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SUMMARY

A simple linear stability criterion demonstrates that an
increase in shaft flexibility results in reduced stability. An
examination of the corresponding complex eigenvalues confirms

the stability reduction but also shows that the maximum negative

damping in flexible shafts/bearing systems is very small. Thus

the energy transferred to the shaft whirl through the lubricant

film is also very small.

A non-linear behaviour in these cases can be investigated

if appropriate solutions of Reynolds equation are available. An

approximate but realistic method has been incorporated into a

dynamic simulation. It is demonstrated that in unstable regimes,

flexible shafts have small limit cycle motions.

INTRODUCTION

In the last decade several papers have been published dealing

with the transient response of rotor bearing systems, e.g.
Kirk (ref. i) and Childs (ref. 2).

McCallion (ref. 3), Myrick and Rylander (ref. 8), used a

finite difference approach to obtain instantaneous bearing forces.

Because of the complexity of the oil film simulation both papers

used a 3 mass symmetrical model and were mainly concerned with

establishing the validity of the method rather than using it in a

systematic way.

The influence of shaft flexibility on instability onset speed

has been examined by Dostal et al. (ref. 5) and Ruhl (ref. 4).

In both these papers a multi-degree of freedom representation of

the shaft was coupled with a short bearing representation of the

oil forces. However it was clearly demonstrated that for a

flexible shaft there was a drastic reduction in the stability

boundary.

An almost universal solution to unstable circular bearings

is to replace them with 4 fixed lobe or tilting pad bearings.

While tilting pad bearings are superior from a linear stability

viewpoint Greathead (ref. 6) has pointed out an increase in

resonant response due to reduced damping. It was also demon-

strated that a subsynchronous vibration due to steam gland forces
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increased in severity. Now practical experience with tilting
pad bearings has raised some doubts over mechanical reliability
of the pad pivots. Thus the advantages of tilting pad bearings

may be less than generally assumed.

The work described below deals with a symmetric 3 mass rotor

supported on hydrodynamic bearings. An approximate method of

representing finite bearings is used to calculate bearing forces.

As the method sums forces from a number of independent circular

lobes lemon 3 and 4 lobe bearings can be taken into account.

The calculations in this paper are based on an axial groove

bearing as this is likely to have less stability. Linear

analysis precedes non-linear simulation of some unstable

conditions. The demonstration of small limit cycles suggests

that necessarily flexible rotors e.g. helicopter tail rotors may

be practical without either tilt pad bearings or external

dampers.

SYMBOLS

C radial clearance

e journal eccentricity ratio

F bearing force

H non-dimensional film gap (i + e cos 0)

K half shaft stiffness; bearing stiffness

L bearing length

M half central mass

m

P

R

X,x

bearing mass

p 2

dimensionless pressure, _ (C/R)

bearing radius

mid-span and bearing horizontal motion

Y,Y midspan and bearing vertical motion

A geometrical eccentricity of masses

non-dimensionalised bearing axial distance

0 film co-ordinate

angular velocity of journal/bearing line of centres
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viscosi ty

angular velocity of journal

HYDRODYNAMICBEARING FORCES

Reynolds lubrication equation for constant viscosity
conditions can be written as

3 R2 $ H3 )
) + L2 ( = 6e sin_ (i-2_/_) + 12e/_ cos8 (i)

If the axial pressure distribution in an aligned bearing is

assumed to be parabolic and symmetric about the mid plane

P = 4 P _ (l-t)
max

Reynolds e_uation can then be written in terms of the mean

axial pressure P

d (H 3 dP 12 R 2 H 3
dO d--_ ) - = 6e sin8 (i-2_/_) +

L2 12e/_ cos8
(2)

An approximate solution can be obtained using the Galerkin

technique to minimise the mean square error. In this case only a

single approximating function was used, the long bearing solution

to equation (I). The approximation is substituted into equation

(2) and integrated after multiplication by the long bearing

solution. The resulting scaling factor is less than one and can

be considered as a leakage correction factor.

The pressure distribution obtained needs to be integrated

to obtain the required force components. Traditionally Simpson's

rule is used for numerical integration of bearing pressures but
a Gaussian method is more efficient.

As the method is recognised to be approximate likely errors

in the vector forces need to be assessed. A detailed comparison

for static loads and dynamic coefficients for a lemon bore bearing

was presented by Black and Brown (ref. 7). Some results for an

axial groove bearing are given here (figs. 2,4,5). These

comparisons are based on either static conditions or vanishingly

small velocity perturbations for the damping coefficients.

Squeeze film effects were calculated and compared for an
180 ° arc bearing. The comparison between the approximate method

and a finite difference method (fig. 3) demonstrates that

sufficient accuracy is achieved for dynamic simulation.
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SHAFT MODELAND STABILITY

The simplest model of a realistic shaft (fig. i) consists
of a 3 mass rotor supported in hydrodynamic bearings. By taking
advantage of an assumed symmetry, McCallion (ref. 3), the
equations of motion can be written in spaced fixed coordinates
(fig. i):

[M] {_} + [C] {X} + [K] {x} : 0 for free motion

where M = [! O O !] K = [;! O _K i ]

M O K O -

O m 0 K+Kxx xy

O O -K K K+KyyJxy

c[i°°!xlandxB O

O Bxx

O By x YYJ

Following Ruhl (ref. 4) equations
8, ist order equations.

(i) can be expanded into

(3)

•_ [o_ _]{_}+[_:]{x}0
x

st
and assuming x = q e

where M- IC

_M-IcI

= B/M

0

0

0

0 x

O O O 1

B/M o o

O Bxx BxY/m

O Byx/mByy/m

(4)
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M- IK K/M O

K
o /M

-K/M O

-K
/M O

O -K/M

K+Kxx/m KxY/m

O -K/m KxY/m K+Kyy/m

Equation (4) is a standard eigenvalue problem where roots

can be obtained using a library sub-routine. The roots will occur

in complex conjugate pairs s i = I i _ J_i or as real roots.

