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I. INTRODUCTION

In the past few years, numerical techniques in fluid dynamics have matured to

the point that meaningful simulations of three-dimensional transitional or turbulent

shear flows bounded by a wall are possible. At the same time, availability of

advanced computers, over and above a CDC 7600-class machine, has allowed roughly a

doubling of the spatial resolution in each direction, greatly enhancing the quality

of the results. We are in a position now to expand our set of objectives for flow

simulations in the next decade to the following:

1. Increase our understanding of the physics of turbulence

Provide statistical and other is ormation useful to turbulence modelers

3. Provide a testbed for the development of improved numerical methods and

guidance for improved modeling of fine-scale effects.

Objectives (1) and (2) are, of course, in common with the goals of most experi-

mental (and purely theoretical) investigations of turbulent flows. The numerical

simulation, however, provides a different way to look at a turbulent flow; the results

of computer simulations are complementary to those of laboratory experiments. In the

computer experiment, the corresponding laboratory time of the simulation is relatively

small, but complete flow-field information is available throughout that time interval.

The third objective is related to the desire to improve future simulations and to

make it possible to investigate more complex flows. Advanced computers, as they

become available, will also help in'-this regard.

In this paper we report on three recent simulations, using the ILLIAC IV com-

puter, that begin to meet the above objectives:

1. Study of the evolution of a wave-like disturbance in a laminar boundary layer

corresponding to vibrating-ribbon experiments.

2. Study of the evilution of a spot-like disturbance in a laminar boundary layer.

3. Investigation: of turbulent channel flow.

In particular, we will concentrate on the turbulent structures observed in these

flow simulations and comment on their role (1) in the dynamical process, for example,

the growth and maintenance of turbulence, and (2) as contributors to turbulent statis-

tics of interest to turbulence modelers. As will be shown,.these persistent flow

structures include streannsise and vertical vorticity distributions near the wall,

low-speed and high-speed streaks, and local regions of intense vertical velocity.
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The Problem of representing the large range of physical scales in a computer simula-

t.ion will also be discussed, along with some prospects for future improvement.

Quite different numerical techniques are employed in the three simulations. Thv

11rsL and third simulations listed above use an Eulerian grid with pressure and veloc,

1ty as dependent variables and periodic boundary conditions in two directions, whereas

11L second simulation uses a Lagrangian vortex method in a semi-infinite domain. The

1i.rst. Lwo simulations studied the evolution in time of an initial disturbance: and
l,.1w-0 no explicit model to account for "subgrid-scale" turbulence — fine -scale

structures not resolvable by the computational mesh. Consequently, in these simula-

Liuns the evolution time during which meaningful results were obtained was limited,

due to the importance of subgrid effects at later times. In the study of turbulent

channel flow, however, the objective was to simulate a fully developed turbulent flow

having a range of scales much larger than the computational mesh would allow. Thus,

the use of a subgrid model was mandatory. In Section II, further details of the

bimul.ations are given along with major findings regarding the observed turbulent

structures. The problem of accounting for turbulence scales not resolved or repre-

sented by the computational mesh — subgrid or supergrid modeling or both — is dis-

cussed in Section III, and some possibilities for improvement are suggested, In

Section IV, a summary of the results and conclusions are presented.

II. RESULTS OF THREE NUMERICAL SIMULATIONS

A. Flat-Plate Transition

In a series of computer experiments Wray and Hussaini [1] (hereinafter referred

to as WH) studied the instability of a flat-plate boundary layer in three dimensions

by solving numerically the incompressible Navier-Stokes equations. In another three-

dimensional numerical study, Orszag and Kells [2] investigated transition of plane

Poiseuille and plane Couette flow. The ILLIAC computer code of WH is capable of

simulating a wide range of boundary-layer stability problems. In this particular

investigation they simulated the vibrating-ribbon experiments of Kovasznay et al. [3]

by a careful choice of initial conditions for the three-dimensional perturbation to

the Blasius profile. Two oblique (three-dimensional) eigensolutions of the Orr-

Sommerfeld equation were added to a two-dimensional eigenrolution to form the initial

perturbation. To correspond with the laboratory experiment the streamwise and span-

wise wavelengths of the perturbation waves were 25.2 6* and 30 6*, respectively, where

6* is the initial displacement thickness of the laminar boundary layer:. A schematic

of the numerical simulation of WH is shown in Fig. 1. Wray and Hussaini used Fourier

expansions (spectral method) in the streamwise (x) and spanwise (z) directions with

64 points each and second-order finite differences in the normal (y) direction with

128 points on a stretched mesh. Fourier transformation of the momentum and mass

t

2



is VIBRATING
RIBBON

i
I	 r

f
I

Y
	 a; f

^rA4sr! 
Y^

V A84 ^ C S	

?is
^.^(MRyn	

S	 ^,rC

(Xx)

