fuel-energy equivalent of 54 gig4,;oules
(51 million Btu's) could be realized from an
acre of land per year. Non-cultivated forest

land could be used for this enterprise.
The waste organic source could vary aras-

tically depending on the incentives to collect

this material. The disposal of waste is a
severe urban oroblem so its conversion to
needed fuel is an attractive option. From

organic waste alone, the fuel energy equivalent
of 5^ of the total energy consumption of the
country is a possibility If that were possible,
fuel derived from waste alone could replace
the fuel now consumed by aviation transportation.

The biomass source of methane has the

added attraction of being a renewable source.
Through an organized program of planting and
harvesting, it would be possible to have a
renewable supply. From estimates in reference
(11), 21 million square hectometers (67 million
acres) could yield sufficient harvest for the
equivalent of 3 to 4^ of our national energy

use. This is approximate^iy the acreage now

devoted to commercial wood products.
It is obvious that the combined fuel

production from biomass and waste org4nies
could reach almost 103 of our total energy use

or approximately 20^ of our current use of
petroleum. As is the case for all synthetic
fuels, their estimated cost is above the

current market price for the natural fuels.

Graham and Glassman
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The market price does depend on the credit
received for disposal of the waste organics
because it is presumed that both waste organics
and biomass will be blended as feedstock.

METHANE COMBUSTION

An extensive full scale combustor research
program using natural gas was carried out at

the Lewis Research Center during the early

1970's. The natural ga y used in these tests

was 93.5% methane, so the results can be inter-
preted as typical of methane. This research

revealed that natural gas or methane exhibited
comparable combustion performance to kerosene

for design combustion operating conditions as
encountered in ground starts, take off and

cruise. However, off-design performance of
methare is appreciably poorer (12). This is
particularly true of altitude blowout and

ignition limits, and there is also a greater

tendency toward combustion instability with

methane. This inferior combustion performance
is attributed to the greater stability of the

methane molecule. The larger, long chain
molecules that are found in kerosene are chem-
ically less stable and enable combustion over

broader limits. A redeeming feature of the
chemical stability o^F me*.hane is its ability
to absorb ^^^*. without decomposing. Jet A
or Synjet decompose readily and can't be used
to cool the compressor bleed air without

severe coking occurring on the heat exchanger
surfaces. In the combustion studies of methane,
it was established that increasing the fuel
temperature greatly ireproved the altitude

combustion performance. At fa!el temperatures
of 800 K, relight was achieved at the same

airflow condition as blowout. Thus it would
be advisable to utilize the fuel as a heat
sink in order to improve its off-design com-
bustion characteristics.

If methane is to be used as an aircraft
fuel, NASA research (13, 14, 15) shows that

some development effort will be required to
establish a satisfactory combustor geometry
and its associated control system. Avoiding
altitude blowout appears to be the most critical
problem. It should be added that one of the

attractive features of methane combustion is

the reduced carbon-based emissions compared to
Jet A. However, methane combustion does yield
more water vapor than Jet A.

Graham and Glassman
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CYCLE COMPARISONS

v

In order to make an assessment of the

effect of the fuel as a h4at sink on the engine
cycle performance, a turboprop engine con-
figuration was chosen and some elementary
cycle calculations were rendered. It was assumed

that the turboprop would incorporate an
advanced propeller design similar to what was
reported last year at the SAE Conference on
Business Aircraft (16). A photograph of such
a highly swept blade propeller design is shown

in Figure 1. Efficiencies of approximately
80X were measured at Mach 0.8 in wind tunnel
testing. More research and development is

required before this propeller concept can be

considered ready for commercial application.
The engine configuration chosen was based on
the Energy Efficient Engine two spool by-pass

concept 11). The two spool bypass configur-
ation was converted to a turboprop by removing
the fan and adding a low pressure compressor
and output shaft to the driven end of the low
speed spool. A schematic of the engine con-
figuration is shown in Figure 2. The thermo-
dynamic cycle calculations were Performed
fora standard day cruise condition oY Mach
0.8 at an altitude of 10,688 meters (35,000 ft.).