The stability boundary can be established by examining the

variation in the real part I. of each root as a function of an

operating parameter. For sta_le operation all I. must be

negative and when any I. becomes positive the mo_el becomes
unstable, l

However the sensitivity of the growth (or decay) factor to

operating variables near the stability boundary has not often

been investigated in a systematic way. A conventional presenta-

tion of the stability for a flexible shaft, Dostal et al. (ref. 5)

and Ruhl (ref. 4), has stability parameter plotted against bearing

eccentricity for a range of shaft flexibilities. An example of

such a stability plot is shown (fig. 6) for the lumped mass model
(fig. i) of Table i.

Operating lines of constant viscosity are superimposed on

the stability plot. These are obtained by noting that

eccentricity is a function of Sommerfeld Number, which depends on

the product of speed and viscosity for a fixed load and geometry.

However, speed is already incorporated into the stability para-

meter and so operating lines can be presented as lines of

constant viscosity.

The variation in the dominant eigenvalue near the stability

boundary for a single viscosity (fig. 7) clearly shows the

significant effect of shaft flexibility. With shaft flexibility

low a small change in bearing eccentricity has a dramatic effect

on the rate of decay. However, as the shaft flexibility increases

there is a marked convergence of the lines of constant

eccentricity. More significantly the region of coalescence moves

closer to the stability boundary as flexibility increases.

Replacing the axial groove bearings of the model with lemon

bore bearings (ref. 7) produces another stability plot (fig. 8).

The stability is clearly much improved compared with axial groove

bearings. Indeed for moderate to high flexibility (C/_ < i) the
shaft is completely stable.
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These linear calculations demonstrate that in certain
circumstances, unstable flexible shafts have very low negative
damping. No external damping was included in these linear
calculations so the results are pessimistic if no other
destabilizing forces are present.

NON-LINEAR SIMULATION

The equations for free motion (equ. (3)) can be modified
for forced vibration

Thus [M] {x} + [C] {x} + [K] {x} = e -i_t {MA} + {F}

where {MA} is the mass eccentricity vector

and {F} is bearing force vector

For numerical integration acceleration needs to be

implicity defined.

Thus

: [-M] [c] x - [M] [K] x + 2 {A}+

These 4 equations are reformed into a set of 8 first order

equations and integrated using a 4th order Runge-Kutta method.

NUS_RICAL RESULTS

The 3 mass shaft model (fig. i) with axial groove bearings

was used for non-linear simulation of some unstable cases.

Initial vertical deflection of the central mass was set at its

static value, all other deflections and velocities zero. For

a flexible shaft (C/_ = 0.i) with no external damping response,
calculations for 12 _haft revolutions shown in figures 9 and 10

for a bearing position indicate limit cycles for zero unbalance

and a large central unbalance respectively. However reflection

on published work particularly that of Holmes (9) led to closer

examination of the calculated results. At the end of the

integration the growth rate (log dec) was around 0.0025,

graphically insignificant. The calculations were extended with

external damping added to the central mass. After some 60 shaft

revolutions the undamped model response was increasing while

with _ = 0.01 damping maximum excursion at both shaft centre

and bearing were reached after 30 revolutions.

Additional calculations were carried out for a stiffer

shaft (C/_ = 0.3) at a more unstable condition. The results for
zero unbalance are summarised in fig. II. An external damping

ratio of 3% is needed before extreme excursion values of mid-

span deflection are established after 15 shaft revolutions.
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DISCUSSION AND CONCLUSIONS

It has been demonstrated that for an unstable flexible shaft

the limit cycle motion can be small. These calculations were

carried out for axial groove bearings with the addition of a

small amount of external damping. The assumed additional

damping was less than that used by McCallion (ref. 3). Further

work using non-circular bearings for unstable conditions (e.g.,

fig. 8) is expected to demonstrate that unstable flexible shafts

do not develop unacceptable levels of vibration.

TABLE i.

3 MASS SHAFT WITH AXIAL GROOVE BEARINGS

7.237 Kg

4. 382 Kg

25.4 mm

50.8 mm

HALF CENTRAL MASS

JOURNAL MASS

BEARING LENGTH

BEARING DIAMETER

BEARING DIA_TRAL

CLEARANCE 50.8 _m

SHAFT FLEXIBILITY C/__ 0.I 0.3

SHAFT STIFFNESS K MN/m

SPEED R.P.M.

JOURNAL ECCENTRICITY

CRITICAL MASS C
W

g

.279

7120

.41

1.2

.837

12,470

0.29

2.1
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Figure 1. - Three-mass model.

Byy

338



u'b

,.=,
(=3
:E

Z

¢¢c

:E
0

O'e

Z)'4

O2

01

A F_ER \,_

PINKUS _\_

\\

I ' I \X

02 0.4 06 0 L_

ECCENTRICITY \

Figure Z - Two-axial-groove bearing. LiD - O.5.

SINGLE TERM "I0(>

-- -- -- GALERKIN

-150-
-- 11x41

FINITE

DIFFERENCE -2OO-

Fr, F_ 150"

-250- , _ _,_-GALE RKIN

-300- F,D,_

Figure 3. - Comparison of finite difference with an

approximate method. Squeeze forces; LID - ];
180° arc: _ • 45°;E • O.g.

339



./
Kyy

Figure 4. - Axial-groove bearing. L/I) • O.5; nondimen-
sionalized stiffness.

Figure 5. - Axial-groove bearing. LD • 0.5; nondimen-
sionalized damping.
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