GRID: 64 X 128 X 64
BOUNDARY CONDITIONS:

ulxl = 0 at y-0
UW U„ ex as y 

0*PERIODIC IN x AND

FIG. 1 Simulation of a wave-like disturbance in a laminar boundary layer.

conservation equations in x and z and some manipulations to minimize storage

requirements yield the following system of equations for every (kx,kz):

all	 "2	 °2	 auv 	 2^	 a?u 	
(1)

at 
+ ikx (u -	 ^y + ikzuw + ikxq = -vk u + v a

y z

z^

	

at + ikxSv + ikzvw + By -- -vk 2v + v 2	 (2)
y

2^

	

8t + ikxuw + ate"' + A (w2 - v 2 ) + ikzq = -vk Zw + v ;''	 (3)

	

By	 ay2

ikxu + sy + ikzw = 0	 (4)

Equations (1) - (4) give the time evolution of the Fourier transformed velocity compo-

nents u, v, w and a pseudopressure q p + v 2 . Here k2 = kx2 + kz 2 . In comput-

ing the nonlinear terms above, WH zero any aliasing contributions by the 2/3 rule,

yielding a calculation that is equivalent to a Galerkin spectral method with 22 wave

numbers in the x and z directions.

The use of periodic boundary conditions in the streamwise direction leads to an

evolution of the disturbance in time rather than space and to a slight departure from

the Blasius profile. However, this assumption allows WH to apply 64 grid points

(22 wave numbers) to each wavelength of the disturbance, thereby achieving high reso-

lution of streamwise variations in the flow field. In the laboratory experiment, the

evolution of the disturbance occurs in space over a distance of about 10 wavelengths.

Thus, in the laboratory a particular structure atone streamwise location is a

neighbor to the same structure located 1 wavelength downstream, but in a slightly
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advanced state of evolution. Similarly, an earlier state of that structure is situ-•

ag ed 1 wavelength upstream. As found by WH, however, the difference between the

LLal and temporal developments in the linear part of the evolution (exponential.

growth) is quite small as measured by the amplitudes and phases of the eigenmodes ci

Hie two problems. Apparently the nonlinear evolution is very similar as wall, judging

t,; , the eocel.lent agreement between the two experiments. In Fig. 2 are shown cont.vur::

I `it:/sy for both the laboratory experiment and the computer simulation at the one-

spike stage — the spike being the kink in the high amplitude au/ay contours [3].

a:hv contours are taken in the x-y plane containing the maximum initial per4urbo-

tion -- the peak plane. At this point the time of evolution in the simulation is

340 6*/Uw . The agreement is quite good as is the comparison of the corresponding

normal velocity contours given in Fig. 3. The maximum vertical velocity is roughly

0.07 U,,, at this stage. The boundary-layer thickness, 6, is approximately 3 times

Lite displacement thickness.

.

01.0	 .6	 .6	 .4	 .2	 0
t/T

0
	

12.6	 25.1

x/s0

FIG. 2 Contours of au/ay in peak plane — one-spike stage: (a) expo iment [3];
(b) numerical simulation of Wli.
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FIG. 3 Vertical velocity in peak plane — one-spike stage: (a) experiment [3];
(b) numerical simulation of WH.

As nonlinear effects become increasingly significant, the evolution of the com-

putational disturbance reaches the two-spike stage at t - 360 6 */U.. Contours of

au/ay and normal velocity at this stage are shown in Figs. 4 and 5, respectively.

Note that again there is very good agreement on the structure of the disturbance in

the peak plane. The relative shift of the structures along the abscissa is irrele-

vant [ 1], but other discrepancies are evident. For example, the computation is pro-

ducing peak values in v (0.21 U„) that are higher than the experiment. Considering

the large streamwise gradient of v in the vicinity of this maximum, it is quite

possible that this type of discrepancy is due to lack of resolution or to ensemble

averaging or both in the laboratory experiment. On the other hand, the appearance of

oscillatory fine-scale features in Fig. 4 indicates that tae computation may be start-

ing to have a resolution problem also. A three -spike stage occurs in the simulation

at t = 365 6 */U,. Soon after this time significant errors begin to appear due to

the fact that the energy of the disturbance is trapped to remain within the computa-

tional wave numbers.

d.
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0
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FIG. 4 Contours of Du/ay in peak plane — two-spike stage: (a) experiment (3);
(b) tuimerieal simulation of WH.

Thus, in a remarkable computational effort 41H have demonstrated the capability

of simulating a complex, three-dimensional transitional flow in an "honest" calcula-

tion — no subgrid modeling was used. In the particular case that was stimulated the

results appear to be valid up to and including the two-spike stage when vmax" 0.21 IJo,.