The cruise marks the condition wherein most
of the fuel would be consumed and thus any

significant changes in the thermodynamic per-
formance would change the fuel overall con-

sumption fora flight mission dramatically.
At the cruise condition, the cycle pressure

ratio is 36 and the combustor exit temperature
is 1530o K (2760oR). This temperature was held

constant throughout the entire analytical
exercise. The core compressor, which provides
a pressure ratio of 22, is driven by a two-

stage cooled turbine. The low speed spool
is driven by an uncooled multistage turbine.

As a means of establishing a comparison

for the cycle analysis, a reference case was
selected initially. For the reference case,
shown in Figure 3a, the bleed air from the

compressor entered the cooling passages of

the turbine at the compressor exit temperature.
The comparative cases (Figure 3b)assumed that
the compressor bleed air passed through a fuel-
cooled heat exchanger that dropped the bleed
air temperature by 111K, 222K, and 333K (200°R,
400o R, 600 R). A fourth case was run in which

the cryogenic methane was circulated through
the stator blades to effect the cooling (see

Graham and Glassman
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Figure 3c). The turbine efficiency and the
relative coolant flow fraction, relative

specific power and relative specific fuel
consumption (SFC) were compared among the five

cases calculated. Table l s^nmarizes the

results from the c^vcle analysis, which used
the methodology described in reference (18}.

The algorithm for turbine cooling flo g found

in reference (19) was employed in the analysis.

The information presented in the second, third,
and fourth columns of Table 1 is normalized

with respect to the no cooling of coolant
reference case. The higher heating value of
methane causes the SFC for methane to be
approximately 13% less than the SFC of the

kerosene fuels. Throughout the analysis, the
bulk metal temperatures of the banes and rotor

blades were held to 1200K (2160 ` R), respectively.

The most obvious change noted in the
Table is the reduction in coolt^nt flow required
to maintain the blade material at the maximum
surface temperature when fuel ^:ooling is
employed to reduce the compressor air bleed
temperature. Appreciable effects of this
reduced bleed air flow are observed in the
specific power culu^n. Byoreducing the cooling

air temperature 333 K (600 R), the specific
power was increased by 10%. The real sig^ifi-
cance of this increase isn't directly obvious

from the values of this Table. The imaroved
specific power realized through fuel cooling

means that tower engine mass flows or smaller
engines could be used for the same flight
mission. Smaller and lighter engines would

have a cascading effect on the total aircraft
structural design and total weight. An assess-
ment of the changes in the total aircraft design

and weight is beyond the scope of this paper.
It is clear that fuel-cooling the turbine cooling
air could bring about some improvements in the

payload or range capability of the eircraft.
The analysis also showed that reduced coolant
temperature for the same coolant flow would
result in tower bulk metal temperatures. One-

hundred degree re^uction in coolant temperature
would yield 50 -70 drop in bulk metaltemperature.

An examination of the specific fuel
consumption (SFC) column reveals a small improve-
ment when fuel cooling is introduced. Within
the limitations of the simplified cycle analysis,
all of the energy that is exchanged between the

fuel and the turbine cooling air is conserved
and appears as thermal energy at some station
in the cycle. Apparently, this movement of

Graham and Glassman
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quantities of energy causes ^n1y small changes
in the SFC. The maximum differenca between
the reference case SFt: and the most highly
cooled case (aT 	 333Kj SFC was about lx. A
similar n+odest decrease in SFC was computed
in reference (20) for a hydrogen engine in
which the fuel was used to cool the turbine
coolant air.

The potential benefits discussed above
show fuel-cooling of the compressor bleed air
to be desirable. A mission analysis of an
aircraft incorporating this turboprop engine
would be required to quantify the benefits.
As a coolant, methane appears attractive
because of its inherent thermal stability and
heat sink capacity. It is definitely superior
to Jet A in these respects. The design of a
compact heat exchanger which won't add appre-
ciable bulk or weight to the power plan* seems
feasible. There are opportunities for clever
innovation in the design of the heat exchangers
and the cooling schemes for the blades. Re-
garding the latter, there are no u^iqua heat
transfer problems for the turboprop engines
considered in this analysis that aren't already
being considered it other tdvanced engine
concepi^: There are some difficult challenging
fundamental problems relevant to air-cooling
the turbine blades. Some of the internal cooling
problems include impingement cooling, film
cooling. passage curvature, three-dimensional
conduction, and centrifugal effects. Prediction
of the external sur.`ace heat transfer is com-
plicated by another list of difficult fundamental
problems (21) which pertain to all advanced
turbine engines.