After that stage, presumably, scales with wavelengths 5306*/22 in the spanwise

direction or -5256*/22 in the streamwise direction become important. The vertical

resolution appears to be quite adequate throughout the simulation.

B. Snot-Like Disturbance in a Laminar Boundary Layer

In another numerical investigation of boundary-layer mechanics, Leonard [4]

studied the growth of localized disturbances in a laminar boundary layer as they

evolve into spot-like turbulent structures. As in the study of WH, these are computer

experiments, but using a quite different numerical method. Vortex filaments are used

to represent the three-dimensional, perturbed vorticity flald within the spot. Each

filament is defined by a three-dimensional space curve x(^,t), circulation I', and a

6

P



yk rg" 1^

n .

1.0 ---------	 ----------
FIRST SPIKE

SECOND SPIKE,.,
V + v300 	 t	 ; .•4j„

.X	 ^ •

c

.4 .2	 0
VT

3.0
SECOND,

	

SPIKE r;	 FIRST
SPIKE

	

4r	 ^i'a.^

	

y .'P r	 t.' t

4 1^

Ibl	 ----

i- 1.5

0 12.6	 25.1
x/S"

FIG. 5 Vertical velocity in peak plane — two-spike stage: (a) experiment [3];
(b) numerical simulation of WH.

core size, a, which parameterizes an assumed Gaussian vorticity within the core.

Thus, the perturbed vorticity field is given by a summation over filaments,

(—x , t) -	 Pi f exp[- 
J x — xi l 2 /a 2 ]/(r1r6 ) 3 (a /a ) d 	(5)

— 	 c 

The vortex filaments represent a continuum of vorticity which initially is in

the form of an infinite sheet of finite thickness, that is, a boundary layer. As

indicated in the schematic (Fig.. 6) the disturbance in the simulation is created by a

local distortion of the vortex filaments at t - 0. For numerical purposes each tube

of vorticity in the boundary layer is decomposed into its straight, unperturbed con-

tribution and into a loop representing its contribution to the perturbed vorticity

field, as shown in Fig. 7. The velocity field is decomposed, accordingly, as

u(x) - U(y)ex + U , (2E) ,	 (6)
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FIG. 6 Simulation of a spot-like distur-
bance in a laminar boundary layer.
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where U(y) is the laminar profile

and u' is given by a sum of Biota»

Savart integrations over all the

filament curves, C i , plus their

images. The curves are marked with

a sequence of node paints that are

tracked in a Lagrangian reference

frame, according to the following

equation of motion:

ax=L.
a - 4^r Eri 1

(xi — x^ )x(3x f /^F I )dt,'
X 

[I Xi_ xj 12 +a(a
i 
2+02),31

+ ex U(y) + image contributions,

(7)

i	 The equation is seen to be the Biot-

Savart induction law for an infini-

+	 tesimal filament, but corrected in

the near-field for finite core size.

a	 Using a = 0.2065 we recover the

correct speed of a ring vortex in the
C i	 limit o « ring radius. Up to

numerical truncation error, the

method simulates the inviscid dynam-
FIG. 7 Decomposition of vorticity field,	

ics of the vorticity field and there-

fore satisfies the Kelvin and

Helmholtz theorems. For a more complete description of the method including simula-

tion of viscous effects see [5].

Biot-Savart integration yields exact boundary conditions at infinity in all

directions. The image contributions ensure tangency of the flow at the wall. In this

initial study we ignore the generation of vorticity at the wall boundary due to the

disturbance, that is, we i}se the inviscid boundary condition at the wall for u'.

This appears justified because the relatively high initial disturbance level

(0.07 - 0.10 U„) and the initially small length scale of the perturbation -0(6*)

(corresponding to laboratory experiments on turbulent spots [6,7]) leads to the rapid

evolution of a sizable, strong disturbance at the end of the simulation, t 2 506*/U..

The viscous length scale for this time, assuming Re 6*
	 1000, is only 0.35*.

Computational filaments are added automatically as the disturbance grows in size.

At the end of the simulation, about 8000 points represent one half of the spot
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(symmetry of the flaw about the midplane is enforced). The 	 couldcould continue

beyond this time, but (1) some of the filaments are quite strokchod at this point,

Indicating that remeshing is required, and (2) the cpu time per time atop is quite

large at this stage being proportional to the square of the number of computational

points for vortex methods. Total run times are -2 hr on the ILLIAC.

In Fig. 8, the space curves defining the vortex filaments originally in a single

layer (out of a totall of six representing the boundary layer) ei,. shown at threes dit..

ferent times. The spreading of the disturbance and the increasing deformations suf-

fered by the vortex lines are quite evident. In Fig. 9, vertical and streamwise vox--

ticity contour plots at a late time are shown in horizontal (x-z) and spanwise-

vertical (z-y) planes, respectively. Note the development of intense streamwise and

vertical vorticity generated in the flow in agreement with the pattern of vortex lines

displayed in Fig. 8, The structures are cell-like, 0(6*) in the spanwise and vertical

directions, but elongated in the streamwise direction. For example, the region of

negative say Just above the x-axis in Fig. ga together with its antisymmetric coun-

Lurpart (not shown) just below the axe: wou;% constitute one cell approximately 40

in spanwise extent. Velocity contour slots are shown in the same (x-z) and (y-z)

planes in Figs.: 10 and 11, respectively. The presence of streaky structures in the

horizontal plane is compatible with experimental observations of passive particle

motion in turbulent spots [7] and turbulent boundary layers [8]. The maximum normal

velocity is quite high at "0.4 U,,.

Most laboratory experiments on turbulent spots report ensemble-averaged measure-
ments several hundred 6* downstream of the initial disturbance. A typical stream-
wise velocity history plot from Cantwell at al. [7] measured in the midplane of the
spot is shown in Fig. 12a. Note that compared with the Laminar profile there is a
velocity excess near the wall, and a defect away from the wall — typical of a turbulent

boundary-layer profile. The experiment of Wygnanski at al. [6] produced similar

results. However, as indicated in Figs. 10 and 11, the particular numerical simula-

tion presented above yields a velocity excess in the midplane for all heights above

the boundary. On the other hand, if the velocity field from the numerical simulation

is span-averaged over one cell of width 46* centered on the midplane we obtain the

velocity plots shown in Fig. 12b. (To obtain better statistics, the results shown in

Fig. 12b are based on the velocity field at a single time late in the simulation.
Thus, decreasing x is used along the simulation rather than increasing time.) Note

the close similarity in the behavior of these computational results averaged over one

cell in the span direction at t - 43 6*/U,, to the ensemble-averaged laboratory mea-

surements of Fig. 12a, taken at a fixed streamwise location, at later times

(t 5 1500 6*/U,,). ThE good comparison leads to the speculation that the internal

structure of a single realization of a large turbulent spot (51006* in streamwise

extent) is dominated by the presence of many cell-like substructures such as those

revealed in the numerical simulation. (For experimental support of this speculation

see I. Wygnanski, these proceedings.)
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Three-dimensional vortex simulations have therefore demonstrated the rather

rapid, nonlinear evolution of small localized disturbances in a laminar boundary layer.

The boundary layer appears to deform into a corrugated surface with significant amounts

of streamwise and vertical vorticity — leading to strong negative u'v correlations

and, hence, intense turbulent mixing. Velocity perturbations induced in the nea-by,

relatively undisturbed vorticity layer lead to sufficient deformations in the vortex

lines to produce local nonlinear growth. Thus, the spot appears to grow in the span-

wise direction by "transverse contamination," in agreement with recent experiments

using dye interjection (9], which demonstrated that turbulent convection is not

Y/a *

2

0
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responsible for the spanwise growth of a spot. Further study is needed to simulate

properly larger turbulent spots or a collection of spots and the decay of turbulence

rearward of the spot.

C. Turbulent Channel Flow

In our third example of a wall-bounded shear flow we discuss the numerical simu-

lation of turbulent channel flow by Kim and Moin [10] (hereinafter referred to as KM).

As shown in Fig. 13, a 64 3 grid is used to simulate flow at Re = 13,800 with periodic

boundary conditions in the spanwise and streamwise directions and the no-slip condi-

tion at the channel walls. In an earlier investigation of turbulent channel flow,

Moin et al. [11] used a 16x64X16 grid with the same boundary conditions. Because the

laboratory flow at this Reynolds number contains a significant amount of turbulent

energy at length scales smaller than the computational grid, KM used the filtered

Navier-Stokes equations to determine the dynamics of the turbulence field that is

resolvable on their mesh (large eddy simulation technique). Thus, a flow variable f

may be decomposed as follows:

f = f t f ,	 (8)
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is the subgrid field.

see@	 0,98	 After applying the filtering

.4	 .•	 operation to the incompressible

,2- ,,..	 taw...._--___038 momentum and continuity equations,

0 (^,^	 the governing equations for the fil-
1	 2	 3

TIME, we 
4	 5	 d	 tered field may be written

8u

s	 A/'	 •	
8t + wxu - -Vp* + 

dx e
x - ^ • T t vV?u

1.0	 Au 2O ,/ u (x,y,Z 1 d:	 a n 26 — —	 --
(9)

.4

	

2.0	 and
0•u - 0	 (10)

1.6
where dP/dx is the constant mean

pressure gradient, 7) is the large-

	

1.0	 scale vorticity field, and the

subgrid-scale stress tensor, T,

(having zero trace) has components
0.6

defined by

Ti3 - Rid	 Rkk/3 6 i	
(11)

and

Rij - uiu I + u1ui + u^ui	 (12)