Direct fuel cooling of the stator with
no cooling of the rotor coolant air (bottom
raw on Table 1) yielded an additional small
SFC improvement over cooling the coolant air.
If the rotor coolant had passed through a heat
exchanger, the SFC rEduction would be a little
more. Such a system would involve fuel cooling
of the bleed air, as well as direct fuel cooling
of the stators. Direct cooling of the stator
would introduce mechanical design problems ass-
ociated with circulating the cryogenic fuel
thro^^h the stator row. As was discussed in
reference (4), direct fuel cooling could necess- 	 Graham and Glassman
state the introduction of insulation in the
stator wall so as to avoid excessive thermal
gradients. This is an example of one of the	

g
design complexities that might be introduced
by direct cooling.



AIRFRAME AND SAFETY ISSI^ES

This paper is limited to discussing some

of the technical issues relev^+nt to using

methane in an aircraft engine. The patentlal
use of methane as an airct°aft fuel raises a
host of issues including aircraft design, air-

port fueling, fuel supply systems, safety
systems, and overall airport design. The cry-
ogenic nature of liquid methane is largely

responsible for the complexity of these issues.
An appreciation of the overall cryogenic fuel
problem can be obtained from an examination
of references (10 and 22). these reports are

devoted primarily to use of cryogenic hydrogen

in aircraft but cryogenic methane poses similar
problems. As an example of one problem area,

the location and geometry of the fuel tanks
is a sign!ficant structural charge in the air-
frame design, Cryogenic tanks must be approx-

imately spherical to minimize heat loss and

must be independent structures--not an integral
part of the airframe. A sketch of the possible

cryogenic tanY. locations is shown in Figure 4.

The bulkiness of the tanks an; the greater

volume requirements of mett^^ne compared to

Jet A will cause the fuselage cross section
to be larger than current aircraft.

It should be recognized that a liquid
methane fuel system poses safety problems which

are different from those associated with Jet A.
Methane possesses rather narrow flammability

limits which contribute to its safe handling

but there are unanswered questions regarding

Lir e hazards of fuel spills which require more

investigation.

CONCLUDING REMARKS

In view of the impending depletion of

petroleum sources, stud i es of aircraft alternate
fuels are warranted. Recent discoveries of

large amounts of natural methane, such as the
geopressure zones along the Gi,1f of Mexico,
indicate promising future supply. Methane as

a synthetic fuel, will be available from several
hydrocarbon sources including coal, shale,
biomass and orga.t^+^ waste. Preliminary estimates
of the cost of liquid methane made from coal

by commercial processes indicate that it will
be somewhat more expensive, but comparable to

Syn,jet on a cost per unit energy content basis.
NASA estimates show synthetic liquid methane

to be 30 to 50t more ex pensive than Jet A based

Graham and Glassman
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on 1979 lnformatiun.
A simplified cycle analysis of the per-

formance of a methane-fueled turboprop engine

was carried out. The analysis showed that
fuel cooling the compressor bleed air used in
turbine cooling could 1Rad to smai^^;^ more

compbct engines. Such en gine weight savings

would impact the total structural design of
the airframe and the gross weight of an air-

plane.	 The cycle analysis showed small gains

in SFC (approximately 1X) through this appli-
cation of fuel cooling. Direct fuel cooling
of the first stator, while yielding a small
additional gain in SFC, would introduce design
complications. The analysis also revealed

that reduced cooling air temperatures for a
given coolant flow rate. could lower the bulk

metal temperatures of the blades significantly.
Such a system will also give improved cooling
margin to allow the turbine inlet temptrature

to be raised. Only one fixed gas inlet temp-
erature was considered in this analysis,

From combustion research with methane,
it has been shown that methane burns more
cleanly than Jet A or the proposed Syn^et.
Its narrow flammability limits do pose a severe
problem in altitude relight. This deficiency
will require redesign of the combustor.

The higher heating value of methane com-
pared to Syn^et and its heat sink capability
are advantages in considering liquid methane
for aircraft turbine ergines.
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