The quantity p* is given by

P* - p/P + 1/2 ukuk + Rkk/3	 (13)

The system of equations (9) and (1.0)

becomes deterministic once T is

specified. Kim and Moin use an eddy

viscosity model,

Tij = -2vTSij	(14)

where

	

: _H/2	 18ui	 ^u
Sij 2 

ax, + 8
	 (15)

and v  is given by the Smagorinsky

model,

V  = (CSA ) Z Sij Sij	 (16)

FIG. 12 Streamwise velocity: (a) ensemble-
average velocity records [7], x/d a* = 1600;
(b) cell-averaged streamwise velocity from
numerical simulation of [4].

y - H/2

FIG. 13 Numerical simulation of turbulent
channel flow.
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The constant CS is taken to be J.1 and A is a measure of the grid resolution and

is taken to be

	

A . (Ax Ay Az) 1/3 [1 - exp(-Y+/50)]
	

(17)

where the exponential function damps the eddy +, i6t.:osity near the wall.

The channel height is H. The lengths of c .-I-xputational box in the streamwise
and spanwise directions were chosen to be L x V j, y and Lz - 21TH/3, respectively,

based on two-point correlation measurements in laboratory experiments and the desire

to capture all the important large eddies in the flow. The nondimensional grid spac-

ings that result are Ax+ - 63 and Az+ - 42, expressed in wall units. (The channel

height H is 1280 wall units.) The grid spacing in the normal direction varies from

Ay+ r 2 near the wall to Ay+ z 50 at the middle of the channel. The need for sub-

grid modeling is clear. Even near the wall, where grid is finely meshed in the normal

direction, tba horizontal spacing is not sufficient to resolve the experimentally

observed wall streaks with a mean spanwise spacing of Xz+ = 100, Kim and Moin find,

however, that wall streaks do appear in their simulation, but at a larger scale, the

streaks apparently accommodating themselves to the available resolution.

The agreement of KM's simulation

with laboratory measurements is	 26

remarkably good. After a time of 	
20

evolution of 15-4H/U. (U c is the
16

mean velocity of the center of the	 U+,

channel) KM obtain the mean-velocity 	
1:

profile (horizontally averaged)	 6

shown, along with experimental data,

in Fig. 14. Near the wall the simu- 	
000	 101	 Y+	 102	 103

lated profile is somewhat low; away

from the wall a distinct logarithmic	 FIG. 14 Mean-velocity profiles; -o-,

region is revealed with the correct	
numerical simulation of [10]; experiment-,

Re = 13800; - -, Re = 57000; - - -,
slope (K£rman constant). The com-	 Re - 12200-61600.

puted large-scale turbulent intensity

profiles and the turbulent shear-stress profile are shown in Figs. 15 and 16,

respectively. The /un/2\1/2 and 02)1/2 profiles are in excellent agreement with

experiment at all distances from thewall. (Superscript double prime denotes devia-

tion from horizontal average.) In the wall region (y+ < 90) the resolved vertical

turbulence intensity is lower than experiment, possibly due to the fact that a sig-

nificant amount of (V T1212 resides in the subgrid scales or that the subgrid model

has deficiencies near the wall, as suggested by the deficit of the mean profile in

this region.

Contour plots of instantaneous Reynolds stress a"v reveal interesting phenom-

ena. In a horizontal plane near the wall (y 	 16, Fig. 17) a number of hotspots

occur where u'W is large and negative. Kim and Moin determined that a great
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FIG. 15 Comparison of the horizontally averaged resolvable turbulence intensities
normalized by uT with experimental data; o, numerical simulation of [10]; experi-
ment,	 , Re = 13800; — — —, Re = 15200; — —, Re = 25000; — - —, Re = 120000.

majority of these active regions is associated with u" > 0, v < 0, or "sweeps."

Away from the wall (y+ = 90, Fig. 18) the hotspots are associated with "bursts" or

U11 < 0, v > 0. All these findings are in agreement with experiment [12].

Kim and Moin also investigated pressure-velocity gradient correlations in the

region of y+ < 100. These correlations provide for energy transfer between the

individual components and turbulent energy and, as such, are of great interest to

turbulence modelers. The computed correlations are shown in Fig. 19. Their behavior

for y+ > 20 corresponds to the expected transfer from ^nj 2, to (77 2> and

Close to tt.a wall, however, KM show a substantial loss of w`) and a corresponding
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FIG. 16 Vertical profile of horizontally

averaged resolvable turbulent shear stress,

J

gain of ^w 2) through the action of
these correlations. By studying the

fluid motion near the wall using
if
	 or instantaneous contour

plots, KM determined that the energy

transfer was due to high-speed par-

cels of fluid approaching the wall

and then spreading zaterally ("splat-

ting" effect).

D. Comparison of the Simulations

In Table I we compare a number

of features of the three simulations.

The natural length and time scales

for the first two studies or the

evolution of a disturbance in a

+, ^ ^,1
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TABLE I

SIMULATION PARAMETERS

Wave	 Spot:	 Channel

disturbance	 disturbance	 flow

Grid

NXXNyxNz 	64xl28x64	 500 filaments	 64x64x64

8000 points ( 1 /2 spot)

Mesh spacing

Ax/6* 0.39 0.41 ---

AY/6* 0.0078 0.41 - -

Az/6* 0.47 0.66 ---

(wall  units)

Ax+ 16a 16, 63

Ay+ 0.31+ 16 1.8+50

Az+ 19 26 42

Turbulence volume 0.3 x 10 9b 0.4 x 10 9b 12 x 109

(wall units")

Time step

Atu./6* 0.24 0.49 --

At+ 0.38a 0.78a 0.61

Number steps/run 1500 100 2000

ILLIAC time/run, hr 12	 2	 12

aEstimate using 6*+ = (uT /Um)Re6* z 40; (5*/U.) + = (uT 2 /U. 2 )Re6* z 1.6.

bEstimated vertical extent of turbulence = 250 wall units.

laminar boundary layer are 6* and 6*/Uo„ respectively. In the simulation of turbu-

lent channel flow, appropriate length and time scales for the near-wall region are

v/uT and v/uT 2 , where uT is the wall friction velocity, u T v a (u)ayjwall. To

compare the transition studies with the channel flow simulation, the scales of the

first two studies were converted to approximate turbulent scales as follows. Assume

that the laminar boundary layer completes its transition to a turbulent layer. Then

the original laminar displacement thickness in wall units is given by
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R

d*u^ a M.
f	 *'^

V	 U^ v

u'[
" 

U;, Red*

40

there we have used YU, - 0.04 for the turbulent layer and Re d* - 1000. The time

kjcale in wall units is found to be

d* + uT2
(U^	

U,z Red*

- 1.6 .

Note that the two transitional studies have comparable resolution in the horizontal

directions, but the vertical grid of WH is much finer. Both are able to resolve

structures having length scales 0(6*) in any direction, and, , as shown in earlier

figures, many such significant structures were found. Recall, for example, the vert:l-

cal velocity contour plot

(Fig. 5) at the two-spike stage	 r------r---

of the study by WH, exhibiting
4

large peak values ('-0.21 U.) 

and very large streamwise gra- 	 v CONTOURS

dients. As shown in Fig. 20a,

a similar structure with a peak io 2 

v of 0.42 U. was found in	 I ^^ ^^ ^^i ,^^^%}V3
the spot simulation. The

results are shown in a z-plane j^

(z G 0.8 P) containing mostly

upward fluid motion (bursting ?)

similar to the peak-plane 4

behavior observed by WH. 	 Con-

tours of the perturbed spanwise w' CONTOURS	 .......

vort,icity are shown in Fig. 20b ' •	 ' is <'is"'	 '

in the same	 x-y	 plane at 2	 :.-.ti	 ;'	 >.•.;	 `;w;.w
	 ;N ,c,.,	 ;, t

^z = 0.8 P.	 As might be ; `	 '	 ,^,^......

expected, the region of large
`p

9v/fix	 is associated with a ;	 ° 	 '';;	 ='w	 •^+	 (b)

concentration of	 wZ. 0	 10	 20	 30	 40

The time evolution of the x/S*

maximum vertical velocities is

shown in Fig. 21.	 Also shown is
FIG. 20	 Contours in an	 x-y	 plane from the
numerical simulation of a spot-like disturbance:

the range of peak values in the (a) vertical velocity;	 (b) perturbed spanwise
vorticity.
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1'0	 channel flow simulation by KM in

several y-z planes for y* a 46.

SPOT DISTURBANCE	 Through the final stages of evolution

the peak vertical velocity in the 
aX/U

^ 

(

(yY

+< 

AO)
WVM

/U
	transition study of W11 is expericne

} max	 -G
ing exponential growth at 15 Lfillk!:,

.1

	

WAVE DISTURBANCE	 the growth rate of the initial two,

g

	

	 dimensional perturbation wave.

Apparently this peak is associ It d
E
>	 with a small-scale (0(6*)) secondary

instability of the larger (0(25,*))

	

LINEAR GROWTH
	 slower-growing primary instabili ty .

,D1 T$ WAVES	 g	 g p	 y

The growth rate seen in the spat,

simulation is even larger and not.

exponential, presumably due Lo non-

linear interactions between small-

scale perturbations.

^01	
Note that in the channel-flow

0	 10	 20	 30	 40	 study a relatively coarse mesh in
SPOT

cI	 I	 I	 the horizontal plane was used, clearly
300 310 320 330 340 350 360	

dictated by the relatively large vol-
WAVE

ume of turbulence being simulated.

A number of flow structures seen in

the transitional studies that were
FIG. 21 Maximum vertical velocities in a

(0(6*)) and smaller in the spanwise
plane. 

and streamwise directions would not

be resolved adequately by this mesh,

(Recall that 6** z 40.) Nevertheless, KM see in their simulation considerable tur-

bulent activity near the wall, as evidenced by Figs. 15-19. As =r;as mentioned above,

turbulent structures do appear (wall streaks, etc.), but at a larger scale than in

experiment, accommodating themselves to the available resolution. In Figs. 22 we see

this effect illustrated in a contour plot of streamwise vorticity from KM's simula-

tion. In Fig. 22a, about one seventh of the y 	 computational plane is shown. Note

that near the wall the spanwise extent of the cell-like structures is only a few times

the smallest available scale in the span direction (Az* = 42). in Mg. 22b a blowup

of one of the more active regions near the wall is shown. With one exception, the

structure is similar to the one shown in Fig. 9b from the spot simulati ,.^n. The verti-

cal scales in Figs. 22a and 22b have been expanded by a factor of 4 over the horizon-

tal scales so that the actual structure depicted in Fig. 22b is considerably flattened.

For comparison, Fig. 23 shows Fig. 9b from the spot simulation sing the same scale in

wall units of the channel-flow results. The smaller computational domain affords the

luxury of seeing the fine-scale structures depicted in the figure.
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III. EFFECTS OF SUBGRID-SUPERGRID SCALE MOTIONS

In the numerical simulation of fluid flows one can resolve only a limited range

of length scales in the flow field. In most cases of interest, turbulent flows will

contain important scales of motion outside this range, A major problem in the simu-

lation of turbulent flows, therefore, is to model the effect of these subgrid or

supergrid components on the resolvable scales. The objective of this modeling effort

should be to minimize the error on any desired statistical information that is derived

from the resolvable acale motions, including structural information. This problem

appears particularly acute in the case of wall-bounded shear flows because of the

importance of small-scale structures near the wall in the generation of turbulent

energy and in turbulent mixing. In addition, the use of periodic boundary conditions

will be a problem if scales larger than the computational domain are important.

In the first two studies discussed in the previous section, which were concerned

with the transition of a laminar boundary layer, there was no explicit attempt to

account for subgrid-scale effects. In the study by WN of the evolution of a wave-like

disturbance, a Fourier representation was used for the dependence of the flow variables

in the streamwise and spanwise directions. Thus, by the quadratic nonlinearity of the

pressure and convective derivatives, the evolution of a given Fourier coefficient with

two-dimensional wave number k l within the resolved range (kmin < Jki, < kmax) will
contain contributions from other wave numbers k 2 and k 3 satisfying

ice + k3 = kl ,

160

so

O

4

x/d •	 . 26

tUo„ /b` R 41

R r.	 i.. a 4	
w
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if neither of the corresponding Fourier coefficients is negligible. If k F and ki

are in the resolved range there in no problem. if either or both are out of Clio

resolved range an error is made by neglecting this contribution. The assumption of

streamwise periodicity leads to arrora involving suporgr4d components. For the o1mu-
latitan of Wit, this error (discussed in Section Ii) appears to be small. in flows
where turbulent energy is simply cascading to higher wave numbers near the cutoff

kmax (e.s., the decay of isotropic turbulence) the error involving subgrid componento
bas the affect of turning off the cascade, resulting in ,a "pileup" of turbulent energy
around 1,1r[ R: kmaax in tlae numerical simulation. Several scliames, based on a Fourier
represenLast:iun of the ;Flow variaabl.as, have been proposed to model the effects of Chi=
unresolved flow field (jkj ' kmax) and, therefore, to allow the turbulent cascade
process to pass energy on to the subgrid scales. See Leslie and Quarini [13) for a'
discussion of these possibilities. in wall.-bounded shear flows, however, the produc...

Lion of turbulent energy may also occur near the cutoff wave number. This poses an
additional challenge to the capabilities of a subgrid model. In this case the model
must account for all the important unresolved instability mechanisms that break up the

wall, shear layer and produce turbulence..

Again, in the vortex simulation of a spot-like disturbance no explicit model for

the subgrid scales has been used as yet. Fine-scales of turbulence are produced auto-

matically in the simulation as the space curves representing the vortex filaments take

oil 	 convoluted configurations under the continual action of local velocity

gradients. There is a lower limit to scale of turbulence that can be resolved, how-

ever. From 1q. (5) we see that this scale is the core radius of the filaments, 0,

(Note that the Fourier transform of w contains the factor exp(-jk`Y/4) so the
maximum resolved wave number is "1/a,) In the vortex simulation discussed in this

paper some of the computed space curves representing vortex filaments had become

highly stretched and contorted by the end of the simulation. More computational node

tauints would be required to accurately follow the subsegv,. , 31. motion of these filaments.

t* 1- oss costly, alternative way of proceeding with the simulation would be to remesh

the vorticity field, perhaps by smoothing the filament curves and by changing the

topology of some curves [5). Of course this procedure would be required repeatedly at

later times as more fine scales reappear. The method appears to have promise as a

subgrid modeling technique. Fine scales are allowed to develop in a natural way,
retaining some interplay between the large and small scales. The method seems analo-

gous to computing with a fine mesh in Eulerian calculation and periodically filtering

out the high wave-number components of the velocity or vorticity field (14).

In the channel-flow simulation, KM use an eddy viscosity model for the subgrid-

scale stresses. This model has proved adequate in less demanding situations, for

example, the decay of homogeneous turbulence [15]. The model is successful in these

cases in spite of the fact that it does a relatively poor job of estimating the actual

point-wise subgrid-scale stresses computed by filtering the results of a fine-mesh

simulation of a homogeneous turbulent: flow [16,17). Such a capability is, of course,
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not a necessary requirement for a subgrid modal, but it would be more ancourngin- if

the correlation between the actual And modeled stresses was higher than the 30% levvi

determined by McMillan and Farziger (17]. A new model that does quite wall in this

respect has been proposed by liardina at gal. (18). The idea is to model the subgrid

stresses directly in terms of the small -scale component of the resolvable field.

In the simulation of KM, there is every indication the the eddy -viscoeity modol

it, c;uiFte satisfactory away from the wall (y^ 90). The mean velocity and tilt, thrcc.
t ► arbulence •intensity profiles agree well with experiment in that region. Near the

wall, however, the mean velocity is low, as are the vertical velocity fluctuation.

Apparently the eddy-viscosity modal, being essentially dissipative, is nos able to

represent or account for important turbulent production processes near the will tht

occui -n the oubgri,d scales or in the smallest resolved scales where the interaction

with the subgrid scales is of great importance. Evidence from the two studies coa-

cerning transition of a laminar boundary layer strongly suggests that that eventual.

br4^akup of the laminar layer involves structures that are 0(6*) in the streamwlb;e

and spanwi.se directions. In KM's channel-flow simulation it is quite possible than

that the lack of resolution in the x and z directions or orhar numerical affects or

bath inhibit the breakup of vorticity layers at the wall until they grow excesivc-ly

thick= indeed, in numerical, experiments involving the filtering procedure, KM showed

that substantial increases in turbulent shear stress near the wall are possible for

short time intervals by modifying the treatment of the smallest resolved Scales. It

appears, therefore, that a subgrid model for the near- >wa ll region should contain a

destabilizing feature that would promote the breakup of vorticity layers rather than,

or in addition to, the dissipative aspect of the eddy-viscosity model.

By using periodic boundary conditions in the horizontal directions, KM encoun-

tered errors due to unresolved supergrid components of turbulence. The magnitude of

this error is not known, but is estimated to be small based on experimental two-point

correlations.

IV. SUMMARY AND CONCLUSIONS

Numerical simulations of wall-bounded turbulent shear flows have confirmed the

existence, and illuminated some of the characteristics, of cell-like substructures

near the wall containing substantial vertical and streamwise vorticity. These struc-

tures appear to be responsible for or intimately related to many features of turbulent

flows observed experimentally -- intense vertical mixing, low-speed and high-speed

streaks, and, hence, the streaky structures seen in photographs of dye-particle

contaminants.

These structures were first revealed numerically in the simulation of turbulent

channel flow. In this case, these structures seem to be related to strong (-u'v)

botspots and, ultimately, the mean-velocity profile since planar averages of u'v
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yield the turbulent shear-stress profile. In the case of a turbulent spot, span-

averaging over one --ell produces a streamwise profile qualitatively similar to

ensemble-averaged measurements of experiment.

In the simulation of the vibrating ribbon transitional flow all the features of

the corresponding experiment were reproduced including the development of secondary

1n.stabilitles with length scales 9(P). At this writing, Wray is investigating the

vjoperties of a strong sitreamwise vortical structure that he has located off the peal,

(.,lane: in the simulation of WH.

The impetus to lmulate more complex wall-bounded shear flows in reasonable

computer times means a continued sparseness of grid points for the near-wall region.

More sophisticated subgrid-scale models will be required to account for the fine-

scale structures discessed above that appear to be so important to the turbulent shear

stress and turbulent mixing, in general, near the wall. Many interesting possibili-

ties exist. We speculate that successful models will enhance the breakup of wall-

bounded vorticity layers while perhaps retaining some aspects of an eddy-viscosity

model.
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